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Abstract

This note concerns the (1, f)-odd subgraph problem, i.e. we are given an undirected
graph G and an odd value function f : V (G) → N, and our goal is to find a spanning
subgraph F of G with degF ≤ f minimizing the number of even degree vertices. First
we prove a Gallai–Edmonds type structure theorem and some other known results on the
(1, f)-odd subgraph problem, using an easy reduction to the matching problem. Then we
use this reduction to investigate barriers and elementary graphs with respect to (1, f)-
odd factors, i.e. graphs where the union of (1, f)-odd factors form a connected spanning
subgraph.

1 Introduction

In this paper we deal with a special case of the degree prescribed subgraph problem, introduced
by Lovász [10]. This is as follows. Let G be an undirected graph and let ∅ 6= Hv ⊆ N be
a degree prescription for each v ∈ V (G). For a spanning subgraph F of G define δF

H(v) =
min{|degF (v) − i| : i ∈ Hv}, and let δF

H =
∑
{δF

H(v) : v ∈ V (G)}. The minimum δF
H among

the spanning subgraphs F is denoted by δH(G). A spanning subgraph F is called H-optimal
if δF

H = δH(G), and it is an H-factor if δF
H = 0, i.e. if degF (v) ∈ Hv for all v ∈ V (G). The

degree prescribed subgraph problem is to determine the value of δH(G).
An integer h is called a gap of H ⊆ N if h /∈ H but H contains an element less than h and

an element greater than h. Lovász [12] gave a structural description on the degree prescribed
subgraph problem in case Hv has no two consecutive gaps for all v ∈ V (G). He showed that
the problem is NP-complete without this restriction. The first polynomial algorithm was given
by Cornuéjols [2]. It is implicit in Cornuéjols [2] that this algorithm implies a Gallai–Edmonds
type structure theorem for the degree prescribed subgraph problem (first stated in [14]), which
is similar to – but in some respects much more compact than – that of Lovász’.

The case when an odd value function f : V (G) → N is given and Hv = {1, 3, 5, . . . , f(v)} for
all v ∈ V (G), is called the (1, f)-odd subgraph problem. We denote δH(G) = δf (G). This
problem is much simpler than the general case due to the fact that only parity requirements
are posed. The (1, f)-odd subgraph problem was first investigated by Amahashi [1] who gave a
Tutte type characterization of graphs having a (1, 2k +1)-odd factor. A Tutte type theorem for
general odd value functions f was proved by Cui and Kano [3], and then a Berge type minimax
formula on δH(G) by Kano and Katona [7]. A Gallai–Edmonds type theorem on the (1, f)-odd
subgraph problem was given in [8] and [14].

In this note we show a new approach to the (1, f)-odd subgraph problem. Actually, it
is worth allowing f to have also even values and defining Hv equal to {1, 3, . . . , f(v)} or
{0, 2, . . . , f(v)}, according to the parity of f(v). We call this the f-parity subgraph prob-
lem. We show an easy reduction of the f -parity subgraph problem to the matching problem
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(the existence of such a reduction was already indicated in Lovász [12]), and we show that
this reduction easily yields the above mentioned Gallai–Edmonds and Berge type theorems
on the f -parity subgraph problem. Then we investigate barriers w.r.t. the f -parity subgraph
problem. As another application, we explore the graphs for which the edges belonging to some
f -parity factor form a connected spanning subgraph. We call such a graph an f-elementary
graph. We generalize some results on matching elementary graphs (proved by Lovász [11])
to f -elementary graphs. An attempt putting the f -parity subgraph problem into the general
context of graph packing problems can be found in [15].

The f -parity subgraph problem can be reduced to the (1, f)-odd subgraph problem by the
following construction: for every vertex v ∈ V (G) with f(v) even, connect a new vertex wv to
v in G, define f(wv) = 1 and increase f(v) by 1. Now δf (G) remains the same.

To avoid minor technical difficulties we assume that f > 0. Almost all results of the paper
would hold without this restriction, too. Note that if G is a nontrivial f -elementary graph then
f > 0 always holds.

The constant function f ≡ 1 is simply denoted by 1. For X ⊆ V (G) let Γ(X) = {y ∈
V (G)−X : ∃x ∈ X, xy ∈ E(G)}, let f(X) =

∑
{f(x) : x ∈ X} and let χX denote the function

with χX(x) = 1 if x ∈ X and χX(x) = 0 otherwise. c(G) denotes the number of connected
components of the graph G. | · | denotes the cardinality of a set, and N is the set of nonnegative
integers. The graphs are undirected throughout.

2 Reduction to matchings

In this section we show a reduction of the f -parity subgraph problem to matchings, which will
then be used to prove the Gallai–Edmonds type structure theorem on the f -parity subgraph
problem. The auxiliary graph we use is defined below.

Definition 2.1. For the graph G and the function f : V (G) → N \ {0} define Gf to be the
following undirected graph. Replace every vertex v ∈ V (G) by a new complete graph on f(v)
vertices, denoted by Kv, and for each pair of vertices u, v ∈ V (G) adjacent in G, add all possible
f(u)f(v) edges between Ku and Kv. Let Vv = V (Kv).

Observe that G1 = G and that |V (Gf )| = f(V (G)). f > 0 implies that Vv 6= ∅ for v ∈ V (G).
There is a strong connection between the maximum matchings of Gf and the f -parity optimal
subgraphs of G. Note that the size of a maximum matching of G is just |V (G)| − δ1(G).

Lemma 2.2. For every f-parity optimal subgraph F of G there exists a matching M of Gf

such that |V (M)| = f(V (G)) − δF
f . Moreover, if degF (w) ∈ {. . . , f(w) − 3, f(w) − 1} for a

vertex w ∈ V (G) then M can be chosen to miss a prescribed vertex x ∈ Vw.
On the other hand, for every maximum matching M of Gf there exists a spanning subgraph

F of G such that δF
f = f(V (G)) − |V (M)|. Moreover, if M misses a vertex in Vw for some

w ∈ V (G) then F can be chosen such that degF (w) ∈ {. . . , f(w)− 3, f(w)− 1}.
Hence δf (G) = δ1(Gf ).

Proof. Let F be an f -parity optimal subgraph of G. If degF (v) > f(v) for some v ∈ V (G)
then clearly δF ′

f ≤ δF
f holds for the graph F ′ obtained from F by deleting an edge e incident

to v. As F is f -parity optimal, e is not adjacent to w, so degF ′(w) = degF (w). Hence we
assume that degF ≤ f , which implies that δF (v) is 1 or 0 for all v. Now it is easy to construct
from F a matching of Gf missing exactly δF

f vertices, one in each Vv for the vertices v with
degF (v) 6≡ f(v) mod 2. If w is such a vertex then M can be chosen to miss x ∈ Vw.

For the second part, let M be a maximum matching of Gf . If M contains two edges between
Ku and Kv for some u, v ∈ V (G), then replace them by two edges, one inside Ku and the other
one inside Kv. Thus we may assume that M contains at most one edge between Ku and Kv for
all distinct u, v ∈ V (G). By contracting each Ku to one vertex u we get a spanning subgraph
F of G with δF

f = f(V (G)) − |V (M)|. Moreover, degF (w) ∈ {. . . , f(w) − 3, f(w) − 1} in case
M misses a vertex in Kw.
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We define critical graphs w.r.t. the f -parity subgraph problem as in the matching case. If
f = 1 the graphs defined below are called factor-critical.

Definition 2.3. Given a graph G and a function f : V (G) → N. G is called f-critical if
for every w ∈ V (G) there exists an f -parity optimal subgraph F of G such that degF (w) ∈
{. . . , f(w)− 3, f(w)− 1} and degF (v) ∈ {. . . , f(v)− 2, f(v)} for all v 6= w.

By Lemma 2.2 G is f -critical if and only if Gf is factor-critical. The Gallai–Edmonds
structure theorem for the f -parity subgraph problem follows from the classical Gallai–Edmonds
theorem easily. We cite this latter result below.

Theorem 2.4. (Gallai, Edmonds)[4, 5, 6] Let D consist of those vertices of the graph G
which are missed by some maximum matching of G, let A = Γ(D) and C = V (G) − (D ∪ A).
Then

1. every component of G[D] is factor-critical,

2. |{K : K is a component of G[D] adjacent to A′}| ≥ |A′|+ 1 for all ∅ 6= A′ ⊆ A,

3. δ1(G) = c(G[D])− |A|,

4. G[C] has a perfect matching.

A direct generalization of the above result is the version for the f -parity subgraph problem.

Theorem 2.5. [8, 14] Let G be a graph and f : V (G) → N\{0} be a function. Let Df ⊆ V (G)
consist of those vertices v for which there exists an f-parity optimal subgraph F of G with
degF (v) ∈ {. . . , f(v)− 3, f(v)− 1}. Let Af = Γ(Df ) and Cf = V (G)− (Df ∪Af ). Then

1. every component of G[Df ] is f-critical,

2. |{K : K is a component of G[Df ] adjacent to A′}| ≥ f(A′) + 1 for all ∅ 6= A′ ⊆ Af ,

3. δf (G) = c(G[Df ])− f(Af ),

4. G[Cf ] has an f-parity factor.

Proof. Take the classical Gallai–Edmonds decomposition V (Gf ) = D ∪ A ∪ C of Gf . By
symmetry, if Vv meets D then Vv ⊆ D. These vertices v ∈ V (G) form Df by Lemma 2.2. The
other results follow from the construction and from Lemma 2.2.

This proof implies:

Lemma 2.6. For X = D,A, C it holds that Xf (G) = {v ∈ V (G) : Vv ⊆ X(Gf )}, provided
f > 0.

From Theorem 2.5 the Berge type minimax formula on the f -parity subgraph problem
follows in a few lines.

Definition 2.7. A connected component K of G is f-odd (f-even) if f(V (K)) is odd (even).
Let f -odd(G) denote the number of f -odd components of G. For Y ⊆ V (G) let deff (Y ) = f -
odd(G− Y )− f(Y ).

Theorem 2.8. [7] If G is a graph and f : V (G) → N \ {0} is a function then δf (G) =
max{deff (Y ) : Y ⊆ V (G)}.

Proof. By virtue of Theorem 2.5, one only has to observe that if a graph K is f -critical then
f(V (K)) is odd, and that if f(V (K)) is odd then K has no f -parity factor.

We point out that up to this point f = 0 was excluded only for sake of convenience.
Theorems 2.5 and 2.8 still hold in the general case. (If f(v) = 0 then join a pendant vertex
u to v and define f(u) = f(v) = 1. Then construct Gf .) So we can define the canonical
decomposition Df (G), Af (G), Cf (G) for all f . However, Lemma 2.6 would fail.

Now we show how to use this approach to analyze barriers.

3



Definition 2.9. Y ⊆ V (G) is called an f-barrier if deff (Y ) = δf (G).

As f -critical graphs are f -odd, the canonical Gallai–Edmonds set Af is an f -barrier. A
1-barrier is just an ordinary barrier in matching theory. One can observe that if Y ⊆ V (Gf )
and Vv ∩ Y, Vv \ Y 6= ∅ then Vv ∩ Y is adjacent to only one component of Gf − Y . Moreover,
if Y is a barrier in Gf then each X ⊆ Y is adjacent to at least |X| odd components of Gf − Y
since otherwise def1(Y −X) > def1(Y ), which is impossible. Hence if Y is a barrier in Gf then
|Y ∩ Vv| ∈ {0, 1, f(v)} for all v ∈ V (G). It also follows that if |Y ∩ Vv| = 1 and Vv \ Y 6= ∅ then
Y \ Vv is a barrier of Gf . Thus if Y is a barrier of Gf then Y ′ = {v ∈ V (G) : Vv ⊆ Y } is an
f -barrier of G. On the other hand, if Y ′ is an f -barrier of G then

⋃
{Vv : v ∈ Y ′} is clearly a

barrier of Gf . Also the canonical Gallai–Edmonds barrier A(Gf ) of Gf has this form.

Definition 2.10. An f -barrier Y of G is called strong if the f -odd components of G− Y are
f -critical.

Also Af is a strong f -barrier. Since a graph K is f -critical if and only if Kf is factor-critical,
we have

Observation 2.11. Y ⊆ V (G) is a strong f -barrier in G if and only if
⋃
{Vv : v ∈ Y } is a

strong 1-barrier in Gf .

Király proved that the intersection of strong 1-barriers is also a strong 1-barrier [9]. This
result holds for the f -parity subgraph problem as well.

Theorem 2.12. The intersection of strong f-barriers is a strong f-barrier.

Proof. Let Y1, Y2 be strong f -barriers of G. Then Y ′
i =

⋃
{Vv : v ∈ Yi} are strong 1-barriers

of Gf , hence their intersection, which is just
⋃
{Vv : v ∈ Y1 ∩ Y2}, is also a strong 1-barrier by

[9]. Thus Y1 ∩ Y2 is a strong f -barrier of G.

By Tutte’s theorem, maximal matching barriers are strong. This remains true for f -barriers,
too. Indeed, let Y be a maximal f -barrier of G and K be an f -odd component of G−Y . K has
no f -parity factor so Cf (K) 6= V (K) in its canonical Gallai–Edmonds decomposition. Hence
either Df (K) = V (K) or Af (K) 6= ∅. In the first case K is f -critical by Theorem 2.5, 1., and
in the second case Y ∪ Af (K) would be a larger f -barrier then Y , which is impossible. Thus
all f -odd components of G− Y are also f -critical, implying that Y is strong.

In the matching case it holds that the canonical Gallai–Edmonds barrier A is the intersection
of all maximal barriers. This fails for the general case: take a triangle together with a pendant
vertex of degree 1, and define f ≡ deg. Here Af = ∅ and there exists exactly one nonempty
barrier.

However, the fact that in the matching case the canonical Gallai–Edmonds barrier A is the
intersection of all strong barriers remains true by Observation 2.11 and the fact that Af itself
is strong.

3 f-elementary graphs

In this section we generalize some results on elementary graphs (presented in Lovász [11]) to
the f -parity case.

Definition 3.1. Let G be a graph and f : V (G) → N. An edge e ∈ E(G) is said to be allowed
(or f-allowed if confusion may arise) if G has an f -parity factor containing e. Otherwise e is
forbidden. G is said to be f-elementary if the allowed edges induce a connected spanning
subgraph of G. G is weakly f-elementary if G2 is f -elementary, where G2 is the graph we
get by replacing every edge e ∈ E(G) by two parallel edges.

1-elementary graphs are simply called elementary. f -elementary graphs are weakly f -
elementary, but not vice versa: G = K2 with f ≡ 2 is weakly f -elementary but not f -elementary.
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These classes coincide if f = 1. Note that the assumption f > 0 excludes only the singleton with
f = 0 from the class of (weakly) f -elementary graph. Lemma 3.2 justifies why we introduced
the weak version of f -elementary graphs.

Lemma 3.2. Gf is elementary if and only if G is weakly f-elementary.

Proof. Let M be a perfect matching of Gf . If M contains at least three edges between Ku and
Kv for some u, v ∈ V (G) then replace two of them by another two edges, one inside Ku and
the other one inside Kv. So the number of edges of M between Ku and Kv decreased by 2.
Repeted application of this process leads to a graph where the number of edge between any
Ku and Kv is at most 2. This construction shows that if Gf is elementary then G is weakly
f -elementary.

On the other hand, if G is weakly f -elementary then Gf is clearly elementary.

The f = 1 special cases of the following two theorems can be found e.g. in Lovász and
Plummer [13] (Theorems 5.1.3 and 5.1.6). Using our reduction these special cases together
with Lemmas 2.6 and 3.2 imply both Theorem 3.3 and 3.4.

Theorem 3.3. G is weakly f-elementary if and only if δf (G) = 0 and Cf−χw(G) = ∅ for all
w ∈ V (G).

Proof. G is weakly f -elementary if and only if Gf is elementary by Lemma 3.2, and Gf is
elementary if and only if δ1(Gf ) = 0 and C(Gf − x) = ∅ for all x ∈ V (Gf ) ([13], Theorem
5.1.3). Since δf (G) = δ1(Gf ), it is enough to prove that

if δf (G) = 0, w ∈ V (G) and x ∈ Vw then C(Gf − x) = ∅ ⇐⇒ Cf−χw(G) = ∅. (1)

As Gf − x ' Gf−χw , if f(w) ≥ 2 then (1) follows from Lemma 2.6. So assume that f(w) = 1.
As Gf − x ' (G − w)f−χw , Lemma 2.6 implies that C(Gf − x) = ∅ ⇐⇒ Cf−χw(G − w) = ∅.
δf (G) = 0 and f(w) = 1, so it is easy to see that the f − χw-parity optimal subgraphs of
G are the f -parity factors of G and the f − χw-parity optimal subgraphs of G − w enlarged
by w as an isolated vertex. Thus Df−χw(G) = Df−χw(G − w) and hence Af−χw(G) \ {w} =
Af−χw(G − w). Now if w ∈ X := Af−χw(G) then (1) clearly holds, while if w ∈ Cf−χw(G)
then defG

f (X) = defG−w
f (X) + 1 > 0, which is impossible.

Theorem 3.4. G is weakly f-elementary if and only if f-odd(G−Y ) ≤ f(Y ) for all Y ⊆ V (G),
and if equality holds for some Y 6= ∅ then G− Y has no f-even components.

Proof. Call Y ⊆ V (G) f-bad if either f -odd(G− Y ) > f(Y ) or equality holds here and G− Y
has an f -even component. G is weakly f -elementary if and only if Gf is elementary (Lemma
3.2) if and only if Gf has no 1-bad set ([13], Theorem 5.1.6). So we only have to prove that
G has an f -bad set Y if and only if Gf has a 1-bad set Y ′. If Y ⊆ V (G) is f -bad then
Y ′ =

⋃
{Vv : v ∈ Y } is 1-bad in Gf . On the other hand, let Y ′ ⊆ V (Gf ) be 1-bad in Gf . If

Vv ∩ Y ′, Vv \ Y ′ 6= ∅ for some v ∈ V (G) then let x ∈ Vv ∩ Y ′. Now x is adjacent to only one
component of Gf −Y ′ hence Y ′−x is also 1-bad. So we can assume that Y ′ is a union of some
Vv. Now Y = {v ∈ V (G) : Vv ⊆ Y ′} is f -bad in G.

In the case of matchings the existence of a certain canonical partition of the vertex set was
revealed by Lovász [11] (Lovász, Plummer [13], Theorem 5.2.2). We cite this result.

Definition 3.5. X ⊆ V (G) is called nearly f-extreme if δf−χX
(G) = δf (G) + |X|. Besides,

X is f-extreme if δf (G−X) = δf (G) + f(X).

It is clear that δf−χX
(G) ≤ δf (G)+ |X| and δf (G−X) ≤ δf (G)+f(X) for every X ⊆ V (G).

Nearly 1-extreme and 1-extreme sets coincide.

Theorem 3.6. (Lovász)[11] If G is elementary then the maximal barriers of G form a partition
S of V (G). Moreover, it holds that
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1. for u, v ∈ V (G), the graph G − u − v has a perfect matching if and only if u and v are
contained in different classes of S, (hence if uv ∈ E(G) then uv is 1-allowed in G),

2. S ∈ S for some S ⊆ V (G) if and only if G− S has |S| components, each factor-critical,

3. X ⊆ V (G) is 1-extreme if and only if X ⊆ S for some S ∈ S.

Lemma 3.2 implies the analogue of this result.

Theorem 3.7. If G is weakly f-elementary then its maximal f-barriers form a subpartition S ′
of V (G). Call the classes of S ′ proper and add all elements v ∈ V (G) not in a class of S ′ as
a singleton class yielding the partition S of V (G). Now it holds that

1. for u, v ∈ V (G), the graph G has an f − χ{u,v}-parity factor if and only if u and v are
contained in different classes of S (hence if uv ∈ E(G) then uv is f-allowed in G2),

2. S ∈ S ′ for some S ⊆ V (G) if and only if G− S has f(S) components, each f-critical,

3. X ⊆ V (G) is nearly f-extreme (f-extreme, resp.) if and only if X ⊆ S for some S ∈ S
(S ∈ S ′, resp.).

Proof. As we already observed, for every barrier Y of Gf it holds that |Y ∩ Vv| ∈ {0, 1, f(v)}
for all v ∈ V (G). Gf is elementary, hence its maximal barriers form a partition of V (Gf ) by
Theorem 3.6. Thus, by symmetry, a maximal barrier of Gf is either the union of some Vv, or
a singleton. If Y ′ is an f -barrier of G then

⋃
{Vv : v ∈ Y ′} is a barrier of Gf . On the other

hand, if Y is a maximal barrier of Gf of the form
⋃

Vv then Y ′ = {v ∈ V (G) : Vv ⊆ Y } is
clearly a maximal f -barrier of G. So these barriers Y ′ form the proper classes of S, and for a
singleton class {v} ∈ S − S ′ it holds that each vertex x ∈ Vv is a maximal barrier of Gf . Now
the statement follows from Theorem 3.6, using δf (G) = δ1(Gf ) for 1. and 3., and using the fact
that a graph K is f -critical if and only if Kf is factor-critical for 2.

Remark 3.8. It follows from Theorem 3.7, 3., that S could be introduced as the partition
{X ⊆ V (G) : X is a maximal nearly f -extreme set of G}. Besides, if X ⊆ V (G), |X| ≥ 2 is
maximal nearly f -extreme, then X is an f -barrier of G.

Corollary 3.9. If G is f-elementary then e ∈ E(G) is f-allowed if and only if e joins two
classes of S.

Proof. Suppose that e joins u to v and let g = f −χ{u,v}. By Theorem 3.7, 1., we only have to
prove that G has a g-parity factor if and only if e is f -allowed. Assume that G has a g-parity
factor but e is not f -allowed. (The other direction is trivial.) If G − e had a g-parity factor
F then F + e would be an f -parity factor of G, which is impossible. Thus by Theorem 2.8
there exists a set Y ⊆ V (G) such that g-odd(G − e − Y ) > g(Y ). G has a g-parity factor so
by parity reasons g-odd(G− e− Y ) = g(Y ) + 2, and e runs between two g-odd components K1

and K2 of G− e− Y . But then clearly no edge entering V (K1) ∪ V (K2) is f -allowed in G. G
is f -elementary thus V (K1) ∪ V (K2) = V (G), but then e is an f -forbidden cut edge.

What happens if we increase f(v) by 2? Let f ′ = f + 2χv. First, G is still weakly f ′-
elementary. Note that all barriers of Gf disjoint from Vv remain a barrier also in Gf ′

. If v is a
singleton in S w.r.t. f , then it is also a singleton w.r.t. f ′. If v belongs to a proper class S ∈ S
then S will not be an f -barrier of G any more, hence S is split to smaller, singleton and proper,
classes of the new canonical partition.

Our last subject is generalizing bicritical graphs.

Definition 3.10. Let G be a graph and f : V (G) → N \ {0} be a function. G is said to be
f-bicritical if G has an f − χ{u,v}-parity factor for all pairs u, v ∈ V (G).

Theorem 3.11. If G is weakly f-elementary then the following statements are equivalent.

1. G is f-bicritical.
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2. All classes of S are singletons.

3. If Y ⊆ V (G) and |Y | ≥ 2 then f-odd(G− Y ) ≤ f(Y )− 2.

Proof. 1 ⇒ 2 : Each edge in G2 is allowed thus Theorem 3.7, 1., implies the equivalence.
2 ⇒ 3 : Assume the contrary. By parity reasons, we have a set Y ⊆ V (G) with |Y | ≥ 2

such that f -odd(G− Y ) = f(Y ). So Y is an f -barrier, which is contained in a set S ∈ S with
|S| ≥ 2.

3 ⇒ 1 : Suppose G has no g = f − χ{u,v}-parity factor for some u, v ∈ V (G). Thus there
exists a set Y ⊆ V (G) such that g-odd(G − Y ) > g(Y ). Recall that G has an f -parity factor.
If u or v belongs to a g-odd component K of G − Y then Y is an f -barrier of G and K is an
f -even component of G − Y , contradicting to Theorem 3.4. Hence both u and v belong to Y ,
thus |Y | ≥ 2 and f -odd(G− Y ) = f(Y ), a contradiction.

Lovász [11] and Lovász, Plummer [13] developed a decomposition procedure for elementary
graphs, showing that they build up from bipartite elementary graphs and from bicritical graphs.
We mention that this procedure is possible to extend to weakly f -elementary graphs. Going one
step further, the bipartite elementary graphs have a bipartite ear decomposition starting from
an edge. Also this ear decomposition can be adapted to bipartite f -elementary graphs, hence
further refining the decomposition procedure of weakly f -elementary graphs. (An f -elementary
graph G is bipartite f-elementary if G is bipartite with color classes U and V and f |U = 1.)
We do not go into details.
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