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Abstract

This note concerns the (1, f)-odd subgraph problem, i.e. we are given an undirected
graph G and an odd value function f : V(G) — N, and our goal is to find a spanning
subgraph F' of G with deg, < f minimizing the number of even degree vertices. First
we prove a Gallai-Edmonds type structure theorem and some other known results on the
(1, f)-odd subgraph problem, using an easy reduction to the matching problem. Then we
use this reduction to investigate barriers and elementary graphs with respect to (1, f)-
odd factors, i.e. graphs where the union of (1, f)-odd factors form a connected spanning
subgraph.

1 Introduction

In this paper we deal with a special case of the degree prescribed subgraph problem, introduced
by Lovész [10]. This is as follows. Let G be an undirected graph and let § # H, C N be
a degree prescription for each v € V(G). For a spanning subgraph F of G define 6 (v) =
min{|degy(v) —i|: i € H,}, and let 65 = > {65 (v) : v € V(G)}. The minimum §% among
the spanning subgraphs F' is denoted by dx(G). A spanning subgraph F' is called H-optimal
if 65, = §y(G), and it is an H-factor if 65, = 0, i.e. if degp(v) € H, for all v € V(G). The
degree prescribed subgraph problem is to determine the value of iy (G).

An integer h is called a gap of H C N if h ¢ H but H contains an element less than h and
an element greater than h. Lovédsz [12] gave a structural description on the degree prescribed
subgraph problem in case H, has no two consecutive gaps for all v € V(G). He showed that
the problem is NP-complete without this restriction. The first polynomial algorithm was given
by Cornuéjols [2]. It is implicit in Cornuéjols [2] that this algorithm implies a Gallai-Edmonds
type structure theorem for the degree prescribed subgraph problem (first stated in [14]), which
is similar to — but in some respects much more compact than — that of Lovasz’.

The case when an odd value function f: V(G) — Nis given and H, = {1,3,5,..., f(v)} for
all v € V(G), is called the (1, f)-odd subgraph problem. We denote dz(G) = §;(G). This
problem is much simpler than the general case due to the fact that only parity requirements
are posed. The (1, f)-odd subgraph problem was first investigated by Amahashi [1] who gave a
Tutte type characterization of graphs having a (1, 2k + 1)-odd factor. A Tutte type theorem for
general odd value functions f was proved by Cui and Kano [3], and then a Berge type minimax
formula on dy(G) by Kano and Katona [7]. A Gallai-Edmonds type theorem on the (1, f)-odd
subgraph problem was given in [8] and [14].

In this note we show a new approach to the (1, f)-odd subgraph problem. Actually, it
is worth allowing f to have also even values and defining H, equal to {1,3,...,f(v)} or
{0,2,..., f(v)}, according to the parity of f(v). We call this the f-parity subgraph prob-
lem. We show an easy reduction of the f-parity subgraph problem to the matching problem
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(the existence of such a reduction was already indicated in Lovédsz [12]), and we show that
this reduction easily yields the above mentioned Gallai-Edmonds and Berge type theorems
on the f-parity subgraph problem. Then we investigate barriers w.r.t. the f-parity subgraph
problem. As another application, we explore the graphs for which the edges belonging to some
f-parity factor form a connected spanning subgraph. We call such a graph an f-elementary
graph. We generalize some results on matching elementary graphs (proved by Lovész [11])
to f-elementary graphs. An attempt putting the f-parity subgraph problem into the general
context of graph packing problems can be found in [15].

The f-parity subgraph problem can be reduced to the (1, f)-odd subgraph problem by the
following construction: for every vertex v € V(G) with f(v) even, connect a new vertex w, to
v in G, define f(w,) =1 and increase f(v) by 1. Now ¢¢(G) remains the same.

To avoid minor technical difficulties we assume that f > 0. Almost all results of the paper
would hold without this restriction, too. Note that if G is a nontrivial f-elementary graph then
f > 0 always holds.

The constant function f = 1 is simply denoted by 1. For X C V(G) let I'(X) = {y €
V(G)—X:3ze X,zy € E(G)}, let f(X)=>{f(x):x € X} and let xx denote the function
with xx(z) = 1 if z € X and xx(x) = 0 otherwise. ¢(G) denotes the number of connected
components of the graph G. |- | denotes the cardinality of a set, and N is the set of nonnegative
integers. The graphs are undirected throughout.

2 Reduction to matchings

In this section we show a reduction of the f-parity subgraph problem to matchings, which will
then be used to prove the Gallai-Edmonds type structure theorem on the f-parity subgraph
problem. The auxiliary graph we use is defined below.

Definition 2.1. For the graph G and the function f : V(G) — N\ {0} define G’ to be the
following undirected graph. Replace every vertex v € V(G) by a new complete graph on f(v)
vertices, denoted by K, and for each pair of vertices u,v € V(G) adjacent in G, add all possible
f(u)f(v) edges between K, and K,. Let V,, = V(K,).

Observe that G = G and that |V (GY)| = f(V(G)). f > 0 implies that V;, # () for v € V(G).
There is a strong connection between the maximum matchings of G and the f-parity optimal
subgraphs of G. Note that the size of a maximum matching of G is just |[V(G)| — §1(G).

Lemma 2.2. For every f-parity optimal subgraph F of G there exists a matching M of Gf
such that |V(M)| = f(V(G)) — 6?. Moreover, if degp(w) € {..., f(w) — 3, f(w) — 1} for a
vertex w € V(G) then M can be chosen to miss a prescribed vertex x € V,,.

On the other hand, for every mazimum matching M of G¥ there exists a spanning subgraph
F of G such that 65 = f(V(G)) = [V(M)|. Moreover, if M misses a vertex in V,, for some
w € V(G) then F can be chosen such that degp(w) € {..., f(w) = 3, f(w) — 1}.

Hence §¢(G) = 61(GY).

Proof. Let F be an f-parity optimal subgraph of G. If degp(v) > f(v) for some v € V(QG)
then clearly 6? ‘< (5]15 holds for the graph F’ obtained from F' by deleting an edge e incident
to v. As F is f-parity optimal, e is not adjacent to w, so degp/ (w) = degp(w). Hence we
assume that degp < f, which implies that 57 (v) is 1 or 0 for all v. Now it is easy to construct
from F a matching of G/ missing exactly 6? vertices, one in each V,, for the vertices v with
degp(v) # f(v) mod 2. If w is such a vertex then M can be chosen to miss x € V,,.

For the second part, let M be a maximum matching of G¥. If M contains two edges between
K, and K, for some u,v € V(G), then replace them by two edges, one inside K,, and the other
one inside K,. Thus we may assume that M contains at most one edge between K, and K, for
all distinct u,v € V(G). By contracting each K, to one vertex u we get a spanning subgraph
F of G with (SJ{J = f(V(GQ)) — |[V(M)|. Moreover, degp(w) € {..., f(w) — 3, f(w) — 1} in case
M misses a vertex in K. L]



We define critical graphs w.r.t. the f-parity subgraph problem as in the matching case. If
f =1 the graphs defined below are called factor-critical.

Definition 2.3. Given a graph G and a function f : V(G) — N. G is called f-critical if
for every w € V(G) there exists an f-parity optimal subgraph F of G such that degp(w) €

{-., f(w) =3, f(w) — 1} and degp(v) € {..., f(v) = 2, f(v)} for all v # w.

By Lemma 2.2 G is f-critical if and only if Gf is factor-critical. The Gallai-Edmonds
structure theorem for the f-parity subgraph problem follows from the classical Gallai-Edmonds
theorem easily. We cite this latter result below.

Theorem 2.4. (Gallai, Edmonds)[4, 5, 6] Let D consist of those vertices of the graph G
which are missed by some mazimum matching of G, let A =T(D) and C =V (G) — (DU A).
Then

1. every component of G[D] is factor-critical,

2. {K : K is a component of G[D] adjacent to A’} > |A'|+1 for all ) # A’ C A,

3. 01(G) = ¢(G[D]) — |4],

4. G[C] has a perfect matching.

A direct generalization of the above result is the version for the f-parity subgraph problem.

Theorem 2.5. [8, 14] Let G be a graph and f : V(G) — N\ {0} be a function. Let Dy C V(G)
consist of those vertices v for which there exists an f-parity optimal subgraph F of G with
degp(v) € {...,f(v) =3, f(v) —1}. Let Ay =T'(Dy) and C; =V(G) — (Dy U Af). Then

1. every component of G[Dy] is f-critical,

2. {K : K is a component of G[Dy| adjacent to A'}| > f(A") +1 for all ) # A’ C Ay,
3. 05(G) = c(G[Dy]) — f(Ay),

4. G[Cy] has an f-parity factor.

Proof. Take the classical Gallai-Edmonds decomposition V(Gf) = DU AU C of Gf. By
symmetry, if V,, meets D then V,, C D. These vertices v € V(G) form Dy by Lemma 2.2. The
other results follow from the construction and from Lemma 2.2. O

This proof implies:

Lemma 2.6. For X = D, A,C it holds that X;(G) = {v € V(G) : V, C X(G¥)}, provided
f>0.

From Theorem 2.5 the Berge type minimax formula on the f-parity subgraph problem
follows in a few lines.

Definition 2.7. A connected component K of G is f-odd (f-even) if f(V(K)) is odd (even).
Let f-odd(G) denote the number of f-odd components of G. For Y C V(G) let def¢(Y) = f-
odd(G -Y) — f(Y).

Theorem 2.8. [7] If G is a graph and f : V(G) — N\ {0} is a function then 6¢(G) =
max{def;(Y) : Y C V(G)}.

Proof. By virtue of Theorem 2.5, one only has to observe that if a graph K is f-critical then
f(V(K)) is odd, and that if f(V(K)) is odd then K has no f-parity factor. O

We point out that up to this point f = 0 was excluded only for sake of convenience.
Theorems 2.5 and 2.8 still hold in the general case. (If f(v) = 0 then join a pendant vertex
u to v and define f(u) = f(v) = 1. Then construct G/.) So we can define the canonical
decomposition Df(G), Af(G), Cf(G) for all f. However, Lemma 2.6 would fail.

Now we show how to use this approach to analyze barriers.



Definition 2.9. Y C V(G) is called an f-barrier if def ;(Y) = §4(G).

As f-critical graphs are f-odd, the canonical Gallai-Edmonds set Ay is an f-barrier. A
1-barrier is just an ordinary barrier in matching theory. One can observe that if Y C V(G¥)
and V,NY, V, \'Y # () then V, NY is adjacent to only one component of G/ — Y. Moreover,
if Y is a barrier in G/ then each X C Y is adjacent to at least |X| odd components of G/ — Y
since otherwise def; (Y — X) > def; (Y'), which is impossible. Hence if Y is a barrier in G then
YNV, €{0,1, f(v)} for all v € V(G). It also follows that if |[Y NV,| =1 and V,, \' Y # () then
Y \ V, is a barrier of Gf. Thus if Y is a barrier of G then Y/ = {v € V(G) : V,, C Y} is an
f-barrier of G. On the other hand, if Y’ is an f-barrier of G then |J{V, : v € Y’} is clearly a
barrier of GY. Also the canonical Gallai-Edmonds barrier A(GY) of G/ has this form.

Definition 2.10. An f-barrier Y of G is called strong if the f-odd components of G —Y are
f-critical.

Also Ay is a strong f-barrier. Since a graph K is f-critical if and only if K f is factor-critical,
we have

Observation 2.11. Y C V(G) is a strong f-barrier in G if and only if J{V, : v € Y} is a
strong 1-barrier in G¥.

Kirdly proved that the intersection of strong 1-barriers is also a strong 1-barrier [9]. This
result holds for the f-parity subgraph problem as well.

Theorem 2.12. The intersection of strong f-barriers is a strong f-barrier.

Proof. Let Y1, Y2 be strong f-barriers of G. Then Y/ = |J{V, : v € V;} are strong 1-barriers
of G/, hence their intersection, which is just (J{V, : v € Y] N Y5}, is also a strong 1-barrier by
[9]. Thus Y7 NY3 is a strong f-barrier of G. O

By Tutte’s theorem, maximal matching barriers are strong. This remains true for f-barriers,
too. Indeed, let Y be a maximal f-barrier of G and K be an f-odd component of G—Y. K has
no f-parity factor so Cy(K) # V(K) in its canonical Gallai-Edmonds decomposition. Hence
either Dy(K) = V(K) or Af(K) # (. In the first case K is f-critical by Theorem 2.5, 1., and
in the second case Y U A¢(K') would be a larger f-barrier then Y, which is impossible. Thus
all f-odd components of G — Y are also f-critical, implying that Y is strong.

In the matching case it holds that the canonical Gallai-Edmonds barrier A is the intersection
of all maximal barriers. This fails for the general case: take a triangle together with a pendant
vertex of degree 1, and define f = deg. Here Ay = () and there exists exactly one nonempty
barrier.

However, the fact that in the matching case the canonical Gallai-Edmonds barrier A is the
intersection of all strong barriers remains true by Observation 2.11 and the fact that Ay itself
is strong.

3 f-elementary graphs

In this section we generalize some results on elementary graphs (presented in Lovdsz [11]) to
the f-parity case.

Definition 3.1. Let G be a graph and f : V(G) — N. An edge e € E(G) is said to be allowed
(or f-allowed if confusion may arise) if G has an f-parity factor containing e. Otherwise e is
forbidden. G is said to be f-elementary if the allowed edges induce a connected spanning
subgraph of G. G is weakly f-elementary if G5 is f-elementary, where G5 is the graph we
get by replacing every edge ¢ € E(G) by two parallel edges.

1-elementary graphs are simply called elementary. f-elementary graphs are weakly f-
elementary, but not vice versa: G = Ky with f = 2 is weakly f-elementary but not f-elementary.



These classes coincide if f = 1. Note that the assumption f > 0 excludes only the singleton with
f = 0 from the class of (weakly) f-elementary graph. Lemma 3.2 justifies why we introduced
the weak version of f-elementary graphs.

Lemma 3.2. G7 is elementary if and only if G is weakly f-elementary.

Proof. Let M be a perfect matching of Gf. If M contains at least three edges between K,, and
K, for some u,v € V(G) then replace two of them by another two edges, one inside K, and
the other one inside K,. So the number of edges of M between K, and K, decreased by 2.
Repeted application of this process leads to a graph where the number of edge between any
K, and K, is at most 2. This construction shows that if Gf is elementary then G is weakly
f-elementary.

On the other hand, if G is weakly f-elementary then G is clearly elementary. O

The f = 1 special cases of the following two theorems can be found e.g. in Lovasz and
Plummer [13] (Theorems 5.1.3 and 5.1.6). Using our reduction these special cases together
with Lemmas 2.6 and 3.2 imply both Theorem 3.3 and 3.4.

Theorem 3.3. G is weakly f-elementary if and only if §;(G) = 0 and Cy_y,, (G) = 0 for all
w € V(Q).

Proof. G is weakly f-elementary if and only if Gf is elementary by Lemma 3.2, and G/ is
elementary if and only if §;(GY) = 0 and C(Gf — ) = 0 for all x € V(G’) ([13], Theorem
5.1.3). Since §;(G) = §1(GY), it is enough to prove that

if 6;(G) =0, we V(G) and z € V,, then C(Gf —2) =0 <= C;_,,(G) = 0. (1)

As Gf —x ~ Gf=w_if f(w) > 2 then (1) follows from Lemma 2.6. So assume that f(w) = 1.
As G/ — 2 ~ (G — w)f X, Lemma 2.6 implies that C(G/ — 2) = ) <= Cy_,, (G — w) = 0.
07(G) = 0 and f(w) = 1, so it is easy to see that the f — x,-parity optimal subgraphs of
G are the f-parity factors of G and the f — x,,-parity optimal subgraphs of G — w enlarged
by w as an isolated vertex. Thus Dy_, (G) = D;_,, (G —w) and hence A;_, (G)\ {w} =
Ar_y,(G—w). Now if w € X := A;_, (G) then (1) clearly holds, while if w € Cj_,,, (G)
then def?(X) = defjcffw(X) + 1 > 0, which is impossible. O

Theorem 3.4. G is weakly f-elementary if and only if f-odd(G-Y) < f(Y) for allY C V(G),
and if equality holds for some Y # () then G —Y has no f-even components.

Proof. CallY C V(G) f-bad if either f-odd(G —Y) > f(Y) or equality holds here and G — Y
has an f-even component. G is weakly f-elementary if and only if G/ is elementary (Lemma
3.2) if and only if G/ has no 1-bad set ([13], Theorem 5.1.6). So we only have to prove that
G has an f-bad set Y if and only if G/ has a 1-bad set Y. If Y C V(G) is f-bad then
Y' = U{V, : v € Y} is 1-bad in G. On the other hand, let Y’ C V(G¥) be 1-bad in G/. If
VonY', V, \Y' # 0 for some v € V(G) then let z € V,, NY’. Now z is adjacent to only one
component of Gf —Y” hence Y’ — z is also 1-bad. So we can assume that Y is a union of some
Vo. Now Y ={v e V(G):V, CY'}is f-bad in G. O

In the case of matchings the existence of a certain canonical partition of the vertex set was
revealed by Lovdsz [11] (Lovész, Plummer [13], Theorem 5.2.2). We cite this result.

Definition 3.5. X C V(G) is called nearly f-extreme if 65, (G) = 0;(G) + | X|. Besides,
X is f-extreme if 6¢;(G — X) = 07(G) + f(X).

It is clear that 67—, (G) < 6¢(G)+|X| and 6y (G—X) < 6¢(G)+ f(X) for every X C V(G).
Nearly 1-extreme and 1l-extreme sets coincide.

Theorem 3.6. (Lovasz)[11] If G is elementary then the mazimal barriers of G form a partition
S of V(G). Moreover, it holds that



1. for u,v € V(Q), the graph G —u — v has a perfect matching if and only if uw and v are
contained in different classes of S, (hence if uv € E(G) then uwv is 1-allowed in G),

2. S €S8 for some S CV(G) if and only if G — S has |S| components, each factor-critical,
3. X CV(G) is 1-extreme if and only if X C S for some S € S.
Lemma 3.2 implies the analogue of this result.

Theorem 3.7. If G is weakly f-elementary then its mazimal f-barriers form a subpartition S’
of V(G). Call the classes of S’ proper and add all elements v € V(G) not in a class of S’ as
a singleton class yielding the partition S of V(G). Now it holds that

1. for u,v € V(G), the graph G has an f — X{uv}-parity factor if and only if u and v are
contained in different classes of S (hence if uv € E(G) then uv is f-allowed in Gz ),

2. SeS8 for some S CV(G) if and only if G — S has f(S) components, each f-critical,

3. X CV(G) is nearly f-extreme (f-extreme, resp.) if and only if X C S for some S € S
(S ed’, resp.).

Proof. As we already observed, for every barrier Y of G/ it holds that |Y NV, | € {0, 1, f(v)}
for all v € V(G). G/ is elementary, hence its maximal barriers form a partition of V(G/) by
Theorem 3.6. Thus, by symmetry, a maximal barrier of G/ is either the union of some V,,, or
a singleton. If Y’ is an f-barrier of G then J{V, : v € Y’} is a barrier of Gf. On the other
hand, if Y is a maximal barrier of G/ of the form (JV, then Y’/ = {v € V(G) : V,, C Y} is
clearly a maximal f-barrier of G. So these barriers Y’ form the proper classes of S, and for a
singleton class {v} € S — S’ it holds that each vertex € V,, is a maximal barrier of G¥. Now
the statement follows from Theorem 3.6, using 6;(G) = 81 (GY) for 1. and 3., and using the fact
that a graph K is f-critical if and only if K/ is factor-critical for 2. O

Remark 3.8. It follows from Theorem 3.7, 3., that S could be introduced as the partition
{X C V(GQ) : X is a maximal nearly f-extreme set of G}. Besides, if X C V(G), |X| > 2 is
maximal nearly f-extreme, then X is an f-barrier of G.

Corollary 3.9. If G is f-elementary then e € E(G) is f-allowed if and only if e joins two
classes of S.

Proof. Suppose that e joins u to v and let g = f — x{y,0}- By Theorem 3.7, 1., we only have to
prove that G has a g-parity factor if and only if e is f-allowed. Assume that G has a g-parity
factor but e is not f-allowed. (The other direction is trivial.) If G — e had a g-parity factor
F then F + e would be an f-parity factor of G, which is impossible. Thus by Theorem 2.8
there exists a set Y C V(G) such that g-odd(G —e —Y) > g(Y). G has a g-parity factor so
by parity reasons g-odd(G —e —Y) = g(Y) + 2, and e runs between two g-odd components K
and Ky of G — e — Y. But then clearly no edge entering V(K1) UV (K3) is f-allowed in G. G
is f-elementary thus V(K;) UV (K3) = V(G), but then e is an f-forbidden cut edge. O

What happens if we increase f(v) by 27 Let f' = f + 2yx,. First, G is still weakly f’-
clementary. Note that all barriers of G/ disjoint from V, remain a barrier also in G/". If v is a
singleton in S w.r.t. f, then it is also a singleton w.r.t. f’. If v belongs to a proper class S € S
then S will not be an f-barrier of G any more, hence S is split to smaller, singleton and proper,
classes of the new canonical partition.

Our last subject is generalizing bicritical graphs.

Definition 3.10. Let G be a graph and f : V(G) — N\ {0} be a function. G is said to be
f-bicritical if G has an f — Xy »}-parity factor for all pairs u,v € V(G).

Theorem 3.11. If G is weakly f-elementary then the following statements are equivalent.

1. G is f-bicritical.



2. All classes of S are singletons.
3. IfY CV(G) and |Y| > 2 then f-odd(G—-Y) < f(Y) — 2.

Proof. 1= 2: Fach edge in G35 is allowed thus Theorem 3.7, 1., implies the equivalence.

2 = 3: Assume the contrary. By parity reasons, we have a set Y C V(G) with |Y| > 2
such that f-odd(G —Y) = f(Y). SoY is an f-barrier, which is contained in a set S € S with
18] > 2.

8= 1: Suppose G has no g = f — x{u,)-parity factor for some u,v € V(G). Thus there
exists a set Y C V(G) such that g-odd(G —Y) > g(Y). Recall that G has an f-parity factor.
If u or v belongs to a g-odd component K of G —Y then Y is an f-barrier of G and K is an
f-even component of G — Y, contradicting to Theorem 3.4. Hence both u and v belong to Y,
thus Y] > 2 and f-odd(G —Y) = f(Y), a contradiction. O

Lovész [11] and Lovéasz, Plummer [13] developed a decomposition procedure for elementary
graphs, showing that they build up from bipartite elementary graphs and from bicritical graphs.
‘We mention that this procedure is possible to extend to weakly f-elementary graphs. Going one
step further, the bipartite elementary graphs have a bipartite ear decomposition starting from
an edge. Also this ear decomposition can be adapted to bipartite f-elementary graphs, hence
further refining the decomposition procedure of weakly f-elementary graphs. (An f-elementary
graph G is bipartite f-elementary if G is bipartite with color classes U and V and f|y = 1.)
We do not go into details.

References

[1] A. AMAHASHI, On factors with all degrees odd. Graphs and Combin. (1985) 1 111-114.
[2] G. CorNUEJOLS, General factors of graphs. J. Combin. Theory Ser. B (1988) 45 185-198.

[3] Y. Cui, M. KANO, Some results on odd factors of graphs. J. of Graph Theory (1988) 12
327-333.

[4] J. EDMONDS, Paths, trees, and flowers. Canadian J. of Math. (1965) 17 449-467

[6] T. GaLLAl, Kritische Graphen II. A Magyar Tud. Akad. — Mat. Kut. Int. Kozl (1963) 8
135-139.

[6] T. GALLAI, Maximale Systeme unabhéngiger Kanten. A Magyar Tud. Akad. — Mat. Kut.
Int. Kézl. (1964) 9 401-413.

[7] M. Kano, G. Y. KaToNA, Odd subgraphs and matchings. Discrete Math. (2002) 250
265-272.

[8] M. Kano, G. Y. KATONA, Structure theorem and algorithm on (1, f)-odd subgraphs.
manuscript

[9] Z. KirRALY, The calculus of barriers. manuscript

[10] L. LovAsz, The factorization of graphs. Combinatorial Structures and their Applications
(Proc. Calgary Internat. Conf., Calgary, Alta., 1969) (1970) 243-246.

[11] L. LovAsz, On the structure of factorizable graphs. Acta Math. Acad. Sci. Hungar. (1972)
23 179-195.

[12] L. LovAsz, The factorization of graphs. II. Acta Math. Acad. Sci. Hungar. (1972) 23
223-246.

[13] L. LovAsz, M. D. PLUMMER, Matching Theory. North-Holland Mathematics Studies,
North-Holland Publishing Co., Amsterdam, 1986.



[14] J. SzaBO, A note on the degree prescribed factor problem. EGRES Technical Reports
2004-19. www.cs.elte.hu/egres

[15] J. SzABO, Graph packings and the degree prescribed subgraph problem. PhD thesis,
Eo6tvos University, Budapest, 2006.



