Combinatorics and graph theory II.

10th practice, 23rd of November, 2022.
Erdős-Ko-Rado, Sperner, LYM-inequality

Good to know

Erdős-Ko-Rado theorem. (1961) If $\mathcal{F} \subseteq 2^{[n]}$ is a k-uniform set-system $(k \leq n / 2)$ with the property that for any $A, B \in \mathcal{F}: A \cap B \neq \emptyset$, then $|\mathcal{F}| \leq\binom{ n-1}{k-1}$ and this can be attained.

De Bruijn - Erdős theorem (1948) $\mathcal{F} \subset 2^{[n]}$, for all $A \in \mathcal{F}|A| \geq 2$, and for arbitrary elements $1 \leq i<j \leq n$ there is exactly one $A \in \mathcal{F}$ such that $i, j \in A$. Then $|\mathcal{F}|=1$ or $|\mathcal{F}| \geq n$.

Sperner's theorem (1928) $\mathcal{F} \subset 2^{[n]}$, for all $A, B \in \mathcal{F}: A \not \subset B$ and $B \not \subset A$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$. In case of equality: $\mathcal{F}=\binom{[n]}{[n / 2\rfloor}$ or $\mathcal{F}=\binom{[n]}{[n / 2\rceil}$.

LYM inequality $\mathcal{F} \subset 2^{[n]}$, for all $A, B \in \mathcal{F}: A \not \subset B$ and $B \not \subset A$. Let f_{k} denote the number of k element sets contained in \mathcal{F}. Then $\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}} \leq 1$. In case of equality: $\mathcal{F}=\binom{[n]}{k}$ for some k.

1. There is a 100 element set. We choose some of its 20 and 80 element subsets in such a way that any two choosen subsets intersect each other. At most how many such subsets can be choosen?

2 . Let T be an n vertex tree.
(a) At most how many connected subgraphs of T can be choosen if none of them is a subgraph of another one?
(b) At most how many induced subgraphs of T can be choosen if none of them is a subgraph of the another one?
3. Show a set system $\mathcal{F} \subseteq 2^{[n]}$, such that the intersection of any two sets contained in \mathcal{F} contains at least two elements and $|\mathcal{F}|=2^{n-2}$. Is there a bigger $\mathcal{F} \subseteq 2^{[n]}$ which satisfies the first property? Useful: $\binom{2 k}{k} \leq 2^{2 k-1}$. (Furthermore, $\leq 2^{2 k} / \sqrt{k}$ if k is big enough.)
4. Let $\mathcal{F} \subseteq 2^{[n]}$ be a set system which does not contain a chain of size $s+1$ (so there are no sets $A_{1}, A_{2}, \ldots A_{s+1}$ in \mathcal{F} such that $\left.A_{1} \subset A_{2} \subset \cdots \subset A_{s+1}\right)$. Prove that $\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}} \leq s$, where f_{k} is the number of k element sets contained in \mathcal{F}..
5. Let $\mathcal{F} \subseteq 2^{[2 n]}$ be a set system such that the cardinality of each set contained in \mathcal{F} is even and any two set contained in \mathcal{F} intersect each other. Show that if n is even, then \mathcal{F} contains at most $2^{2 n-2}$ sets.
6. Let $\mathcal{F} \subseteq 2^{[n]}$ be a set system such that the cardinality of each set contained in \mathcal{F} is even but the cardinality of the intersection of any two sets contained in \mathcal{F} is odd. Show that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
7. n people are living in a village. How many clubs can be established in the village such that if A_{i} denotes the members of club i, then $\left|A_{i}\right| \not \equiv 0(\bmod 3)$ and for all $i \neq j:\left|A_{i} \cap A_{j}\right| \equiv 0(\bmod 3)$.
8. Assume that any two edges of the hypergraph $\mathcal{H}=(V, \mathcal{E})$ are either disjoint or one of them contains the another. At most how many edges can \mathcal{H} have if it does not have repeated edges?
9. Assume that $k<n / 3$ and $\mathcal{F} \subseteq\binom{[n]}{k}$ is a k-uniform set-system which does not contain 3 pairwise disjoint sets. Show that $|\mathcal{F}| \leq 4\binom{n-1}{k-1}$.
10. Assume, that the hypergraph $\mathcal{H}=(V, \mathcal{E})$ does not contain a cycle, so there is no sequence containing pairwise different vertices and hyperedges such that $x_{1}, E_{1}, x_{2}, E_{2}, \ldots x_{k}, E_{k}, x_{k+1}=x_{1}$ where E_{i} contains vertices x_{i} and x_{i+1}. Show that if the \emptyset is not an edge of \mathcal{H} and \mathcal{H} is connected (V is not a disjoint union of two nonempty sets V_{1} and V_{2} such that any hyperedge is a subset of V_{1} or V_{2}), then $\sum\{|E|-1: E \in \mathcal{E}\}=|V|-1$.

Homework

1. For each $k \geq 1$ show a k-uniform hypergraph which is isomorphic to its dual hypergraph.
