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Chapter

1
Introduction

IBM SPSS Amos implements the general approach to data analysis known as 
structural equation modeling (SEM), also known as analysis of covariance 
structures, or causal modeling. This approach includes, as special cases, many well-
known conventional techniques, including the general linear model and common 
factor analysis.

Amos (Analysis of Moment Structures) is an easy-to-use program for visual SEM. 
With Amos, you can quickly specify, view, and modify your model graphically 
using simple drawing tools. Then you can assess your model’s fit, make any 
modifications, and print out a publication-quality graphic of your final model. 
Simply specify the model graphically (left). Amos quickly performs the 
computations and displays the results (right).
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Structural equation modeling (SEM) is sometimes thought of as esoteric and difficult 
to learn and use. This is incorrect. Indeed, the growing importance of SEM in data 
analysis is largely due to its ease of use. SEM opens the door for nonstatisticians to 
solve estimation and hypothesis testing problems that once would have required the 
services of a specialist. 

Amos was originally designed as a tool for teaching this powerful and 
fundamentally simple method. For this reason, every effort was made to see that it is 
easy to use. Amos integrates an easy-to-use graphical interface with an advanced 
computing engine for SEM. The publication-quality path diagrams of Amos provide a 
clear representation of models for students and fellow researchers. The numeric 
methods implemented in Amos are among the most effective and reliable available.

Featured Methods

Amos provides the following methods for estimating structural equation models: 

Maximum likelihood

Unweighted least squares

Generalized least squares

Browne’s asymptotically distribution-free criterion

Scale-free least squares

Bayesian estimation

Amos goes well beyond the usual capabilities found in other structural equation 
modeling programs. When confronted with missing data, Amos performs 
state-of-the-art estimation by full information maximum likelihood instead of relying 
on ad-hoc methods like listwise or pairwise deletion, or mean imputation. The program 
can analyze data from several populations at once. It can also estimate means for 
exogenous variables and intercepts in regression equations. 

The program makes bootstrapped standard errors and confidence intervals available 
for all parameter estimates, effect estimates, sample means, variances, covariances, 
and correlations. It also implements percentile intervals and bias-corrected percentile 
intervals (Stine, 1989), as well as Bollen and Stine’s (1992) bootstrap approach to 
model testing.

Multiple models can be fitted in a single analysis. Amos examines every pair of 
models in which one model can be obtained by placing restrictions on the parameters 
of the other. The program reports several statistics appropriate for comparing such 
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models. It provides a test of univariate normality for each observed variable as well as 
a test of multivariate normality and attempts to detect outliers.

Amos accepts a path diagram as a model specification and displays parameter 
estimates graphically on a path diagram. Path diagrams used for model specification 
and those that display parameter estimates are of presentation quality. They can be 
printed directly or imported into other applications such as word processors, desktop 
publishing programs, and general-purpose graphics programs.

About the Tutorial

The tutorial is designed to get you up and running with Amos Graphics. It covers some 
of the basic functions and features and guides you through your first Amos analysis. 

Once you have worked through the tutorial, you can learn about more advanced 
functions using the online Help, or you can continue working through the examples to 
get a more extended introduction to structural modeling with Amos.

About the Examples

Many people like to learn by doing. Knowing this, we have developed many examples 
that quickly demonstrate practical ways to use Amos. The initial examples introduce 
the basic capabilities of Amos as applied to simple problems. You learn which buttons 
to click, how to access the several supported data formats, and how to maneuver 
through the output. Later examples tackle more advanced modeling problems and are 
less concerned with program interface issues. 

Examples 1 through 4 show how you can use Amos to do some conventional 
analyses—analyses that could be done using a standard statistics package. These 
examples show a new approach to some familiar problems while also demonstrating 
all of the basic features of Amos. There are sometimes good reasons for using Amos 
to do something simple, like estimating a mean or correlation or testing the hypothesis 
that two means are equal. For one thing, you might want to take advantage of the ability 
of Amos to handle missing data. Or maybe you want to use the bootstrapping capability 
of Amos, particularly to obtain confidence intervals.

Examples 5 through 8 illustrate the basic techniques that are commonly used 
nowadays in structural modeling. 
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Example 9 and those that follow demonstrate advanced techniques that have so far not 
been used as much as they deserve. These techniques include: 

Simultaneous analysis of data from several different populations. 

Estimation of means and intercepts in regression equations.

Maximum likelihood estimation in the presence of missing data. 

Bootstrapping to obtain estimated standard errors and confidence intervals. Amos 
makes these techniques especially easy to use, and we hope that they will become 
more commonplace.

Specification searches.

Bayesian estimation.

Imputation of missing values.

Analysis of censored data.

Analysis of ordered-categorical data.

Mixture modeling.

Tip: If you have questions about a particular Amos feature, you can always refer to the 
extensive online Help provided by the program. 

About the Documentation

Amos 19 comes with extensive documentation, including an online Help system, this 
user’s guide, and advanced reference material for Amos Basic and the Amos API 
(Application Programming Interface). If you performed a typical installation, you can 
find the Amos 19 Programming Reference Guide in the following location: 
C:\Program Files\IBM\SPSS\Amos\19\Documentation\Programming Reference.pdf.

Other Sources of Information

Although this user’s guide contains a good bit of expository material, it is not by any 
means a complete guide to the correct and effective use of structural modeling. Many 
excellent SEM textbooks are available.

Structural Equation Modeling: A Multidisciplinary Journal contains 
methodological articles as well as applications of structural modeling. It is 
published by:
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Lawrence Erlbaum Associates, Inc.
Journal Subscription Department
10 Industrial Avenue
Mahwah, NJ 07430-2262 USA
www.erlbaum.com

Carl Ferguson and Edward Rigdon established an electronic mailing list called 
Semnet to provide a forum for discussions related to structural modeling. You can 
find information about subscribing to Semnet at 
www.gsu.edu/~mkteer/semnet.html.

Edward Rigdon also maintains a list of frequently asked questions about structural 
equation modeling. That FAQ is located at www.gsu.edu/~mkteer/semfaq.html.
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Chapter

2
Tutorial: Getting Started with 
Amos Graphics

Introduction

Remember your first statistics class when you sweated through memorizing formulas 
and laboriously calculating answers with pencil and paper? The professor had you do 
this so that you would understand some basic statistical concepts. Later, you 
discovered that a calculator or software program could do all of these calculations in 
a split second.

This tutorial is a little like that early statistics class. There are many shortcuts to 
drawing and labeling path diagrams in Amos Graphics that you will discover as you 
work through the examples in this user’s guide or as you refer to the online Help. The 
intent of this tutorial is to simply get you started using Amos Graphics. It will cover 
some of the basic functions and features of Amos and guide you through your first 
Amos analysis. 

Once you have worked through the tutorial, you can learn about more advanced 
functions from the online Help, or you can continue to learn incrementally by working 
your way through the examples.

If you performed a typical installation, you can find the path diagram constructed 
in this tutorial in this location: 
C:\Program Files\IBM\SPSS\Amos\19\Tutorial\<language>. The file Startsps.amw 
uses a data file in SPSS Statistics format. Getstart.amw is the same path diagram but 
uses data from a Microsoft Excel file.

Tip: Amos 19 provides more than one way to accomplish most tasks. For all menu 
commands except Tools → Macro, there is a toolbar button that performs the same task. 
For many tasks, Amos also provides keyboard shortcuts. The user’s guide 
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demonstrates the menu path. For information about the toolbar buttons and keyboard 
shortcuts, see the online Help.

About the Data

Hamilton (1990) provided several measurements on each of 21 states. Three of the 
measurements will be used in this tutorial: 

Average SAT score

Per capita income expressed in $1,000 units 

Median education for residents 25 years of age or older

You can find the data in the Tutorial directory within the Excel 8.0 workbook 
Hamilton.xls in the worksheet named Hamilton. The data are as follows:

SAT Income Education

899 14.345 12.7
896 16.37 12.6
897 13.537 12.5
889 12.552 12.5
823 11.441 12.2
857 12.757 12.7
860 11.799 12.4
890 10.683 12.5
889 14.112 12.5
888 14.573 12.6
925 13.144 12.6
869 15.281 12.5
896 14.121 12.5
827 10.758 12.2
908 11.583 12.7
885 12.343 12.4
887 12.729 12.3
790 10.075 12.1
868 12.636 12.4
904 10.689 12.6
888 13.065 12.4
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The following path diagram shows a model for these data:

This is a simple regression model where one observed variable, SAT, is predicted as a 
linear combination of the other two observed variables, Education and Income. As with 
nearly all empirical data, the prediction will not be perfect. The variable Other 
represents variables other than Education and Income that affect SAT.

Each single-headed arrow represents a regression weight. The number 1 in the 
figure specifies that Other must have a weight of 1 in the prediction of SAT. Some such 
constraint must be imposed in order to make the model identified, and it is one of the 
features of the model that must be communicated to Amos.

Launching Amos Graphics

You can launch Amos Graphics in any of the following ways:

Click Start on the Windows task bar, and choose All Programs → IBM SPSS 
Statistics → IBM SPSS Amos 19 → Amos Graphics. 
Double-click any path diagram (*.amw).

Drag a path diagram (*.amw) file from Windows Explorer to the Amos Graphics 
window.

Click Start on the Windows task bar, and choose All Programs → IBM SPSS 
Statistics → IBM SPSS Amos 19 → View Path Diagrams. Then double-click a path 
diagram in the View Path Diagrams window.

From within SPSS Statistics, choose Add-ons → Applications → Amos from the 
menus.
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Creating a New Model

E From the menus, choose File → New. 

Your work area appears. The large area on the right is where you draw path diagrams. 
The toolbar on the left provides one-click access to the most frequently used buttons. 
You can use either the toolbar or menu commands for most operations.
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Specifying the Data File

The next step is to specify the file that contains the Hamilton data. This tutorial uses a 
Microsoft Excel 8.0 (*.xls) file, but Amos supports several common database formats, 
including SPSS Statistics *.sav files. If you launch Amos from the Add-ons menu in 
SPSS Statistics, Amos automatically uses the file that is open in SPSS Statistics. 

E From the menus, choose File → Data Files.

E In the Data Files dialog box, click File Name.

E Browse to the Tutorial folder. If you performed a typical installation, the path is 
C:\Program Files\IBM\SPSS\Amos\19\Tutorial\<language>.

E In the Files of type list, select Excel 8.0 (*.xls). 

E Select Hamilton.xls, and then click Open. 

E In the Data Files dialog box, click OK. 

Specifying the Model and Drawing Variables

The next step is to draw the variables in your model. First, you’ll draw three rectangles 
to represent the observed variables, and then you’ll draw an ellipse to represent the 
unobserved variable. 

E From the menus, choose Diagram → Draw Observed.

E In the drawing area, move your mouse pointer to where you want the Education 
rectangle to appear. Click and drag to draw the rectangle. Don’t worry about the exact 
size or placement of the rectangle because you can change it later. 

E Use the same method to draw two more rectangles for Income and SAT. 

E From the menus, choose Diagram → Draw Unobserved.
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E In the drawing area, move your mouse pointer to the right of the three rectangles and 
click and drag to draw the ellipse. 

The model in your drawing area should now look similar to the following:

Naming the Variables

E In the drawing area, right-click the top left rectangle and choose Object Properties from 
the pop-up menu. 

E Click the Text tab.

E In the Variable name text box, type Education.

E Use the same method to name the remaining variables. Then close the Object 
Properties dialog box. 
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Your path diagram should now look like this:

Drawing Arrows

Now you will add arrows to the path diagram, using the following model as your guide:

 

E From the menus, choose Diagram → Draw Path.

E Click and drag to draw an arrow between Education and SAT. 

E Use this method to add each of the remaining single-headed arrows. 

E From the menus, choose Diagram → Draw Covariances.

E Click and drag to draw a double-headed arrow between Income and Education. Don’t 
worry about the curve of the arrow because you can adjust it later.
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Constraining a Parameter

To identify the regression model, you must define the scale of the latent variable Other. 
You can do this by fixing either the variance of Other or the path coefficient from Other 
to SAT at some positive value. The following shows you how to fix the path coefficient 
at unity (1). 

E In the drawing area, right-click the arrow between Other and SAT and choose Object 
Properties from the pop-up menu.

E Click the Parameters tab.

E In the Regression weight text box, type 1. 

E Close the Object Properties dialog box. 

There is now a 1 above the arrow between Other and SAT. Your path diagram is now 
complete, other than any changes you may wish to make to its appearance. It should 
look something like this: 
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Altering the Appearance of a Path Diagram

You can change the appearance of your path diagram by moving and resizing objects. 
These changes are visual only; they do not affect the model specification. 

To Move an Object

E From the menus, choose Edit → Move.

E In the drawing area, click and drag the object to its new location.

To Reshape an Object or Double-Headed Arrow

E From the menus, choose Edit → Shape of Object.

E In the drawing area, click and drag the object until you are satisfied with its size and 
shape.

To Delete an Object

E From the menus, choose Edit → Erase.

E In the drawing area, click the object you wish to delete. 
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To Undo an Action

E From the menus, choose Edit → Undo.

To Redo an Action

E From the menus, choose Edit → Redo.

Setting Up Optional Output

Some of the output in Amos is optional. In this step, you will choose which portions of 
the optional output you want Amos to display after the analysis. 

E From the menus, choose View → Analysis Properties.

E Click the Output tab.

E Select the Minimization history, Standardized estimates, and Squared multiple correlations 
check boxes.
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E Close the Analysis Properties dialog box. 
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Performing the Analysis

The only thing left to do is perform the calculations for fitting the model. Note that in 
order to keep the parameter estimates up to date, you must do this every time you 
change the model, the data, or the options in the Analysis Properties dialog box.

E From the menus, click Analyze → Calculate Estimates. 

E Because you have not yet saved the file, the Save As dialog box appears. Type a name 
for the file and click Save. 

Amos calculates the model estimates. The panel to the left of the path diagram displays 
a summary of the calculations.

Viewing Output

When Amos has completed the calculations, you have two options for viewing the 
output: text and graphics.

To View Text Output

E From the menus, choose View → Text Output.

The tree diagram in the upper left pane of the Amos Output window allows you to 
choose a portion of the text output for viewing.

E Click Estimates to view the parameter estimates.
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To View Graphics Output

E Click the Show the output path diagram button .

E In the Parameter Formats pane to the left of the drawing area, click Standardized 
estimates.
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Your path diagram now looks like this:

 

The value 0.49 is the correlation between Education and Income. The values 0.72 and 
0.11 are standardized regression weights. The value 0.60 is the squared multiple 
correlation of SAT with Education and Income.

E In the Parameter Formats pane to the left of the drawing area, click Unstandardized 

estimates.

Your path diagram should now look like this:

 

Printing the Path Diagram

E From the menus, choose File → Print.

The Print dialog box appears. 
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E Click Print.

Copying the Path Diagram

Amos Graphics lets you easily export your path diagram to other applications such as 
Microsoft Word. 

E From the menus, choose Edit → Copy (to Clipboard).

E Switch to the other application and use the Paste function to insert the path diagram. 
Amos Graphics exports only the diagram; it does not export the background.

Copying Text Output

E In the Amos Output window, select the text you want to copy. 

E Right-click the selected text, and choose Copy from the pop-up menu.

E Switch to the other application and use the Paste function to insert the text.
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Example

1
Estimating Variances and 
Covariances

Introduction 

This example shows you how to estimate population variances and covariances. It also 
discusses the general format of Amos input and output.

About the Data

Attig (1983) showed 40 subjects a booklet containing several pages of advertisements. 
Then each subject was given three memory performance tests.

Attig repeated the study with the same 40 subjects after a training exercise intended 
to improve memory performance. There were thus three performance measures 
before training and three performance measures after training. In addition, she 
recorded scores on a vocabulary test, as well as age, sex, and level of education. 
Attig’s data files are included in the Examples folder provided by Amos.

Test Explanation

recall
The subject was asked to recall as many of the advertisements as possible. 
The subject’s score on this test was the number of advertisements recalled 
correctly.

cued
The subject was given some cues and asked again to recall as many of the 
advertisements as possible. The subject’s score was the number of 
advertisements recalled correctly.

place

The subject was given a list of the advertisements that appeared in the 
booklet and was asked to recall the page location of each one. The subject’s 
score on this test was the number of advertisements whose location was 
recalled correctly.
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Bringing In the Data

E From the menus, choose File → New. 

E From the menus, choose File → Data Files.

E In the Data Files dialog box, click File Name.

E Browse to the Examples folder. If you performed a typical installation, the path is 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>.

E In the Files of type list, select Excel 8.0 (*.xls), select UserGuide.xls, and then click 
Open. 

E In the Data Files dialog box, click OK. 

Amos displays a list of worksheets in the UserGuide workbook. The worksheet 
Attg_yng contains the data for this example.

E In the Select a Data Table dialog box, select Attg_yng, then click View Data.

 

The Excel worksheet for the Attg_yng data file opens.
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As you scroll across the worksheet, you will see all of the test variables from the Attig 
study. This example uses only the following variables: recall1 (recall pretest), recall2 
(recall posttest), place1 (place recall pretest), and place2 (place recall posttest).

E After you review the data, close the data window. 

E In the Data Files dialog box, click OK.

Analyzing the Data

In this example, the analysis consists of estimating the variances and covariances of the 
recall and place variables before and after training. 

Specifying the Model

E From the menus, choose Diagram → Draw Observed.

E In the drawing area, move your mouse pointer to where you want the first rectangle to 
appear. Click and drag to draw the rectangle. 

E From the menus, choose Edit → Duplicate.

E Click and drag a duplicate from the first rectangle. Release the mouse button to 
position the duplicate.
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E Create two more duplicate rectangles until you have four rectangles side by side. 

Tip: If you want to reposition a rectangle, choose Edit → Move from the menus and drag 
the rectangle to its new position.

 

Naming the Variables

E From the menus, choose View → Variables in Dataset.

The Variables in Dataset dialog box appears.

 

E Click and drag the variable recall1 from the list to the first rectangle in the drawing 
area.

E Use the same method to name the variables recall2, place1, and place2. 

E Close the Variables in Dataset dialog box.
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Changing the Font

E Right-click a variable and choose Object Properties from the pop-up menu. 

The Object Properties dialog box appears.

E Click the Text tab and adjust the font attributes as desired. 

Establishing Covariances

If you leave the path diagram as it is, Amos Graphics will estimate the variances of the 
four variables, but it will not estimate the covariances between them. In Amos 
Graphics, the rule is to assume a correlation or covariance of 0 for any two variables 
that are not connected by arrows. To estimate the covariances between the observed 
variables, we must first connect all pairs with double-headed arrows. 

E From the menus, choose Diagram → Draw Covariances.

E Click and drag to draw arrows that connect each variable to every other variable. 

Your path diagram should have six double-headed arrows.
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Performing the Analysis

E From the menus, choose Analyze → Calculate Estimates. 

Because you have not yet saved the file, the Save As dialog box appears.

E Enter a name for the file and click Save. 

Viewing Graphics Output

E Click the Show the output path diagram button .

Amos displays the output path diagram with parameter estimates.
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In the output path diagram, the numbers displayed next to the boxes are estimated 
variances, and the numbers displayed next to the double-headed arrows are estimated 
covariances. For example, the variance of recall1 is estimated at 5.79, and that of 
place1 at 33.58. The estimated covariance between these two variables is 4.34.

Viewing Text Output

E From the menus, choose View → Text Output.

E In the tree diagram in the upper left pane of the Amos Output window, click Estimates.

The first estimate displayed is of the covariance between recall1 and recall2. The 
covariance is estimated to be 2.56. Right next to that estimate, in the S.E. column, is an 
estimate of the standard error of the covariance, 1.16. The estimate 2.56 is an 

_Ref76537719
_Ref76537719
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observation on an approximately normally distributed random variable centered 
around the population covariance with a standard deviation of about 1.16, that is, if the 
assumptions in the section “Distribution Assumptions for Amos Models” on p. 35 are 
met. For example, you can use these figures to construct a 95% confidence interval on 
the population covariance by computing . Later, you 
will see that you can use Amos to estimate many kinds of population parameters 
besides covariances and can follow the same procedure to set a confidence interval on 
any one of them.

Next to the standard error, in the C.R. column, is the critical ratio obtained by 
dividing the covariance estimate by its standard error . This ratio 
is relevant to the null hypothesis that, in the population from which Attig’s 40 subjects 
came, the covariance between recall1 and recall2 is 0. If this hypothesis is true, and 
still under the assumptions in the section “Distribution Assumptions for Amos 
Models” on p. 35, the critical ratio is an observation on a random variable that has an 
approximate standard normal distribution. Thus, using a significance level of 0.05, any 
critical ratio that exceeds 1.96 in magnitude would be called significant. In this 
example, since 2.20 is greater than 1.96, you would say that the covariance between 
recall1 and recall2 is significantly different from 0 at the 0.05 level.

The P column, to the right of C.R., gives an approximate two-tailed p value for 
testing the null hypothesis that the parameter value is 0 in the population. The table 
shows that the covariance between recall1 and recall2 is significantly different from 0 
with . The calculation of P assumes that parameter estimates are normally 
distributed, and it is correct only in large samples. See Appendix A for more 
information.

The assertion that the parameter estimates are normally distributed is only an 
approximation. Moreover, the standard errors reported in the S.E. column are only 
approximations and may not be the best available. Consequently, the confidence 
interval and the hypothesis test just discussed are also only approximate. This is 
because the theory on which these results are based is asymptotic. Asymptotic means 
that it can be made to apply with any desired degree of accuracy, but only by using a 
sufficiently large sample. We will not discuss whether the approximation is 
satisfactory with the present sample size because there would be no way to generalize 
the conclusions to the many other kinds of analyses that you can do with Amos. 
However, you may want to re-examine the null hypothesis that recall1 and recall2 are 
uncorrelated, just to see what is meant by an approximate test. We previously 
concluded that the covariance is significantly different from 0 because 2.20 exceeds 
1.96. The p value associated with a standard normal deviate of 2.20 is 0.028 (two-
tailed), which, of course, is less than 0.05. By contrast, the conventional t statistic (for 

2.56 1.96 1.160 2.56 2.27±=×±

2.20 2.56 1.16⁄=( )

p 0.03=
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example, Runyon and Haber, 1980, p. 226) is 2.509 with 38 degrees of freedom 
. In this example, both p values are less than 0.05, so both tests agree in 

rejecting the null hypothesis at the 0.05 level. However, in other situations, the two 
p values might lie on opposite sides of 0.05. You might or might not regard this as 
especially serious—at any rate, the two tests can give different results. There should be 
no doubt about which test is better. The t test is exact under the assumptions of 
normality and independence of observations, no matter what the sample size. In Amos, 
the test based on critical ratio depends on the same assumptions; however, with a finite 
sample, the test is only approximate.

Note: For many interesting applications of Amos, there is no exact test or exact standard 
error or exact confidence interval available.

On the bright side, when fitting a model for which conventional estimates exist, 
maximum likelihood point estimates (for example, the numbers in the Estimate 
column) are generally identical to the conventional estimates.

E Now click Notes for Model in the upper left pane of the Amos Output window.

The following table plays an important role in every Amos analysis:

Number of distinct sample moments: 10
Number of distinct parameters to be estimated: 10

Degrees of freedom (10 – 10): 0

p 0.016=( )
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The Number of distinct sample moments referred to are sample means, variances, and 
covariances. In most analyses, including the present one, Amos ignores means, so that 
the sample moments are the sample variances of the four variables, recall1, recall2, 
place1, and place2, and their sample covariances. There are four sample variances and 
six sample covariances, for a total of 10 sample moments. 

The Number of distinct parameters to be estimated are the corresponding 
population variances and covariances. There are, of course, four population variances 
and six population covariances, which makes 10 parameters to be estimated. 

The Degrees of freedom is the amount by which the number of sample moments 
exceeds the number of parameters to be estimated. In this example, there is a one-to-
one correspondence between the sample moments and the parameters to be estimated, 
so it is no accident that there are zero degrees of freedom.

As we will see beginning with Example 2, any nontrivial null hypothesis about the 
parameters reduces the number of parameters that have to be estimated. The result will 
be positive degrees of freedom. For now, there is no null hypothesis being tested. 
Without a null hypothesis to test, the following table is not very interesting:

If there had been a hypothesis under test in this example, the chi-square value would have 
been a measure of the extent to which the data were incompatible with the hypothesis. A 
chi-square value of 0 would ordinarily indicate no departure from the null hypothesis. 
But in the present example, the 0 value for degrees of freedom and the 0 chi-square value 
merely reflect the fact that there was no null hypothesis in the first place.

This line indicates that Amos successfully estimated the variances and covariances. 
Sometimes structural modeling programs like Amos fail to find estimates. Usually, 
when Amos fails, it is because you have posed a problem that has no solution, or no 
unique solution. For example, if you attempt maximum likelihood estimation with 
observed variables that are linearly dependent, Amos will fail because such an analysis 
cannot be done in principle. Problems that have no unique solution are discussed 
elsewhere in this user’s guide under the subject of identifiability. Less commonly, 
Amos can fail because an estimation problem is just too difficult. The possibility of 
such failures is generic to programs for analysis of moment structures. Although the 
computational method used by Amos is highly effective, no computer program that 
does the kind of analysis that Amos does can promise success in every case.

Chi-square = 0.00
Degrees of freedom = 0
Probability level cannot be computed

Minimum was achieved
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Optional Output

So far, we have discussed output that Amos generates by default. You can also request 
additional output. 

Calculating Standardized Estimates

You may be surprised to learn that Amos displays estimates of covariances rather than 
correlations. When the scale of measurement is arbitrary or of no substantive interest, 
correlations have more descriptive meaning than covariances. Nevertheless, Amos and 
similar programs insist on estimating covariances. Also, as will soon be seen, Amos 
provides a simple method for testing hypotheses about covariances but not about 
correlations. This is mainly because it is easier to write programs that way. On the other 
hand, it is not hard to derive correlation estimates after the relevant variances and 
covariances have been estimated. To calculate standardized estimates:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select the Standardized estimates check box.

 

E Close the Analysis Properties dialog box.



34

Example 1

Rerunning the Analysis

Because you have changed the options in the Analysis Properties dialog box, you must 
rerun the analysis. 

E From the menus, choose Analyze → Calculate Estimates. 

E Click the Show the output path diagram button. 

E In the Parameter Formats pane to the left of the drawing area, click Standardized 

estimates.

Viewing Correlation Estimates as Text Output

E From the menus, choose View → Text Output.
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E In the tree diagram in the upper left pane of the Amos Output window, expand 
Estimates, Scalars, and then click Correlations. 

Distribution Assumptions for Amos Models

Hypothesis testing procedures, confidence intervals, and claims for efficiency in 
maximum likelihood or generalized least-squares estimation depend on certain 
assumptions. First, observations must be independent. For example, the 40 young 
people in the Attig study have to be picked independently from the population of young 
people. Second, the observed variables must meet some distributional requirements. If 
the observed variables have a multivariate normal distribution, that will suffice. 
Multivariate normality of all observed variables is a standard distribution assumption 
in many structural equation modeling and factor analysis applications.

There is another, more general, situation under which maximum likelihood 
estimation can be carried out. If some exogenous variables are fixed (that is, they are 
either known beforehand or measured without error), their distributions may have any 
shape, provided that:

For any value pattern of the fixed variables, the remaining (random) variables have 
a (conditional) normal distribution.

The (conditional) variance-covariance matrix of the random variables is the same 
for every pattern of the fixed variables.
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The (conditional) expected values of the random variables depend linearly on the 
values of the fixed variables.

A typical example of a fixed variable would be an experimental treatment, classifying 
respondents into a study group and a control group, respectively. It is all right that 
treatment is non-normally distributed, as long as the other exogenous variables are 
normally distributed for study and control cases alike, and with the same conditional 
variance-covariance matrix. Predictor variables in regression analysis (see Example 4) 
are often regarded as fixed variables.

Many people are accustomed to the requirements for normality and independent 
observations, since these are the usual requirements for many conventional procedures. 
However, with Amos, you have to remember that meeting these requirements leads 
only to asymptotic conclusions (that is, conclusions that are approximately true for 
large samples).

Modeling in VB.NET

It is possible to specify and fit a model by writing a program in VB.NET or in C#. Writing 
programs is an alternative to using Amos Graphics to specify a model by drawing its path 
diagram. This section shows how to write a VB.NET program to perform the analysis of 
Example 1. A later section explains how to do the same thing in C#. 

Amos comes with its own built-in editor for VB.NET and C# programs. It is 
accessible from the Windows Start menu. To begin Example 1 using the built-in editor:

E From the Windows Start menu, choose All Programs → IBM SPSS Statistics →
IBM SPSS Amos 19 → Program Editor.

E In the Program Editor window, choose File → New VB Program.
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E Enter the VB.NET code for specifying and fitting the model in place of the ‘Your code 

goes here comment. The following figure shows the program editor after the complete 
program has been entered.

Note: The Examples directory contains all of the pre-written examples. 
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To open the VB.NET file for the present example:

E From the Program Editor menus, choose File → Open.

E Select the file Ex01.vb in the \Amos\19\Examples\<language> directory.

The following table gives a line-by-line explanation of the program.

E To perform the analysis, from the menus, choose File → Run.

Program Statement Explanation

Dim Sem As New AmosEngine

Declares Sem as an object of type 
AmosEngine. The methods and properties of 
the Sem object are used to specify and fit the 
model.

Sem.TextOutput

Creates an output file containing the results of 
the analysis. At the end of the analysis, the 
contents of the output file are displayed in a 
separate window.

Sem.BeginGroup …

Begins the model specification for a single 
group (that is, a single population). This line 
also specifies that the Attg_yng worksheet in the 
Excel workbook UserGuide.xls contains the 
input data. Sem.AmosDir() is the location of the 
Amos program directory.

Sem.AStructure("recall1")
Sem.AStructure("recall2")
Sem.AStructure("place1")
Sem.AStructure("place2")

Specifies the model. The four AStructure 
statements declare the variances of recall1, 
recall2, place1, and place2 to be free 
parameters. The other eight variables in the 
Attg_yng data file are left out of this analysis. In 
an Amos program (but not in Amos Graphics), 
observed exogenous variables are assumed by 
default to be correlated, so that Amos will 
estimate the six covariances among the four 
variables.

Sem.FitModel() Fits the model.

Sem.Dispose()

Releases resources used by the Sem object. It is 
particularly important for your program to use 
an AmosEngine object’s Dispose method before 
creating another AmosEngine object. A process 
is allowed only one instance of an AmosEngine 
object at a time.

Try/Finally/End Try
The Try block guarantees that the Dispose 
method will be called even if an error occurs 
during program execution.
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Generating Additional Output

Some AmosEngine methods generate additional output. For example, the Standardized 
method displays standardized estimates. The following figure shows the use of the 
Standardized method:

Modeling in C#

Writing an Amos program in C# is similar to writing one in VB.NET. To start a new 
C# program, in the built-in program editor of Amos:

E Choose File → New C# Program (rather than File → New VB Program).

E Choose File → Open to open Ex01.cs, which is a C# version of the VB.NET program 
Ex01.vb.
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Other Program Development Tools

The built-in program editor in Amos is used throughout this user’s guide for writing 
and executing Amos programs. However, you can use the development tool of your 
choice. The Examples folder contains a VisualStudio subfolder where you can find 
Visual Studio VB.NET and C# solutions for Example 1.
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2
Testing Hypotheses

Introduction

This example demonstrates how you can use Amos to test simple hypotheses about 
variances and covariances. It also introduces the chi-square test for goodness of fit and 
elaborates on the concept of degrees of freedom.

About the Data

We will use Attig’s (1983) spatial memory data, which were described in Example 1. 
We will also begin with the same path diagram as in Example 1. To demonstrate the 
ability of Amos to use different data formats, this example uses a data file in SPSS 
Statistics format instead of an Excel file. 

Parameters Constraints

The following is the path diagram from Example 1. We can think of the variable 
objects as having small boxes nearby (representing the variances) that are filled in 
once Amos has estimated the parameters. 



42

Example 2

You can fill these boxes yourself instead of letting Amos fill them.

Constraining Variances

Suppose you want to set the variance of recall1 to 6 and the variance of recall2 to 8. 

E In the drawing area, right-click recall1 and choose Object Properties from the pop-up 
menu.

E Click the Parameters tab.

E In the Variance text box, type 6.

E With the Object Properties dialog box still open, click recall2 and set its variance to 8. 
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E Close the dialog box.

The path diagram displays the parameter values you just specified.

This is not a very realistic example because the numbers 6 and 8 were just picked out 
of the air. Meaningful parameter constraints must have some underlying rationale, 
perhaps being based on theory or on previous analyses of similar data.

Specifying Equal Parameters

Sometimes you will be interested in testing whether two parameters are equal in the 
population. You might, for example, think that the variances of recall1 and recall2 
might be equal without having a particular value for the variances in mind. To 
investigate this possibility, do the following: 

E In the drawing area, right-click recall1 and choose Object Properties from the pop-up 
menu. 

E Click the Parameters tab.

E In the Variance text box, type v_recall.

E Click recall2 and label its variance as v_recall.

E Use the same method to label the place1 and place2 variances as v_place.

It doesn’t matter what label you use. The important thing is to enter the same label for 
each variance you want to force to be equal. The effect of using the same label is to 
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require both of the variances to have the same value without specifying ahead of time 
what that value is.

Benefits of Specifying Equal Parameters

Before adding any further constraints on the model parameters, let’s examine why we 
might want to specify that two parameters, like the variances of recall1 and recall2 or 
place1 and place2, are equal. Here are two benefits:

If you specify that two parameters are equal in the population and if you are correct 
in this specification, then you will get more accurate estimates, not only of the 
parameters that are equal but usually of the others as well. This is the only benefit 
if you happen to know that the parameters are equal.

If the equality of two parameters is a mere hypothesis, requiring their estimates to 
be equal will result in a test of that hypothesis. 

Constraining Covariances

Your model may also include restrictions on parameters other than variances. For 
example, you may hypothesize that the covariance between recall1 and place1 is equal 
to the covariance between recall2 and place2. To impose this constraint: 

E In the drawing area, right-click the double-headed arrow that connects recall1 and 
place1, and choose Object Properties from the pop-up menu. 

E Click the Parameters tab.

E In the Covariance text box, type a non-numeric string such as cov_rp.

E Use the same method to set the covariance between recall2 and place2 to cov_rp.
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Moving and Formatting Objects

While a horizontal layout is fine for small examples, it is not practical for analyses that 
are more complex. The following is a different layout of the path diagram on which 
we’ve been working:
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You can use the following tools to rearrange your path diagram until it looks like the 
one above: 

To move objects, choose Edit → Move from the menus, and then drag the object to 
its new location. You can also use the Move button to drag the endpoints of arrows. 

To copy formatting from one object to another, choose Edit → Drag Properties from 
the menus, select the properties you wish to apply, and then drag from one object 
to another. 

For more information about the Drag Properties feature, refer to online Help. 

Data Input

This example uses a data file in SPSS Statistics format. If you have SPSS Statistics 
installed, you can view the data as you load it. Even if you don’t have SPSS Statistics 
installed, Amos will still read the data. 

E From the menus, choose File → Data Files.

E In the Data Files dialog box, click File Name.

E Browse to the Examples folder. If you performed a typical installation, the path is 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>.

E In the Files of type list, select SPSS Statistics (*.sav), click Attg_yng, and then click 
Open. 

E If you have SPSS Statistics installed, click the View Data button in the Data Files dialog 
box. An SPSS Statistics window opens and displays the data.
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E Review the data and close the data view.

E In the Data Files dialog box, click OK.

Performing the Analysis

E From the menus, choose Analyze → Calculate Estimates. 

E In the Save As dialog box, enter a name for the file and click Save. 

Amos calculates the model estimates. 

Viewing Text Output

E From the menus, choose View → Text Output. 

E To view the parameter estimates, click Estimates in the tree diagram in the upper left 
pane of the Amos Output window.
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You can see that the parameters that were specified to be equal do have equal 
estimates. The standard errors here are generally smaller than the standard errors 
obtained in Example 1. Also, because of the constraints on the parameters, there are 
now positive degrees of freedom. 

E Now click Notes for Model in the upper left pane of the Amos Output window.

While there are still 10 sample variances and covariances, the number of parameters to 
be estimated is only seven. Here is how the number seven is arrived at: The variances 
of recall1 and recall2, labeled v_recall, are constrained to be equal, and thus count as 
a single parameter. The variances of place1 and place2 (labeled v_place) count as 
another single parameter. A third parameter corresponds to the equal covariances 
recall1 <> place1 and recall2 <> place2 (labeled cov_rp). These three parameters, 
plus the four unlabeled, unrestricted covariances, add up to seven parameters that have 
to be estimated.

The degrees of freedom ( ) may also be thought of as the number of 
constraints placed on the original 10 variances and covariances.

Optional Output

The output we just discussed is all generated by default. You can also request additional 
output:

E From the menus, choose View → Analysis Properties.

E Click the Output tab.

E Ensure that the following check boxes are selected: Minimization history, Standardized 

estimates, Sample moments, Implied moments, and Residual moments.

10 7 3=–
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E From the menus, choose Analyze → Calculate Estimates. 

Amos recalculates the model estimates.

Covariance Matrix Estimates

E To see the sample variances and covariances collected into a matrix, choose View → 

Text Output from the menus.

E Click Sample Moments in the tree diagram in the upper left corner of the Amos Output 
window. 
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The following is the sample covariance matrix:

E In the tree diagram, expand Estimates and then click Matrices. 

The following is the matrix of implied covariances:

 

Note the differences between the sample and implied covariance matrices. Because the 
model imposes three constraints on the covariance structure, the implied variances and 
covariances are different from the sample values. For example, the sample variance of 
place1 is 33.58, but the implied variance is 27.53. To obtain a matrix of residual 
covariances (sample covariances minus implied covariances), put a check mark next to 
Residual moments on the Output tab and repeat the analysis.

The following is the matrix of residual covariances:
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Displaying Covariance and Variance Estimates on the Path Diagram

As in Example 1, you can display the covariance and variance estimates on the path 
diagram. 

E Click the Show the output path diagram button. 

E In the Parameter Formats pane to the left of the drawing area, click Unstandardized 

estimates. Alternatively, you can request correlation estimates in the path diagram by 
clicking Standardized estimates.

The following is the path diagram showing correlations:

Labeling Output

It may be difficult to remember whether the displayed values are covariances or 
correlations. To avoid this problem, you can use Amos to label the output. 

E Open the file Ex02.amw. 

E Right-click the caption at the bottom of the path diagram, and choose Object Properties 
from the pop-up menu.

E Click the Text tab.
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Notice the word \format in the bottom line of the figure caption. Words that begin with 
a backward slash, like \format, are called text macros. Amos replaces text macros with 
information about the currently displayed model. The text macro \format will be 
replaced by the heading Model Specification, Unstandardized estimates, or 
Standardized estimates, depending on which version of the path diagram is displayed.

Hypothesis Testing

The implied covariances are the best estimates of the population variances and 
covariances under the null hypothesis. (The null hypothesis is that the parameters 
required to have equal estimates are truly equal in the population.) As we know from 
Example 1, the sample covariances are the best estimates obtained without making any 
assumptions about the population values. A comparison of these two matrices is 
relevant to the question of whether the null hypothesis is correct. If the null hypothesis 
is correct, both the implied and sample covariances are maximum likelihood estimates 
of the corresponding population values (although the implied covariances are better 
estimates). Consequently, you would expect the two matrices to resemble each other. 
On the other hand, if the null hypothesis is wrong, only the sample covariances are 
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maximum likelihood estimates, and there is no reason to expect them to resemble the 
implied covariances.

The chi-square statistic is an overall measure of how much the implied covariances 
differ from the sample covariances.

In general, the more the implied covariances differ from the sample covariances, the 
bigger the chi-square statistic will be. If the implied covariances had been identical to 
the sample covariances, as they were in Example 1, the chi-square statistic would have 
been 0. You can use the chi-square statistic to test the null hypothesis that the 
parameters required to have equal estimates are really equal in the population. 
However, it is not simply a matter of checking to see if the chi-square statistic is 0. 
Since the implied covariances and the sample covariances are merely estimates, you 
can’t expect them to be identical (even if they are both estimates of the same population 
covariances). Actually, you would expect them to differ enough to produce a chi-square 
in the neighborhood of the degrees of freedom, even if the null hypothesis is true. In 
other words, a chi-square value of 3 would not be out of the ordinary here, even with a 
true null hypothesis. You can say more than that: If the null hypothesis is true, the chi-
square value (6.276) is a single observation on a random variable that has an 
approximate chi-square distribution with three degrees of freedom. The probability is 
about 0.099 that such an observation would be as large as 6.276. Consequently, the 
evidence against the null hypothesis is not significant at the 0.05 level.

Displaying Chi-Square Statistics on the Path Diagram

You can get the chi-square statistic and its degrees of freedom to appear in a figure 
caption on the path diagram using the text macros \cmin and \df. Amos replaces these 
text macros with the numeric values of the chi-square statistic and its degrees of 
freedom. You can use the text macro \p to display the corresponding right-tail 
probability under the chi-square distribution. 

E From the menus, choose Diagram → Figure Caption. 

E Click the location on the path diagram where you want the figure caption to appear. 

The Figure Caption dialog box appears.

Chi-square = 6.276
Degrees of freedom = 3
Probability level = 0.099
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E In the Figure Caption dialog box, enter a caption that includes the \cmin, \df, and \p text 
macros, as follows:

When Amos displays the path diagram containing this caption, it appears as follows:
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Modeling in VB.NET

The following program fits the constrained model of Example 2:
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This table gives a line-by-line explanation of the program:

Program Statement Explanation

Dim Sem As New AmosEngine

Declares Sem as an object of type 
AmosEngine. The methods and 
properties of the Sem object are used to 
specify and fit the model.

Sem.TextOutput

Creates an output file containing the 
results of the analysis. At the end of the 
analysis, the contents of the output file 
are displayed in a separate window.

Sem.Standardized()
Sem.ImpliedMoments()
Sem.SampleMoments()
Sem.ResidualMoments()

Displays standardized estimates, implied 
covariances, sample covariances, and 
residual covariances.

Sem.BeginGroup …

Begins the model specification for a 
single group (that is, a single 
population). This line also specifies that 
the SPSS Statistics file Attg_yng.sav 
contains the input data. Sem.AmosDir() 
is the location of the Amos program 
directory.

Sem.AStructure("recall1 (v_recall)")
Sem.AStructure("recall2 (v_recall)")
Sem.AStructure("place1 (v_place)")
Sem.AStructure("place2 (v_place)")
Sem.AStructure("recall1 <> place1 (cov_rp)")
Sem.AStructure("recall2 <> place2 (cov_rp)")

Specifies the model. The first four 
AStructure statements constrain the 
variances of the observed variables 
through the use of parameter names in 
parentheses. Recall1 and recall2 are 
required to have the same variance 
because both variances are labeled 
v_recall. The variances of place1 and 
place2 are similarly constrained to be 
equal. Each of the last two AStructure 
lines represents a covariance. The two 
covariances are both named cov_rp. 
Consequently, those covariances are 
constrained to be equal.

Sem.FitModel() Fits the model.

Sem.Dispose()

Releases resources used by the Sem 
object. It is particularly important for 
your program to use an AmosEngine 
object’s Dispose method before creating 
another AmosEngine object. A process is 
allowed to have only one instance of an 
AmosEngine object at a time.

Try/Finally/End Try
This Try block guarantees that the 
Dispose method will be called even if an 
error occurs during program execution.
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E To perform the analysis, from the menus, choose File → Run.

Timing Is Everything

The AStructure lines must appear after BeginGroup; otherwise, Amos will not recognize 
that the variables named in the AStructure lines are observed variables in the 
attg_yng.sav dataset.

In general, the order of statements matters in an Amos program. In organizing an 
Amos program, AmosEngine methods can be divided into three general groups1.

Group 1 — Declarative Methods

This group contains methods that tell Amos what results to compute and display. 
TextOutput is a Group 1 method, as are Standardized, ImpliedMoments, SampleMoments, 
and ResidualMoments. Many other Group 1 methods that are not used in this example 
are documented in the Amos 19 Programming Reference Guide.

Group 2 — Data and Model Specification Methods

This group consists of data description and model specification commands. 
BeginGroup and AStructure are Group 2 methods. Others are documented in the Amos 
19 Programming Reference Guide.

Group 3 — Methods for Retrieving Results

These are commands to…well, retrieve results. So far, we have not used any Group 3 
methods. Examples using Group 3 methods are given in the Amos 19 Programming 
Reference Guide.

Tip: When you write an Amos program, it is important to pay close attention to the 
order in which you call the Amos engine methods. The rule is that groups must appear 
in order: Group 1, then Group 2, and finally Group 3.

For more detailed information about timing rules and a complete listing of methods and 
their group membership, see the Amos 19 Programming Reference Guide.

1 There is also a fourth special group, consisting of only the Initialize Method. If the optional Initialize Method 
is used, it must come before the Group 1 methods.
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3
More Hypothesis Testing

Introduction

This example demonstrates how to test the null hypothesis that two variables are 
uncorrelated, reinforces the concept of degrees of freedom, and demonstrates, in a 
concrete way, what is meant by an asymptotically correct test.

About the Data

For this example, we use the group of older subjects from Attig’s (1983) spatial 
memory study and the two variables age and vocabulary. We will use data formatted 
as a tab-delimited text file.

Bringing In the Data

E From the menus, choose File → New.

E From the menus, choose File → Data Files.

E In the Data Files dialog box, select File Name.

E Browse to the Examples folder. If you performed a typical installation, the path is 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>.
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E In the Files of type list, select Text (*.txt), select Attg_old.txt, and then click Open. 

E In the Data Files dialog box, click OK. 

Testing a Hypothesis That Two Variables Are Uncorrelated

Among Attig’s 40 old subjects, the sample correlation between age and vocabulary is 
–0.09 (not very far from 0). Is this correlation nevertheless significant? To find out, we 
will test the null hypothesis that, in the population from which these 40 subjects came, 
the correlation between age and vocabulary is 0. We will do this by estimating the 
variance-covariance matrix under the constraint that age and vocabulary are 
uncorrelated. 

Specifying the Model

Begin by drawing and naming the two observed variables, age and vocabulary, in the 
path diagram, using the methods you learned in Example 1.

Amos provides two ways to specify that the covariance between age and vocabulary 
is 0. The most obvious way is simply to not draw a double-headed arrow connecting 
the two variables. The absence of a double-headed arrow connecting two exogenous 
variables implies that they are uncorrelated. So, without drawing anything more, the 
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model specified by the simple path diagram above specifies that the covariance (and 
thus the correlation) between age and vocabulary is 0.

The second method of constraining a covariance parameter is the more general 
procedure introduced in Example 1 and Example 2.

E From the menus, choose Diagram → Draw Covariances.

E Click and drag to draw an arrow that connects vocabulary and age. 

E Right-click the arrow and choose Object Properties from the pop-up menu. 

E Click the Parameters tab.

E Type 0 in the Covariance text box.

E Close the Object Properties dialog box. 

Your path diagram now looks like this:
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E From the menus, choose Analyze → Calculate Estimates.

The Save As dialog box appears.

E Enter a name for the file and click Save. 

Amos calculates the model estimates. 

Viewing Text Output

E From the menus, choose View → Text Output.

E In the tree diagram in the upper left pane of the Amos Output window, click Estimates.

Although the parameter estimates are not of primary interest in this analysis, they are 
as follows: 

In this analysis, there is one degree of freedom, corresponding to the single constraint 
that age and vocabulary be uncorrelated. The degrees of freedom can also be arrived 
at by the computation shown in the following text. To display this computation:

E Click Notes for Model in the upper left pane of the Amos Output window.
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The three sample moments are the variances of age and vocabulary and their 
covariance. The two distinct parameters to be estimated are the two population 
variances. The covariance is fixed at 0 in the model, not estimated from the sample 
information.

Viewing Graphics Output

E Click the Show the output path diagram button.

E In the Parameter Formats pane to the left of the drawing area, click Unstandardized 
estimates.

The following is the path diagram output of the unstandardized estimates, along with 
the test of the null hypothesis that age and vocabulary are uncorrelated:

The probability of accidentally getting a departure this large from the null hypothesis 
is 0.555. The null hypothesis would not be rejected at any conventional significance 
level.
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The usual t statistic for testing this null hypothesis is 0.59 ( ,  
two-sided). The probability level associated with the t statistic is exact. The probability 
level of 0.555 of the chi-square statistic is off, owing to the fact that it does not have an 
exact chi-square distribution in finite samples. Even so, the probability level of 0.555 
is not bad.

Here is an interesting question: If you use the probability level displayed by Amos 
to test the null hypothesis at either the 0.05 or 0.01 level, then what is the actual 
probability of rejecting a true null hypothesis? In the case of the present null 
hypothesis, this question has an answer, although the answer depends on the sample 
size. The second column in the next table shows, for several sample sizes, the real 
probability of a Type I error when using Amos to test the null hypothesis of zero 
correlation at the 0.05 level. The third column shows the real probability of a Type I 
error if you use a significance level of 0.01. The table shows that the bigger the sample 
size, the closer the true significance level is to what it is supposed to be. It’s too bad 
that such a table cannot be constructed for every hypothesis that Amos can be used to 
test. However, this much can be said about any such table: Moving from top to bottom, 
the numbers in the 0.05 column would approach 0.05, and the numbers in the 0.01 
column would approach 0.01. This is what is meant when it is said that hypothesis tests 
based on maximum likelihood theory are asymptotically correct.

The following table shows the actual probability of a Type I error when using Amos 
to test the hypothesis that two variables are uncorrelated:

Sample Size
Nominal Significance Level

0.05 0.01
3 0.250 0.122
4 0.150 0.056
5 0.115 0.038

10 0.073 0.018
20 0.060 0.013
30 0.056 0.012
40 0.055 0.012
50 0.054 0.011

100 0.052 0.011
150 0.051 0.010
200 0.051 0.010

>500 0.050 0.010

df 38= p 0.56=
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Modeling in VB.NET

Here is a program for performing the analysis of this example:

The AStructure method constrains the covariance, fixing it at a constant 0. The program 
does not refer explicitly to the variances of age and vocabulary. The default behavior 
of Amos is to estimate those variances without constraints. Amos treats the variance of 
every exogenous variable as a free parameter except for variances that are explicitly 
constrained by the program.
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4
Conventional Linear Regression

Introduction

This example demonstrates a conventional regression analysis, predicting a single 
observed variable as a linear combination of three other observed variables. It also 
introduces the concept of identifiability.

About the Data
Warren, White, and Fuller (1974) studied 98 managers of farm cooperatives. We will 
use the following four measurements:

A fifth measure, past training, was also reported, but we will not use it.
In this example, you will use the Excel worksheet Warren5v in the file 

UserGuide.xls, which is located in the Examples folder. If you performed a typical 
installation, the path is C:\Program Files\IBM\SPSS\Amos\19\Examples\ 
<language>.

Test Explanation

performance A 24-item test of performance related to “planning, organization, 
controlling, coordinating, and directing”

knowledge
A 26-item test of knowledge of “economic phases of 
management directed toward profit-making...and product 
knowledge”

value A 30-item test of “tendency to rationally evaluate means to an 
economic end”

satisfaction An 11-item test of “gratification obtained...from performing the 
managerial role”
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Here are the sample variances and covariances:

 

Warren5v also contains the sample means. Raw data are not available, but they are not 
needed by Amos for most analyses, as long as the sample moments (that is, means, 
variances, and covariances) are provided. In fact, only sample variances and 
covariances are required in this example. We will not need the sample means in 
Warren5v for the time being, and Amos will ignore them.

Analysis of the Data

Suppose you want to use scores on knowledge, value, and satisfaction to predict 
performance. More specifically, suppose you think that performance scores can be 
approximated by a linear combination of knowledge, value, and satisfaction. The 
prediction will not be perfect, however, and the model should thus include an error 
variable.

Here is the initial path diagram for this relationship:
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The single-headed arrows represent linear dependencies. For example, the arrow 
leading from knowledge to performance indicates that performance scores depend, in 
part, on knowledge. The variable error is enclosed in a circle because it is not directly 
observed. Error represents much more than random fluctuations in performance scores 
due to measurement error. Error also represents a composite of age, socioeconomic 
status, verbal ability, and anything else on which performance may depend but which 
was not measured in this study. This variable is essential because the path diagram is 
supposed to show all variables that affect performance scores. Without the circle, the 
path diagram would make the implausible claim that performance is an exact linear 
combination of knowledge, value, and satisfaction.

The double-headed arrows in the path diagram connect variables that may be 
correlated with each other. The absence of a double-headed arrow connecting error 
with any other variable indicates that error is assumed to be uncorrelated with every 
other predictor variable—a fundamental assumption in linear regression. Performance 
is also not connected to any other variable by a double-headed arrow, but this is for a 
different reason. Since performance depends on the other variables, it goes without 
saying that it might be correlated with them. 

Specifying the Model

Using what you learned in the first three examples, do the following:

E Start a new path diagram.

E Specify that the dataset to be analyzed is in the Excel worksheet Warren5v in the file 
UserGuide.xls.

E Draw four rectangles and label them knowledge, value, satisfaction, and performance.

E Draw an ellipse for the error variable.

E Draw single-headed arrows that point from the exogenous, or predictor, variables 
(knowledge, value, satisfaction, and error) to the endogenous, or response, variable 
(performance). 

Note: Endogenous variables have at least one single-headed path pointing toward them. 
Exogenous variables, in contrast, send out only single-headed paths but do not receive any.
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E Draw three double-headed arrows that connect the observed exogenous variables 
(knowledge, satisfaction, and value).

Your path diagram should look like this:

 

Identification

In this example, it is impossible to estimate the regression weight for the regression of 
performance on error, and, at the same time, estimate the variance of error. It is like 
having someone tell you, “I bought $5 worth of widgets,” and attempting to infer both 
the price of each widget and the number of widgets purchased. There is just not enough 
information.

You can solve this identification problem by fixing either the regression weight 
applied to error in predicting performance, or the variance of the error variable itself, 
at an arbitrary, nonzero value. Let’s fix the regression weight at 1. This will yield the 
same estimates as conventional linear regression.

Fixing Regression Weights

E Right-click the arrow that points from error to performance and choose Object Properties 
from the pop-up menu. 

E Click the Parameters tab.

E Type 1 in the Regression weight box.
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Setting a regression weight equal to 1 for every error variable can be tedious. 
Fortunately, Amos Graphics provides a default solution that works well in most cases.

E Click the Add a unique variable to an existing variable button.

E Click an endogenous variable.

Amos automatically attaches an error variable to it, complete with a fixed regression 
weight of 1. Clicking the endogenous variable repeatedly changes the position of the 
error variable.
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Viewing the Text Output

Here are the maximum likelihood estimates:

Amos does not display the path performance <— error because its value is fixed at the 
default value of 1. You may wonder how much the other estimates would be affected 
if a different constant had been chosen. It turns out that only the variance estimate for 
error is affected by such a change.

The following table shows the variance estimate that results from various choices for 
the performance <— error regression weight.

Suppose you fixed the path coefficient at 2 instead of 1. Then the variance estimate 
would be divided by a factor of 4. You can extrapolate the rule that multiplying the path 
coefficient by a fixed factor goes along with dividing the error variance by the square 

Fixed regression weight Estimated variance of error

0.5 0.050
0.707 0.025
1.0 0.0125
1.414 0.00625
2.0 0.00313
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of the same factor. Extending this, the product of the squared regression weight and the 
error variance is always a constant. This is what we mean when we say the regression 
weight (together with the error variance) is unidentified. If you assign a value to one 
of them, the other can be estimated, but they cannot both be estimated at the same time.

The identifiability problem just discussed arises from the fact that the variance of a 
variable, and any regression weights associated with it, depends on the units in which 
the variable is measured. Since error is an unobserved variable, there is no natural way 
to specify a measurement unit for it. Assigning an arbitrary value to a regression weight 
associated with error can be thought of as a way of indirectly choosing a unit of 
measurement for error. Every unobserved variable presents this identifiability 
problem, which must be resolved by imposing some constraint that determines its unit 
of measurement.

Changing the scale unit of the unobserved error variable does not change the overall 
model fit. In all the analyses, you get:

There are four sample variances and six sample covariances, for a total of 10 sample 
moments. There are three regression paths, four model variances, and three model 
covariances, for a total of 10 parameters that must be estimated. Hence, the model has 
zero degrees of freedom. Such a model is often called saturated or just-identified.

The standardized coefficient estimates are as follows:

Chi-square = 0.00
Degrees of freedom = 0
Probability level cannot be computed
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The standardized regression weights and the correlations are independent of the units 
in which all variables are measured; therefore, they are not affected by the choice of 
identification constraints.

Squared multiple correlations are also independent of units of measurement. Amos 
displays a squared multiple correlation for each endogenous variable. 

Note: The squared multiple correlation of a variable is the proportion of its variance that 
is accounted for by its predictors. In the present example, knowledge, value, and 
satisfaction account for 40% of the variance of performance.

Viewing Graphics Output

The following path diagram output shows unstandardized values:
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 Here is the standardized solution:

Viewing Additional Text Output

E In the tree diagram in the upper left pane of the Amos Output window, click Variable 
Summary.
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Endogenous variables are those that have single-headed arrows pointing to them; they 
depend on other variables. Exogenous variables are those that do not have single-
headed arrows pointing to them; they do not depend on other variables.

Inspecting the preceding list will help you catch the most common (and insidious) 
errors in an input file: typing errors. If you try to type performance twice but 
unintentionally misspell it as preformance one of those times, both versions will 
appear on the list.

E Now click Notes for Model in the upper left pane of the Amos Output window.

The following output indicates that there are no feedback loops in the path diagram:

Later you will see path diagrams where you can pick a variable and, by tracing along 
the single-headed arrows, follow a path that leads back to the same variable.

Note: Path diagrams that have feedback loops are called nonrecursive. Those that do 
not are called recursive. 

Notes for Group (Group number 1)
The model is recursive.
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Modeling in VB.NET

The model in this example consists of a single regression equation. Each single-headed 
arrow in the path diagram represents a regression weight. Here is a program for 
estimating those regression weights:

 

The four lines that come after Sem.BeginGroup correspond to the single-headed arrows 
in the Amos Graphics path diagram. The (1) in the last AStructure line fixes the error 
regression weight at a constant 1.

Assumptions about Correlations among Exogenous Variables

When executing a program, Amos makes assumptions about the correlations among 
exogenous variables that are not made in Amos Graphics. These assumptions simplify 
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the specification of many models, especially models that have parameters. The 
differences between specifying a model in Amos Graphics and specifying one 
programmatically are as follows:

Amos Graphics is entirely WYSIWYG (What You See Is What You Get). If you 
draw a two-headed arrow (without constraints) between two exogenous variables, 
Amos Graphics will estimate their covariance. If two exogenous variables are not 
connected by a double-headed arrow, Amos Graphics will assume that the 
variables are uncorrelated.

The default assumptions in an Amos program are:

Unique variables (unobserved, exogenous variables that affect only one other 
variable) are assumed to be uncorrelated with each other and with all other 
exogenous variables.

Exogenous variables other than unique variables are assumed to be correlated 
among themselves.

In Amos programs, these defaults reflect standard assumptions of conventional linear 
regression analysis. Thus, in this example, the program assumes that the predictors, 
knowledge, value, and satisfaction, are correlated and that error is uncorrelated with 
the predictors.

Equation Format for the AStructure Method

The AStructure method permits model specification in equation format. For instance, 
the single Sem.AStructure statement in the following program describes the same 
model as the program on p. 77 but in a single line. This program is saved under the 
name Ex04-eq.vb in the Examples directory.
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Note that in the AStructure line above, each predictor variable (on the right side of the 
equation) is associated with a regression weight to be estimated. We could make these 
regression weights explicit through the use of empty parentheses as follows:

Sem.AStructure("performance = ()knowledge + ()value + ()satisfaction + error(1)")

The empty parentheses are optional. By default, Amos will automatically estimate a 
regression weight for each predictor.
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5
Unobserved Variables

Introduction

This example demonstrates a regression analysis with unobserved variables.

About the Data

The variables in the previous example were surely unreliable to some degree. The fact 
that the reliability of performance is unknown presents a minor problem when it 
comes to interpreting the fact that the predictors account for only 39.9% of the 
variance of performance. If the test were extremely unreliable, that fact in itself would 
explain why the performance score could not be predicted accurately. Unreliability of 
the predictors, on the other hand, presents a more serious problem because it can lead 
to biased estimates of regression weights.

The present example, based on Rock, et al. (1977), will assess the reliabilities of 
the four tests included in the previous analysis. It will also obtain estimates of 
regression weights for perfectly reliable, hypothetical versions of the four tests. Rock, 
et al. re-examined the data of Warren, White, and Fuller (1974) that were discussed 
in the previous example. This time, each test was randomly split into two halves, and 
each half was scored separately.
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Here is a list of the input variables:

For this example, we will use a Lotus data file, Warren9v.wk1, to obtain the sample 
variances and covariances of these subtests. The sample means that appear in the file 
will not be used in this example. Statistics on formal education (past_training) are 
present in the file, but they also will not enter into the present analysis. The following 
is a portion of the dataset:

Variable name Description

1performance 12-item subtest of Role Performance
2performance 12-item subtest of Role Performance
1knowledge 13-item subtest of Knowledge
2knowledge 13-item subtest of Knowledge
1value 15-item subtest of Value Orientation
2value 15-item subtest of Value Orientation
1satisfaction 5-item subtest of Role Satisfaction
2satisfaction 6-item subtest of Role Satisfaction
past_training degree of formal education
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Model A

The following path diagram presents a model for the eight subtests:

Four ellipses in the figure are labeled knowledge, value, satisfaction, and performance. 
They represent unobserved variables that are indirectly measured by the eight split-half 
tests.

Measurement Model

The portion of the model that specifies how the observed variables depend on the 
unobserved, or latent, variables is sometimes called the measurement model. The 
current model has four distinct measurement submodels.
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Example 5: Model A
Regression with unobserved variables

Job performance of farm managers
Warren, White and Fuller (1974)

Standardized estimates
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Consider, for instance, the knowledge submodel: The scores of the two split-half 
subtests, 1knowledge and 2knowledge, are hypothesized to depend on the single 
underlying, but not directly observed variable, knowledge. According to the model, 
scores on the two subtests may still disagree, owing to the influence of error3 and 
error4, which represent errors of measurement in the two subtests. 1knowledge and 
2knowledge are called indicators of the latent variable knowledge. The measurement 
model for knowledge forms a pattern that is repeated three more times in the path 
diagram shown above.

Structural Model

The portion of the model that specifies how the latent variables are related to each other 
is sometimes called the structural model.
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The structural part of the current model is the same as the one in Example 4. It is only 
in the measurement model that this example differs from the one in Example 4.

Identification

With 13 unobserved variables in this model, it is certainly not identified. It will be 
necessary to fix the unit of measurement of each unobserved variable by suitable 
constraints on the parameters. This can be done by repeating 13 times the trick that was 
used for the single unobserved variable in Example 4: Find a single-headed arrow 
leading away from each unobserved variable in the path diagram, and fix the 
corresponding regression weight to an arbitrary value such as 1. If there is more than 
one single-headed arrow leading away from an unobserved variable, any one of them 
will do. The path diagram for “Model A” on p. 83 shows one satisfactory choice of 
identifiability constraints.

Specifying the Model

Because the path diagram is wider than it is tall, you may want to change the shape of 
the drawing area so that it fits the path diagram better. By default, the drawing area in 
Amos is taller than it is wide so that it is suitable for printing in portrait mode. 

knowledge

value

satisfaction

performance

error9

1



86

Example 5

Changing the Orientation of the Drawing Area

E From the menus, choose View → Interface Properties. 

E In the Interface Properties dialog box, click the Page Layout tab. 

E Set Paper Size to one of the “Landscape” paper sizes, such as Landscape - A4.

E Click Apply.

Ex6_modelA
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Creating the Path Diagram

Now you are ready to draw the model as shown in the path diagram on page 83. There 
are a number of ways to do this. One is to start by drawing the measurement model first. 
Here, we draw the measurement model for one of the latent variables, knowledge, and 
then use it as a pattern for the other three.

E Draw an ellipse for the unobserved variable knowledge.

 

E From the menus, choose Diagram → Draw Indicator Variable.

E Click twice inside the ellipse. 

Each click creates one indicator variable for knowledge:

As you can see, with the Draw indicator variable button enabled, you can click multiple 
times on an unobserved variable to create multiple indicators, complete with unique or 
error variables. Amos Graphics maintains suitable spacing among the indicators and 
inserts identification constraints automatically.
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Rotating Indicators

The indicators appear by default above the knowledge ellipse, but you can change their 
location. 

E From the menus, choose Edit → Rotate.

E Click the knowledge ellipse.

Each time you click the knowledge ellipse, its indicators rotate 90° clockwise. If you 
click the ellipse three times, its indicators will look like this:

 Duplicating Measurement Models

The next step is to create measurement models for value and satisfaction.

E From the menus, choose Edit → Select All.

The measurement model turns blue. 

E From the menus, choose Edit → Duplicate.

E Click any part of the measurement model, and drag a copy to beneath the original.

E Repeat to create a third measurement model above the original. 
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Your path diagram should now look like this:

E Create a fourth copy for performance, and position it to the right of the original. 

E From the menus, choose Edit → Reflect.

This repositions the two indicators of performance as follows:
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 Entering Variable Names

E Right-click each object and select Object Properties from the pop-up menu 

E In the Object Properties dialog box, click the Text tab, and enter a name into the 
Variable Name text box.

Alternatively, you can choose View → Variables in Dataset from the menus and then drag 
variable names onto objects in the path diagram.

Completing the Structural Model

There are only a few things left to do to complete the structural model.

E Draw the three covariance paths connecting knowledge, value, and satisfaction.

E Draw a single-headed arrow from each of the latent predictors, knowledge, value, and 
satisfaction, to the latent dependent variable, performance.

E Add the unobserved variable error9 as a predictor of performance (from the menus, 
choose Diagram → Draw Unique Variable).

Your path diagram should now look like the one on p. 83. The Amos Graphics input 
file that contains this path diagram is Ex05-a.amw.

Results for Model A

As an exercise, you might want to confirm the following degrees of freedom 
calculation:

Ex5_modelA
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The hypothesis that Model A is correct is accepted.

The parameter estimates are affected by the identification constraints.

Chi-square = 10.335
Degrees of freedom = 14
Probability level = 0.737
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Standardized estimates, on the other hand, are not affected by the identification 
constraints. To calculate standardized estimates: 

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Enable the Standardized estimates check box.
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Viewing the Graphics Output

The path diagram with standardized parameter estimates displayed is as follows:

The value above performance indicates that pure knowledge, value, and satisfaction 
account for 66% of the variance of performance. The values displayed above the 
observed variables are reliability estimates for the eight individual subtests. A formula 
for the reliability of the original tests (before they were split in half) can be found in 
Rock et al. (1977) or any book on mental test theory.

Model B

Assuming that Model A is correct (and there is no evidence to the contrary), consider 
the additional hypothesis that 1knowledge and 2knowledge are parallel tests. Under the 
parallel tests hypothesis, the regression of 1knowledge on knowledge should be the 
same as the regression of 2knowledge on knowledge. Furthermore, the error variables 
associated with 1knowledge and 2knowledge should have identical variances. Similar 
consequences flow from the assumption that 1value and 2value are parallel tests, as 
well as 1performance and 2performance. But it is not altogether reasonable to assume 
that 1satisfaction and 2satisfaction are parallel. One of the subtests is slightly longer 
than the other because the original test had an odd number of items and could not be 
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Example 5: Model A
Regression with unobserved variables

Job performance of farm managers
Warren, White and Fuller (1974)

Standardized estimates

Chi-square = 10.335 (14 df)
p = .737
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split exactly in half. As a result, 2satisfaction is 20% longer than 1satisfaction. 
Assuming that the tests differ only in length leads to the following conclusions:

The regression weight for regressing 2satisfaction on satisfaction should be 1.2 
times the weight for regressing 1satisfaction on satisfaction.

Given equal variances for error7 and error8, the regression weight for error8 
should be  times as large as the regression weight for error7.

You do not need to redraw the path diagram from scratch in order to impose these 
parameter constraints. You can take the path diagram that you created for Model A as 
a starting point and then change the values of two regression weights. Here is the path 
diagram after those changes:

 

Results for Model B

The additional parameter constraints of Model B result in increased degrees of freedom:
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Job performance of farm managers
Warren, White and Fuller (1974)

Model Specification
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The chi-square statistic has also increased but not by much. It indicates no significant 
departure of the data from Model B.

If Model B is indeed correct, the associated parameter estimates are to be preferred 
over those obtained under Model A. The raw parameter estimates will not be presented 
here because they are affected too much by the choice of identification constraints. 
However, here are the standardized estimates and the squared multiple correlations:

Chi-square = 26.967
Degrees of freedom = 22
Probability level = 0.212
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Here are the standardized estimates and squared multiple correlations displayed on the 
path diagram:

Testing Model B against Model A

Sometimes you may have two alternative models for the same set of data, and you 
would like to know which model fits the data better. You can perform a direct 
comparison whenever one of the models can be obtained by placing additional 
constraints on the parameters of the other. We have such a case here. We obtained 
Model B by imposing eight additional constraints on the parameters of Model A. Let 
us say that Model B is the stronger of the two models, in the sense that it represents the 
stronger hypothesis about the population parameters. (Model A would then be the 
weaker model). The stronger model will have greater degrees of freedom. The chi-
square statistic for the stronger model will be at least as large as the chi-square statistic 
for the weaker model.

A test of the stronger model (Model B) against the weaker one (Model A) can be 
obtained by subtracting the smaller chi-square statistic from the larger one. In this 
example, the new statistic is 16.632 (that is, ). If the stronger model 
(Model B) is correctly specified, this statistic will have an approximate chi-square 
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distribution with degrees of freedom equal to the difference between the degrees of 
freedom of the competing models. In this example, the difference in degrees of 
freedom is 8 (that is, ). Model B imposes all of the parameter constraints of 
Model A, plus an additional 8.

In summary, if Model B is correct, the value 16.632 comes from a chi-square 
distribution with eight degrees of freedom. If only the weaker model (Model A) is 
correct, and not the stronger model (Model B), the new statistic will tend to be large. 
Hence, the stronger model (Model B) is to be rejected in favor of the weaker model 
(Model A) when the new chi-square statistic is unusually large. With eight degrees of 
freedom, chi-square values greater than 15.507 are significant at the 0.05 level. Based 
on this test, we reject Model B.

What about the earlier conclusion, based on the chi-square value of 26.967 with 
22 degrees of freedom, that Model B is correct? The disagreement between the two 
conclusions can be explained by noting that the two tests differ in their assumptions. 
The test based on eight degrees of freedom assumes that Model A is correct when 
testing Model B. The test based on 22 degrees of freedom makes no such assumption 
about Model A. If you are quite sure that Model A is correct, you should use the test 
comparing Model B against Model A (the one based here on eight degrees of freedom); 
otherwise, you should use the test based on 22 degrees of freedom.

22 14–



98

Example 5

Modeling in VB.NET

Model A

The following program fits Model A:

Because of the assumptions that Amos makes about correlations among exogenous 
variables (discussed in Example 4), the program does not need to indicate that 
knowledge, value, and satisfaction are allowed to be correlated. It is also not necessary 
to specify that error1, error2, ... , error9 are uncorrelated among themselves and with 
every other exogenous variable.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Warren9v.wk1")
        Sem.AStructure("1performance <--- performance (1)")
        Sem.AStructure("2performance <--- performance")
        Sem.AStructure("1knowledge <--- knowledge (1)")
        Sem.AStructure("2knowledge <--- knowledge")
        Sem.AStructure("1value <--- value (1)")
        Sem.AStructure("2value <--- value")
        Sem.AStructure("1satisfaction <--- satisfaction (1)")
        Sem.AStructure("2satisfaction <--- satisfaction")

        Sem.AStructure("1performance <--- error1 (1)")
        Sem.AStructure("2performance <--- error2 (1)")
        Sem.AStructure("1knowledge <--- error3 (1)")
        Sem.AStructure("2knowledge <--- error4 (1)")
        Sem.AStructure("1value <--- error5 (1)")
        Sem.AStructure("2value <--- error6 (1)")
        Sem.AStructure("1satisfaction <--- error7 (1)")
        Sem.AStructure("2satisfaction <--- error8 (1)")

        Sem.AStructure("performance <--- knowledge")
        Sem.AStructure("performance <--- satisfaction")
        Sem.AStructure("performance <--- value")
        Sem.AStructure("performance <--- error9 (1)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model B

The following program fits Model B:

Sub Main()
    Dim Sem As New AmosEngine

    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Warren9v.wk1")
        Sem.AStructure("1performance <--- performance (1)")
        Sem.AStructure("2performance <--- performance (1)")
        Sem.AStructure("1knowledge <--- knowledge (1)")
        Sem.AStructure("2knowledge <--- knowledge (1)")
        Sem.AStructure("1value <--- value (1)")
        Sem.AStructure("2value <--- value (1)")
        Sem.AStructure("1satisfaction <--- satisfaction (1)")

        Sem.AStructure("2satisfaction <--- satisfaction (" & CStr(1.2) & ")")

        Sem.AStructure("performance <--- knowledge")
        Sem.AStructure("performance <--- value")
        Sem.AStructure("performance <--- satisfaction")
        Sem.AStructure("performance <--- error9 (1)")

        Sem.AStructure("1performance <--- error1 (1)")
        Sem.AStructure("2performance <--- error2 (1)")
        Sem.AStructure("1knowledge <--- error3 (1)")
        Sem.AStructure("2knowledge <--- error4 (1)")
        Sem.AStructure("1value <--- error5 (1)")
        Sem.AStructure("2value <--- error6 (1)")
        Sem.AStructure("1satisfaction <--- error7 (1)")

        Sem.AStructure("2satisfaction <--- error8 (" & CStr(1.095445) & ")")

        Sem.AStructure("error1 (alpha)")
        Sem.AStructure("error2 (alpha)")
        Sem.AStructure("error8 (delta)")
        Sem.AStructure("error7 (delta)")
        Sem.AStructure("error6 (gamma)")
        Sem.AStructure("error5 (gamma)")
        Sem.AStructure("error4 (beta)")
        Sem.AStructure("error3 (beta)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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6
Exploratory Analysis

Introduction

This example demonstrates structural modeling with time-related latent variables, the 
use of modification indices and critical ratios in exploratory analyses, how to compare 
multiple models in a single analysis, and computation of implied moments, factor 
score weights, total effects, and indirect effects.

About the Data

Wheaton et al. (1977) reported a longitudinal study of 932 persons over the period 
from 1966 to 1971. Jöreskog and Sörbom (1984), and others since, have used the 
Wheaton data to demonstrate analysis of moment structures. Six of Wheaton's 
measures will be used for this example.

Take a look at the sample means, standard deviations, and correlations for these six 
measures. You will find the following table in the SPSS Statistics file, Wheaton.sav. 
After reading the data, Amos converts the standard deviations and correlations into 

Measure Explanation

anomia67 1967 score on the anomia scale
anomia71 1971 anomia score
powles67 1967 score on the powerlessness scale
powles71 1971 powerlessness score
education Years of schooling recorded in 1966
SEI Duncan's Socioeconomic Index administered in 1966
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variances and covariances, as needed for the analysis. We will not use the sample 
means in the analysis.

Model A for the Wheaton Data

Jöreskog and Sörbom (1984) proposed the model shown on p. 103 for the Wheaton 
data, referring to it as their Model A. The model asserts that all of the observed 
variables depend on underlying, unobserved variables. For example, anomia67 and 
powles67 both depend on the unobserved variable 67_alienation, a hypothetical 
variable that Jöreskog and Sörbom referred to as alienation. The unobserved variables 
eps1 and eps2 appear to play the same role as the variables error1 and error2 did in 
Example 5. However, their interpretation here is different. In Example 5, error1 and 
error2 had a natural interpretation as errors of measurement. In the present example, 
since the anomia and powerlessness scales were not designed to measure the same 
thing, it seems reasonable to believe that differences between them will be due to more 
than just measurement error. So in this case, eps1 and eps2 should be thought of as 
representing not only errors of measurement in anomia67 and powles67 but in every 
other variable that might affect scores on the two tests besides 67_alienation (the one 
variable that affects them both).

Specifying the Model

To specify Model A in Amos Graphics, draw the path diagram shown next, or open the 
example file Ex06–a.amw. Notice that the eight unique variables (delta1, delta2, zeta1, 
zeta2, and eps1 through eps4) are uncorrelated among themselves and with the three 
latent variables: ses, 67_alienation, and 71_alienation.

Ex6_modelA
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Identification

Model A is identified except for the usual problem that the measurement scale of each 
unobserved variable is indeterminate. The measurement scale of each unobserved 
variable may be fixed arbitrarily by setting a regression weight to unity (1) for one of 
the paths that points away from it. The path diagram shows 11 regression weights fixed 
at unity (1), that is, one constraint for each unobserved variable. These constraints are 
sufficient to make the model identified.

Results of the Analysis

The model has 15 parameters to be estimated (6 regression weights and 9 variances). 
There are 21 sample moments (6 sample variances and 15 covariances). This leaves 6 
degrees of freedom.
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alienation

eps1 eps2 eps3 eps4
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delta2delta1

1 1 1 1
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Example 6: Model A
Exploratory analysis

Wheaton (1977)
Model Specification
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The Wheaton data depart significantly from Model A.

Dealing with Rejection

You have several options when a proposed model has to be rejected on statistical 
grounds:

You can point out that statistical hypothesis testing can be a poor tool for choosing 
a model. Jöreskog (1967) discussed this issue in the context of factor analysis. It is 
a widely accepted view that a model can be only an approximation at best, and that, 
fortunately, a model can be useful without being true. In this view, any model is 
bound to be rejected on statistical grounds if it is tested with a big enough sample. 
From this point of view, rejection of a model on purely statistical grounds 
(particularly with a large sample) is not necessarily a condemnation. 

You can start from scratch to devise another model to substitute for the rejected one.

You can try to modify the rejected model in small ways so that it fits the data better.

It is the last tactic that will be demonstrated in this example. The most natural way of 
modifying a model to make it fit better is to relax some of its assumptions. For 
example, Model A assumes that eps1 and eps3 are uncorrelated. You could relax this 
restriction by connecting eps1 and eps3 with a double-headed arrow. The model also 
specifies that anomia67 does not depend directly on ses. You could remove this 
assumption by drawing a single-headed arrow from ses to anomia67. Model A does 
not happen to constrain any parameters to be equal to other parameters, but if such 
constraints were present, you might consider removing them in hopes of getting a 
better fit. Of course, you have to be careful when relaxing the assumptions of a model 
that you do not turn an identified model into an unidentified one. 

Chi-square = 71.544
Degrees of freedom = 6
Probability level = 0.000
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Modification Indices

You can test various modifications of a model by carrying out a separate analysis for 
each potential modification, but this approach is time-consuming. Modification 
indices allow you to evaluate many potential modifications in a single analysis. They 
provide suggestions for model modifications that are likely to pay off in smaller chi- 
square values. 

Using Modification Indices

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab. 

E Enable the Modification Indices check box. For this example, leave the Threshold for 

modification indices set at 4. 

The following are the modification indices for Model A:
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The column heading M.I. in this table is short for Modification Index. The modification 
indices produced are those described by Jöreskog and Sörbom (1984). The first 
modification index listed (5.905) is a conservative estimate of the decrease in 
chi-square that will occur if eps2 and delta1 are allowed to be correlated. The new 
chi-square statistic would have 5  degrees of freedom and would be no 
greater than 65.639 ( ). The actual decrease of the chi-square statistic 
might be much larger than 5.905. The column labeled Par Change gives approximate 
estimates of how much each parameter would change if it were estimated rather than 
fixed at 0. Amos estimates that the covariance between eps2 and delta1 would be 

. Based on the small modification index, it does not look as though much would 
be gained by allowing eps2 and delta1 to be correlated. Besides, it would be hard to 
justify this particular modification on theoretical grounds even if it did produce an 
acceptable fit.

Changing the Modification Index Threshold

By default, Amos displays only modification indices that are greater than 4, but you 
can change this threshold. 

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab. 

E Enter a value in the Threshold for modification indices text box. A very small threshold 
will result in the display of a lot of modification indices that are too small to be of 
interest.

The largest modification index in Model A is 40.911. It indicates that allowing eps1 
and eps3 to be correlated will decrease the chi-square statistic by at least 40.911. This 
is a modification well worth considering because it is quite plausible that these two 
variables should be correlated. Eps1 represents variability in anomia67 that is not due 
to variation in 67_alienation. Similarly, eps3 represents variability in anomia71 that is 
not due to variation in 71_alienation. Anomia67 and anomia71 are scale scores on the 
same instrument (at different times). If the anomia scale measures something other 
than alienation, you would expect to find a nonzero correlation between eps1 and eps3. 
In fact, you would expect the correlation to be positive, which is consistent with the 
fact that the number in the Par Change column is positive.

6 1–=( )
71.544 5.905–

0.424–
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The theoretical reasons for suspecting that eps1 and eps3 might be correlated apply 
to eps2 and eps4 as well. The modification indices also suggest allowing eps2 and eps4 
to be correlated. However, we will ignore this potential modification and proceed 
immediately to look at the results of modifying Model A by allowing eps1 and eps3 to 
be correlated. The new model is Jöreskog and Sörbom’s Model B.

Model B for the Wheaton Data

You can obtain Model B by starting with the path diagram for Model A and drawing a 
double-headed arrow between eps1 and eps3. If the new double-headed arrow extends 
beyond the bounds of the print area, you can use the Shape button to adjust the 
curvature of the double-headed arrow. You can also use the Move button to reposition 
the end points of the double-headed arrow. 

The path diagram for Model B is contained in the file Ex06-b.amw.

anomia67 powles67 anomia71 pow les71

educatio SEI

67
alienation

71
alienation

eps1 eps2 eps3 eps4

ses

delta2delta1

1 1 1 1

11

1

1

zeta2zeta1
1 1

1

Example 6: Model B
Exploratory analysis

W heaton (1977)
Model Specification
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Text Output 

The added covariance between eps1 and eps3 decreases the degrees of freedom by 1.

The chi-square statistic is reduced by substantially more than the promised 40.911.

Model B cannot be rejected. Since the fit of Model B is so good, we will not pursue the 
possibility, mentioned earlier, of allowing eps2 and eps4 to be correlated. (An 
argument could be made that a nonzero correlation between eps2 and eps4 should be 
allowed in order to achieve a symmetry that is lacking in the Model B.)

The raw parameter estimates must be interpreted cautiously since they would have 
been different if different identification constraints had been imposed.

Chi-square = 6.383
Degrees of freedom = 5
Probability level = 0.271
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Note the large critical ratio associated with the new covariance path. The covariance 
between eps1 and eps3 is clearly different from 0. This explains the poor fit of Model 
A, in which that covariance was fixed at 0.

Graphics Output for Model B

The following path diagram displays the standardized estimates and the squared 
multiple correlations:

Because the error variables in the model represent more than just measurement error, 
the squared multiple correlations cannot be interpreted as estimates of reliabilities. 
Rather, each squared multiple correlation is an estimate of a lower bound on the 
corresponding reliability. Take education, for example. Ses accounts for 72% of its 
variance. Because of this, you would estimate its reliability to be at least 0.72. 
Considering that education is measured in years of schooling, it seems likely that its 
reliability is much greater.

.57

anomia67

.76

powles67

.62

anomia71

.73

powles71

.72

educatio

.41

SEI

.31
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alienation
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71
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eps1 eps2 eps3 eps4
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delta2delta1

.86.79.87.76

.85 .64

.58

-.20
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Example 6: Model B
Exploratory analysis

Wheaton (1977)
Standardized estimates

Chi-square = 6.38
df = 5
p = .27

.38
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Misuse of Modification Indices

In trying to improve upon a model, you should not be guided exclusively by 
modification indices. A modification should be considered only if it makes theoretical 
or common sense. 

A slavish reliance on modification indices without such a limitation amounts to 
sorting through a very large number of potential modifications in search of one that 
provides a big improvement in fit. Such a strategy is prone, through capitalization on 
chance, to producing an incorrect (and absurd) model that has an acceptable chi-square 
value. This issue is discussed by MacCallum (1986) and by MacCallum, Roznowski, 
and Necowitz (1992).

Improving a Model by Adding New Constraints

Modification indices suggest ways of improving a model by increasing the number of 
parameters in such a way that the chi-square statistic falls faster than its degrees of 
freedom. This device can be misused, but it has a legitimate place in exploratory 
studies. There is also another trick that can be used to produce a model with a more 
acceptable chi-square value. This technique introduces additional constraints in such a 
way as to produce a relatively large increase in degrees of freedom, coupled with a 
relatively small increase in the chi-square statistic. Many such modifications can be 
roughly evaluated by looking at the critical ratios in the C.R. column. We have already 
seen (in Example 1) how a single critical ratio can be used to test the hypothesis that a 
single population parameter equals 0. However, the critical ratio also has another 
interpretation. The square of the critical ratio of a parameter is, approximately, the 
amount by which the chi-square statistic will increase if the analysis is repeated with 
that parameter fixed at 0.

Calculating Critical Ratios

If two parameter estimates turn out to be nearly equal, you might be able to improve 
the chi-square test of fit by postulating a new model where those two parameters are 
specified to be exactly equal. To assist in locating pairs of parameters that do not differ 
significantly from each other, Amos provides a critical ratio for every pair of 
parameters. 
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E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab. 

E Enable the Critical ratios for differences check box. 

When Amos calculates critical ratios for parameter differences, it generates names for 
any parameters that you did not name during model specification. The names are 
displayed in the text output next to the parameter estimates. 

Here are the parameter estimates for Model B. The parameter names generated by 
Amos are in the Label column.
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The parameter names are needed for interpreting the critical ratios in the following table:

Ignoring the 0’s down the main diagonal, the table of critical ratios contains 120 
entries, one for each pair of parameters. Take the number 0.877 near the upper left 
corner of the table. This critical ratio is the difference between the parameters labeled 

 

Critical Ratios for Differences between Parameters (Default model) 

 par_1 par_2 par_3 par_4 par_5 par_6 
par_1 .000      
par_2 .877 .000     
par_3 9.883 9.741 .000    
par_4 -4.429 -5.931 -10.579 .000   
par_5 -17.943 -16.634 -12.284 -18.098 .000  
par_6 -22.343 -26.471 -12.661 -17.300 -5.115 .000 
par_7 3.903 3.689 -6.762 5.056 8.490 10.124 
par_8 8.955 8.866 1.707 9.576 10.995 11.797 
par_9 8.364 7.872 -.714 9.256 11.311 12.047 
par_10 7.781 8.040 -2.362 9.470 11.683 12.629 
par_11 11.106 11.705 -.186 11.969 14.039 15.431 
par_12 3.826 3.336 -5.599 4.998 7.698 8.253 
par_13 10.425 9.659 -.621 10.306 12.713 13.575 
par_14 4.697 4.906 -4.642 6.353 8.554 9.602 
par_15 3.393 3.283 -7.280 4.019 5.508 5.975 
par_16 14.615 14.612 14.192 14.637 14.687 14.712 

Critical Ratios for Differences between Parameters (Default model) 

 par_7 par_8 par_9 par_10 par_11 par_12 
par_7 .000      
par_8 7.128 .000     
par_9 5.388 -2.996 .000    
par_10 4.668 -4.112 -1.624 .000   
par_11 9.773 -2.402 .548 2.308 .000  
par_12 .740 -6.387 -5.254 -3.507 -4.728 .000 
par_13 8.318 -2.695 .169 1.554 -.507 5.042 
par_14 1.798 -5.701 -3.909 -2.790 -4.735 .999 
par_15 1.482 -3.787 -2.667 -1.799 -3.672 .855 
par_16 14.563 14.506 14.439 14.458 14.387 14.544 

Critical Ratios for Differences between Parameters (Default model) 

 par_13 par_14 par_15 par_16 
par_13 .000    
par_14 -3.322 .000   
par_15 -3.199 .077 .000  
par_16 14.400 14.518 14.293 .000  
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par_1 and par_2 divided by the estimated standard error of this difference. These two 
parameters are the regression weights for powles71 <– 71_alienation and 
powles67 <– 67_alienation. 

Under the distribution assumptions stated on p. 35, the critical ratio statistic can be 
evaluated using a table of the standard normal distribution to test whether the two 
parameters are equal in the population. Since 0.877 is less in magnitude than 1.96, you 
would not reject, at the 0.05 level, the hypothesis that the two regression weights are 
equal in the population.

The square of the critical ratio for differences between parameters is approximately 
the amount by which the chi-square statistic would increase if the two parameters were 
set equal to each other. Since the square of 0.877 is 0.769, modifying Model B to 
require that the two regression weights have equal estimates would yield a chi-square 
value of about . The degrees of freedom for the new model 
would be 6 instead of 5. This would be an improved fit (  versus  
for Model B), but we can do much better than that.

Let’s look for the smallest critical ratio. The smallest critical ratio in the table is 
0.077, for the parameters labeled par_14 and par_15. These two parameters are the 
variances of eps4 and delta1. The square of 0.077 is about 0.006. A modification of 
Model B that assumes eps4 and delta1 to have equal variances will result in a 
chi-square value that exceeds 6.383 by about 0.006, but with 6 degrees of freedom 
instead of 5. The associated probability level would be about 0.381. The only problem 
with this modification is that there does not appear to be any justification for it; that is, 
there does not appear to be any a priori reason for expecting eps4 and delta1 to have 
equal variances.

We have just been discussing a misuse of the table of critical ratios for differences. 
However, the table does have a legitimate use in the quick examination of a small 
number of hypotheses. As an example of the proper use of the table, consider the fact that 
observations on anomia67 and anomia71 were obtained by using the same instrument 
on two occasions. The same goes for powles67 and powles71. It is plausible that the tests 
would behave the same way on the two occasions. The critical ratios for differences are 
consistent with this hypothesis. The variances of eps1 and eps3 (par_11 and par_13) 
differ with a critical ratio of –0.51. The variances of eps2 and eps4 (par_12 and par_14) 
differ with a critical ratio of 1.00. The weights for the regression of powerlessness on 
alienation (par_1 and par_2) differ with a critical ratio of 0.88. None of these 
differences, taken individually, is significant at any conventional significance level. This 
suggests that it may be worthwhile to investigate more carefully a model in which all 
three differences are constrained to be 0. We will call this new model Model C.

6.383 0.769 7.172=+
p 0.307= p 0.275=
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Model C for the Wheaton Data

Here is the path diagram for Model C from the file Ex06–c.amw:

The label path_p requires the regression weight for predicting powerlessness from 
alienation to be the same in 1971 as it is in 1967. The label var_a is used to specify 
that eps1 and eps3 have the same variance. The label var_p is used to specify that eps2 
and eps4 have the same variance.

Results for Model C

Model C has three more degrees of freedom than Model B:
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Testing Model C

As expected, Model C has an acceptable fit, with a higher probability level than Model B:

You can test Model C against Model B by examining the difference in chi-square 
values ( ) and the difference in degrees of freedom ( ). 
A chi-square value of 1.118 with 3 degrees of freedom is not significant.

Parameter Estimates for Model C

The standardized estimates for Model C are as follows:

Chi-square = 7.501
Degrees of freedom = 8
Probability level = 0.484

7.501 6.383 1.118=– 8 5 3=–
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Chi-square = 7.50
df = 8
p = .48
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Multiple Models in a Single Analysis

Amos allows for the fitting of multiple models in a single analysis. This allows Amos 
to summarize the results for all models in a single table. It also allows Amos to perform 
a chi-square test for nested model comparisons. In this example, Models A, B, and C 
can be fitted in a single analysis by noting that Models A and C can each be obtained 
by constraining the parameters of Model B.

In the following path diagram from the file Ex06-all.amw, parameters of Model B 
that need to be constrained to yield Model A or Model C have been assigned names:

Seven parameters in this path diagram are named: var_a67, var_p67, var_a71, 
var_p71, b_pow67, b_pow71, and cov1. The naming of the parameters does not 
constrain any of the parameters to be equal to each other because no two parameters 
were given the same name. However, having names for the variables allows 
constraining them in various ways, as will now be demonstrated.
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Using the parameter names just introduced, Model A can be obtained from the most 
general model (Model B) by requiring cov1 = 0. 

E In the Models panel to the left of the path diagram, double-click Default Model.

The Manage Models dialog box appears. 

E In the Model Name text box, type Model A: No Autocorrelation.

E Double-click cov1 in the left panel. 

Notice that cov1 appears in the Parameter Constraints box. 

E Type cov1 =0 in the Parameter Constraints box.
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This completes the specification of Model A. 

E In the Manage Models dialog box, click New.

E In the Model Name text box, type Model B: Most General.

 

Model B has no constraints other than those in the path diagram, so you can proceed 
immediately to Model C. 

E Click New. 

E In the Model Name text box, type Model C: Time-Invariance. 

E In the Parameter Constraints box, type:
b_pow67 = b_pow71

var_a67 = var_a71

var_p67 = var_p71

For the sake of completeness, a fourth model (Model D) will be introduced, combining 
the single constraint of Model A with the three constraints of Model C. Model D can 
be specified without retyping the constraints. 

E Click New. 

E In the Model Name text box, type Model D: A and C Combined. 
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E In the Parameter Constraints box, type:
Model A: No Autocorrelation
Model C: Time-Invariance

These lines tell Amos that Model D incorporates the constraints of both Model A and 
Model C. 

Now that we have set up the parameter constraints for all four models, the final step 
is to perform the analysis and view the output.

Output from Multiple Models

Viewing Graphics Output for Individual Models

When you are fitting multiple models, use the Models panel to display the diagrams 
from different models. The Models panel is just to the left of the path diagram. To 
display a model, click its name.

Viewing Fit Statistics for All Four Models

E From the menus, choose View → Text Output.

E In the tree diagram in the upper left pane of the Amos Output window, click Model Fit.

The following is the portion of the output that shows the chi-square statistic:



120

Example 6

The CMIN column contains the minimum discrepancy for each model. In the case of 
maximum likelihood estimation (the default), the CMIN column contains the 
chi-square statistic. The p column contains the corresponding upper-tail probability for 
testing each model.

For nested pairs of models, Amos provides tables of model comparisons, complete 
with chi-square difference tests and their associated p values. 

E In the tree diagram in the upper left pane of the Amos Output window, click Model 

Comparison.

This table shows, for example, that Model C does not fit significantly worse than 
Model B ( ). In other words, assuming that Model B is correct, you would 
accept the hypothesis of time invariance.

On the other hand, the table shows that Model A fits significantly worse than Model 
B ( ). In other words, assuming that Model B is correct, you would reject the 
hypothesis that eps1 and eps3 are uncorrelated.

p 0.773=

p 0.000=
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Obtaining Optional Output

The variances and covariances among the observed variables can be estimated under 
the assumption that Model C is correct. 

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab. 

E Select Implied moments (a check mark appears next to it). 

E To obtain the implied variances and covariances for all the variables in the model 
except error variables, select All implied moments.

For Model C, selecting All implied moments gives the following output:

The implied variances and covariances for the observed variables are not the same as 
the sample variances and covariances. As estimates of the corresponding population 
values, the implied variances and covariances are superior to the sample variances and 
covariances (assuming that Model C is correct).

If you enable both the Standardized estimates and All implied moments check boxes 
in the Analysis Properties dialog box, Amos will give you the implied correlation 
matrix of all variables as well as the implied covariance matrix.



122

Example 6

The matrix of implied covariances for all variables in the model can be used to carry 
out a regression of the unobserved variables on the observed variables. The resulting 
regression weight estimates can be obtained from Amos by enabling the Factor score 

weights check box. Here are the estimated factor score weights for Model C:

The table of factor score weights has a separate row for each unobserved variable, and 
a separate column for each observed variable. Suppose you wanted to estimate the ses 
score of an individual. You would compute a weighted sum of the individual’s six 
observed scores using the six weights in the ses row of the table.

Obtaining Tables of Indirect, Direct, and Total Effects

The coefficients associated with the single-headed arrows in a path diagram are 
sometimes called direct effects. In Model C, for example, ses has a direct effect on 
71_alienation. In turn, 71_alienation has a direct effect on powles71. Ses is then said 
to have an indirect effect (through the intermediary of 71_alienation) on powles71. 

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab. 

E Enable the Indirect, direct & total effects check box. 

For Model C, the output includes the following table of total effects:
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The first row of the table indicates that 67_alienation depends, directly or indirectly, 
on ses only. The total effect of ses on 67_alienation is –0.56. The fact that the effect is 
negative means that, all other things being equal, relatively high ses scores are 
associated with relatively low 67_alienation scores. Looking in the fifth row of the 
table, powles71 depends, directly or indirectly, on ses, 67_alienation, and 
71_alienation. Low scores on ses, high scores on 67_alienation, and high scores on 
71_alienation are associated with high scores on powles71. See Fox (1980) for more 
help in interpreting direct, indirect, and total effects.

Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex06–a.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation")
        Sem.AStructure("powles67 <--- eps2 (1)")
        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation")
        Sem.AStructure("powles71 <--- eps4 (1)")

        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")

        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")

        Sem.AStructure("educatio <--- ses (1)")
        Sem.AStructure("educatio <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model B

The following program fits Model B. It is saved as Ex06–b.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.Crdiff()
        Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation")
        Sem.AStructure("powles67 <--- eps2 (1)")
        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation")
        Sem.AStructure("powles71 <--- eps4 (1)")
        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")
        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")
        Sem.AStructure("educatio <--- ses (1)")
        Sem.AStructure("educatio <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")
        Sem.AStructure("eps1 <---> eps3")      ' Autocorrelated residual
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub



125

Exploratory Analysis

Model C

The following program fits Model C. It is saved as Ex06–c.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.AllImpliedMoments()
        Sem.FactorScoreWeights()
        Sem.TotalEffects()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation (path_p)")
        Sem.AStructure("powles67 <--- eps2 (1)")
        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation (path_p)")
        Sem.AStructure("powles71 <--- eps4 (1)")
        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")
        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")
        Sem.AStructure("educatio <--- ses (1)")
        Sem.AStructure("educatio <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")
        Sem.AStructure("eps3 <--> eps1")
        Sem.AStructure("eps1 (var_a)")
        Sem.AStructure("eps2 (var_p)")
        Sem.AStructure("eps3 (var_a)")
        Sem.AStructure("eps4 (var_p)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Fitting Multiple Models

To fit all three models, A, B, and C in a single analysis, start with the following 
program, which assigns unique names to some parameters:

Since the parameter names are unique, naming the parameters does not constrain them. 
However, naming the parameters does permit imposing constraints through the use of 
the Model method. Adding the following lines to the program, in place of the 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.AllImpliedMoments()
        Sem.TotalEffects()
        Sem.FactorScoreWeights()
        Sem.Mods(4)
        Sem.Crdiff()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Wheaton.sav")
        Sem.AStructure("anomia67 <--- 67_alienation (1)")
        Sem.AStructure("anomia67 <--- eps1 (1)")
        Sem.AStructure("powles67 <--- 67_alienation (b_pow67)")
        Sem.AStructure("powles67 <--- eps2 (1)")

        Sem.AStructure("anomia71 <--- 71_alienation (1)")
        Sem.AStructure("anomia71 <--- eps3 (1)")
        Sem.AStructure("powles71 <--- 71_alienation (b_pow71)")
        Sem.AStructure("powles71 <--- eps4 (1)")

        Sem.AStructure("67_alienation <--- ses")
        Sem.AStructure("67_alienation <--- zeta1 (1)")
        Sem.AStructure("71_alienation <--- 67_alienation")
        Sem.AStructure("71_alienation <--- ses")
        Sem.AStructure("71_alienation <--- zeta2 (1)")

        Sem.AStructure("educatio <--- ses (1)")
        Sem.AStructure("educatio <--- delta1 (1)")
        Sem.AStructure("SEI <--- ses")
        Sem.AStructure("SEI <--- delta2 (1)")

        Sem.AStructure("eps3 <--> eps1 (cov1)")

        Sem.AStructure("eps1 (var_a67)")
        Sem.AStructure("eps2 (var_p67)")
        Sem.AStructure("eps3 (var_a71)")
        Sem.AStructure("eps4 (var_p71)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Sem.FitModel line, will fit the model four times, each time with a different set of 
parameter constraints:

The first line defines a version of the model called Model A: No Autocorrelation in which 
the parameter called cov1 is fixed at 0.

The second line defines a version of the model called Model B: Most General in which 
no additional constraints are imposed on the model parameters.

The third use of the Model method defines a version of the model called Model C: 

Time-Invariance that imposes the equality constraints:

b_pow67 = b_pow71
var_a67 = var_a71
var_p67 = var_p71

The fourth use of the Model method defines a version of the model called Model D: A 

and C Combined that combines the single constraint of Model A with the three 
constraints of Model C.

The last model specification (Model D) shows how earlier model specifications can 
be used in the definition of a new, more constrained model.

In order to fit all models at once, the FitAllModels method has to be used instead of 
FitModel. The FitModel method fits a single model only. By default, it fits the first 
model, which in this example is Model A. You could use FitModel(1) to fit the first 
model, or FitModel(2) to fit the second model. You could also use, say, FitModel(“Model 
C: Time-Invariance”) to fit Model C.

Ex06–all.vb contains a program that fits all four models.

Sem.Model("Model A: No Autocorrelation", "cov1 = 0")
Sem.Model("Model B: Most General", "")
Sem.Model("Model C: Time-Invariance", _

"b_pow67 = b_pow71;var_a67 = var_a71;var_p67 = var_p71")
Sem.Model("Model D: A and C Combined", _

"Model A: No Autocorrelation;Model C: Time-Invariance")
Sem.FitAllModels()
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Example

7
A Nonrecursive Model

Introduction

This example demonstrates structural equation modeling with a nonrecursive model.

About the Data

Felson and Bohrnstedt (1979) studied 209 girls from sixth through eighth grade. They 
made measurements on the following variables:

Variables Description

academic Perceived academic ability, a sociometric measure based on the item 
Name who you think are your three smartest classmates

athletic Perceived athletic ability, a sociometric measure based on the item 
Name three of your classmates who you think are best at sports

attract
Perceived attractiveness, a sociometric measure based on the item 
Name the three girls in the classroom who you think are the most 
good-looking (excluding yourself)

GPA Grade point average

height Deviation of height from the mean height for a subject’s grade and 
sex

weight Weight, adjusted for height

rating Ratings of physical attractiveness obtained by having children from 
another city rate photographs of the subjects
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Sample correlations, means, and standard deviations for these six variables are 
contained in the SPSS Statistics file, Fels_fem.sav. Here is the data file as it appears in 
the SPSS Statistics Data Editor:

The sample means are not used in this example.

Felson and Bohrnstedt’s Model

Felson and Bohrnstedt proposed the following model for six of their seven measured 
variables:

GPA

height

rating

weight

academic

attract

error1

error2

1

1

Example 7
A nonrecursive model

Felson and Bohrnstedt (1979)
(Female subjects)

Model Specification
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Perceived academic performance is modeled as a function of GPA and perceived 
attractiveness (attract). Perceived attractiveness, in turn, is modeled as a function of 
perceived academic performance, height, weight, and the rating of attractiveness by 
children from another city. Particularly noteworthy in this model is that perceived 
academic ability depends on perceived attractiveness, and vice versa. A model with 
these feedback loops is called nonrecursive (the terms recursive and nonrecursive 
were defined earlier in Example 4). The current model is nonrecursive because it is 
possible to trace a path from attract to academic and back. This path diagram is saved 
in the file Ex07.amw.

Model Identification

We need to establish measurement units for the two unobserved variables, error1 and 
error2, for identification purposes. The preceding path diagram shows two regression 
weights fixed at 1. These two constraints are enough to make the model identified.

Results of the Analysis

Text Output

The model has two degrees of freedom, and there is no significant evidence that the 
model is wrong.  

There is, however, some evidence that the model is unnecessarily complicated, as 
indicated by some exceptionally small critical ratios in the text output.

Chi-square = 2.761
Degrees of freedom = 2
Probability level = 0.251
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Judging by the critical ratios, you see that each of these three null hypotheses would be 
accepted at conventional significance levels:

Perceived attractiveness does not depend on height (critical ratio = 0.050).

Perceived academic ability does not depend on perceived attractiveness (critical 
ratio = –0.039).

The residual variables error1 and error2 are uncorrelated (critical ratio =
–0.382).

Strictly speaking, you cannot use the critical ratios to test all three hypotheses at once. 
Instead, you would have to construct a model that incorporates all three constraints 
simultaneously. This idea will not be pursued here.

The raw parameter estimates reported above are not affected by the identification 
constraints (except for the variances of error1 and error2). They are, of course, 
affected by the units in which the observed variables are measured. By contrast, the 
standardized estimates are independent of all units of measurement.

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

academic <--- GPA .023 .004 6.241 ***  
attract <--- height .000 .010 .050 .960  
attract <--- weight -.002 .001 -1.321 .186  
attract <--- rating .176 .027 6.444 ***  
attract <--- academic 1.607 .349 4.599 ***  
academic <--- attract -.002 .051 -.039 .969  

Covariances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

GPA <--> rating .526 .246 2.139 .032  
height <--> rating -.468 .205 -2.279 .023  
GPA <--> weight -6.710 4.676 -1.435 .151  
GPA <--> height 1.819 .712 2.555 .011  
height <--> weight 19.024 4.098 4.643 ***  
weight <--> rating -5.243 1.395 -3.759 ***  
error1 <--> error2 -.004 .010 -.382 .702  

Variances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

GPA   12.122 1.189 10.198 ***  
height   8.428 .826 10.198 ***  
weight   371.476 36.426 10.198 ***  
rating   1.015 .100 10.198 ***  
error1   .019 .003 5.747 ***  
error2   .143 .014 9.974 ***   
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Obtaining Standardized Estimates

Before you perform the analysis, do the following:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select Standardized estimates (a check mark appears next to it).

E Close the dialog box.

 

Here it can be seen that the regression weights and the correlation that we discovered 
earlier to be statistically insignificant are also, speaking descriptively, small.

Obtaining Squared Multiple Correlations

The squared multiple correlations, like the standardized estimates, are independent of 
units of measurement. To obtain squared multiple correlations, do the following before 
you perform the analysis:

E From the menus, choose View → Analysis Properties.

Standardized Regression Weights: (Group number 1 - 
Default model) 

   Estimate 
academic <--- GPA .492
attract <--- height .003
attract <--- weight -.078
attract <--- rating .363
attract <--- academic .525
academic <--- attract -.006

Correlations: (Group number 1 - Default model) 
   Estimate 

GPA <--> rating .150
height <--> rating -.160
GPA <--> weight -.100
GPA <--> height .180
height <--> weight .340
weight <--> rating -.270
error1 <--> error2 -.076 
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E In the Analysis Properties dialog box, click the Output tab.

E Select Squared multiple correlations (a check mark appears next to it).

E Close the dialog box.

 

The squared multiple correlations show that the two endogenous variables in this 
model are not predicted very accurately by the other variables in the model. This goes 
to show that the chi-square test of fit is not a measure of accuracy of prediction.

Graphics Output

Here is the path diagram output displaying standardized estimates and squared 
multiple correlations:

Squared Multiple Correlations: (Group number 1 - 
Default model) 

   Estimate 
attract   .402 
academic   .236  

GPA

height

rating

weight

.24

academic

.40

attract

.49

.00

-.08

.36

error1

error2
.15

-.16
-. 10

. 18
. 3 4

- .27
.52 -.01 -.08

Example 7
A nonrecursive model

Felson and Bohrnstedt (1979)
(Female subjects)

Standardized estimates

Chi-square = 2.761 (2 df)
p = .251
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Stability Index

The existence of feedback loops in a nonrecursive model permits certain problems to 
arise that cannot occur in recursive models. In the present model, attractiveness 
depends on perceived academic ability, which in turn depends on attractiveness, which 
depends on perceived academic ability, and so on. This appears to be an infinite 
regress, and it is. One wonders whether this infinite sequence of linear dependencies 
can actually result in well-defined relationships among attractiveness, academic 
ability, and the other variables of the model. The answer is that they might, and then 
again they might not. It all depends on the regression weights. For some values of the 
regression weights, the infinite sequence of linear dependencies will converge to a set 
of well-defined relationships. In this case, the system of linear dependencies is called 
stable; otherwise, it is called unstable.

Note: You cannot tell whether a linear system is stable by looking at the path diagram. 
You need to know the regression weights.

Amos cannot know what the regression weights are in the population, but it estimates 
them and, from the estimates, it computes a stability index (Fox, 1980; Bentler and 
Freeman, 1983).

If the stability index falls between –1 and +1, the system is stable; otherwise, it is 
unstable. In the present example, the system is stable. 

To view the stability index for a nonrecursive model:

E Click Notes for Group/Model in the tree diagram in the upper left pane of the Amos 
Output window.

An unstable system (with a stability index equal to or greater than 1) is impossible, in 
the same sense that, for example, a negative variance is impossible. If you do obtain a 
stability index of 1 (or greater than 1), this implies that your model is wrong or that 
your sample size is too small to provide accurate estimates of the regression weights. 
If there are several loops in a path diagram, Amos computes a stability index for each 
one. If any one of the stability indices equals or exceeds 1, the linear system is unstable.

Stability index for the following variables is 0.003:
attract
academic
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Modeling in VB.NET

The following program fits the model of this example. It is saved in the file Ex07.vb.

The final AStructure line is essential to Felson and Bohrnstedt’s model. Without it, 
Amos would assume that error1 and error2 are uncorrelated.

You can specify the same model in an equation-like format as follows:

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
        Sem.AStructure("academic <--- GPA")
        Sem.AStructure("academic <--- attract")
        Sem.AStructure("academic <--- error1 (1)")

        Sem.AStructure("attract <--- height")
        Sem.AStructure("attract <--- weight")
        Sem.AStructure("attract <--- rating")
        Sem.AStructure("attract <--- academic")
        Sem.AStructure("attract <--- error2 (1)")

        Sem.AStructure("error2 <--> error1")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

Sub Main()
    Dim Sem As New AmosEngine

    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
        Sem.AStructure("academic = GPA + attract + error1 (1)")
        Sem.AStructure("attract  = height + weight + rating + " _
                & "academic + error2 (1)")
        Sem.AStructure("error2 <--> error1")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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8
Factor Analysis

Introduction

This example demonstrates confirmatory common factor analysis.

About the Data

Holzinger and Swineford (1939) administered 26 psychological tests to 301 seventh- 
and eighth-grade students in two Chicago schools. In the present example, we use 
scores obtained by the 73 girls from a single school (the Grant-White school). Here is 
a summary of the six tests used in this example:

Test Explanation

visperc Visual perception scores

cubes Test of spatial visualization

lozenges Test of spatial orientation

paragraph Paragraph comprehension score

sentence Sentence completion score

wordmean Word meaning test score
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The file Grnt_fem.sav contains the test scores:

 

A Common Factor Model

Consider the following model for the six tests:

 

spatial

visperc

cubes

lozenges

wordmean

paragrap

sentence

err_v

err_c

err_l

err_p

err_s

err_w

verbal

1

1

1

1

1

1

1

1

Example 8
Factor analysis:  Girls' sample

Holzinger and Swineford (1939)
Model Specification
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This model asserts that the first three tests depend on an unobserved variable called 
spatial. Spatial can be interpreted as an underlying ability (spatial ability) that is not 
directly observed. According to the model, performance on the first three tests depends 
on this ability. In addition, performance on each of these tests may depend on 
something other than spatial ability as well. In the case of visperc, for example, the 
unique variable err_v is also involved. Err_v represents any and all influences on 
visperc that are not shown elsewhere in the path diagram. Err_v represents error of 
measurement in visperc, certainly, but also socioeconomic status, age, physical 
stamina, vocabulary, and every other trait or ability that might affect scores on visperc 
but that does not appear elsewhere in the model.

The model presented here is a common factor analysis model. In the lingo of 
common factor analysis, the unobserved variable spatial is called a common factor, 
and the three unobserved variables, err_v, err_c, and err_l, are called unique factors. 
The path diagram shows another common factor, verbal, on which the last three tests 
depend. The path diagram also shows three more unique factors, err_p, err_s, and 
err_w. The two common factors, spatial and verbal, are allowed to be correlated. On 
the other hand, the unique factors are assumed to be uncorrelated with each other and 
with the common factors. The path coefficients leading from the common factors to the 
observed variables are sometimes called factor loadings.

Identification

This model is identified except that, as usual, the measurement scale of each 
unobserved variable is indeterminate. The measurement scale of each unobserved 
variable can be established arbitrarily by setting its regression weight to a constant, 
such as 1, in some regression equation. The preceding path diagram shows how to do 
this. In that path diagram, eight regression weights are fixed at 1, which is one fixed 
regression weight for each unobserved variable. These constraints are sufficient to 
make the model identified.

The proposed model is a particularly simple common factor analysis model, in that 
each observed variable depends on just one common factor. In other applications of 
common factor analysis, an observed variable can depend on any number of common 
factors at the same time. In the general case, it can be very difficult to decide whether 
a common factor analysis model is identified or not (Davis, 1993; Jöreskog, 1969, 
1979). The discussion of identifiability given in this and earlier examples made the 
issue appear simpler than it actually is, giving the impression that the lack of a natural 
unit of measurement for unobserved variables is the sole cause of non-identification. It 
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is true that the lack of a unit of measurement for unobserved variables is an 
ever-present cause of non-identification. Fortunately, it is one that is easy to cure, as 
we have done repeatedly.

But other kinds of under-identification can occur for which there is no simple 
remedy. Conditions for identifiability have to be established separately for individual 
models. Jöreskog and Sörbom (1984) show how to achieve identification of many 
models by imposing equality constraints on their parameters. In the case of the factor 
analysis model (and many others), figuring out what must be done to make the model 
identified requires a pretty deep understanding of the model. If you are unable to tell 
whether a model is identified, you can try fitting the model in order to see whether 
Amos reports that it is unidentified. In practice, this empirical approach works quite 
well, although there are objections to it in principle (McDonald and Krane, 1979), and 
it is no substitute for an a priori understanding of the identification status of a model. 
Bollen (1989) discusses causes and treatments of many types of non-identification in 
his excellent textbook.

Specifying the Model

Amos analyzes the model directly from the path diagram shown on p. 138. Notice that 
the model can conceptually be separated into spatial and verbal branches. You can use 
the structural similarity of the two branches to accelerate drawing the model.

Drawing the Model

After you have drawn the first branch:

E From the menus, choose Edit → Select All to highlight the entire branch.

E To create a copy of the entire branch, from the menus, choose Edit → Duplicate and drag 
one of the objects in the branch to another location in the path diagram. 

Be sure to draw a double-headed arrow connecting spatial and verbal. If you leave out 
the double-headed arrow, Amos will assume that the two common factors are 
uncorrelated. The input file for this example is Ex08.amw.
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Results of the Analysis

Here are the unstandardized results of the analysis. As shown at the upper right corner 
of the figure, the model fits the data quite well.

As an exercise, you may wish to confirm the computation of degrees of freedom.

The parameter estimates, both standardized and unstandardized, are shown next. As 
you would expect, the regression weights are positive, as is the correlation between 
spatial ability and verbal ability.

Computation of degrees of freedom: (Default model)

Number of distinct sample moments: 21
Number of distinct parameters to be estimated: 13

Degrees of freedom (21 – 13): 8
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Example 8
Factor analysis:  Girls' sample

Holzinger and Swineford (1939)
Unstandardized estimates

Chi-square = 7.853 (8 df)
p = .448
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Obtaining Standardized Estimates

To get the standardized estimates shown above, do the following before you perform 
the analysis:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select Standardized estimates (a check mark appears next to it).

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

visperc <--- spatial 1.000     
cubes <--- spatial .610 .143 4.250 ***  
lozenges <--- spatial 1.198 .272 4.405 ***  
paragrap <--- verbal 1.000     
sentence <--- verbal 1.334 .160 8.322 ***  
wordmean <--- verbal 2.234 .263 8.482 ***  

Standardized Regression Weights: (Group number 1 - 
Default model) 

   Estimate
visperc <--- spatial .703
cubes <--- spatial .654
lozenges <--- spatial .736
paragrap <--- verbal .880
sentence <--- verbal .827
wordmean <--- verbal .841

Covariances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

spatial <--> verbal 7.315 2.571 2.846 .004  

Correlations: (Group number 1 - Default model) 
   Estimate 

spatial <--> verbal .487 

Variances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

spatial   23.302 8.123 2.868 .004  
verbal   9.682 2.159 4.485 ***  
err_v   23.873 5.986 3.988 ***  
err_c   11.602 2.584 4.490 ***  
err_l   28.275 7.892 3.583 ***  
err_p   2.834 .868 3.263 .001  
err_s   7.967 1.869 4.263 ***  
err_w   19.925 4.951 4.024 ***   
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E Also select Squared multiple correlations if you want squared multiple correlation for 
each endogenous variable, as shown in the next graphic.

E Close the dialog box.

 

Viewing Standardized Estimates

E In the Amos Graphics window, click the Show the output path diagram button.

E Select Standardized estimates in the Parameter Formats panel at the left of the path 
diagram.

Here is the path diagram with standardized estimates displayed:

Squared Multiple Correlations: (Group number 1 - 
Default model) 

   Estimate 
wordmean   .708 
sentence   .684 
paragrap   .774 
lozenges   .542 
cubes   .428 
visperc   .494  
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Chi-square = 7.853 (8 df)
p = .448
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The squared multiple correlations can be interpreted as follows: To take wordmean as 
an example, 71% of its variance is accounted for by verbal ability. The remaining 29% 
of its variance is accounted for by the unique factor err_w. If err_w represented 
measurement error only, we could say that the estimated reliability of wordmean is 
0.71. As it is, 0.71 is an estimate of a lower-bound on the reliability of wordmean.

The Holzinger and Swineford data have been analyzed repeatedly in textbooks and 
in demonstrations of new factor analytic techniques. The six tests used in this example 
are taken from a larger subset of nine tests used in a similar example by Jöreskog and 
Sörbom (1984). The factor analysis model employed here is also adapted from theirs. 
In view of the long history of exploration of the Holzinger and Swineford data in the 
factor analysis literature, it is no accident that the present model fits very well. Even 
more than usual, the results presented here require confirmation on a fresh set of data.

Modeling in VB.NET

The following program specifies the factor model for Holzinger and Swineford’s data. 
It is saved in the file Ex08.vb.

You do not need to explicitly allow the factors (spatial and verbal) to be correlated. 
Nor is it necessary to specify that the unique factors be uncorrelated with each other 
and with the two factors. These are default assumptions in an Amos program (but not 
in Amos Graphics). 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
        Sem.AStructure("visperc   = (1) spatial + (1) err_v")
        Sem.AStructure("cubes     =     spatial + (1) err_c")
        Sem.AStructure("lozenges  =     spatial + (1) err_l")

        Sem.AStructure("paragrap = (1) verbal  + (1) err_p")
        Sem.AStructure("sentence  =     verbal  + (1) err_s")
        Sem.AStructure("wordmean  =     verbal  + (1) err_w")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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9
An Alternative to Analysis of 
Covariance

Introduction

This example demonstrates a simple alternative to an analysis of covariance that does 
not require perfectly reliable covariates. A better, but more complicated, alternative 
will be demonstrated in Example 16.

Analysis of Covariance and Its Alternative

Analysis of covariance is a technique that is frequently used in experimental and 
quasi-experimental studies to reduce the effect of pre-existing differences among 
treatment groups. Even when random assignment to treatment groups has eliminated 
the possibility of systematic pretreatment differences among groups, analysis of 
covariance can pay off in increased precision in evaluating treatment effects.

The usefulness of analysis of covariance is compromised by the assumption that 
each covariate be measured without error. The method makes other assumptions as 
well, but the assumption of perfectly reliable covariates has received particular 
attention (for example, Cook and Campbell, 1979). In part, this is because the effects 
of violating the assumption can be so bad. Using unreliable covariates can lead to the 
erroneous conclusion that a treatment has an effect when it doesn’t or that a treatment 
has no effect when it really does. Unreliable covariates can even make a treatment 
look like it does harm when it is actually beneficial. At the same time, unfortunately, 
the assumption of perfectly reliable covariates is typically impossible to meet.

The present example demonstrates an alternative to analysis of covariance in 
which no variable has to be measured without error. The method to be demonstrated 
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here has been employed by Bentler and Woodward (1979) and others. Another 
approach, by Sörbom (1978), is demonstrated in Example 16. The Sörbom method is 
more general. It allows testing other assumptions of analysis of covariance and permits 
relaxing some of them as well. The Sörbom approach is comparatively complicated 
because of its generality. By contrast, the method demonstrated in this example makes 
the usual assumptions of analysis of covariance, except for the assumption that 
covariates are measured without error. The virtue of the method is its comparative 
simplicity.

The present example employs two treatment groups and a single covariate. It may 
be generalized to any number of treatment groups and any number of covariates. 
Sörbom (1978) used the data that we will be using in this example and Example 16. 
The analysis closely follows Sörbom’s example.

About the Data

Olsson (1973) administered a battery of eight tests to 213 eleven-year-old students on 
two occasions. We will employ two of the eight tests, Synonyms and Opposites, in this 
example. Between the two administrations of the test battery, 108 of the students (the 
experimental group) received training that was intended to improve performance on the 
tests. The other 105 students (the control group) did not receive any special training. 
As a result of taking two tests on two occasions, each of the 213 students obtained four 
test scores. A fifth, dichotomous variable was created to indicate membership in the 
experimental or control group. Altogether, the following variables are used in this 
example:

Variable Description

pre_syn Pretest scores on the Synonyms test.
pre_opp Pretest scores on the Opposites test.
post_syn Posttest scores on the Synonyms test.
post_opp Posttest scores on the Opposites test.

treatment
A dichotomous variable taking on the value 1 for students who 
received the special training, and 0 for those who did not. This 
variable was created especially for the analyses in this example.
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Correlations and standard deviations for the five measures are contained in the Microsoft 
Excel workbook UserGuide.xls, in the Olss_all worksheet. Here is the dataset:

There are positive correlations between treatment and each of the posttests, which 
indicates that the trained students did better on the posttests than the untrained students. 
The correlations between treatment and each of the pretests are positive but relatively 
small. This indicates that the control and experimental groups did about equally well 
on the pretests. You would expect this, since students were randomly assigned to the 
control and experimental groups.

Analysis of Covariance

To evaluate the effect of training on performance, one might consider carrying out an 
analysis of covariance with one of the posttests as the criterion variable, and the two 
pretests as covariates. In order for that analysis to be appropriate, both the synonyms 
pretest and the opposites pretest would have to be perfectly reliable.

Model A for the Olsson Data

Consider the model for the Olsson data shown in the next path diagram. The model 
asserts that pre_syn and pre_opp are both imperfect measures of an unobserved ability 
called pre_verbal that might be thought of as verbal ability at the time of the pretest. 
The unique variables eps1 and eps2 represent errors of measurement in pre_syn and 
pre_opp, as well as any other influences on the two tests not represented elsewhere in 
the path diagram.
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Similarly, the model asserts that post_syn and post_opp are imperfect measures of an 
unobserved ability called post_verbal, which might be thought of as verbal ability at 
the time of the posttest. Eps3 and eps4 represent errors of measurement and other 
sources of variation not shown elsewhere in the path diagram.

The model shows two variables that may be useful in accounting for verbal ability 
at the time of the posttest. One such predictor is verbal ability at the time of the pretest. 
It would not be surprising to find that verbal ability at the time of the posttest depends 
on verbal ability at the time of the pretest. Because past performance is often an 
excellent predictor of future performance, the model uses the latent variable 
pre_verbal as a covariate. However, our primary interest lies in the second predictor, 
treatment. We are mostly interested in the regression weight associated with the arrow 
pointing from treatment to post_verbal, and whether it is significantly different from 
0. In other words, we will eventually want to know whether the model shown above 
could be accepted as correct under the additional hypothesis that that particular 
regression weight is 0. But first, we had better ask whether Model A can be accepted 
as it stands.

Identification

The units of measurement of the seven unobserved variables are indeterminate. This 
indeterminacy can be remedied by finding one single-headed arrow pointing away 
from each unobserved variable in the above figure, and fixing the corresponding 
regression weight to unity (1). The seven 1’s shown in the path diagram above indicate 
a satisfactory choice of identification constraints.

pre_verbal

pre_syn

eps1

1

1

pre_opp

eps2
1

post_verbal

post_syn

eps3

post_opp

eps4

1

1 1

treatment
zeta

1

Example 9:  Model A
Olsson (1973) test coaching study

Model Specification
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Specifying Model A

To specify Model A, draw a path diagram similar to the one on p. 148. The path 
diagram is saved as the file Ex09-a.amw.

Results for Model A

There is considerable empirical evidence against Model A:

This is bad news. If we had been able to accept Model A, we could have taken the next 
step of repeating the analysis with the regression weight for regressing post_verbal on 
treatment fixed at 0. But there is no point in doing that now. We have to start with a 
model that we believe is correct in order to use it as the basis for testing a stronger no 
treatment effect version of the model.

Searching for a Better Model

Perhaps there is some way of modifying Model A so that it fits the data better. Some 
suggestions for suitable modifications can be obtained from modification indices. 

Requesting Modification Indices

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select Modification indices and enter a suitable threshold in the field to its right. For this 
example, the threshold will remain at its default value of 4.

 

Chi-square = 33.215
Degrees of freedom = 3
Probability level = 0.000
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Requesting modification indices with a threshold of 4 produces the following 
additional output:

According to the first modification index in the M.I. column, the chi-square statistic 
will decrease by at least 13.161 if the unique variables eps2 and eps4 are allowed to be 
correlated (the actual decrease may be greater). At the same time, of course, the 
number of degrees of freedom will drop by 1 because of the extra parameter that will 
have to be estimated. Since 13.161 is the largest modification index, we should 
consider it first and ask whether it is reasonable to think that eps2 and eps4 might be 
correlated.

Eps2 represents whatever pre_opp measures other than verbal ability at the pretest. 
Similarly, eps4 represents whatever post_opp measures other than verbal ability at the 
posttest. It is plausible that some stable trait or ability other than verbal ability is 
measured on both administrations of the Opposites test. If so, then you would expect a 
positive correlation between eps2 and eps4. In fact, the expected parameter change (the 
number in the Par Change column) associated with the covariance between eps2 and 
eps4 is positive, which indicates that the covariance will probably have a positive 
estimate if the covariance is not fixed at 0.

It might be added that the same reasoning that suggests allowing eps2 and eps4 to 
be correlated applies almost as well to eps1 and eps3, whose covariance also has a 
fairly large modification index. For now, however, we will add only one parameter to 
Model A: the covariance between eps2 and eps4. We call this new model Model B.

Model B for the Olsson Data

Below is the path diagram for Model B. It can be obtained by taking the path diagram 
for Model A and adding a double-headed arrow connecting eps2 and eps4. This path 
diagram is saved in the file Ex09-b.amw.

Modification Indices (Group number 1 - Default model) 
Covariances: (Group number 1 - Default model) 

   M.I. Par Change 
eps2 <--> eps4 13.161 3.249 
eps2 <--> eps3 10.813 -2.822 
eps1 <--> eps4 11.968 -3.228 
eps1 <--> eps3 9.788 2.798  
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You may find your error variables already positioned at the top of the path diagram, 
with no room to draw the double-headed arrow. To fix the problem:

E From the menus, choose Edit → Fit to Page.

Alternatively, you can:

E Draw the double-headed arrow and, if it is out of bounds, click the Resize (page with 
arrows) button. Amos will shrink your path diagram to fit within the page boundaries.

Results for Model B

Allowing eps2 and eps4 to be correlated results in a dramatic reduction of the 
chi-square statistic.

You may recall from the results of Model A that the modification index for the 
covariance between eps1 and eps3 was 9.788. Clearly, freeing that covariance in 
addition to the covariance between eps2 and eps4 covariance would not have produced 
an additional drop in the chi-square statistic of 9.788, since this would imply a negative 
chi-square statistic. Thus, a modification index represents the minimal drop in the 

Chi-square = 2.684
Degrees of freedom = 2
Probability level = 0.261

pre_verbal

pre_syn
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pre_opp
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Example 9:  Model B
Olsson (1973) test coaching study

Model Specification
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chi-square statistic that will occur if the corresponding constraint—and only that 
constraint—is removed.

The following raw parameter estimates are difficult to interpret because they would 
have been different if the identification constraints had been different:

As expected, the covariance between eps2 and eps4 is positive. The most interesting 
result that appears along with the parameter estimates is the critical ratio for the effect 
of treatment on post_verbal. This critical ratio shows that treatment has a highly 
significant effect on post_verbal. We will shortly obtain a better test of the significance 
of this effect by modifying Model B so that this regression weight is fixed at 0. In the 
meantime, here are the standardized estimates and the squared multiple correlations as 
displayed by Amos Graphics:

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

post_verbal <--- pre_verbal .889 .053 16.900 ***  
post_verbal <--- treatment 3.640 .477 7.625 ***  
pre_syn <--- pre_verbal 1.000     
pre_opp <--- pre_verbal .881 .053 16.606 ***  
post_syn <--- post_verbal 1.000     
post_opp <--- post_verbal .906 .053 16.948 ***  

Covariances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

pre_verbal <--> treatment .467 .226 2.066 .039  
eps2 <--> eps4 6.797 1.344 5.059 ***  

Variances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

pre_verbal   38.491 4.501 8.552 ***  
treatment   .249 .024 10.296 ***  
zeta   4.824 1.331 3.625 ***  
eps1   6.013 1.502 4.004 ***  
eps2   12.255 1.603 7.646 ***  
eps3   6.546 1.501 4.360 ***  
eps4   14.685 1.812 8.102 ***   
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In this example, we are primarily concerned with testing a particular hypothesis and 
not so much with parameter estimation. However, even when the parameter estimates 
themselves are not of primary interest, it is a good idea to look at them anyway to see 
if they are reasonable. Here, for instance, you may not care exactly what the correlation 
between eps2 and eps4 is, but you would expect it to be positive. Similarly, you would 
be surprised to find any negative estimates for regression weights in this model. In any 
model, you know that variables cannot have negative variances, so a negative variance 
estimate would always be an unreasonable estimate. If estimates cannot pass a gross 
sanity check, particularly with a reasonably large sample, you have to question the 
correctness of the model under which they were obtained, no matter how well the 
model fits the data.

Model C for the Olsson Data

Now that we have a model (Model B) that we can reasonably believe is correct, let’s 
see how it fares if we add the constraint that post_verbal does not depend on treatment. 
In other words, we will test a new model (call it Model C) that is just like Model B 
except that Model C specifies that post_verbal has a regression weight of 0 on 
treatment.

pre_verbal

.86

pre_syn

eps1

.93

.71

pre_opp

eps2

.84 .88

post_verbal

.86

post_syn

eps3
.70

post_opp

eps4

.93 .84

treatment

.86

.28 zeta

Example 9:  Model B
Olsson (1973) test coaching study

Standardized estimates

.15

.51
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Drawing a Path Diagram for Model C

To draw the path diagram for Model C:

E Start with the path diagram for Model B.

E Right-click the arrow that points from treatment to post_verbal and choose Object 
Properties from the pop-up menu.

E In the Object Properties dialog box, click the Parameters tab and type 0 in the 
Regression weight text box.

The path diagram for Model C is saved in the file Ex09-c.amw.

Results for Model C

Model C has to be rejected at any conventional significance level.

If you assume that Model B is correct and that only the correctness of Model C is in 
doubt, then a better test of Model C can be obtained as follows: In going from Model 
B to Model C, the chi-square statistic increased by 52.712 (that is, ), 
while the number of degrees of freedom increased by 1 (that is, 3 – 2). If Model C is 
correct, 52.712 is an observation on a random variable that has an approximate 
chi-square distribution with one degree of freedom. The probability of such a random 
variable exceeding 52.712 is exceedingly small. Thus, Model C is rejected in favor of 
Model B. Treatment has a significant effect on post_verbal.

Fitting All Models At Once 

The example file Ex09-all.amw fits all three models (A through C) in a single analysis. 
The procedure for fitting multiple models in a single analysis was demonstrated in 
Example 6.

Chi-square = 55.396
Degrees of freedom = 3
Probability level = 0.000

55.396 2.684–
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Modeling in VB.NET

Model A

This program fits Model A. It is saved in the file Ex09–a.vb.

Model B

This program fits Model B. It is saved in the file Ex09–b.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")

        Sem.AStructure("post_syn    = (1) post_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     post_verbal + (1) eps4")

        Sem.AStructure("post_verbal = pre_verbal + treatment + (1) zeta")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")
        Sem.AStructure("post_syn    = (1) post_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     post_verbal + (1) eps4")

        Sem.AStructure("post_verbal = pre_verbal + treatment + (1) zeta")

        Sem.AStructure("eps2 <---> eps4")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model C

This program fits Model C. It is saved in the file Ex09–c.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")
        Sem.AStructure("post_syn    = (1) post_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     post_verbal + (1) eps4")

        Sem.AStructure("post_verbal = pre_verbal + (0) treatment + (1) zeta")

        Sem.AStructure("eps2 <---> eps4")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Fitting Multiple Models

This program (Ex09-all.vb) fits all three models (A through C).

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Olss_all")
        Sem.AStructure("pre_syn     = (1) pre_verbal  + (1) eps1")
        Sem.AStructure("pre_opp     =     pre_verbal  + (1) eps2")
        Sem.AStructure("post_syn    = (1) post_verbal + (1) eps3")
        Sem.AStructure("post_opp    =     post_verbal + (1) eps4")

        Sem.AStructure("post_verbal = pre_verbal + (effect) treatment + (1) zeta")

        Sem.AStructure("eps2 <---> eps4 (cov2_4)")

        Sem.Model("Model_A", "cov2_4 = 0")
        Sem.Model("Model_B")
        Sem.Model("Model_C", "effect = 0")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Example

10
Simultaneous Analysis of Several 
Groups

Introduction

This example demonstrates how to fit a model to two sets of data at once. Amos is 
capable of modeling data from multiple groups (or samples) simultaneously. This 
multigroup facility allows for many additional types of analyses, as illustrated in the 
next several examples.

Analysis of Several Groups

We return once again to Attig’s (1983) memory data from young and old subjects, 
which were used in Example 1 through Example 3. In this example, we will compare 
results from the two groups to see how similar they are. However, we will not compare 
the groups by performing separate analyses for old people and young people. Instead, 
we will perform a single analysis that estimates parameters and tests hypotheses about 
both groups at once. This method has two advantages over doing separate analyses for 
the young and old groups. First, it provides a test for the significance of any 
differences found between young and old people. Second, if there are no differences 
between young and old people or if the group differences concern only a few model 
parameters, the simultaneous analysis of both groups provides more accurate 
parameter estimates than would be obtained from two separate single-group analyses.
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About the Data

We will use Attig’s memory data from both young and old subjects. Following is a 
partial listing of the old subjects’ data found in the worksheet Attg_old located in the 
Microsoft Excel workbook UserGuide.xls:

The young subjects’ data are in the Attg_yng worksheet. This example uses only the 
measures recall1 and cued1. 

Data for multigroup analysis can be organized in a variety of ways. One option is to 
separate the data into different files, with one file for each group (as we have done in 
this example). A second possibility is to keep all the data in one big file and include a 
group membership variable.

Model A

We will begin with a truly trivial model (Model A) for two variables: recall1 and 
cued1. The model simply says that, for young subjects as well as old subjects, recall1 
and cued1 are two variables that have some unspecified variances and some 
unspecified covariance. The variances and the covariance are allowed to be different 
for young and old people.
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Conventions for Specifying Group Differences

The main purpose of a multigroup analysis is to find out the extent to which groups 
differ. Do the groups all have the same path diagram with the same parameter values? 
Do the groups have the same path diagram but with different parameter values for 
different groups? Does each group need a different path diagram? Amos Graphics has 
the following conventions for specifying group differences in a multigroup analysis: 

All groups have the same path diagram unless explicitly declared otherwise.

Unnamed parameters are permitted to have different values in different groups. 
Thus, the default multigroup model under Amos Graphics uses the same path 
diagram for all groups but allows different parameter values for different groups.

Parameters in different groups can be constrained to the same value by giving them 
the same label. (This will be demonstrated in Model B on p. 172.) 

Specifying Model A

E From the menus, choose File → New to start a new path diagram.

E From the menus, choose File → Data Files.

Notice that the Data Files dialog box allows you to specify a data file for only a single 
group called Group number 1. We have not yet told the program that this is a multigroup 
analysis.
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E Click File Name, select the Excel workbook UserGuide.xls that is in the Amos 
Examples directory, and click Open.

E In the Select a Data Table dialog box, select the Attg_yng worksheet.

E Click OK to close the Select a Data Table dialog box.

E Click OK to close the Data Files dialog box.

E From the menus, choose View → Variables in Dataset.

E Drag observed variables recall1 and cued1 to the diagram.
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E Connect recall1 and cued1 with a double-headed arrow.

E To add a caption to the path diagram, from the menus, choose Diagram → Figure Caption 
and then click the path diagram at the spot where you want the caption to appear.

E In the Figure Caption dialog box, enter a title that contains the text macros \group and 
\format.
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E Click OK to complete the model specification for the young group.

E To add a second group, from the menus, choose Analyze → Manage Groups.

E In the Manage Groups dialog box, change the name in the Group Name text box from 
Group number 1 to young subjects.

E Click New to create a second group.

E Change the name in the Group Name text box from Group number 2 to old subjects.
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E Click Close.

E From the menus, choose File → Data Files.

The Data Files dialog box shows that there are two groups labeled young subjects and 
old subjects.

E To specify the dataset for the old subjects, in the Data Files dialog box, select old 

subjects.

E Click File Name, select the Excel workbook UserGuide.xls that is in the Amos 
Examples directory, and click Open.

E In the Select a Data Table dialog box, select the Attg_old worksheet.
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E Click OK.

Text Output

Model A has zero degrees of freedom.

Amos computed the number of distinct sample moments this way: The young subjects 
have two sample variances and one sample covariance, which makes three sample 
moments. The old subjects also have three sample moments, making a total of six 
sample moments. The parameters to be estimated are the population moments, and 
there are six of them as well. Since there are zero degrees of freedom, this model is 
untestable.

Chi-square = 0.000
Degrees of freedom = 0
Probability level cannot be computed

Computation of degrees of freedom (Default model) 
Number of distinct sample moments: 6 

Number of distinct parameters to be estimated: 6 
Degrees of freedom (6 - 6): 0  
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To view parameter estimates for the young people in the Amos Output window:

E Click Estimates in the tree diagram in the upper left pane.

E Click young subjects in the Groups panel at the left side of the window.

To view the parameter estimates for the old subjects:

E Click old subjects in the Groups panel.

Graphics Output

The following are the output path diagrams showing unstandardized estimates for the 
two groups:

The panels at the left of the Amos Graphics window provide a variety of viewing 
options. 

Covariances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1 <--> cued1 3.225 .944 3.416 ***  

Variances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1   5.787 1.311 4.416 ***  
cued1   4.210 .953 4.416 ***   

Covariances: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1 <--> cued1 4.887 1.252 3.902 ***  

Variances: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1   5.569 1.261 4.416 ***  
cued1   6.694 1.516 4.416 ***   

5.79
recall1

4.21
cued1

3.22

Example 10:  Model A
Simultaneous analysis of several groups

Attig (1983) young subjects
Unstandardized estimates

5.57
recall1

6.69
cued1

4.89

Example 10: Model A
Simultaneous analysis of several groups

Attig (1983) old subjects
Unstandardized estimates
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Click either the View Input or View Output button to see an input or output path 
diagram. 

Select either young subjects or old subjects in the Groups panel. 

Select either Unstandardized estimates or Standardized estimates in the Parameter 
Formats panel.

 

Model B

It is easy to see that the parameter estimates are different for the two groups. But are 
the differences significant? One way to find out is to repeat the analysis, but this time 
requiring that each parameter in the young population be equal to the corresponding 
parameter in the old population. The resulting model will be called Model B. 

For Model B, it is necessary to name each parameter, using the same parameter 
names in the old group as in the young group.

E Start by clicking young subjects in the Groups panel at the left of the path diagram.

E Right-click the recall1 rectangle in the path diagram.

E From the pop-up menu, choose Object Properties.

E In the Object Properties dialog box, click the Parameters tab.
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E In the Variance text box, enter a name for the variance of recall1; for example, type 
var_rec.

E Select All groups (a check mark will appear next to it).

The effect of the check mark is to assign the name var_rec to the variance of recall1 in 
all groups. Without the check mark, var_rec would be the name of the variance for 
recall1 for the young group only.

E While the Object Properties dialog box is open, click cued1 and type the name var_cue 
for its variance. 

E Click the double-headed arrow and type the name cov_rc for the covariance. Always 
make sure that you select All groups.

The path diagram for each group should now look like this:
var_rec

recall1
var_cue

cued1

cov_rc

Example 10:  Model B
Homogenous covariance structures

in two groups, Attig (1983) data.
Model Specification
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Text Output

Because of the constraints imposed in Model B, only three distinct parameters are 
estimated instead of six. As a result, the number of degrees of freedom has increased 
from 0 to 3.

Model B is acceptable at any conventional significance level.

The following are the parameter estimates obtained under Model B for the young 
subjects. (The parameter estimates for the old subjects are the same.)

You can see that the standard error estimates obtained under Model B are smaller (for 
the young subjects, 0.780, 0.909, and 0.873) than the corresponding estimates obtained 
under Model A (0.944, 1.311, and 0.953). The Model B estimates are to be preferred 
over the ones from Model A as long as you believe that Model B is correct.

Chi-square = 4.588
Degrees of freedom = 3
Probability level = 0.205

Computation of degrees of freedom (Default model) 
Number of distinct sample moments: 6 

Number of distinct parameters to be estimated: 3 
Degrees of freedom (6 - 3): 3  

Covariances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1 <--> cued1 4.056 .780 5.202 *** cov_rc 

Variances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1  5.678 .909 6.245 *** var_rec 
cued1  5.452 .873 6.245 *** var_cue  
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Graphics Output

For Model B, the output path diagram is the same for both groups.

Modeling in VB.NET

Model A

Here is a program (Ex10-a.vb) for fitting Model A:

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
                Sem.GroupName("young subjects")
                Sem.AStructure("recall1")
                Sem.AStructure("cued1")

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
                Sem.GroupName("old subjects")
                Sem.AStructure("recall1")
                Sem.AStructure("cued1")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

5.68

recall1

5.45

cued1

4.06

Chi-square = 4.588 (3 df)
p = .205
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The BeginGroup method is used twice in this two-group analysis. The first BeginGroup 
line specifies the Attg_yng dataset. The three lines that follow supply a name and a 
model for that group. The second BeginGroup line specifies the Attg_old dataset, and 
the following three lines supply a name and a model for that group. The model for each 
group simply says that recall1 and cued1 are two variables with unconstrained 
variances and an unspecified covariance. The GroupName method is optional, but it is 
useful in multiple-group analyses because it helps Amos to label the output in a 
meaningful way.

Model B

The following program for Model B is saved in Ex10-b.vb:

The parameter names var_rec, var_cue, and cov_rc (in parentheses) are used to require 
that some parameters have the same value for old people as for young people. Using 
the name var_rec twice requires recall1 to have the same variance in both populations. 
Similarly, using the name var_cue twice requires cued1 to have the same variance in 
both populations. Using the name cov_rc twice requires that recall1 and cued1 have 
the same covariance in both populations.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"

        Sem.Standardized()
        Sem.TextOutput()

        Sem.BeginGroup(dataFile, "Attg_yng")
            Sem.GroupName("young subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
        Sem.BeginGroup(dataFile, "Attg_old")
            Sem.GroupName("old subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Multiple Model Input

Here is a program (Ex10-all.vb) for fitting both Models A and B.1

The Sem.Model statements should appear immediately after the AStructure 
specifications for the last group. It does not matter which Model statement goes first. 

1 In Example 6 (Ex06-all.vb), multiple model constraints were written in a single string, within which individual 
constraints were separated by semicolons. In the present example, each constraint is in its own string, and the 
individual strings are separated by commas. Either syntax is acceptable.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.Standardized()
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
            Sem.GroupName("young subjects")
            Sem.AStructure("recall1           (yng_rec)")
            Sem.AStructure("cued1             (yng_cue)")
            Sem.AStructure("recall1 <> cued1  (yng_rc)")

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
            Sem.GroupName("old subjects")
            Sem.AStructure("recall1           (old_rec)")
            Sem.AStructure("cued1             (old_cue)")
            Sem.AStructure("recall1 <> cued1  (old_rc)")

        Sem.Model("Model A")
        Sem.Model("Model B", "yng_rec=old_rec", "yng_cue=old_cue", _
            "yng_rc=old_rc")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Example

11
Felson and Bohrnstedt’s Girls and 
Boys

Introduction

This example demonstrates how to fit a simultaneous equations model to two sets of 
data at once.

Felson and Bohrnstedt’s Model

Example 7 tested Felson and Bohrnstedt’s (1979) model for perceived attractiveness 
and perceived academic ability using a sample of 209 girls. Here, we take the same 
model and attempt to apply it simultaneously to the Example 7 data and to data from 
another sample of 207 boys. We will examine the question of whether the measured 
variables are related to each other in the same way for boys as for girls.

About the Data

The Felson and Bohrnstedt (1979) data for girls were described in Example 7. Here is 
a table of the boys’ data from the SPSS Statistics file Fels_mal.sav: 
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Notice that there are eight variables in the boys’ data file but only seven in the girls’ 
data file. The extra variable skills is not used in any model of this example, so its 
presence in the data file is ignored.

Specifying Model A for Girls and Boys

Consider extending the Felson and Bohrnstedt model of perceived attractiveness and 
academic ability to boys as well as girls. To do this, we will start with the girls-only 
model specification from Example 7 and modify it to accommodate two groups. If you 
have already drawn the path diagram for Example 7, you can use it as a starting point 
for this example. No additional drawing is needed.

Parameter estimates can be displayed on a path diagram for only one group at a time 
in a multigroup analysis. It is useful then to display a figure caption that tells which 
group the parameter estimates represent.

Specifying a Figure Caption

To create a figure caption that displays the group name, place the \group text macro in 
the caption.

E From the menus, choose Diagram → Figure Caption.

E Click the path diagram at the spot where you want the caption to appear.
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E In the Figure Caption dialog box, enter a title that contains the text macro \group. For 
example:

In Example 7, where there was only one group, the group’s name didn’t matter. 
Accepting the default name Group number 1 was good enough. Now that there are two 
groups to keep track of, the groups should be given meaningful names.

E From the menus, choose Analyze → Manage Groups.

E In the Manage Groups dialog box, type girls for Group Name.

 

E While the Manage Groups dialog box is open, create a second group by clicking New.

E Type boys in the Group Name text box.
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E Click Close to close the Manage Groups dialog box.

E From the menus, choose File → Data Files.

E In the Data Files dialog box, double-click girls and select the data file Fels_fem.sav.

E Then, double-click boys and select the data file Fels_mal.sav.

E Click OK to close the Data Files dialog box.

Your path diagram should look something like this for the boys’ sample:

 

Notice that, although girls and boys have the same path diagram, there is no 
requirement that the parameters have the same values in the two groups. This means 
that estimates of regression weights, covariances, and variances may be different for 
boys than for girls.
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Text Output for Model A

With two groups instead of one (as in Example 7), there are twice as many sample 
moments and twice as many parameters to estimate. Therefore, you have twice as 
many degrees of freedom as there were in Example 7.

The model fits the data from both groups quite well.

We accept the hypothesis that the Felson and Bohrnstedt model is correct for both boys 
and girls. The next thing to look at is the parameter estimates. We will be interested in 
how the girls’ estimates compare to the boys’ estimates. The following are the 
parameter estimates for the girls:

Chi-square = 3.183
Degrees of freedom = 4
Probability level = 0.528

Computation of degrees of freedom (Default model) 
Number of distinct sample moments: 42 

Number of distinct parameters to be estimated: 38 
Degrees of freedom (42 - 38): 4  

Regression Weights: (girls - Default model) 
   Estimate S.E. C.R. P Label 

academic <--- GPA .023 .004 6.241 ***  
attract <--- height .000 .010 .050 .960  
attract <--- weight -.002 .001 -1.321 .186  
attract <--- rating .176 .027 6.444 ***  
attract <--- academic 1.607 .350 4.599 ***  
academic <--- attract -.002 .051 -.039 .969  

Covariances: (girls - Default model) 
   Estimate S.E. C.R. P Label 

GPA <--> rating .526 .246 2.139 .032  
height <--> rating -.468 .205 -2.279 .023  
GPA <--> weight -6.710 4.676 -1.435 .151  
GPA <--> height 1.819 .712 2.555 .011  
height <--> weight 19.024 4.098 4.642 ***  
weight <--> rating -5.243 1.395 -3.759 ***  
error1 <--> error2 -.004 .010 -.382 .702  

Variances: (girls - Default model) 
   Estimate S.E. C.R. P Label 

GPA   12.122 1.189 10.198 ***  
height   8.428 .826 10.198 ***  
weight   371.476 36.427 10.198 ***  
rating   1.015 .100 10.198 ***  
error1   .019 .003 5.747 ***  
error2   .143 .014 9.974 ***   
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These parameter estimates are the same as in Example 7. Standard errors, critical 
ratios, and p values are also the same. The following are the unstandardized estimates 
for the boys:

Regression Weights: (boys - Default model) 
   Estimate S.E. C.R. P Label 

academic <--- GPA .021 .003 6.927 ***  
attract <--- height .019 .010 1.967 .049  
attract <--- weight -.003 .001 -2.484 .013  
attract <--- rating .095 .030 3.150 .002  
attract <--- academic 1.386 .315 4.398 ***  
academic <--- attract .063 .059 1.071 .284  

Covariances: (boys - Default model) 
   Estimate S.E. C.R. P Label 

GPA <--> rating .507 .274 1.850 .064  
height <--> rating .198 .230 .860 .390  
GPA <--> weight -15.645 6.899 -2.268 .023  
GPA <--> height -1.508 .961 -1.569 .117  
height <--> weight 42.091 6.455 6.521 ***  
weight <--> rating -4.226 1.662 -2.543 .011  
error1 <--> error2 -.010 .011 -.898 .369  

Variances: (boys - Default model) 
   Estimate S.E. C.R. P Label 

GPA   16.243 1.600 10.149 ***  
height   11.572 1.140 10.149 ***  
weight   588.605 57.996 10.149 ***  
rating   .936 .092 10.149 ***  
error1   .015 .002 7.571 ***  
error2   .164 .016 10.149 ***   
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Graphics Output for Model A

For girls, this is the path diagram with unstandardized estimates displayed:

The following is the path diagram with the estimates for the boys: 

You can visually inspect the girls’ and boys’ estimates in Model A, looking for sex 
differences. To find out if girls and boys differ significantly with respect to any single 
parameter, you could examine the table of critical ratios of differences among all pairs 
of free parameters. 
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Obtaining Critical Ratios for Parameter Differences

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select Critical ratios for differences.

 

In this example, however, we will not use critical ratios for differences; instead, we 
will take an alternative approach to looking for group differences.

Model B for Girls and Boys

Suppose we are mainly interested in the regression weights, and we hypothesize 
(Model B) that girls and boys have the same regression weights. In this model, the 
variances and covariances of the exogenous variables are still allowed to differ from 
one group to another.

This model allows the distribution of variables such as height and weight to be 
different for boys than for girls while requiring the linear dependencies among 
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variables to be group-invariant. For Model B, you need to constrain six regression 
weights in each group.

E First, display the girls’ path diagram by clicking girls in the Groups panel at the left of 
the path diagram.

E Right-click one of the single-headed arrows and choose Object Properties from the pop-
up menu. 

E In the Object Properties dialog box, click the Parameters tab.

E Enter a name in the Regression weight text box.

E Select All groups. A check mark appears next to it. The effect of the check mark is to 
assign the same name to this regression weight in all groups.

E Keeping the Object Properties dialog box open, click another single-headed arrow and 
enter another name in the Regression weight text box.
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E Repeat this until you have named every regression weight. Always make sure to select 
(put a check mark next to) All groups.

After you have named all of the regression weights, the path diagram for each sample 
should look something like this:

Results for Model B

Text Output

Model B fits the data very well.

Chi-square = 9.493
Degrees of freedom = 10
Probability level = 0.486
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Comparing Model B against Model A gives a nonsignificant chi-square of 
 with  degrees of freedom. Assuming that Model B 

is indeed correct, the Model B estimates are preferable over the Model A estimates.

The unstandardized parameter estimates for the girls’ sample are:

9.493 3.183– 6.310= 10 4 6=–

Regression Weights: (girls - Default model) 
   Estimate S.E. C.R. P Label 

academic <--- GPA .022 .002 9.475 *** p1 
attract <--- height .008 .007 1.177 .239 p3 
attract <--- weight -.003 .001 -2.453 .014 p4 
attract <--- rating .145 .020 7.186 *** p5 
attract <--- academic 1.448 .232 6.234 *** p6 
academic <--- attract .018 .039 .469 .639 p2 

Covariances: (girls - Default model) 
   Estimate S.E. C.R. P Label 

GPA <--> rating .526 .246 2.139 .032  
height <--> rating -.468 .205 -2.279 .023  
GPA <--> weight -6.710 4.676 -1.435 .151  
GPA <--> height 1.819 .712 2.555 .011  
height <--> weight 19.024 4.098 4.642 ***  
weight <--> rating -5.243 1.395 -3.759 ***  
error1 <--> error2 -.004 .008 -.464 .643  

Variances: (girls - Default model) 
   Estimate S.E. C.R. P Label 

GPA   12.122 1.189 10.198 ***  
height   8.428 .826 10.198 ***  
weight   371.476 36.427 10.198 ***  
rating   1.015 .100 10.198 ***  
error1   .018 .003 7.111 ***  
error2   .144 .014 10.191 ***   
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The unstandardized parameter estimates for the boys are:

As Model B requires, the estimated regression weights for the boys are the same as 
those for the girls.

Regression Weights: (boys - Default model) 
   Estimate S.E. C.R. P Label 

academic <--- GPA .022 .002 9.475 *** p1 
attract <--- height .008 .007 1.177 .239 p3 
attract <--- weight -.003 .001 -2.453 .014 p4 
attract <--- rating .145 .020 7.186 *** p5 
attract <--- academic 1.448 .232 6.234 *** p6 
academic <--- attract .018 .039 .469 .639 p2 

Covariances: (boys - Default model) 
   Estimate S.E. C.R. P Label 

GPA <--> rating .507 .274 1.850 .064  
height <--> rating .198 .230 .860 .390  
GPA <--> weight -15.645 6.899 -2.268 .023  
GPA <--> height -1.508 .961 -1.569 .117  
height <--> weight 42.091 6.455 6.521 ***  
weight <--> rating -4.226 1.662 -2.543 .011  
error1 <--> error2 -.004 .008 -.466 .641  

Variances: (boys - Default model) 
   Estimate S.E. C.R. P Label 

GPA   16.243 1.600 10.149 ***  
height   11.572 1.140 10.149 ***  
weight   588.605 57.996 10.149 ***  
rating   .936 .092 10.149 ***  
error1   .016 .002 7.220 ***  
error2   .167 .016 10.146 ***   
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Graphics Output

The output path diagram for the girls is:

 And the output for the boys is: 
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Fitting Models A and B in a Single Analysis

It is possible to fit both Model A and Model B in the same analysis. The file 
Ex11-ab.amw in the Amos Examples directory shows how to do this.

Model C for Girls and Boys

You might consider adding additional constraints to Model B, such as requiring every 
parameter to have the same value for boys as for girls. This would imply that the entire 
variance/covariance matrix of the observed variables is the same for boys as for girls, 
while also requiring that the Felson and Bohrnstedt model be correct for both groups. 
Instead of following this course, we will now abandon the Felson and Bohrnstedt 
model and concentrate on the hypothesis that the observed variables have the same 
variance/covariance matrix for girls and boys. We will construct a model (Model C) 
that embodies this hypothesis.

E Start with the path diagram for Model A or Model B and delete (Edit → Erase) every 
object in the path diagram except the six observed variables. The path diagram will 
then look something like this:

Each pair of rectangles needs to be connected by a double-headed arrow, for a total of 
15 double-headed arrows. 
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E To improve the appearance of the results, from the menus, choose Edit → Move and use 
the mouse to arrange the six rectangles in a single column like this:

The Drag properties option can be used to put the rectangles in perfect vertical 
alignment. 

E From the menus, choose Edit → Drag properties.

E In the Drag Properties dialog box, select height, width, and X-coordinate. A check mark 
will appear next to each one.

E Use the mouse to drag these properties from academic to attract.

This gives attract the same x coordinate as academic. In other words, it aligns them 
vertically. It also makes attract the same size as academic if they are not already the 
same size.

E Then drag from attract to GPA, GPA to height, and so on. Keep this up until all six 
variables are lined up vertically.
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E To even out the spacing between the rectangles, from the menus, choose Edit → Select All. 

E Then choose Edit → Space Vertically.

There is a special button for drawing large numbers of double-headed arrows at once. 
With all six variables still selected from the previous step:

E From the menus, choose Tools → Macro → Draw Covariances. 

Amos draws all possible covariance paths among the selected variables.
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E Label all variances and covariances with suitable names; for example, label them with 
letters a through u. In the Object Properties dialog box, always put a check mark next 
to All groups when you name a parameter.

E From the menus, choose Analyze → Manage Models and create a second group for the 
boys.

E Choose File → Data Files and specify the boys’ dataset (Fels_mal.sav) for this group.

The file Ex11-c.amw contains the model specification for Model C. Here is the input 
path diagram, which is the same for both groups:

 

Results for Model C

Model C has to be rejected at any conventional significance level.

This result means that you should not waste time proposing models that allow no 
differences at all between boys and girls.

Chi-square = 48.977
Degrees of freedom = 21
Probability level = 0.001
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Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex11-a.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
        Sem.GroupName("girls")
        Sem.AStructure("academic = GPA + attract + error1 (1)")
        Sem.AStructure _
            ("attract  = height + weight + rating + academic + error2 (1)")
        Sem.AStructure("error2 <--> error1")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_mal.sav")
        Sem.GroupName("boys")
        Sem.AStructure("academic = GPA + attract + error1 (1)")
        Sem.AStructure _
            ("attract  = height + weight + rating + academic + error2 (1)")
        Sem.AStructure("error2 <--> error1")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model B

The following program fits Model B, in which parameter labels p1 through p6 are used 
to impose equality constraints across groups. The program is saved in Ex11-b.vb.

Model C

The VB.NET program for Model C is not displayed here. It is saved in the file 
Ex11-c.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
        Sem.GroupName("girls")
        Sem.AStructure("academic = (p1) GPA + (p2) attract + (1) error1")
        Sem.AStructure("attract  = " & _
            "(p3) height + (p4) weight + (p5) rating + (p6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_mal.sav")
        Sem.GroupName("boys")
        Sem.AStructure("academic = (p1) GPA + (p2) attract + (1) error1")
        Sem.AStructure("attract  = " & _
            "(p3) height + (p4) weight + (p5) rating + (p6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Fitting Multiple Models

The following program fits both Models A and B. The program is saved in the file 
Ex11-ab.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_fem.sav")
        Sem.GroupName("girls")
        Sem.AStructure("academic = (g1) GPA + (g2) attract + (1) error1")
        Sem.AStructure("attract  = " & _
            "(g3) height + (g4) weight + (g5) rating + (g6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Fels_mal.sav")
        Sem.GroupName("boys")
        Sem.AStructure("academic = (b1) GPA + (b2) attract + (1) error1")
        Sem.AStructure("attract  = " & _
            "(b3) height + (b4) weight + (b5) rating + (b6) academic + (1) error2")
        Sem.AStructure("error2 <--> error1")

        Sem.Model("Model_A")
        Sem.Model("Model_B", _
            "g1=b1", "g2=b2", "g3=b3", "g4=b4", "g5=b5", "g6=b6")

        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Example

12
Simultaneous Factor Analysis for 
Several Groups

Introduction

This example demonstrates how to test whether the same factor analysis model holds 
for each of several populations, possibly with different parameter values for different 
populations (Jöreskog, 1971).

About the Data

We will use the Holzinger and Swineford (1939) data described in Example 8. This 
time, however, data from the 72 boys in the Grant-White sample will be analyzed 
along with data from the 73 girls studied in Example 8. The girls’ data are in the file 
Grnt_fem.sav and were described in Example 8. The following is a sample of the 
boys’ data in the file, Grnt_mal.sav: 
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Model A for the Holzinger and Swineford Boys and Girls

Consider the hypothesis that the common factor analysis model of Example 8 holds for 
boys as well as for girls. The path diagram from Example 8 can be used as a starting 
point for this two-group model. By default, Amos Graphics assumes that both groups 
have the same path diagram, so the path diagram does not have to be drawn a second 
time for the second group.

In Example 8, where there was only one group, the name of the group didn’t matter. 
Accepting the default name Group number 1 was good enough. Now that there are two 
groups to keep track of, the groups should be given meaningful names.

Naming the Groups

E From the menus, choose Analyze → Manage Groups.

E In the Manage Groups dialog box, type Girls for Group Name.
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E While the Manage Groups dialog box is open, create another group by clicking New.

E Then, type Boys in the Group Name text box.

E Click Close to close the Manage Groups dialog box.

Specifying the Data

E From the menus, choose File → Data Files.

E In the Data Files dialog box, double-click Girls and specify the data file grnt_fem.sav.

E Then double-click Boys and specify the data file grnt_mal.sav.

E Click OK to close the Data Files dialog box.
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Your path diagram should look something like this for the girls’ sample:

The boys’ path diagram is identical. Note, however, that the parameter estimates are 
allowed to be different for the two groups.

Results for Model A

Text Output

In the calculation of degrees of freedom for this model, all of the numbers from 
Example 8 are exactly doubled.

Computation of degrees of freedom: (Default model)

Number of distinct sample moments: 42
Number of distinct parameters to be estimated: 26

Degrees of freedom (42 – 26): 16
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Model A is acceptable at any conventional significance level. If Model A had been 
rejected, we would have had to make changes in the path diagram for at least one of the 
two groups.

Graphics Output

Here are the (unstandardized) parameter estimates for the 73 girls. They are the same 
estimates that were obtained in Example 8 where the girls alone were studied.

Chi-square = 16.480
Degrees of freedom = 16
Probability level = 0.420
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 The corresponding output path diagram for the 72 boys is:

Notice that the estimated regression weights vary little across groups. It seems 
plausible that the two populations have the same regression weights—a hypothesis that 
we will test in Model B.

Model B for the Holzinger and Swineford Boys and Girls

We now accept the hypothesis that boys and girls have the same path diagram. The next 
step is to ask whether boys and girls have the same parameter values. The next model 
(Model B) does not go as far as requiring that every parameter for the population of 
boys be equal to the corresponding parameter for girls. It does require that the factor 
pattern (that is, the regression weights) be the same for both groups. Model B still 
permits different unique variances for boys and girls. The common factor variances and 
covariances may also differ across groups.

E Take Model A as a starting point for Model B.

E First, display the girls’ path diagram by clicking Girls in the Groups panel at the left of 
the path diagram.
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E Right-click the arrow that points from spatial to cubes and choose Object Properties 
from the pop-up menu.

E In the Object Properties dialog box, click the Parameters tab.

E Type cube_s in the Regression weight text box.

E Select All groups. A check mark appears next to it. The effect of the check mark is to 
assign the same name to this regression weight in both groups.

 

E Leaving the Object Properties dialog box open, click each of the remaining single-
headed arrows in turn, each time typing a name in the Regression weight text box. 
Keep this up until you have named every regression weight. Always make sure to 
select (put a check mark next to) All groups. (Any regression weights that are already 
fixed at 1 should be left alone.)
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The path diagram for either of the two samples should now look something like this:

Results for Model B

Text Output

Because of the additional constraints in Model B, four fewer parameters have to be 
estimated from the data, increasing the number of degrees of freedom by 4.

The chi-square fit statistic is acceptable.

The chi-square difference between Models A and B, , is not 
significant at any conventional level, either. Thus, Model B, which specifies a 
group-invariant factor pattern, is supported by the Holzinger and Swineford data.

Computation of degrees of freedom: (Default model)

Number of distinct sample moments: 42
Number of distinct parameters to be estimated: 22

Degrees of freedom (42 – 20): 20

Chi-square = 18.292
Degrees of freedom = 20
Probability level = 0.568
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Graphics Output

Here are the parameter estimates for the 73 girls:
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Here are the parameter estimates for the 72 boys:

Not surprisingly, the Model B parameter estimates are different from the Model A 
estimates. The following table shows estimates and standard errors for the two models 
side by side:

Parameters Model A Model B

Girls’ sample Estimate Standard 
Error Estimate Standard 

Error

g: cubes <--- spatial 0.610 0.143 0.557 0.114
g: lozenges <--- spatial 1.198 0.272 1.327 0.248
g: sentence <--- verbal 1.334 0.160 1.305 0.117
g: wordmean <--- verbal 2.234 0.263 2.260 0.200
g: spatial <---> verbal 7.315 2.571 7.225 2.458
g: var(spatial) 23.302 8.124 22.001 7.078
g: var(verbal) 9.682 2.159 9.723 2.025
g: var(err_v) 23.873 5.986 25.082 5.832
g: var(err_c) 11.602 2.584 12.382 2.481
g: var(err_l) 28.275 7.892 25.244 8.040
g: var(err_p) 2.834 0.869 2.835 0.834
g: var(err_s) 7.967 1.869 8.115 1.816
g: var(err_w) 19.925 4.951 19.550 4.837
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All but two of the estimated standard errors are smaller in Model B, including those for 
the unconstrained parameters. This is a reason to use Model B for parameter estimation 
rather than Model A, assuming, of course, that Model B is correct.

Boys’ sample Estimate Standard 
Error Estimate Standard 

Error

b: cubes <--- spatial 0.450 0.176 0.557 0.114
b: lozenges <--- spatial 1.510 0.461 1.327 0.248
b: sentence <--- verbal 1.275 0.171 1.305 0.117
b: wordmean <--- verbal 2.294 0.308 2.260 0.200
b: spatial <---> verbal 6.840 2.370 6.992 2.090
b: var(spatial) 16.058 7.516 16.183 5.886
b: var(verbal) 6.904 1.622 6.869 1.465
b: var(err_v) 31.571 6.982 31.563 6.681
b: var(err_c) 15.693 2.904 15.245 2.934
b: var(err_l) 36.526 11.532 40.974 9.689
b: var(err_p) 2.364 0.726 2.363 0.681
b: var(err_s) 6.035 1.433 5.954 1.398
b: var(err_w) 19.697 4.658 19.937 4.470
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Modeling in VB.NET

Model A

The following program (Ex12-a.vb) fits Model A for boys and girls:

The same model is specified for boys as for girls. However, the boys’ parameter values 
can be different from the corresponding girls’ parameters.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc   = (1) spatial + (1) err_v")
            Sem.AStructure("cubes     =     spatial + (1) err_c")
            Sem.AStructure("lozenges  =     spatial + (1) err_l")

            Sem.AStructure("paragrap = (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  =     verbal  + (1) err_s")
            Sem.AStructure("wordmean  =     verbal  + (1) err_w")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc   = (1) spatial + (1) err_v")
            Sem.AStructure("cubes     =     spatial + (1) err_c")
            Sem.AStructure("lozenges  =     spatial + (1) err_l")

            Sem.AStructure("paragrap = (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  =     verbal  + (1) err_s")
            Sem.AStructure("wordmean  =     verbal  + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model B

Here is a program for fitting Model B, in which some parameters are identically named 
so that they are constrained to be equal. The program is saved as Ex12-b.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc   =      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (lozn_s) spatial + (1) err_l")

            Sem.AStructure("paragrap =      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (word_v) verbal  + (1) err_w")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc   =      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (lozn_s) spatial + (1) err_l")

            Sem.AStructure("paragrap =      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (word_v) verbal  + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Example

13
Estimating and Testing Hypotheses 
about Means

Introduction

This example demonstrates how to estimate means and how to test hypotheses about 
means. In large samples, the method demonstrated is equivalent to multivariate 
analysis of variance.

Means and Intercept Modeling

Amos and similar programs are usually used to estimate variances, covariances, and 
regression weights, and to test hypotheses about those parameters. Means and 
intercepts are not usually estimated, and hypotheses about means and intercepts are 
not usually tested. At least in part, means and intercepts have been left out of structural 
equation modeling because of the relative difficulty of specifying models that include 
those parameters.

Amos, however, was designed to make means and intercept modeling easy. The 
present example is the first of several showing how to estimate means and intercepts 
and test hypotheses about them. In this example, the model parameters consist only 
of variances, covariances, and means. Later examples introduce regression weights 
and intercepts in regression equations.
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About the Data

For this example, we will be using Attig’s (1983) memory data, which was described 
in Example 1. We will use data from both young and old subjects. The raw data for the 
two groups are contained in the Microsoft Excel workbook UserGuide.xls, in the 
Attg_yng and Attg_old worksheets. In this example, we will be using only the measures 
recall1 and cued1.

Model A for Young and Old Subjects

In the analysis of Model B of Example 10, we concluded that recall1 and cued1 have 
the same variances and covariance for both old and young people. At least, the 
evidence against that hypothesis was found to be insignificant. Model A in the present 
example replicates the analysis in Example 10 of Model B with an added twist. This 
time, the means of the two variables recall1 and cued1 will also be estimated.

Mean Structure Modeling in Amos Graphics

In Amos Graphics, estimating and testing hypotheses involving means is not too 
different from analyzing variance and covariance structures. Take Model B of Example 
10 as a starting point. Young and old subjects had the same path diagram:

The same parameter names were used in both groups, which had the effect of requiring 
parameter estimates to be the same in both groups.

Means and intercepts did not appear in Example 10. To introduce means and 
intercepts into the model:

E From the menus, choose View → Analysis Properties. 

E In the Analysis Properties dialog box, click the Estimation tab.

var_rec

recall1
var_cue

cued1

cov_rc
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E Select Estimate means and intercepts.

 

Now the path diagram looks like this (the same path diagram for each group):

The path diagram now shows a mean, variance pair of parameters for each exogenous 
variable. There are no endogenous variables in this model and hence no intercepts. For 
each variable in the path diagram, there is a comma followed by the name of a variance. 
There is only a blank space preceding each comma because the means in the model 
have not yet been named.

When you choose Calculate Estimates from the Analyze menu, Amos will estimate 
two means, two variances, and a covariance for each group. The variances and the 
covariance will be constrained to be equal across groups, while the means will be 
unconstrained.

  

,var_rec

recall1
,var_cue

cued1

cov_rc
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The behavior of Amos Graphics changes in several ways when you select (put a check 
mark next to) Estimate means and intercepts: 

Mean and intercept fields appear on the Parameters tab in the Object Properties 
dialog box.

Constraints can be applied to means and intercepts as well as regression weights, 
variances, and covariances.

From the menus, choosing Analyze → Calculate Estimates estimates means and 
intercepts—subject to constraints, if any.

You have to provide sample means if you provide sample covariances as input.

When you do not put a check mark next to Estimate means and intercepts: 

Only fields for variances, covariances, and regression weights are displayed on the 
Parameters tab in the Object Properties dialog box. Constraints can be placed only 
on those parameters.

When Calculate Estimates is chosen, Amos estimates variances, covariances, and 
regression weights, but not means or intercepts.

You can provide sample covariances as input without providing sample means. If 
you do provide sample means, they are ignored.

If you remove the check mark next to Estimate means and intercepts after a means 
model has already been fitted, the output path diagram will continue to show means 
and intercepts. To display the correct output path diagram without means or 
intercepts, recalculate the model estimates after removing the check mark next to 
Estimate means and intercepts.

With these rules, the Estimate mean and intercepts check box makes estimating and 
testing means models as easy as traditional path modeling.

Results for Model A

Text Output

The number of degrees of freedom for this model is the same as in Example 10, Model 
B, but we arrive at it in a different way. This time, the number of distinct sample 
moments includes the sample means as well as the sample variances and covariances. 
In the young sample, there are two variances, one covariance, and two means, for a 
total of five sample moments. Similarly, there are five sample moments in the old 
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sample. So, taking both samples together, there are 10 sample moments. As for the 
parameters to be estimated, there are seven of them, namely var_rec (the variance of 
recall1), var_cue (the variance of cued1), cov_rc (the covariance between recall1 and 
cued1), the means of recall1 among young and old people (2), and the means of cued1 
among young and old people (2).

The number of degrees of freedom thus works out to be:

The chi-square statistic here is also the same as in Model B of Example 10. The 
hypothesis that old people and young people share the same variances and covariance 
would be accepted at any conventional significance level.

Here are the parameter estimates for the 40 young subjects:

 

Here are the estimates for the 40 old subjects:

Chi-square = 4.588
Degrees of freedom = 3
Probability level = 0.205

Computation of degrees of freedom (Default model) 
Number of distinct sample moments: 10 

Number of distinct parameters to be estimated: 7 
Degrees of freedom (10 - 7): 3  

Means: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1   10.250 .382 26.862 ***  
cued1   11.700 .374 31.292 ***  

Covariances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1 <--> cued1 4.056 .780 5.202 *** cov_rc 

Variances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1   5.678 .909 6.245 *** var_rec 
cued1   5.452 .873 6.245 *** var_cue  

Means: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1   8.675 .382 22.735 ***  
cued1   9.575 .374 25.609 ***  

Covariances: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1 <--> cued1 4.056 .780 5.202 *** cov_rc 

Variances: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

recall1   5.678 .909 6.245 *** var_rec 
cued1   5.452 .873 6.245 *** var_cue  
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Except for the means, these estimates are the same as those obtained in Example 10, 
Model B. The estimated standard errors and critical ratios are also the same. This 
demonstrates that merely estimating means, without placing any constraints on them, 
has no effect on the estimates of the remaining parameters or their standard errors.

Graphics Output

The path diagram output for the two groups follows. Each variable has a mean, 
variance pair displayed next to it. For instance, for young subjects, variable recall1 has 
an estimated mean of 10.25 and an estimated variance of 5.68.

Model B for Young and Old Subjects

From now on, assume that Model A is correct, and consider the more restrictive 
hypothesis that the means of recall1 and cued1 are the same for both groups. 

To constrain the means for recall1 and cued1:

E Right-click recall1 and choose Object Properties from the pop-up menu.

E In the Object Properties dialog box, click the Parameters tab.

10.25, 5.68
recall1

11.70, 5.45
cued1

4.06

Example 13:  Model A
Homogenous covariance structures

Attig (1983) young subjects
Unstandardized estimates

8.68, 5.68
recall1

9.58, 5.45
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4.06

Example 13:  Model A
Homogenous covariance structures

Attig (1983) old subjects
Unstandardized estimates
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E You can enter either a numeric value or a name in the Mean text box. For now, type the 
name mn_rec.

E Select All groups. (A check mark appears next to it. The effect of the check mark is to 
assign the name mn_rec to the mean of recall1 in every group, requiring the mean of 
recall1 to be the same for all groups.)

E After giving the name mn_rec to the mean of recall1, follow the same steps to give the 
name mn_cue to the mean of cued1.

The path diagrams for the two groups should now look like this:

These path diagrams are saved in the file Ex13-b.amw.
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Results for Model B

With the new constraints on the means, Model B has five degrees of freedom.

Model B has to be rejected at any conventional significance level.

Comparison of Model B with Model A

If Model A is correct and Model B is wrong (which is plausible, since Model A was 
accepted and Model B was rejected), then the assumption of equal means must be 
wrong. A better test of the hypothesis of equal means under the assumption of equal 
variances and covariances can be obtained in the following way: In comparing Model 
B with Model A, the chi-square statistics differ by 14.679, with a difference of 2 in 
degrees of freedom. Since Model B is obtained by placing additional constraints on 
Model A, we can say that, if Model B is correct, then 14.679 is an observation on a 
chi-square variable with two degrees of freedom. The probability of obtaining this 
large a chi-square value is 0.001. Therefore, we reject Model B in favor of Model A, 
concluding that the two groups have different means.

The comparison of Model B against Model A is as close as Amos can come to 
conventional multivariate analysis of variance. In fact, the test in Amos is equivalent 
to a conventional MANOVA, except that the chi-square test provided by Amos is only 
asymptotically correct. By contrast, MANOVA, for this example, provides an exact 
test.

Multiple Model Input

It is possible to fit both Model A and Model B in a single analysis. The file 
Ex13-all.amw shows how to do this. One benefit of fitting both models in a single 
analysis is that Amos will recognize that the two models are nested and will 

Chi-square = 19.267
Degrees of freedom = 5
Probability level = 0.002

Computation of degrees of freedom (Default model) 
Number of distinct sample moments: 10 

Number of distinct parameters to be estimated: 5 
Degrees of freedom (10 - 5): 5  
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automatically compute the difference in chi-square values as well as the p value for 
testing Model B against Model A. 

Mean Structure Modeling in VB.NET

Model A

Here is a program (Ex13-a.vb) for fitting Model A. The program keeps the variance and 
covariance restrictions that were used in Example 10, Model B, and, in addition, places 
constraints on the means.

The ModelMeansAndIntercepts method is used to specify that means (of exogenous 
variables) and intercepts (in predicting endogenous variables) are to be estimated as 
explicit model parameters.

The Mean method is used twice in each group in order to estimate the means of 
recall1 and cued1. If the Mean method had not been used in this program, recall1 and 
cued1 would have had their means fixed at 0. When you use the 
ModelMeansAndIntercepts method in an Amos program, Amos assumes that each 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
            Sem.GroupName("young_subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
            Sem.Mean("recall1")
            Sem.Mean("cued1")

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
            Sem.GroupName("old_subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
            Sem.Mean("recall1")
            Sem.Mean("cued1")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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exogenous variable has a mean of 0 unless you specify otherwise. You need to use the 
Model method once for each exogenous variable whose mean you want to estimate. It 
is easy to forget that Amos programs behave this way when you use 
ModelMeansAndIntercepts.

Note: If you use the Sem.ModelMeansAndIntercepts method in an Amos program, then 
the Mean method must be called once for each exogenous variable whose mean you 
want to estimate. Any exogenous variable that is not explicitly estimated through use 
of the Mean method is assumed to have a mean of 0.

This is different from Amos Graphics, where putting a check mark next to Estimate 

means and intercepts causes the means of all exogenous variables to be treated as free 
parameters except for those means that are explicitly constrained.

Model B

The following program (Ex13-b.vb) fits Model B. In addition to requiring 
group-invariant variances and covariances, the program also requires the means to be 
equal across groups.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
            Sem.GroupName("young_subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
            Sem.Mean("recall1", "mn_rec")
            Sem.Mean("cued1", "mn_cue")

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
            Sem.GroupName("old_subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
            Sem.Mean("recall1", "mn_rec")
            Sem.Mean("cued1", "mn_cue")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Fitting Multiple Models

Both models A and B can be fitted by the following program. It is saved as Ex13-all.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_yng")
            Sem.GroupName("young subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
            Sem.Mean("recall1", "yng_rec")
            Sem.Mean("cued1", "yng_cue")

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Attg_old")
            Sem.GroupName("old subjects")
            Sem.AStructure("recall1           (var_rec)")
            Sem.AStructure("cued1             (var_cue)")
            Sem.AStructure("recall1 <> cued1  (cov_rc)")
            Sem.Mean("recall1", "old_rec")
            Sem.Mean("cued1", "old_cue")

        Sem.Model("Model_A", "")
        Sem.Model("Model_B", "yng_rec = old_rec", "yng_cue = old_cue")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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14
Regression with an Explicit Intercept

Introduction

This example shows how to estimate the intercept in an ordinary regression analysis.

Assumptions Made by Amos

Ordinarily, when you specify that some variable depends linearly on some others, 
Amos assumes that the linear equation expressing the dependency contains an 
additive constant, or intercept, but does not estimate it. For instance, in Example 4, we 
specified the variable performance to depend linearly on three other variables: 
knowledge, value, and satisfaction. Amos assumed that the regression equation was 
of the following form: 

where , , and  are regression weights, and a is the intercept. In Example 4, the 
regression weights  through  were estimated. Amos did not estimate a in Example 
4, and it did not appear in the path diagram. Nevertheless, , , and  were 
estimated under the assumption that a was present in the regression equation. 
Similarly, knowledge, value, and satisfaction were assumed to have means, but their 
means were not estimated and did not appear in the path diagram. You will usually be 
satisfied with this method of handling means and intercepts in regression equations. 
Sometimes, however, you will want to see an estimate of an intercept or to test a 
hypothesis about an intercept. For that, you will need to take the steps demonstrated in 
this example. 

performance a b1 knowledge b2 value b3 satisfaction error+×+×+×+=

b1 b2 b3

b1 b3

b1 b2 b3
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About the Data

We will once again use the data of Warren, White, and Fuller (1974), first used in 
Example 4. We will use the Excel worksheet Warren5v in UserGuide.xls found in the 
Examples directory. Here are the sample moments (means, variances, and 
covariances):

Specifying the Model

You can specify the regression model exactly as you did in Example 4. In fact, if you 
have already worked through Example 4, you can use that path diagram as a starting 
point for this example. Only one change is required to get Amos to estimate the means 
and the intercept.

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Estimation tab.

E Select Estimate means and intercepts.

Your path diagram should then look like this:
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Notice the string 0, displayed above the error variable. The 0 to the left of the comma 
indicates that the mean of the error variable is fixed at 0, a standard assumption in 
linear regression models. The absence of anything to the right of the comma in 0, 
means that the variance of error is not fixed at a constant and does not have a name.

With a check mark next to Estimate means and intercepts, Amos will estimate a mean 
for each of the predictors, and an intercept for the regression equation that predicts 
performance.

Results of the Analysis

Text Output

The present analysis gives the same results as in Example 4 but with the explicit 
estimation of three means and an intercept. The number of degrees of freedom is again 
0, but the calculation of degrees of freedom goes a little differently. Sample means are 
required for this analysis; therefore, the number of distinct sample moments includes 
the sample means as well as the sample variances and covariances. There are four 
sample means, four sample variances, and six sample covariances, for a total of 14 
sample moments. As for the parameters to be estimated, there are three regression 
weights and an intercept. Also, the three predictors have among them three means, 
three variances, and three covariances. Finally, there is one error variance, for a total of 
14 parameters to be estimated.

value

knowledge

performance

satisfaction

0,

error
1

Example 14
Job Performance of Farm Managers
Regression with an explicit intercept

(Model Specification)
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With 0 degrees of freedom, there is no hypothesis to be tested.

The estimates for regression weights, variances, and covariances are the same as in 
Example 4, and so are the associated standard error estimates, critical ratios, and 
p values.

Chi-square = 0.000
Degrees of freedom = 0
Probability level cannot be computed

Computation of degrees of freedom (Default model) 
Number of distinct sample moments: 14 

Number of distinct parameters to be estimated: 14 
Degrees of freedom (14 - 14): 0  

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

performance <--- knowledge .258 .054 4.822 ***  
performance <--- value .145 .035 4.136 ***  
performance <--- satisfaction .049 .038 1.274 .203  

Means: (Group number 1 - Default model) 
  Estimate S.E. C.R. P Label

value   2.877 .035 81.818 ***  
knowledge   1.380 .023 59.891 ***  
satisfaction   2.461 .030 81.174 ***  

Intercepts: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

performance   -.834 .140 -5.951 ***  

Covariances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label

knowledge <--> satisfaction .004 .007 .632 .528  
value <--> satisfaction -.006 .011 -.593 .553  
knowledge <--> value .028 .008 3.276 .001  

Variances: (Group number 1 - Default model) 
  Estimate S.E. C.R. P Label

knowledge   .051 .007 6.964 ***  
value   .120 .017 6.964 ***  
satisfaction   .089 .013 6.964 ***  
error   .012 .002 6.964 ***   
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Graphics Output

Below is the path diagram that shows the unstandardized estimates for this example. 
The intercept of –0.83 appears just above the endogenous variable performance.

Modeling in VB.NET

As a reminder, here is the Amos program from Example 4 (equation version):

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ImpliedMoments()
        Sem.SampleMoments()

        Sem.BeginGroup(Sem.AmosDir & "Examples\UserGuide.xls", "Warren5v")
        Sem.AStructure _
            ("performance = knowledge + value + satisfaction + error (1)")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

2.88, .12

value

1.38, .05

knowledge

-.83

performance

2.46, .09

satisfaction

.26

.15

.05

0, .01

error
1

.00

-.01

.03

Example 14
Job Performance of Farm Managers
Regression with an explicit intercept

(Unstandardized estimates)
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The following program for the model of Example 14 gives all the same results, plus 
mean and intercept estimates. This program is saved as Ex14.vb.

Note the Sem.ModelMeansAndIntercepts statement that causes Amos to treat means and 
intercepts as explicit model parameters. Another change from Example 4 is that there 
is now an additional pair of empty parentheses and a plus sign in the AStructure line. 
The extra pair of empty parentheses represents the intercept in the regression equation.

The Sem.Mean statements request estimates for the means of knowledge, value, and 
satisfaction. Each exogenous variable with a mean other than 0 has to appear as the 
argument in a call to the Mean method. If the Mean method had not been used in this 
program, Amos would have fixed the means of the exogenous variables at 0.

Intercept parameters can be specified by an extra pair of parentheses in a 
Sem.AStructure command (as we just showed) or by using the Intercept method. In the 
following program, the Intercept method is used to specify that there is an intercept in 
the regression equation for predicting performance:

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ImpliedMoments()
        Sem.SampleMoments()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup( _
            Sem.AmosDir & "Examples\UserGuide.xls", "Warren5v")
        Sem.AStructure( _
            "performance = () + knowledge + value + satisfaction + error (1)")

        Sem.Mean("knowledge")
        Sem.Mean("value")
        Sem.Mean("satisfaction")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ImpliedMoments()
        Sem.SampleMoments()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup( _
            Sem.AmosDir & "Examples\UserGuide.xls", "Warren5v")
        Sem.AStructure("performance <--- knowledge")
        Sem.AStructure("performance <--- value")
        Sem.AStructure("performance <--- satisfaction")
        Sem.AStructure("performance <--- error (1)")

        Sem.Intercept("performance")
        Sem.Mean("knowledge")
        Sem.Mean("value")
        Sem.Mean("satisfaction")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Example

15
Factor Analysis with Structured 
Means

Introduction

This example demonstrates how to estimate factor means in a common factor analysis 
of data from several populations.

Factor Means

Conventionally, the common factor analysis model does not make any assumptions 
about the means of any variables. In particular, the model makes no assumptions about 
the means of the common factors. In fact, it is not even possible to estimate factor 
means or to test hypotheses in a conventional, single-sample factor analysis.

However, Sörbom (1974) showed that it is possible to make inferences about factor 
means under reasonable assumptions, as long as you are analyzing data from more 
than one population. Using Sörbom’s approach, you cannot estimate the mean of 
every factor for every population, but you can estimate differences in factor means 
across populations. For instance, think about Example 12, where a common factor 
analysis model was fitted simultaneously to a sample of girls and a sample of boys. 
For each group, there were two common factors, interpreted as verbal ability and 
spatial ability. The method used in Example 12 did not permit an examination of 
mean verbal ability or mean spatial ability. Sörbom’s method does. Although his 
method does not provide mean estimates for either girls or boys, it does give an 
estimate of the mean difference between girls and boys for each factor. The method 
also provides a test of significance for differences of factor means.
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The identification status of the factor analysis model is a difficult subject when 
estimating factor means. In fact, Sörbom’s accomplishment was to show how to 
constrain parameters so that the factor analysis model is identified and so that 
differences in factor means can be estimated. We will follow Sörbom’s guidelines for 
achieving model identification in the present example.

About the Data

We will use the Holzinger and Swineford (1939) data from Example 12. The girls’ 
dataset is in Grnt_fem.sav. The boys’ dataset is in Grnt_mal.sav.

Model A for Boys and Girls

Specifying the Model

We need to construct a model to test the following null hypothesis: Boys and girls have 
the same average spatial ability and the same average verbal ability, where spatial and 
verbal ability are common factors. In order for this hypothesis to have meaning, the 
spatial and the verbal factors must be related to the observed variables in the same way 
for girls as for boys. This means that the girls’ regression weights and intercepts must 
be equal to the boys’ regression weights and intercepts. 

Model B of Example 12 can be used as a starting point for specifying Model A of 
the present example. Starting with Model B of Example 12:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Estimation tab.

E Select Estimate means and intercepts (a check mark appears next to it).

The regression weights are already constrained to be equal across groups. To begin 
constraining the intercepts to be equal across groups:

E Right-click one of the observed variables, such as visperc.

E Choose Object Properties from the pop-up menu.
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E In the Object Properties dialog box, click the Parameters tab.

E Enter a parameter name, such as int_vis, in the Intercept text box.

E Select All groups, so that the intercept is named int_vis in both groups.

E Proceed in the same way to give names to the five remaining intercepts.

As Sörbom showed, it is necessary to fix the factor means in one of the groups at a 
constant. We will fix the means of the boys’ spatial and verbal factors at 0. Example 
13 shows how to fix the mean of a variable to a constant value. 

Note: When using the Object Properties dialog box to fix the boys’ factor means at 0, 
be sure that you do not put a check mark next to All groups.

After fixing the boys’ factor means at 0, follow the same procedure to assign names to 
the girls’ factor means. At this point, the girls’ path diagram should look something 
like this:
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The boys’ path diagram should look like this:

 

Understanding the Cross-Group Constraints

The cross-group constraints on intercepts and regression weights may or may not be 
satisfied in the populations. One result of fitting the model will be a test of whether 
these constraints hold in the populations of girls and boys. The reason for starting out 
with these constraints is that (as Sörbom points out) it is necessary to impose some 
constraints on the intercepts and regression weights in order to make the model 
identified when estimating factor means. These are not the only constraints that would 
make the model identified, but they are plausible ones.

The only difference between the boys’ and girls’ path diagrams is in the constraints 
on the two factor means. For boys, the means are fixed at 0. For girls, both factor means 
are estimated. The girls’ factor means are named mn_s and mn_v, but the factor means 
are unconstrained because each mean has a unique name.

The boys’ factor means were fixed at 0 in order to make the model identified. 
Sörbom showed that, even with all the other constraints imposed here, it is still not 
possible to estimate factor means for both boys and girls simultaneously. Take verbal 
ability, for example. If you fix the boys’ mean verbal ability at some constant (like 0), 
you can then estimate the girls’ mean verbal ability. Alternatively, you can fix the girls’ 
mean verbal ability at some constant, and then estimate the boys’ mean verbal ability. 
The bad news is that you cannot estimate both means at once. The good news is that 
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the difference between the boys’ mean and the girls’ mean will be the same, no matter 
which mean you fix and no matter what value you fix for it.

Results for Model A

Text Output

There is no reason to reject Model A at any conventional significance level.

Graphics Output

We are primarily interested in estimates of mean verbal ability and mean spatial ability, 
and not so much in estimates of the other parameters. However, as always, all the 
estimates should be inspected to make sure that they are reasonable. Here are the 
unstandardized parameter estimates for the 73 girls:

Chi-square = 22.593
Degrees of freedom = 24
Probability level = 0.544
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Here are the boys’ estimates:

Girls have an estimated mean spatial ability of –1.07. We fixed the mean of boys’ 
spatial ability at 0. Thus, girls’ mean spatial ability is estimated to be 1.07 units below 
boys’ mean spatial ability. This difference is not affected by the initial decision to fix 
the boys’ mean at 0. If we had fixed the boys’ mean at 10.000, the girls’ mean would 
have been estimated to be 8.934. If we had fixed the girls’ mean at 0, the boys’ mean 
would have been estimated to be 1.07.

What unit is spatial ability expressed in? A difference of 1.07 verbal ability units 
may be important or not, depending on the size of the unit. Since the regression weight 
for regressing visperc on spatial ability is equal to 1, we can say that spatial ability is 
expressed in the same units as scores on the visperc test. Of course, this is useful 
information only if you happen to be familiar with the visperc test. There is another 
approach to evaluating the mean difference of 1.07, which does not involve visperc. A 
portion of the text output not reproduced here shows that spatial has an estimated 
variance of 15.752 for boys, or a standard deviation of about 4.0. For girls, the variance 
of spatial is estimated to be 21.188, so that its standard deviation is about 4.6. With 
standard deviations this large, a difference of 1.07 would not be considered very large 
for most purposes.

The statistical significance of the 1.07 unit difference between girls and boys is easy 
to evaluate. Since the boys’ mean was fixed at 0, we need to ask only whether the girls’ 
mean differs significantly from 0.

 

0, 15.75

spatial

30.14

visperc

25.12

cubes

16.60

lozenges

16.22

 wordmean

9.45

paragrap
18.26

sentence

0, 31.87
 err_v

0, 15.31
 err_c

0, 40.71
 err_l

0, 2.35
 err_p

0, 6.02
 err_s

0, 20.33

 err_w

0, 7.03

verbal

1.00

.56

1.37

1.00

1.28

2.21

1

1

1

1

1

1

6.98



235

Factor Analysis with Structured Means

Here are the girls’ factor mean estimates from the text output:

 

The girls’ mean spatial ability has a critical ratio of –1.209 and is not significantly 
different from 0 ( ). In other words, it is not significantly different from the 
boys’ mean.

Turning to verbal ability, the girls’ mean is estimated 0.96 units above the boys’ 
mean. Verbal ability has a standard deviation of about 2.7 among boys and about 3.15 
among girls. Thus, 0.96 verbal ability units is about one-third of a standard deviation 
in either group. The difference between boys and girls approaches significance at the 
0.05 level ( ).

Model B for Boys and Girls

In the discussion of Model A, we used critical ratios to carry out two tests of 
significance: a test for sex differences in spatial ability and a test for sex differences in 
verbal ability. We will now carry out a single test of the null hypothesis that there are 
no sex differences, either in spatial ability or in verbal ability. To do this, we will repeat 
the previous analysis with the additional constraint that boys and girls have the same 
mean on spatial ability and on verbal ability. Since the boys’ means are already fixed 
at 0, requiring the girls’ means to be the same as the boys’ means amounts to setting 
the girls’ means to 0 also.

The girls’ factor means have already been named mn_s and mn_v. To fix the means at 0:

E From the menus, choose Analyze → Manage Models.

E In the Manage Models dialog box, type Model A in the Model Name text box,

E Leave the Parameter Constraints box empty.

Means: (Girls - Default model) 
   Estimate S.E. C.R. P Label 

spatial   -1.066 .881 -1.209 .226 mn_s 
verbal   .956 .521 1.836 .066 mn_v  

p 0.226=

p 0.066=
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E Click New.

E Type Model B in the Model Name text box.

E Type the constraints mn_s = 0 and mn_v = 0 in the Parameter Constraints text box.

E Click Close.

Now when you choose Analyze → Calculate Estimates, Amos will fit both Model A and 
Model B. The file Ex15-all.amw contains this two-model setup.
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Results for Model B

If we did not have Model A as a basis for comparison, we would now accept Model B, 
using any conventional significance level.

Comparing Models A and B

An alternative test of Model B can be obtained by assuming that Model A is correct 
and testing whether Model B fits significantly worse than Model A. A chi-square test 
for this comparison is given in the text output.

E In the Amos Output window, click Model Comparison in the tree diagram in the upper 
left pane.

The table shows that Model B has two more degrees of freedom than Model A, and a 
chi-square statistic that is larger by 8.030. If Model B is correct, the probability of such 
a large difference in chi-square values is 0.018, providing some evidence against 
Model B.

Chi-square = 30.624
Degrees of freedom = 26
Probability level = 0.243

Assuming model Model A to be correct: 
Model DF CMIN P NFI

Delta-1 
IFI

Delta-2 
RFI

rho-1 
TLI

rho2 
Model B 2 8.030 .018 .024 .026 .021 .023  
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Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex15-a.vb.

The AStructure method is called once for each endogenous variable. The Mean method 
in the girls’ group is used to specify that the means of the verbal ability and spatial 
ability factors are freely estimated. The program also uses the Mean method to specify 
that verbal ability and spatial ability have zero means in the boys’ group. Actually, 
Amos assumes zero means by default, so the use of the Mean method for the boys is 
unnecessary.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc   = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (int_sen) + (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (int_wrd) + (word_v) verbal  + (1) err_w")
            Sem.Mean("spatial", "mn_s")
            Sem.Mean("verbal", "mn_v")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc   = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (int_sen) + (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (int_wrd) + (word_v) verbal  + (1) err_w")
            Sem.Mean("spatial", "0")
            Sem.Mean("verbal", "0")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model B

The following program fits Model B. In this model, the factor means are fixed at 0 for 
both boys and girls. The program is saved as Ex15-b.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\userguide.xls"
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "grnt_fem")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc   = (int_vis) +      (1) spatial + (1) err_v")
                Sem.AStructure("cubes     = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragraph = (int_par) +      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (int_sen) + (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (int_wrd) + (word_v) verbal  + (1) err_w")
            Sem.Mean("spatial", "0")
            Sem.Mean("verbal", "0")
        Sem.BeginGroup(dataFile, "grnt_mal")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc   = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragraph = (int_par) +      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (int_sen) + (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (int_wrd) + (word_v) verbal  + (1) err_w")
            Sem.Mean("spatial", "0")
            Sem.Mean("verbal", "0")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Fitting Multiple Models

The following program (Ex15-all.vb) fits both models A and B.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")
            Sem.GroupName("Girls")
            Sem.AStructure("visperc   = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (int_sen) + (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (int_wrd) + (word_v) verbal  + (1) err_w")
            Sem.Mean("spatial", "mn_s")
            Sem.Mean("verbal", "mn_v")

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_mal.sav")
            Sem.GroupName("Boys")
            Sem.AStructure("visperc   = (int_vis) +      (1) spatial + (1) err_v")
            Sem.AStructure("cubes     = (int_cub) + (cube_s) spatial + (1) err_c")
            Sem.AStructure("lozenges  = (int_loz) + (lozn_s) spatial + (1) err_l")
            Sem.AStructure("paragrap = (int_par) +      (1) verbal  + (1) err_p")
            Sem.AStructure("sentence  = (int_sen) + (sent_v) verbal  + (1) err_s")
            Sem.AStructure("wordmean  = (int_wrd) + (word_v) verbal  + (1) err_w")
            Sem.Mean("spatial", "0")
            Sem.Mean("verbal", "0")

        Sem.Model("Model A")                      ' Sex difference in factor means.
        Sem.Model("Model B", "mn_s=0", "mn_v=0")  ' Equal factor means.
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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16
Sörbom’s Alternative to 
Analysis of Covariance

Introduction

This example demonstrates latent structural equation modeling with longitudinal 
observations in two or more groups, models that generalize traditional analysis of 
covariance techniques by incorporating latent variables and autocorrelated residuals 
(compare to Sörbom, 1978), and how assumptions employed in traditional analysis of 
covariance can be tested.

Assumptions

Example 9 demonstrated an alternative to conventional analysis of covariance that 
works even with unreliable covariates. Unfortunately, analysis of covariance also 
depends on other assumptions besides the assumption of perfectly reliable covariates, 
and the method of Example 9 also depends on those. Sörbom (1978) developed a more 
general approach that allows testing many of those assumptions and relaxing some of 
them.

The present example uses the same data that Sörbom used to introduce his method. 
The exposition closely follows Sörbom’s.
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About the Data

We will again use the Olsson (1973) data introduced in Example 9. The sample means, 
variances, and covariances from the 108 experimental subjects are in the Microsoft 
Excel worksheet Olss_exp in the workbook UserGuide.xls. 

The sample means, variances, and covariances from the 105 control subjects are in the 
worksheet Olss_cnt. 

Both datasets contain the customary unbiased estimates of variances and covariances. 
That is, the elements in the covariance matrix were obtained by dividing by ( ). 
This also happens to be the default setting used by Amos for reading covariance 
matrices. However, for model fitting, the default behavior is to use the maximum 
likelihood estimate of the population covariance matrix (obtained by dividing by N) as 
the sample covariance matrix. Amos performs the conversion from unbiased estimates 
to maximum likelihood estimates automatically.

  

  

N 1–
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Changing the Default Behavior

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Bias tab.

The default setting used by Amos yields results that are consistent with missing data 
modeling (discussed in Example 17 and Example 18). Other SEM programs like 
LISREL (Jöreskog and Sörbom, 1989) and EQS (Bentler, 1985) analyze unbiased 
moments instead, resulting in slightly different results when sample sizes are small. 
Selecting both Unbiased options on the Bias tab causes Amos to produce the same 
estimates as LISREL or EQS. Appendix B discusses further the tradeoffs in choosing 
whether to fit the maximum likelihood estimate of the covariance matrix or the 
unbiased estimate.

Model A

Specifying the Model

Consider Sörbom’s initial model (Model A) for the Olsson data. The path diagram for 
the control group is:
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The following path diagram is Model A for the experimental group:

 

Means and intercepts are an important part of this model, so be sure that you do the 
following:

E From the menus, choose View → Analysis Properties.

E Click the Estimation tab.

E Select Estimate means and intercepts (a check mark appears next to it).

In each group, Model A specifies that pre_syn and pre_opp are indicators of a single 
latent variable called pre_verbal, and that post_syn and post_opp are indicators of 
another latent variable called post_verbal. The latent variable pre_verbal is interpreted 
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as verbal ability at the beginning of the study, and post_verbal is interpreted as verbal 
ability at the conclusion of the study. This is Sörbom’s measurement model. The 
structural model specifies that post_verbal depends linearly on pre_verbal. 

The labels opp_v1 and opp_v2 require the regression weights in the measurement 
model to be the same for both groups. Similarly, the labels a_syn1, a_opp1, a_syn2, 
and a_opp2 require the intercepts in the measurement model to be the same for both 
groups. These equality constraints are assumptions that could be wrong. In fact, one 
result of the upcoming analyses will be a test of these assumptions. As Sörbom points 
out, some assumptions have to be made about the parameters in the measurement 
model in order to make it possible to estimate and test hypotheses about parameters in 
the structural model.

For the control subjects, the mean of pre_verbal and the intercept of post_verbal are 
fixed at 0. This establishes the control group as the reference group for the group 
comparison. You have to pick such a reference group to make the latent variable means 
and intercepts identified.

For the experimental subjects, the mean and intercept parameters of the latent 
factors are allowed to be nonzero. The latent variable mean labeled pre_diff represents 
the difference in verbal ability prior to treatment, and the intercept labeled effect 
represents the improvement of the experimental group relative to the control group. 
The path diagram for this example is saved in Ex16-a.amw. 

Note that Sörbom’s model imposes no cross-group constraints on the variances of 
the six unobserved exogenous variables. That is, the four observed variables may have 
different unique variances in the control and experimental conditions, and the 
variances of pre_verbal and zeta may also be different in the two groups. We will 
investigate these assumptions more closely when we get to Models X, Y, and Z.

Results for Model A

Text Output

In the Amos Output window, clicking Notes for Model in the tree diagram in the upper 
left pane shows that Model A cannot be accepted at any conventional significance level.

Chi-square = 34.775
Degrees of freedom = 6
Probability level = 0.000
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We also get the following message that provides further evidence that Model A is wrong:

Can we modify Model A so that it will fit the data while still permitting a meaningful 
comparison of the experimental and control groups? It will be helpful here to repeat 
the analysis and request modification indices. To obtain modification indices:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select Modification indices and enter a suitable threshold in the text box to its right. For 
this example, the threshold will be left at its default value of 4.

Here is the modification index output from the experimental group:

In the control group, no parameter had a modification index greater than the threshold 
of 4.

The following variances are negative. (control - Default 
model) 

 zeta 
 -2.868  

Modification Indices (experimental - Default model) 
Covariances: (experimental - Default model) 

   M.I. Par Change
eps2 <--> eps4 10.508 4.700 
eps2 <--> eps3 8.980 -4.021 
eps1 <--> eps4 8.339 -3.908 
eps1 <--> eps3 7.058 3.310 

Variances: (experimental - Default model) 
   M.I. Par Change 

Regression Weights: (experimental - Default model) 
   M.I. Par Change 

Means: (experimental - Default model) 
   M.I. Par Change 

Intercepts: (experimental - Default model) 
   M.I. Par Change  
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Model B

The largest modification index obtained with Model A suggests adding a covariance 
between eps2 and eps4 in the experimental group. The modification index indicates 
that the chi-square statistic will drop by at least 10.508 if eps2 and eps4 are allowed to 
have a nonzero covariance. The parameter change statistic of 4.700 indicates that the 
covariance estimate will be positive if it is allowed to take on any value. The suggested 
modification is plausible. Eps2 represents unique variation in pre_opp, and eps4 
represents unique variation in post_opp, where measurements on pre_opp and 
post_opp are obtained by administering the same test, opposites, on two different 
occasions. It is therefore reasonable to think that eps2 and eps4 might be positively 
correlated.

The next step is to consider a revised model, called Model B, in which eps2 and eps4 
are allowed to be correlated in the experimental group. To obtain Model B from Model A:

E Draw a double-headed arrow connecting eps2 and eps4.

This allows eps2 and eps4 to be correlated in both groups. We do not want them to be 
correlated in the control group, so the covariance must be fixed at 0 in the control 
group. To accomplish this:

E Click control in the Groups panel (at the left of the path diagram) to display the path 
diagram for the control group.

E Right-click the double-headed arrow and choose Object Properties from the pop-up 
menu.

E In the Object Properties dialog box, click the Parameters tab.

E Type 0 in the Covariance text box.

E Make sure the All groups check box is empty. With the check box empty, the constraint 
on the covariance applies to only the control group.
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For Model B, the path diagram for the control group is:
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For the experimental group, the path diagram is:

Results for Model B

In moving from Model A to Model B, the chi-square statistic dropped by 17.712 (more 
than the promised 10.508) while the number of degrees of freedom dropped by just 1. 

Model B is an improvement over Model A but not enough of an improvement. Model 
B still does not fit the data well. Furthermore, the variance of zeta in the control group 
has a negative estimate (not shown here), just as it had for Model A. These two facts 
argue strongly against Model B. There is room for hope, however, because the 
modification indices suggest further modifications of Model B. The modification 
indices for the control group are:

Chi-square = 17.063
Degrees of freedom = 5
Probability level = 0.004
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The largest modification index (4.727) suggests allowing eps2 and eps4 to be 
correlated in the control group. (Eps2 and eps4 are already correlated in the 
experimental group.) Making this modification leads to Model C.

Model C

Model C is just like Model B except that the terms eps2 and eps4 are correlated in both 
the control group and the experimental group.

To specify Model C, just take Model B and remove the constraint on the covariance 
between eps2 and eps4 in the control group. Here is the new path diagram for the 
control group, as found in file Ex16-c.amw:

Modification Indices (control - Default model) 
Covariances: (control - Default model) 

   M.I. Par Change 
eps2 <--> eps4 4.727 2.141 
eps1 <--> eps4 4.086 -2.384 

Variances: (control - Default model) 
   M.I. Par Change 

Regression Weights: (control - Default model) 
   M.I. Par Change 

Means: (control - Default model) 
   M.I. Par Change 

Intercepts: (control - Default model) 
   M.I. Par Change  
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Results for Model C

Finally, we have a model that fits.

From the point of view of statistical goodness of fit, there is no reason to reject Model 
C. It is also worth noting that all the variance estimates are positive. The following are 
the parameter estimates for the 105 control subjects:

Next is a path diagram displaying parameter estimates for the 108 experimental 
subjects:

Chi-square = 2.797
Degrees of freedom = 4
Probability level = 0.592

 

0, 28.10

pre_verbal

18.63

pre_syn

0, 10.04
eps1

1.00

1
19.91

pre_opp

0, 12.12
eps2

.88

1

0

post_verbal

20.38

post_syn

0, 5.63
eps3

21.21

post_opp

0, 12.36
eps4

1.00

1

.90

1

.95

0, .54

zeta

1

Example 16:  Model C
An alternative to ANCOVA

Olsson (1973): control condition.
Unstandardized estimates

6.22



252

Example 16

 

Most of these parameter estimates are not very interesting, although you may want to 
check and make sure that the estimates are reasonable. We have already noted that the 
variance estimates are positive. The path coefficients in the measurement model are 
positive, which is reassuring. A mixture of positive and negative regression weights in 
the measurement model would have been difficult to interpret and would have cast 
doubt on the model. The covariance between eps2 and eps4 is positive in both groups, 
as expected.

We are primarily interested in the regression of post_verbal on pre_verbal. The 
intercept, which is fixed at 0 in the control group, is estimated to be 3.71 in the 
experimental group. The regression weight is estimated at 0.95 in the control group and 
0.85 in the experimental group. The regression weights for the two groups are close 
enough that they might even be identical in the two populations. Identical regression 
weights would allow a greatly simplified evaluation of the treatment by limiting the 
comparison of the two groups to a comparison of their intercepts. It is therefore 
worthwhile to try a model in which the regression weights are the same for both 
groups. This will be Model D.

Model D

Model D is just like Model C except that it requires the regression weight for predicting 
post_verbal from pre_verbal to be the same for both groups. This constraint can be imposed 
by giving the regression weight the same name, for example pre2post, in both groups. The 
following is the path diagram for Model D for the experimental group:
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Next is the path diagram for Model D for the control group:

Results for Model D

Model D would be accepted at conventional significance levels.

Chi-square = 3.976
Degrees of freedom = 5
Probability level = 0.553
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Testing Model D against Model C gives a chi-square value of 1.179 (= 3.976 – 2.797) 
with 1 (that is, 5 – 4) degree of freedom. Again, you would accept the hypothesis of 
equal regression weights (Model D).

With equal regression weights, the comparison of treated and untreated subjects 
now turns on the difference between their intercepts. Here are the parameter estimates 
for the 105 control subjects:

The estimates for the 108 experimental subjects are:

The intercept for the experimental group is estimated as 3.63. According to the text 
output (not shown here), the estimate of 3.63 has a critical ratio of 7.59. Thus, the 
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intercept for the experimental group is significantly different from the intercept for the 
control group (which is fixed at 0). 

Model E

Another way of testing the difference in post_verbal intercepts for significance is to 
repeat the Model D analysis with the additional constraint that the intercept be equal 
across groups. Since the intercept for the control group is already fixed at 0, we need 
add only the requirement that the intercept be 0 in the experimental group as well. This 
restriction is used in Model E.

The path diagrams for Model E are just like that for Model D, except that the 
intercept in the regression of post_verbal on pre_verbal is fixed at 0 in both groups. 
The path diagrams are not reproduced here. They can be found in Ex16-e.amw.

Results for Model E

Model E has to be rejected.

Comparing Model E against Model D yields a chi-square value of 51.018 (= 55.094 – 
3.976) with 1 (= 6 – 5) degree of freedom. Model E has to be rejected in favor of Model 
D. Because the fit of Model E is significantly worse than that of Model D, the 
hypothesis of equal intercepts again has to be rejected. In other words, the control and 
experimental groups differ at the time of the posttest in a way that cannot be accounted 
for by differences that existed at the time of the pretest.

This concludes Sörbom’s (1978) analysis of the Olsson data.

Fitting Models A Through E in a Single Analysis

The example file Ex16-a2e.amw fits all five models (A through E) in a single analysis. 
The procedure for fitting multiple models in a single analysis was shown in detail in 
Example 6.

Chi-square = 55.094
Degrees of freedom = 6
Probability level = 0.000
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Comparison of Sörbom’s Method with the Method of Example 9

Sörbom’s alternative to analysis of covariance is more difficult to apply than the 
method of Example 9. On the other hand, Sörbom’s method is superior to the method 
of Example 9 because it is more general. That is, you can duplicate the method of 
Example 9 by using Sörbom’s method with suitable parameter constraints.

We end this example with three additional models called X, Y, and Z. Comparisons 
among these new models will allow us to duplicate the results of Example 9. However, 
we will also find evidence that the method used in Example 9 was inappropriate. The 
purpose of this fairly complicated exercise is to call attention to the limitations of the 
approach in Example 9 and to show that some of the assumptions of that method can 
be tested and relaxed in Sörbom’s approach.

Model X

First, consider a new model (Model X) that requires that the variances and covariances 
of the observed variables be the same for the control and experimental conditions. The 
means of the observed variables may differ between the two populations. Model X 
does not specify any linear dependencies among the variables. Model X is not, by 
itself, very interesting; however, Models Y and Z (coming up) are interesting, and we 
will want to know how well they fit the data, compared to Model X.

Modeling in Amos Graphics

Because there are no intercepts or means to estimate, make sure that there is not a check 
mark next to Estimate means and intercepts on the Estimation tab of the Analysis 
Properties dialog box. 
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The following is the path diagram for Model X for the control group:

The path diagram for the experimental group is identical. Using the same parameter 
names for both groups has the effect of requiring the two groups to have the same 
parameter values.

Results for Model X

Model X would be rejected at any conventional level of significance.

The analyses that follow (Models Y and Z) are actually inappropriate now that we are 
satisfied that Model X is inappropriate. We will carry out the analyses as an exercise in 
order to demonstrate that they yield the same results as obtained in Example 9.

Model Y

Consider a model that is just like Model D but with these additional constraints:

Verbal ability at the pretest (pre_verbal) has the same variance in the control and 
experimental groups.

The variances of eps1, eps2, eps3, eps4, and zeta are the same for both groups.

The covariance between eps2 and eps4 is the same for both groups.

Chi-square = 29.145
Degrees of freedom = 10
Probability level = 0.001
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Apart from the correlation between eps2 and eps4, Model D required that eps1, eps2, 
eps3, eps4, and zeta be uncorrelated among themselves and with every other 
exogenous variable. These new constraints amount to requiring that the variances and 
covariances of all exogenous variables be the same for both groups. 

Altogether, the new model imposes two kinds of constraints:

All regression weights and intercepts are the same for both groups, except possibly 
for the intercept used in predicting post_verbal from pre_verbal (Model D 
requirements). 

The variances and covariances of the exogenous variables are the same for both 
groups (additional Model Y requirements).

These are the same assumptions we made in Model B of Example 9. The difference 
this time is that the assumptions are made explicit and can be tested. Path diagrams for 
Model Y are shown below. Means and intercepts are estimated in this model, so be sure 
that you:

E From the menus, choose View → Analysis Properties.

E Click the Estimation tab.

E Select Estimate means and intercepts (a check mark appears next to it).

Here is the path diagram for the experimental group:
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Here is the path diagram for the control group:

Results for Model Y

We must reject Model Y.

This is a good reason for being dissatisfied with the analysis of Example 9, since it 
depended upon Model Y (which, in Example 9, was called Model B) being correct. If 
you look back at Example 9, you will see that we accepted Model B there (χ2= 2.684, 
df = 2, p = 0.261). So how can we say that the same model has to be rejected here (χ2 

= 31.816, df = 1, p = 0.001)? The answer is that, while the null hypothesis is the same 
in both cases (Model B in Example 9 and Model Y in the present example), the 
alternative hypotheses are different. In Example 9, the alternative against which Model 
B is tested includes the assumption that the variances and covariances of the observed 
variables are the same for both values of the treatment variable (also stated in the 
assumptions on p. 35). In other words, the test of Model B carried out in Example 9 
implicitly assumed homogeneity of variances and covariances for the control and 
experimental populations. This is the very assumption that is made explicit in Model X 
of the present example. 

Model Y is a restricted version of Model X. It can be shown that the assumptions of 
Model Y (equal regression weights for the two populations, and equal variances and 

Chi-square = 31.816
Degrees of freedom = 12
Probability level = 0.001
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covariances of the exogenous variables) imply the assumptions of Model X (equal 
covariances for the observed variables). Models X and Y are therefore nested models, 
and it is possible to carry out a conditional test of Model Y under the assumption that 
Model X is true. Of course, it will make sense to do that test only if Model X really is 
true, and we have already concluded it is not. Nevertheless, let’s go through the 
motions of testing Model Y against Model X. The difference in chi-square values is 
2.671 (that is, 31.816 – 29.145) with 2 (= 12 – 10) degrees of freedom. These figures 
are identical (within rounding error) to those of Example 9, Model B. The difference 
is that in Example 9 we assumed that the test was appropriate. Now we are quite sure 
(because we rejected Model X) that it is not.

If you have any doubts that the current Model Y is the same as Model B of Example 
9, you should compare the parameter estimates from the two analyses. Here are the 
Model Y parameter estimates for the 108 experimental subjects. See if you can match 
up these estimates displayed with the unstandardized parameter estimates obtained in 
Model B of Example 9.

Model Z

Finally, construct a new model (Model Z) by starting with Model Y and adding the 
requirement that the intercept in the equation for predicting post_verbal from 
pre_verbal be the same in both populations. This model is equivalent to Model C of 
Example 9. The path diagrams for Model Z are as follows:
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Here is the path diagram for Model Z for the experimental group:

Here is the path diagram for the control group:

Results for Model Z

This model has to be rejected.

Chi-square = 84.280
Degrees of freedom = 13
Probability level = 0.000
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Model Z also has to be rejected when compared to Model Y (χ2 = 84.280 – 31.816 = 
52.464, df = 13 – 12 = 1). Within rounding error, this is the same difference in 
chi-square values and degrees of freedom as in Example 9, when Model C was 
compared to Model B.

Modeling in VB.NET

Model A

The following program fits Model A. It is saved as Ex16-a.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (0) + () pre_verbal + (1) zeta")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (effect) + () pre_verbal + (1) zeta")
            Sem.Mean("pre_verbal", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model B

To fit Model B, start with the program for Model A and add the line

Sem.AStructure("eps2 <---> eps4")

to the model specification for the experimental group. Here is the resulting program for 
Model B. It is saved as Ex16-b.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (0) + () pre_verbal + (1) zeta")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (effect) + () pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")
            Sem.Mean("pre_verbal", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model C

The following program fits Model C. The program is saved as Ex16-c.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"

        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (0) + () pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (effect) + () pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")
            Sem.Mean("pre_verbal", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Model D

The following program fits Model D. The program is saved as Ex16-d.vb.

    Sub Main()
        Dim Sem As New AmosEngine
        Try
            Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
            Sem.TextOutput()
            Sem.Mods(4)
            Sem.Standardized()
            Sem.Smc()
            Sem.ModelMeansAndIntercepts()

            Sem.BeginGroup(dataFile, "Olss_cnt")
                Sem.GroupName("control")
                Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
                Sem.AStructure( _
                    "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
                Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
                Sem.AStructure( _
                    "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
                Sem.AStructure("post_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
                Sem.AStructure("eps2 <---> eps4")

            Sem.BeginGroup(dataFile, "Olss_exp")
                Sem.GroupName("experimental")
                Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
                Sem.AStructure( _
                    "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
                Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
                Sem.AStructure( _
                    "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
                Sem.AStructure( _
                    "post_verbal = (effect) + (pre2post) pre_verbal + (1) zeta")
                Sem.AStructure("eps2 <---> eps4")
                Sem.Mean("pre_verbal", "pre_diff")

            Sem.FitModel()
        Finally
            Sem.Dispose()
        End Try
    End Sub
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Model E

The following program fits Model E. The program is saved as Ex16-e.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (0) + (pre2post) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4")
            Sem.Mean("pre_verbal", "pre_diff")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Fitting Multiple Models

The following program fits all five models, A through E. The program is saved as 
Ex16-a2e.vb.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Dim dataFile As String = Sem.AmosDir & "Examples\UserGuide.xls"
        Sem.TextOutput()
        Sem.Mods(4)
        Sem.Standardized()
        Sem.Smc()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(dataFile, "Olss_cnt")
            Sem.GroupName("control")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (0) + (c_beta) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4  (c_e2e4)")

        Sem.BeginGroup(dataFile, "Olss_exp")
            Sem.GroupName("experimental")
            Sem.AStructure("pre_syn  = (a_syn1) + (1)      pre_verbal  + (1) eps1")
            Sem.AStructure( _
                "pre_opp  = (a_opp1) + (opp_v1) pre_verbal  + (1) eps2")
            Sem.AStructure("post_syn = (a_syn2) + (1)      post_verbal + (1) eps3")
            Sem.AStructure( _
                "post_opp = (a_opp2) + (opp_v2) post_verbal + (1) eps4")
            Sem.AStructure("post_verbal = (effect) + (e_beta) pre_verbal + (1) zeta")
            Sem.AStructure("eps2 <---> eps4  (e_e2e4)")
            Sem.Mean("pre_verbal", "pre_diff")

        Sem.Model("Model A", "c_e2e4 = 0", "e_e2e4 = 0")
        Sem.Model("Model B", "c_e2e4 = 0")
        Sem.Model("Model C")
        Sem.Model("Model D", "c_beta = e_beta")
        Sem.Model("Model E", "c_beta = e_beta", "effect = 0")
        Sem.FitAllModels()
    Finally
        Sem.Dispose()
    End Try
End Sub
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Models X, Y, and Z

VB.NET programs for Models X, Y, and Z will not be discussed here. The programs 
can be found in the files Ex16-x.vb, Ex16-y.vb, and Ex16-z.vb.
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Example

17
Missing Data

Introduction

This example demonstrates the analysis of a dataset in which some values are missing.

Incomplete Data

It often happens that data values that were anticipated in the design of a study fail to 
materialize. Perhaps a subject failed to participate in part of a study. Or maybe a 
person filling out a questionnaire skipped a couple of questions. You may find that 
some people did not tell you their age, some did not report their income, others did 
not show up on the day you measured reaction times, and so on. For one reason or 
another, you often end up with a set of data that has gaps in it.

One standard method for dealing with incomplete data is to eliminate from the 
analysis any observation for which some data value is missing. This is sometimes 
called listwise deletion. For example, if a person fails to report his income, you would 
eliminate that person from your study and proceed with a conventional analysis based 
on complete data but with a reduced sample size. This method is unsatisfactory 
inasmuch as it requires discarding the information contained in the responses that the 
person did give because of the responses that he did not give. If missing values are 
common, this method may require discarding the bulk of a sample.

Another standard approach, in analyses that depend on sample moments, is to 
calculate each sample moment separately, excluding an observation from the 
calculation only when it is missing a value that is needed for the computation of that 
particular moment. For example, in calculating the sample mean income, you would 
exclude only persons whose incomes you do not know. Similarly, in computing the 
sample covariance between age and income, you would exclude an observation only 
if age is missing or if income is missing. This approach to missing data is sometimes 
called pairwise deletion.
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A third approach is data imputation, replacing the missing values with some kind 
of guess, and then proceeding with a conventional analysis appropriate for complete 
data. For example, you might compute the mean income of the persons who reported 
their income, and then attribute that income to all persons who did not report their 
income. Beale and Little (1975) discuss methods for data imputation, which are 
implemented in many statistical packages.

Amos does not use any of these methods. Even in the presence of missing data, it 
computes maximum likelihood estimates (Anderson, 1957). For this reason, whenever 
you have missing data, you may prefer to use Amos to do a conventional analysis, such as 
a simple regression analysis (as in Example 4) or to estimate means (as in Example 13).

It should be mentioned that there is one kind of missing data that Amos cannot deal 
with. (Neither can any other general approach to missing data, such as the three 
mentioned above.) Sometimes the very fact that a value is missing conveys 
information. It could be, for example, that people with very high incomes tend (more 
than others) not to answer questions about income. Failure to respond may thus convey 
probabilistic information about a person’s income level, beyond the information 
already given in the observed data. If this is the case, the approach to missing data that 
Amos uses is inapplicable.

Amos assumes that data values that are missing are missing at random. It is not 
always easy to know whether this assumption is valid or what it means in practice 
(Rubin, 1976). On the other hand, if the missing at random condition is satisfied, Amos 
provides estimates that are efficient and consistent. By contrast, the methods 
mentioned previously do not provide efficient estimates, and provide consistent 
estimates only under the stronger condition that missing data are missing completely 
at random (Little and Rubin, 1989).

About the Data

For this example, we have modified the Holzinger and Swineford (1939) data used in 
Example 8. The original dataset (in the SPSS Statistics file Grnt_fem.sav) contains the 
scores of 73 girls on six tests, for a total of 438 data values. To obtain a dataset with 
missing values, each of the 438 data values in Grnt_fem.sav was deleted with 
probability 0.30.

The resulting dataset is in the SPSS Statistics file Grant_x.sav. Below are the first few 
cases in that file. A period (.) represents a missing value. 
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Amos recognizes the periods in SPSS Statistics datasets and treats them as missing 
data. 

Amos recognizes missing data in many other data formats as well. For instance, in 
an ASCII dataset, two consecutive delimiters indicate a missing value. The seven cases 
shown above would look like this in ASCII format:

visperc,cubes,lozenges,paragraph,sentence,wordmean
33,,17,8,17,10
30,,20,,,18
,33,36,,25,41
28,,,10,18,11
,,25,,11,,8
20,25,6,9,,,,
17,21,6,5,10,10

Approximately 27% of the data in Grant_x.sav are missing. Complete data are 
available for only seven cases.

Specifying the Model

We will now fit the common factor analysis model of Example 8 (shown on p. 272) to 
the Holzinger and Swineford data in the file Grant_x.sav. The difference between this 
analysis and the one in Example 8 is that this time 27% of the data are missing. 
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After specifying the data file to be Grant_x.sav and drawing the above path diagram:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Estimation tab.

E Select Estimate means and intercepts (a check mark appears next to it). 

This will give you an estimate of the intercept in each of the six regression equations 
for predicting the measured variables. Maximum likelihood estimation with missing 
values works only when you estimate means and intercepts, so you have to estimate 
them even if you are not interested in the estimates.

Saturated and Independence Models

Computing some fit measures requires fitting the saturated and independence models in 
addition to your model. This is never a problem with complete data, but fitting these 
models can require extensive computation when there are missing values. The saturated 
model is especially problematic. With p observed variables, the saturated model has 

 parameters. For example, with 10 observed variables, there are 65 
parameters; with 20 variables, there are 230 parameters; with 40 variables, there are 860 
parameters; and so on. It may be impractical to fit the saturated model because of the 
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large number of parameters. In addition, some missing data value patterns can make it 
impossible in principle to fit the saturated model even if it is possible to fit your model.

With incomplete data, Amos Graphics tries to fit the saturated and independence 
models in addition to your model. If Amos fails to fit the independence model, then fit 
measures that depend on the fit of the independence model, such as CFI, cannot be 
computed. If Amos cannot fit the saturated model, the usual chi-square statistic cannot 
be computed.

Results of the Analysis

Text Output

For this example, Amos succeeds in fitting both the saturated and the independence 
model. Consequently, all fit measures, including the chi-square statistic, are reported. 
To see the fit measures:

E Click Model Fit in the tree diagram in the upper left corner of the Amos Output window. 

The following is the portion of the output that shows the chi-square statistic for the 
factor analysis model (called Default model), the saturated model, and the 
independence model:

The chi-square value of 11.547 is not very different from the value of 7.853 obtained 
in Example 8 with the complete dataset. In both analyses, the p values are above 0.05.

Parameter estimates, standard errors, and critical ratios have the same interpretation 
as in an analysis of complete data.

CMIN 
Model NPAR CMIN DF P CMIN/DF 
Default model 19 11.547 8 .173 1.443 
Saturated model 27 .000 0   
Independence model 6 117.707 21 .000 5.605  
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Standardized estimates and squared multiple correlations are as follows:

Regression Weights: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

visperc <--- spatial 1.000     
cubes <--- spatial .511 .153 3.347 ***  
lozenges <--- spatial 1.047 .316 3.317 ***  
paragrap <--- verbal 1.000     
sentence <--- verbal 1.259 .194 6.505 ***  
wordmean <--- verbal 2.140 .326 6.572 ***  

Intercepts: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

visperc   28.885 .913 31.632 ***  
cubes   24.998 .536 46.603 ***  
lozenges   15.153 1.133 13.372 ***  
wordmean   18.097 1.055 17.146 ***  
paragrap   10.987 .468 23.495 ***  
sentence   18.864 .636 29.646 ***  

Covariances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

verbal <--> spatial 7.993 3.211 2.490 .013  

Variances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

spatial   29.563 11.600 2.549 .011  
verbal   10.814 2.743 3.943 ***  
err_v   18.776 8.518 2.204 .028  
err_c   8.034 2.669 3.011 .003  
err_l   36.625 11.662 3.141 .002  
err_p   2.825 1.277 2.212 .027  
err_s   7.875 2.403 3.277 .001  
err_w   22.677 6.883 3.295 ***   

Standardized Regression Weights: (Group number 1 - 
Default model) 

   Estimate 
visperc <--- spatial .782
cubes <--- spatial .700
lozenges <--- spatial .685
paragrap <--- verbal .890
sentence <--- verbal .828
wordmean <--- verbal .828

Correlations: (Group number 1 - Default model) 
   Estimate 

verbal <--> spatial .447 

Squared Multiple Correlations: (Group number 1 - 
Default model) 

   Estimate 
wordmean   .686 
sentence   .685 
paragrap   .793 
lozenges   .469 
cubes   .490 
visperc   .612  
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Graphics Output

Here is the path diagram showing the standardized estimates and the squared multiple 
correlations for the endogenous variables:

The standardized parameter estimates may be compared to those obtained from the 
complete data in Example 8. The two sets of estimates are identical in the first decimal 
place.

Modeling in VB.NET

When you write an Amos program to analyze incomplete data, Amos does not 
automatically fit the independence and saturated models. (Amos Graphics does fit 
those models automatically.) If you want your Amos program to fit the independence 
and saturated models, your program has to include code to specify those models. In 
particular, in order for your program to compute the usual likelihood ratio chi-square 
statistic, your program must include code to fit the saturated model.
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This section outlines three steps necessary for computing the likelihood ratio chi-
square statistic:

Fitting the factor model

Fitting the saturated model

Computing the likelihood ratio chi-square statistic and its p value

First, the three steps are performed by three separate programs. After that, the three 
steps will be combined into a single program.

Fitting the Factor Model (Model A)

The following program fits the confirmatory factor model (Model A). It is saved as 
Ex17-a.vb.

Notice that the ModelMeansAndIntercepts method is used to specify that means and 
intercepts are parameters of the model, and that each of the six regression equations 
contains a set of empty parentheses representing an intercept. When you analyze data 
with missing values, means and intercepts must appear in the model as explicit 
parameters. This is different from the analysis of complete data, where means and 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.Title("Example 17 a: Factor Model")
        Sem.TextOutput()
        Sem.Standardized()
        Sem.Smc()
        Sem.AllImpliedMoments()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grant_x.sav")
        Sem.AStructure("visperc   = ( ) + (1) spatial + (1) err_v")
        Sem.AStructure("cubes     = ( ) +     spatial + (1) err_c")
        Sem.AStructure("lozenges  = ( ) +     spatial + (1) err_l")

        Sem.AStructure("paragrap = ( ) + (1) verbal  + (1) err_p")
        Sem.AStructure("sentence  = ( ) +     verbal  + (1) err_s")
        Sem.AStructure("wordmean  = ( ) +     verbal  + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try

End Sub
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intercepts do not have to appear in the model unless you want to estimate them or 
constrain them.

The fit of Model A is summarized as follows:

The Function of log likelihood value is displayed instead of the chi-square fit statistic 
that you get with complete data. In addition, at the beginning of the Summary of models 
section of the text output, Amos displays the warning:

Whenever Amos prints this note, the values in the cmin column of the Summary of 
models section do not contain the familiar fit chi-square statistics. To evaluate the fit 
of the factor model, its Function of log likelihood value has to be compared to that of 
some less constrained baseline model, such as the saturated model.

Fitting the Saturated Model (Model B)

The saturated model has as many free parameters as there are first and second order 
moments. When complete data are analyzed, the saturated model always fits the 
sample data perfectly (with chi-square = 0.00 and df = 0). All structural equation 
models with the same six observed variables are either equivalent to the saturated 
model or are constrained versions of it. A saturated model will fit the sample data at 
least as well as any constrained model, and its Function of log likelihood value will be 
no larger and is, typically, smaller.

Function of log likelihood = 1375.133
Number of parameters = 19

The saturated model was not fitted to the data of at least one group. For this 
reason, only the 'function of log likelihood', AIC and BCC are reported. The 
likelihood ratio chi-square statistic and other fit measures are not reported.
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The following program fits the saturated model (Model B). The program is saved as 
Ex17-b.vb.

Following the BeginGroup line, there are six uses of the Mean method, requesting 
estimates of means for the six variables. When Amos estimates their means, it will 
automatically estimate their variances and covariances as well, as long as the program 
does not explicitly constrain the variances and covariances.

Sub Main()
    Dim Saturated As New AmosEngine
    Try
        'Set up and estimate Saturated model:
        Saturated.Title("Example 17 b: Saturated Model")
        Saturated.TextOutput()
        Saturated.AllImpliedMoments()
        Saturated.ModelMeansAndIntercepts()

        Saturated.BeginGroup(Saturated.AmosDir & "Examples\Grant_x.sav")
        Saturated.Mean("visperc")
        Saturated.Mean("cubes")
        Saturated.Mean("lozenges")
        Saturated.Mean("paragrap")
        Saturated.Mean("sentence")
        Saturated.Mean("wordmean")

        Saturated.FitModel()
    Finally
        Saturated.Dispose()
    End Try
End Sub
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The following are the unstandardized parameter estimates for the saturated Model B:

Means: (Group number 1 - Model 1) 
 Estimate S.E. C.R. P Label 

visperc 28.883 .910 31.756 ***  
cubes 25.154 .540 46.592 ***  
lozenges 14.962 1.101 13.591 ***  
paragrap 10.976 .466 23.572 ***  
sentence 18.802 .632 29.730 ***  
wordmean 18.263 1.061 17.211 ***  

 

Covariances: (Group number 1 - Model 1) 
  Estimate S.E. C.R. P Label 

visperc <--> cubes 17.484 4.614 3.789 ***  
visperc <--> lozenges 31.173 9.232 3.377 ***  
cubes <--> lozenges 17.036 5.459 3.121 .002  
visperc <--> paragrap 8.453 3.705 2.281 .023  
cubes <--> paragrap 2.739 2.179 1.257 .209  
lozenges <--> paragrap 9.287 4.596 2.021 .043  
visperc <--> sentence 14.382 5.114 2.813 .005  
cubes <--> sentence 1.678 2.929 .573 .567  
lozenges <--> sentence 10.544 6.050 1.743 .081  
paragrap <--> sentence 13.470 2.945 4.574 ***  
visperc <--> wordmean 14.665 8.314 1.764 .078  
cubes <--> wordmean 3.470 4.870 .713 .476  
lozenges <--> wordmean 29.655 10.574 2.804 .005  
paragrap <--> wordmean 23.616 5.010 4.714 ***  
sentence <--> wordmean 29.577 6.650 4.447 ***  

 

Variances: (Group number 1 - Model 1) 
 Estimate S.E. C.R. P Label

visperc 49.584 9.398 5.276 ***  
cubes 16.484 3.228 5.106 ***  
lozenges 67.901 13.404 5.066 ***  
paragrap 13.570 2.515 5.396 ***  
sentence 25.007 4.629 5.402 ***  
wordmean 73.974 13.221 5.595 ***   
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The AllImpliedMoments method in the program displays the following table of 
estimates:

These estimates, even the estimated means, are different from the sample values 
computed using either pairwise or listwise deletion methods. For example, 53 people 
took the visual perception test (visperc). The sample mean of those 53 visperc scores 
is 28.245. One might expect the Amos estimate of the mean visual perception score to 
be 28.245. In fact it is 28.883.

Amos displays the following fit information for Model B:

Function of log likelihood values can be used to compare the fit of nested models. In 
this case, Model A (with a fit statistic of 1375.133 and 19 parameters) is nested within 
Model B (with a fit statistic of 1363.586 and 27 parameters). When a stronger model 
(Model A) is being compared to a weaker model (Model B), and where the stronger 
model is correct, you can say the following: The amount by which the Function of log 
likelihood increases when you switch from the weaker model to the stronger model is 
an observation on a chi-square random variable with degrees of freedom equal to the 
difference in the number of parameters of the two models. In the present example, the 
Function of log likelihood for Model A exceeds that for Model B by 11.547 
(= 1375.133 – 1363.586). At the same time, Model A requires estimating only 19 
parameters while Model B requires estimating 27 parameters, for a difference of 8. In 
other words, if Model A is correct, 11.547 is an observation on a chi-square variable 
with 8 degrees of freedom. A chi-square table can be consulted to see whether this chi-
square statistic is significant.

Function of log likelihood = 1363.586
Number of parameters = 27

Implied (for all variables) Covariances (Group number 1 - Model 1) 
 wordmean sentence paragrap lozenges cubes visperc 

wordmean 73.974      
sentence 29.577 25.007     
paragrap 23.616 13.470 13.570    
lozenges 29.655 10.544 9.287 67.901   
cubes 3.470 1.678 2.739 17.036 16.484  
visperc 14.665 14.382 8.453 31.173 17.484 49.584 

 

Implied (for all variables) Means (Group number 1 - Model 1) 
 wordmean sentence paragrap lozenges cubes visperc 
 18.263 18.802 10.976 14.962 25.154 28.883  
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Computing the Likelihood Ratio Chi-Square Statistic and P

Instead of consulting a chi-square table, you can use the ChiSquareProbability method 
to find the probability that a chi-square value as large as 11.547 would have occurred 
with a correct factor model. The following program shows how the 
ChiSquareProbability method is used. The program is saved as Ex17-c.vb.

The program output is displayed in the Debug output panel of the program editor.

 

Sub Main()
    Dim ChiSquare As Double, P As Double
    Dim Df As Integer

    ChiSquare = 1375.133 - 1363.586  'Difference in functions of log-likelihood
    Df = 27 - 19                                      'Difference in no. of parameters

    P = AmosEngine.ChiSquareProbability(ChiSquare, CDbl(Df))

    Debug.WriteLine( "Fit of factor model:")
    Debug.WriteLine( "Chi Square = " & ChiSquare.ToString("#,##0.000"))
    Debug.WriteLine("DF = " & Df)
    Debug.WriteLine("P = " & P.ToString("0.000"))
End Sub
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The p value is 0.173; therefore, we accept the hypothesis that Model A is correct at the 
0.05 level.

As the present example illustrates, in order to test a model with incomplete data, you 
have to compare its fit to that of another, alternative model. In this example, we wanted 
to test Model A, and it was necessary also to fit Model B as a standard against which 
Model A could be compared. The alternative model has to meet two requirements. 
First, you have to be satisfied that it is correct. Model B certainly meets this criterion, 
since it places no constraints on the implied moments, and cannot be wrong. Second, 
it must be more general than the model you wish to test. Any model that can be 
obtained by removing some of the constraints on the parameters of the model under 
test will meet this second criterion. If you have trouble thinking up an alternative 
model, you can always use the saturated model, as was done here.

Performing All Steps with One Program

It is possible to write a single program that fits both models (the factor model and the 
saturated model) and then calculates the chi-square statistic and its p value. The 
program in Ex17-all.vb shows how this can be done.
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18
More about Missing Data

Introduction

This example demonstrates the analysis of data in which some values are missing by 
design and then explores the benefits of intentionally collecting incomplete data.

Missing Data

Researchers do not ordinarily like missing data. They typically take great care to avoid 
these gaps whenever possible. But sometimes it is actually better not to observe every 
variable on every occasion. Matthai (1951) and Lord (1955) described designs where 
certain data values are intentionally not observed. 

The basic principle employed in such designs is that, when it is impossible or too 
costly to obtain sufficient observations on a variable, estimates with improved 
accuracy can be obtained by taking additional observations on other correlated 
variables.

Such designs can be highly useful, but because of computational difficulties, they 
have not previously been employed except in very simple situations. This example 
describes only one of many possible designs where some data are intentionally not 
collected. The method of analysis is the same as in Example 17.
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About the Data

For this example, the Attig data (introduced in Example 1) was modified by 
eliminating some of the data values and treating them as missing. A portion of the 
modified data file for young people, Atty_mis.sav, is shown below as it appears in the 
SPSS Statistics Data Editor. The file contains scores of Attig’s 40 young subjects on 
the two vocabulary tests v_short and vocab. The variable vocab is the WAIS vocabulary 
score. V_short is the score on a small subset of items on the WAIS vocabulary test. 
Vocab scores were deleted for 30 randomly picked subjects.

 

A second data file, Atto_mis.sav, contains vocabulary test scores for the 40 old 
subjects, again with 30 randomly picked vocab scores deleted.
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Of course, no sensible person deletes data that have already been collected. In order for 
this example to make sense, imagine this pattern of missing data arising in the 
following circumstances. 

Suppose that vocab is the best vocabulary test you know of. It is highly reliable and 
valid, and it is the vocabulary test that you want to use. Unfortunately, it is an 
expensive test to administer. Maybe it takes a long time to give the test, maybe it has 
to be administered on an individual basis, or maybe it has to be scored by a highly 
trained person. V_short is not as good a vocabulary test, but it is short, inexpensive, 
and easy to administer to a large number of people at once. You administer the cheap 
test, v_short, to 40 young and 40 old subjects. Then you randomly pick 10 people from 
each group and ask them to take the expensive test, vocab.

Suppose the purpose of the research is to:

Estimate the average vocab test score in the population of young people. 

Estimate the average vocab score in the population of old people. 

Test the hypothesis that young people and old people have the same average vocab 
score. 

In this scenario, you are not interested in the average v_short score. However, as will 
be demonstrated below, the v_short scores are still useful because they contain 
information that can be used to estimate and test hypotheses about vocab scores.

The fact that missing values are missing by design does not affect the method of 
analysis. Two models will be fitted to the data. In both models, means, variances, and 
the covariance between the two vocabulary tests will be estimated for young people 
and also for old people. In Model A, there will be no constraints requiring parameter 
estimates to be equal across groups. In Model B, vocab will be required to have the 
same mean in both groups.

Model A

To estimate means, variances, and the covariance between vocab and v_short, set up a 
two-group model for the young and old groups.

E Draw a path diagram in which vocab and v_short appear as two rectangles connected 
by a double-headed arrow.

E From the menus, choose View → Analysis Properties.
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E In the Analysis Properties dialog box, click the Estimation tab.

E Select Estimate means and intercepts (a check mark appears next to it).

E While the Analysis Properties dialog box is open, click the Output tab.

E Select Standardized estimates and Critical ratios for differences.

Because this example focuses on group differences in the mean of vocab, it will be 
useful to have names for the mean of the young group and the mean of the old group. 
To give a name to the mean of vocab in the young group:

E Right-click the vocab rectangle in the path diagram for the young group.

E Choose Object Properties from the pop-up menu.

E In the Object Properties dialog box, click the Parameters tab.

E Enter a name, such as m1_yng, in the Mean text box.

E Follow the same procedure for the old group. Be sure to give the mean of the old group 
a unique name, such as m1_old. 

Naming the means does not constrain them as long as each name is unique. After the 
means are named, the two groups should have path diagrams that look something like 
this:

m1_yng,

vocab v_short

Example 18:  Model A
Incompletely observed data.
Attig (1983) young subjects

Model Specification

m1_old,

vocab v_short

Example 18:  Model A
Incompletely observed data.

Attig (1983) old subjects
Model Specification
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Results for Model A 

Graphics Output

Here are the two path diagrams containing means, variances, and covariances for the 
young and old subjects respectively:

 Text Output

E In the Amos Output window, click Notes for Model in the upper left pane. 

The text output shows that Model A is saturated, so that the model is not testable.

Number of distinct sample moments: 10
Number of distinct parameters to be estimated: 10

Degrees of freedom (10 – 10): 0

 

56.89, 83.32

vocab

7.95, 15.35

v_short

32.92

Example 18:  Model A
Incompletely observed data.
Attig (1983) young subjects
Unstandardized estimates

65.00, 115.06

vocab

10.03, 10.77

v_short

31.54

Example 18:  Model A
Incompletely observed data.

Attig (1983) old subjects
Unstandardized estimates
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The parameter estimates and standard errors for young subjects are:

The parameter estimates and standard errors for old subjects are:

The estimates for the mean of vocab are 56.891 in the young population and 65.001 in 
the old population. Notice that these are not the same as the sample means that would 
have been obtained from the 10 young and 10 old subjects who took the vocab test. The 
sample means of 58.5 and 62 are good estimates of the population means (the best that 
can be had from the two samples of size 10), but the Amos estimates (56.891 and 
65.001) have the advantage of using information in the v_short scores.

How much more accurate are the mean estimates that include the information in the 
v_short scores? Some idea can be obtained by looking at estimated standard errors. For 
the young subjects, the standard error for 56.891 shown above is about 1.765, whereas 
the standard error of the sample mean, 58.5, is about 2.21. For the old subjects, the 
standard error for 65.001 is about 2.167 while the standard error of the sample mean, 

Means: (young subjects - Default model) 
   Estimate S.E. C.R. P Label 

vocab   56.891 1.765 32.232 *** m1_yng 
v_short   7.950 .627 12.673 *** par_4 

Covariances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label

vocab <--> v_short 32.916 8.694 3.786 *** par_3 

Correlations: (young subjects - Default model) 
   Estimate

vocab <--> v_short .920

Variances: (young subjects - Default model) 
   Estimate S.E. C.R. P Label

vocab   83.320 25.639 3.250 .001 par_7 
v_short   15.347 3.476 4.416 *** par_8  

Means: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

vocab   65.001 2.167 29.992 *** m1_old 
v_short   10.025 .526 19.073 *** par_6 

Covariances: (old subjects - Default model) 
   Estimate S.E. C.R. P Label

vocab <--> v_short 31.545 8.725 3.616 *** par_5 

Correlations: (old subjects - Default model) 
   Estimate

vocab <--> v_short .896

Variances: (old subjects - Default model) 
   Estimate S.E. C.R. P Label 

vocab   115.063 37.463 3.071 .002 par_9 
v_short   10.774 2.440 4.416 *** par_10  
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62, is about 4.21. Although the standard errors just mentioned are only approximations, 
they still provide a rough basis for comparison. In the case of the young subjects, using 
the information contained in the v_short scores reduces the standard error of the 
estimated vocab mean by about 21%. In the case of the old subjects, the standard error 
was reduced by about 49%.

Another way to evaluate the additional information that can be attributed to the 
v_short scores is by evaluating the sample size requirements. Suppose you did not use 
the information in the v_short scores. How many more young examinees would have 
to take the vocab test to reduce the standard error of its mean by 21%? Likewise, how 
many more old examinees would have to take the vocab test to reduce the standard 
error of its mean by 49%? The answer is that, because the standard error of the mean 
is inversely proportional to the square root of the sample size, it would require about 
1.6 times as many young subjects and about 3.8 times as many old subjects. That is, it 
would require about 16 young subjects and 38 old subjects taking the vocab test, 
instead of 10 young and 10 old subjects taking both tests, and 30 young and 30 old 
subjects taking the short test alone. Of course, this calculation treats the estimated 
standard errors as though they were exact standard errors, and so it gives only a rough 
idea of how much is gained by using scores on the v_short test.

Do the young and old populations have different mean vocab scores? The estimated 
mean difference is 8.110 (65.001 – 56.891). A critical ratio for testing this difference 
for significance can be found in the following table:

Critical Ratios for Differences between Parameters 
(Default model) 

 m1_yng m1_old par_3 par_4 par_5 par_6 par_7 
m1_yng .000       
m1_old 2.901 .000      
par_3 -2.702 -3.581 .000     
par_4 -36.269 -25.286 -2.864 .000    
par_5 -2.847 -3.722 -.111 2.697 .000   
par_6 -25.448 -30.012 -2.628 2.535 -2.462 .000  
par_7 1.028 .712 2.806 2.939 1.912 2.858 .000 
par_8 -10.658 -12.123 -2.934 2.095 -1.725 1.514 -2.877 
par_9 1.551 1.334 2.136 2.859 2.804 2.803 .699 
par_10 -15.314 -16.616 -2.452 1.121 -3.023 .300 -2.817 

Critical Ratios for Differences between Parameters 
(Default model) 

 par_8 par_9 par_10 
par_8 .000   
par_9 2.650 .000  
par_10 -1.077 -2.884 .000  
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The first two rows and columns, labeled m1_yng and m1_old, refer to the group means 
of the vocab test. The critical ratio for the mean difference is 2.901, according to which 
the means differ significantly at the 0.05 level; the older population scores higher on 
the long test than the younger population.

Another test of the hypothesis of equal vocab group means can be obtained by 
refitting the model with equality constraints imposed on these two means. We will do 
that next. 

Model B

In Model B, vocab is required to have the same mean for young people as for old 
people. There are two ways to impose this constraint. One method is to change the 
names of the means. In Model A, each mean has a unique name. You can change the 
names and give each mean the same name. This will have the effect of requiring the 
two mean estimates to be equal.

A different method of constraining the means will be used here. The name of the 
means, m1_yng and m1_old, will be left alone. Amos will use its Model Manager to fit 
both Model A and Model B in a single analysis. To use this approach:

E Start with Model A.

E From the menus, choose Analyze → Manage Models.

E In the Manage Models dialog box, type Model A in the Model Name text box.

E Leave the Parameter Constraints box empty.
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E To specify Model B, click New.

E In the Model Name text box, change Model Number 2 to Model B.

E Type m1_old = m1_yng in the Parameter Constraints text box.

E Click Close.

A path diagram that fits both Model A and Model B is saved in the file Ex18-b.amw.

Output from Models A and B

E To see fit measures for both Model A and Model B, click Model Fit in the tree diagram 
in the upper left pane of the Amos Output window. 

The portion of the output that contains chi-square values is shown here:

If Model B is correct (that is, the young and old populations have the same mean vocab 
score), then 7.849 is an observation on a random variable that has a chi-square 
distribution with one degree of freedom. The probability of getting a value as large as 
7.849 by chance is small (p = 0.005), so Model B is rejected. In other words, young and 
old subjects differ significantly in their mean vocab scores.]

CMIN 
Model NPAR CMIN DF P CMIN/DF 
Model A 10 .000 0   
Model B 9 7.849 1 .005 7.849 
Saturated model 10 .000 0   
Independence model 4 33.096 6 .000 5.516  
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Modeling in VB.NET

Model A

The following program fits Model A. It estimates means, variances, and covariances of 
both vocabulary tests in both groups of subjects, without constraints. The program is 
saved as Ex18-a.vb.

The Crdiff method displays the critical ratios for parameter differences that were 
discussed earlier. 

For later reference, note the value of the Function of log likelihood for Model A. 

    Sub Main()
        Dim Sem As New AmosEngine
        Try
            Sem.TextOutput()
            Sem.Crdiff()
            Sem.ModelMeansAndIntercepts()

            Sem.BeginGroup(Sem.AmosDir & "Examples\atty_mis.sav")
                Sem.GroupName("young_subjects")
                Sem.Mean("vocab", "m1_yng")
                Sem.Mean("v_short")
            Sem.BeginGroup(Sem.AmosDir & "Examples\atto_mis.sav")
                Sem.GroupName("old_subjects")
                Sem.Mean("vocab", "m1_old")
                Sem.Mean("v_short")
            Sem.FitModel()
        Finally
            Sem.Dispose()
        End Try
    End Sub

Function of log likelihood =    429.963
Number of parameters =   10
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Model B

Here is a program for fitting Model B. In this program, the same parameter name 
(mn_vocab) is used for the vocab mean of the young group as for the vocab mean of 
the old group. In this way, the young group and old group are required to have the same 
vocab mean. The program is saved as Ex18-b.vb.

Amos reports the fit of Model B as: 

The difference in fit measures between Models B and A is 7.85 (= 437.813 – 429.963), 
and the difference in the number of parameters is 1 (= 10 – 9). These are the same 
figures we obtained earlier with Amos Graphics. 

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Crdiff()
        Sem.ModelMeansAndIntercepts()

        Sem.BeginGroup(Sem.AmosDir & "Examples\atty_mis.sav")
            Sem.GroupName("young_subjects")
            Sem.Mean("vocab", "mn_vocab")
            Sem.Mean("v_short")
        Sem.BeginGroup(Sem.AmosDir & "Examples\atto_mis.sav")
            Sem.GroupName("old_subjects")
            Sem.Mean("vocab", "mn_vocab")
            Sem.Mean("v_short")
        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub

Function of log likelihood =    437.813
Number of parameters =    9
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19
Bootstrapping

Introduction

This example demonstrates how to obtain robust standard error estimates by the 
bootstrap method.

The Bootstrap Method

The bootstrap (Efron, 1982) is a versatile method for estimating the sampling 
distribution of parameter estimates. In particular, the bootstrap can be used to find 
approximate standard errors. As we saw in earlier examples, Amos automatically 
displays approximate standard errors for the parameters it estimates. In computing 
these approximations, Amos uses formulas that depend on the assumptions on p. 35.

The bootstrap is a completely different approach to the problem of estimating 
standard errors. Why would you want another approach? To begin with, Amos does 
not have formulas for all of the standard errors you might want, such as standard 
errors for squared multiple correlations. The unavailability of formulas for standard 
errors is never a problem with the bootstrap, however. The bootstrap can be used to 
generate an approximate standard error for every estimate that Amos computes, 
whether or not a formula for the standard error is known. Even when Amos has 
formulas for standard errors, the formulas are good only under the assumptions on 
p. 35. Not only that, but the formulas work only when you are using a correct model. 
Approximate standard errors arrived at by the bootstrap do not suffer from these 
limitations.
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The bootstrap has its own shortcomings, including the fact that it can require fairly 
large samples. For readers who are new to bootstrapping, we recommend the Scientific 
American article by Diaconis and Efron (1983).

The present example demonstrates the bootstrap with a factor analysis model, but, 
of course, you can use the bootstrap with any model. Incidentally, don’t forget that 
Amos can solve simple estimation problems like the one in Example 1. You might 
choose to use Amos for such simple problems just so you can use the bootstrapping 
capability of Amos.

About the Data

We will use the Holzinger and Swineford (1939) data, introduced in Example 8, for this 
example. The data are contained in the file Grnt_fem.sav.

A Factor Analysis Model

The path diagram for this model (Ex19.amw) is the same as in Example 8.

E To request 500 bootstrap replications, from the menus, choose View → Analysis 
Properties.

spatial

visperc

cubes

lozenges

wordmean

paragraph

sentence

err_v

err_c

err_l

err_p

err_s

err_w

verbal

1

1

1

1

1

1

1

1

Example 19: Bootstrapping
Holzinger and Swineford (1939) Girls' sample

Model Specification
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E Click the Bootstrap tab.

E Select Perform bootstrap.

E Type 500 in the Number of bootstrap samples text box.

 

Monitoring the Progress of the Bootstrap

You can monitor the progress of the bootstrap algorithm by watching the Computation 

summary panel at the left of the path diagram. 

Results of the Analysis

The model fit is, of course, the same as in Example 8.

The parameter estimates are also the same as in Example 8. However, we would now 
like to look at the standard error estimates based on the maximum likelihood theory, so 
that we can compare them to standard errors obtained from the bootstrap. Here, then, 
are the maximum likelihood estimates of parameters and their standard errors:

Chi-square = 7.853
Degrees of freedom = 8
Probability level = 0.448
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Regression Weights: (Group number 1 - Default 
model) 

   Estimate S.E. C.R. P Label 
visperc <--- spatial 1.000     
cubes <--- spatial .610 .143 4.250 ***  
lozenges <--- spatial 1.198 .272 4.405 ***  
paragrap <--- verbal 1.000     
sentence <--- verbal 1.334 .160 8.322 ***  
wordmean <--- verbal 2.234 .263 8.482 ***  

Standardized Regression Weights: (Group number 1 - 
Default model) 

   Estimate 
visperc <--- spatial .703
cubes <--- spatial .654
lozenges <--- spatial .736
paragrap <--- verbal .880
sentence <--- verbal .827
wordmean <--- verbal .841

Covariances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

spatial <--> verbal 7.315 2.571 2.846 .004  

Correlations: (Group number 1 - Default model) 
   Estimate 

spatial <--> verbal .487

Variances: (Group number 1 - Default model) 
   Estimate S.E. C.R. P Label 

spatial   23.302 8.123 2.868 .004  
verbal   9.682 2.159 4.485 ***  
err_v   23.873 5.986 3.988 ***  
err_c   11.602 2.584 4.490 ***  
err_l   28.275 7.892 3.583 ***  
err_p   2.834 .868 3.263 .001  
err_s   7.967 1.869 4.263 ***  
err_w   19.925 4.951 4.024 ***  

Squared Multiple Correlations: (Group number 1 - 
Default model) 

   Estimate 
wordmean   .708 
sentence   .684 
paragrap   .774 
lozenges   .542 
cubes   .428 
visperc   .494  
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The bootstrap output begins with a table of diagnostic information that is similar to the 
following:

It is possible that one or more bootstrap samples will have a singular covariance matrix, 
or that Amos will fail to find a solution for some bootstrap samples. If any such 
samples occur, Amos reports their occurrence and omits them from the bootstrap 
analysis. In the present example, no bootstrap sample had a singular covariance matrix, 
and a solution was found for each of the 500 bootstrap samples. The bootstrap 
estimates of standard errors are:

0 bootstrap samples were unused because of a singular covariance matrix. 
0 bootstrap samples were unused because a solution was not found. 
500 usable bootstrap samples were obtained. 
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Scalar Estimates (Group number 1 - Default model) 

Regression Weights: (Group number 1 - Default 
model) 

Parameter SE SE-SE Mean Bias SE-Bias 
visperc <--- spatial .000 .000 1.000 .000 .000
cubes <--- spatial .140 .004 .609 -.001 .006
lozenges <--- spatial .373 .012 1.216 .018 .017
paragrap <--- verbal .000 .000 1.000 .000 .000
sentence <--- verbal .176 .006 1.345 .011 .008
wordmean <--- verbal .254 .008 2.246 .011 .011

Standardized Regression Weights: (Group number 1 - 
Default model) 

Parameter SE SE-SE Mean Bias SE-Bias 
visperc <--- spatial .123 .004 .709 .006 .005
cubes <--- spatial .101 .003 .646 -.008 .005
lozenges <--- spatial .121 .004 .719 -.017 .005
paragrap <--- verbal .047 .001 .876 -.004 .002
sentence <--- verbal .042 .001 .826 .000 .002
wordmean <--- verbal .050 .002 .841 -.001 .002

Covariances: (Group number 1 - Default model) 
Parameter SE SE-SE Mean Bias SE-Bias 
spatial <--> verbal 2.393 .076 7.241 -.074 .107

Correlations: (Group number 1 - Default model) 
Parameter SE SE-SE Mean Bias SE-Bias 
spatial <--> verbal .132 .004 .495 .008 .006

Variances: (Group number 1 - Default model) 
Parameter SE SE-SE Mean Bias SE-Bias 
spatial   9.086 .287 23.905 .603 .406 
verbal   2.077 .066 9.518 -.164 .093 
err_v   9.166 .290 22.393 -1.480 .410 
err_c   3.195 .101 11.191 -.411 .143 
err_l   9.940 .314 27.797 -.478 .445 
err_p   .878 .028 2.772 -.062 .039 
err_s   1.446 .046 7.597 -.370 .065 
err_w   5.488 .174 19.123 -.803 .245 

Squared Multiple Correlations: (Group number 1 - 
Default model) 

Parameter SE SE-SE Mean Bias SE-Bias 
wordmean   .083 .003 .709 .001 .004 
sentence   .069 .002 .685 .001 .003 
paragrap   .081 .003 .770 -.004 .004 
lozenges   .172 .005 .532 -.010 .008 
cubes   .127 .004 .428 .000 .006 
visperc   .182 .006 .517 .023 .008  
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The first column, labeled S.E., contains bootstrap estimates of standard errors. 
These estimates may be compared to the approximate standard error estimates 
obtained by maximum likelihood. 

The second column, labeled S.E.-S.E., gives an approximate standard error for the 
bootstrap standard error estimate itself.

The column labeled Mean represents the average parameter estimate computed 
across bootstrap samples. This bootstrap mean is not necessarily identical to the 
original estimate. 

The column labeled Bias gives the difference between the original estimate and the 
mean of estimates across bootstrap samples. If the mean estimate across bootstrapped 
samples is higher than the original estimate, then Bias will be positive. 

The last column, labeled S.E.-Bias, gives an approximate standard error for the bias 
estimate.

Modeling in VB.NET

The following program (Ex19.vb) fits the model of Example 19 and performs a 
bootstrap with 500 bootstrap samples. The program is the same as in Example 8, but 
with an additional Bootstrap line.

The line Sem.Bootstrap(500) requests bootstrap standard errors based on 500 bootstrap 
samples.

Sub Main()
    Dim Sem As New AmosEngine
    Try
        Sem.TextOutput()
        Sem.Bootstrap(500)
        Sem.Standardized()
        Sem.Smc()

        Sem.BeginGroup(Sem.AmosDir & "Examples\Grnt_fem.sav")

        Sem.AStructure("visperc   = (1) spatial + (1) err_v")
        Sem.AStructure("cubes     =     spatial + (1) err_c")
        Sem.AStructure("lozenges  =     spatial + (1) err_l")

        Sem.AStructure("paragrap = (1) verbal  + (1) err_p")
        Sem.AStructure("sentence  =     verbal  + (1) err_s")
        Sem.AStructure("wordmean  =     verbal  + (1) err_w")

        Sem.FitModel()
    Finally
        Sem.Dispose()
    End Try
End Sub
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20
Bootstrapping for Model Comparison

Introduction

This example demonstrates the use of the bootstrap for model comparison.

Bootstrap Approach to Model Comparison

The problem addressed by this method is not that of evaluating an individual model 
in absolute terms but of choosing among two or more competing models. Bollen and 
Stine (1992), Bollen (1982), and Stine (1989) suggested the possibility of using the 
bootstrap for model selection in analysis of moment structures. Linhart and Zucchini 
(1986) described a general schema for bootstrapping and model selection that is 
appropriate for a large class of models, including structural modeling. The Linhart 
and Zucchini approach is employed here.

The bootstrap approach to model comparison can be summarized as follows:

Generate several bootstrap samples by sampling with replacement from the 
original sample. In other words, the original sample serves as the population for 
purposes of bootstrap sampling.

Fit every competing model to every bootstrap sample. After each analysis, 
calculate the discrepancy between the implied moments obtained from the 
bootstrap sample and the moments of the bootstrap population.

Calculate the average (across bootstrap samples) of the discrepancies for each 
model from the previous step.

Choose the model whose average discrepancy is smallest.
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About the Data

The present example uses the combined male and female data from the Grant-White 
high school sample of the Holzinger and Swineford (1939) study, previously discussed 
in Examples 8, 12, 15, 17, and 19. The 145 combined observations are given in the file 
Grant.sav.

Five Models

Five measurement models will be fitted to the six psychological tests. Model 1 is a 
factor analysis model with one factor.
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Model 2 is an unrestricted factor analysis with two factors. Note that fixing two of the 
regression weights at 0 does not constrain the model but serves only to make the model 
identified (Anderson, 1984; Bollen and Jöreskog, 1985; Jöreskog, 1979).

Model 2R is a restricted factor analysis model with two factors, in which the first three 
tests depend upon only one of the factors while the remaining three tests depend upon 
only the other factor.

F1

visperc

cubes

lozenges

wordmean

paragraph

sentence

e_v

e_c

e_l

e_p

e_s

e_w

F2

1

1

1

1

1

1

1

1

Example 20: Model 2
Two unconstrained factors

Holzinger and Swineford (1939) data
Model Specification

0

0

F1

visperc

cubes

lozenges

wordmean

paragraph

sentence

e_v

e_c

e_l

e_p

e_s

e_w

F2

1

1

1

1

1

1

1

1

Example 20: Model 2R
Restricted two-factor model

Holzinger and Swineford (1939) data
Model Specification



306

Example 20

The remaining two models provide customary points of reference for evaluating the fit 
of the previous models. In the saturated model, the variances and covariances of the 
observed variables are unconstrained.

In the independence model, the variances of the observed variables are unconstrained 
and their covariances are required to be 0.

 

visperc

cubes

lozenges

wordmean

paragraph

sentence

Example 20: Saturated model
Variances and covariances

Holzinger and Swineford (1939) data
Model Specification

 

visperc

cubes

lozenges

wordmean

paragraph

sentence

Example 20: Independence model
Only variances are estimated

Holzinger and Swineford (1939) data
Model Specification



307

Bootstrapping for Model Comparison

You would not ordinarily fit the saturated and independence models separately, since 
Amos automatically reports fit measures for those two models in the course of every 
analysis. However, it is necessary to specify explicitly the saturated and independence 
models in order to get bootstrap results for those models. Five separate bootstrap 
analyses must be performed, one for each model. For each of the five analyses:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Bootstrap tab.

E Select Perform bootstrap (a check mark appears next to it).

E Type 1000 in the Number of bootstrap samples text box.

 

E Click the Random # tab and enter a value for Seed for random numbers.

It does not matter what seed you choose, but in order to draw the exact same set of 
samples in each of several Amos sessions, the same seed number must be given each 
time. For this example, we used a seed of 3.

Occasionally, bootstrap samples are encountered for which the minimization 
algorithm does not converge. To keep overall computation times in check:
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E Click the Numerical tab and limit the number of iterations to a realistic figure (such as 
40) in the Iteration limit field.

 

Amos Graphics input files for the five models have been saved with the names 
Ex20-1.amw, Ex20-2.amw, Ex20-2r.amw, Ex20-sat.amw, and Ex20-ind.amw.

Text Output

E In viewing the text output for Model 1, click Summary of Bootstrap Iterations in the tree 
diagram in the upper left pane of the Amos Output window.

The following message shows that it was not necessary to discard any bootstrap 
samples. All 1,000 bootstrap samples were used.

E Click Bootstrap Distributions in the tree diagram to see a histogram of

where a contains sample moments from the original sample of 145 Grant-White 
students (that is, the moments in the bootstrap population), and  contains the 

0 bootstrap samples were unused because of a singular covariance matrix.
0 bootstrap samples were unused because a solution was not found.
1000 usable bootstrap samples were obtained.

  

( ) ( ) ( ) 1000,,1   ,ˆˆ h=−= bKLCbKLCbMLC aa,a,a, αα

α̂b
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implied moments obtained from fitting Model 1 to the b-th bootstrap sample. Thus, 
 is a measure of how much the population moments differ from the 

moments estimated from the b-th bootstrap sample using Model 1.

The average of  over 1,000 bootstrap samples was 64.162 with a standard 
error of 0.292. Similar histograms, along with means and standard errors, are displayed 
for the other four models but are not reproduced here. The average discrepancies for 
the five competing models are shown in the table below, along with values of BCC, 
AIC, and CAIC. The table provides fit measures for five competing models (standard 
errors in parentheses).

The Failures column in the table indicates that the likelihood function of Model 2 could 
not be maximized for 19 of the 1,000 bootstrap samples, at least not with the iteration 
limit of 40. Nineteen additional bootstrap samples were generated for Model 2 in order 
to bring the total number of bootstrap samples to the target of 1,000. The 19 samples 
where Model 2 could not be fitted successfully caused no problem with the other four 
models. Consequently, 981 bootstrap samples were common to all five models.

No attempt was made to find out why Model 2 estimates could not be computed for 
19 bootstrap samples. As a rule, algorithms for analysis of moment structures tend to 

Model Failures Mean 
Discrepancy BCC AIC CAIC

1 0 64.16 (0.29) 68.17 66.94 114.66
2 19 29.14 (0.35 36.81 35.07 102.68
2R 0 26.57 (0.30) 30.97 29.64 81.34
Sat. 0 32.05 (0.37) 44.15 42.00 125.51
Indep. 0 334.32 (0.24) 333.93 333.32 357.18

CML α̂b a,( )

ML discrepancy (implied vs pop) (Default model) 
  |-------------------- 
 48.268 |** 
 52.091 |********* 
 55.913 |************* 
 59.735 |******************* 
 63.557 |***************** 
 67.379 |************ 
 71.202 |******** 

N = 1000 75.024 |****** 
Mean = 64.162 78.846 |*** 
S. e. = .292 82.668 |* 

 86.490 |** 
 90.313 |** 
 94.135 |* 
 97.957 |* 
 101.779 |* 

  |--------------------  

CML α̂b a,( )
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fail for models that fit poorly. If some way could be found to successfully fit Model 2 
to these 19 samples—for example, with hand-picked start values or a superior 
algorithm—it seems likely that the discrepancies would be large. According to this line 
of reasoning, discarding bootstrap samples for which estimation failed would lead to a 
downward bias in the mean discrepancy. Thus, you should be concerned by estimation 
failures during bootstrapping, primarily when they occur for the model with the lowest 
mean discrepancy.

In this example, the lowest mean discrepancy (26.57) occurs for Model 2R, 
confirming the model choice based on the BCC, AIC, and CAIC criteria. The 
differences among the mean discrepancies are large compared to their standard errors. 
Since all models were fitted to the same bootstrap samples (except for samples where 
Model 2 was not successfully fitted), you would expect to find positive correlations 
across bootstrap samples between discrepancies for similar models. Unfortunately, 
Amos does not report those correlations. Calculating the correlations by hand shows 
that they are close to 1, so that standard errors for the differences between means in the 
table are, on the whole, even smaller than the standard errors of the means.

Summary

The bootstrap can be a practical aid in model selection for analysis of moment 
structures. The Linhart and Zucchini (1986) approach uses the expected discrepancy 
between implied and population moments as the basis for model comparisons. The 
method is conceptually simple and easy to apply. It does not employ any arbitrary 
magic number such as a significance level. Of course, the theoretical appropriateness 
of competing models and the reasonableness of their associated parameter estimates 
are not taken into account by the bootstrap procedure and need to be given appropriate 
weight at some other stage in the model evaluation process.

Modeling in VB.NET

Visual Basic programs for this example are in the files Ex20-1.vb, Ex20-2.vb, Ex20-
2r.vb, Ex20-ind.vb, and Ex20-sat.vb.
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21
Bootstrapping to Compare 
Estimation Methods

Introduction

This example demonstrates how bootstrapping can be used to choose among 
competing estimation criteria.

Estimation Methods

The discrepancy between the population moments and the moments implied by a 
model depends not only on the model but also on the estimation method. The 
technique used in Example 20 to compare models can be adapted to the comparison 
of estimation methods. This capability is particularly needed when choosing among 
estimation methods that are known to be optimal only asymptotically, and whose 
relative merits in finite samples would be expected to depend on the model, the sample 
size, and the population distribution. The principal obstacle to carrying out this 
program for comparing estimation methods is that it requires a prior decision about 
how to measure the discrepancy between the population moments and the moments 
implied by the model. There appears to be no way to make this decision without 
favoring some estimation criteria over others. Of course, if every choice of population 
discrepancy leads to the same conclusion, questions about which is the appropriate 
population discrepancy can be considered academic. The present example presents 
such a clear-cut case.
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About the Data

The Holzinger-Swineford (1939) data from Example 20 (in the file Grant.sav) are used 
in the present example.

About the Model

The present example estimates the parameters of Model 2R from Example 20 by four 
alternative methods: Asymptotically distribution-free (ADF), maximum likelihood 
(ML), generalized least squares (GLS), and unweighted least squares (ULS). To 
compare the four estimation methods, you need to run Amos four times.

To specify the estimation method and bootstrap parameters:

E From the menus, choose View → Analysis Properties.

E In the Analysis Properties dialog box, click the Random # tab.

E Enter a Seed for random numbers.

As we discussed in Example 20, it does not matter what seed value you choose, but in 
order to draw the exact same set of samples in each of several Amos sessions, the same 
seed number must be given each time. In this example, we use a seed of 3. 

E Next, click the Estimation tab.

E Select the Asymptotically distribution-free discrepancy.

This discrepancy specifies that ADF estimation should be used to fit the model to each 
bootstrap sample. 
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E Finally, click the Bootstrap tab.

E Select Perform bootstrap and type 1000 for Number of bootstrap samples.

E Select Bootstrap ADF, Bootstrap ML, Bootstrap GLS, and Bootstrap ULS.
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Selecting Bootstrap ADF, Bootstrap ML, Bootstrap GLS, Bootstrap SLS, and Bootstrap 
ULS specifies that each of CADF, CML, CGLS, and CULS is to be used to measure the 
discrepancy between the sample moments in the original sample and the implied 
moments from each bootstrap sample.

To summarize, when you perform the analysis (Analyze → Calculate Estimates), 
Amos will fit the model to each of 1,000 bootstrap samples using the ADF discrepancy. 
For each bootstrap sample, the closeness of the implied moments to the population 
moments will be measured four different ways, using CADF, CML, CGLS, and CULS.
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E Select the Maximum likelihood discrepancy to repeat the analysis.

 

E Select the Generalized least squares discrepancy to repeat the analysis again. 

E Select the Unweighted least squares discrepancy to repeat the analysis one last time.

The four Amos Graphics input files for this example are Ex21-adf.amw, Ex21-ml.amw, 
Ex21-gls.amw, and Ex21-uls.amw.

Text Output

In the first of the four analyses (as found in Ex21-adf.amw), estimation using ADF 
produces the following histogram output. To view this histogram:

E Click Bootstrap Distributions → ADF Discrepancy (implied vs pop) in the tree diagram in 
the upper left pane of the Amos Output window.
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This portion of the output shows the distribution of the population discrepancy 
 across 1,000 bootstrap samples, where  contains the implied moments 

obtained by minimizing , that is, the sample discrepancy. The average of 
 across 1,000 bootstrap samples is 20.601, with a standard error of 0.218.

The following histogram shows the distribution of . To view this histogram:

E Click Bootstrap Distributions → ML Discrepancy (implied vs pop) in the tree diagram in 
the upper left pane of the Amos Output window.

ADF discrepancy (implied vs pop) (Default model) 
  |-------------------- 
 7.359 |* 
 10.817 |******** 
 14.274 |**************** 
 17.732 |******************** 
 21.189 |******************* 
 24.647 |************* 
 28.104 |******** 

N = 1000 31.562 |**** 
Mean = 20.601 35.019 |** 
S. e. = .218 38.477 |** 

 41.934 |* 
 45.392 |* 
 48.850 |* 
 52.307 |* 
 55.765 |* 

  |--------------------  

CADF α̂b a,( ) α̂b
CADF α̂b ab,( )

CADF α̂b a,( )

CML α̂b a,( )

ML discrepancy (implied vs pop) (Default model) 
  |-------------------- 
 11.272 |**** 
 22.691 |******************** 
 34.110 |******************** 
 45.530 |*********** 
 56.949 |***** 
 68.368 |*** 
 79.787 |** 

N = 1000 91.207 |* 
Mean = 36.860 102.626 |* 
S. e. = .571 114.045 |* 

 125.464 |* 
 136.884 | 
 148.303 | 
 159.722 | 
 171.142 |* 

  |--------------------  
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The following histogram shows the distribution of . To view this histogram:

E Click Bootstrap Distributions → GLS Discrepancy (implied vs pop) in the tree diagram in 
the upper left pane of the Amos Output window.

The following histogram shows the distribution of . To view this histogram:

E Click Bootstrap Distributions → ULS Discrepancy (implied vs pop) in the tree diagram in 
the upper left pane of the Amos Output window.

CGLS α̂b a,( )

GLS discrepancy (implied vs pop) (Default model) 
  |-------------------- 
 7.248 |** 
 11.076 |********* 
 14.904 |*************** 
 18.733 |******************** 
 22.561 |************** 
 26.389 |*********** 
 30.217 |******* 

N = 1000 34.046 |**** 
Mean = 21.827 37.874 |** 
S. e. = .263 41.702 |*** 

 45.530 |* 
 49.359 |* 
 53.187 |* 
 57.015 |* 
 60.844 |* 

  |--------------------  

CULS α̂b a,( )

ULS discrepancy (implied vs pop) (Default model) 
  |-------------------- 
 5079.897 |****** 
 30811.807 |******************** 
 56543.716 |******** 
 82275.625 |**** 
 108007.534 |** 
 133739.443 |* 
 159471.352 |* 

N = 1000 185203.261 |* 
Mean = 43686.444 210935.170 | 
S. e. = 1011.591 236667.079 |* 

 262398.988 | 
 288130.897 | 
 313862.806 | 
 339594.715 | 
 365326.624 |* 

  |--------------------  
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Below is a table showing the mean of  across 1,000 bootstrap samples with 
the standard errors in parentheses. The four distributions just displayed are 
summarized in the first row of the table. The remaining three rows show the results of 
estimation by minimizing CML, CGLS, and CULS, respectively.

The first column, labeled CADF , shows the relative performance of the four estimation 
methods according to the population discrepancy, CADF . Since 19.19 is the smallest 
mean discrepancy in the CADF column, CML is the best estimation method according to 
the CADF criterion. Similarly, examining the CML column of the table shows that CML 
is the best estimation method according to the CML criterion.

Although the four columns of the table disagree on the exact ordering of the four 
estimation methods, ML is, in all cases, the method with the lowest mean discrepancy. 
The difference between ML estimation and GLS estimation is slight in some cases. 
Unsurprisingly, ULS estimation performed badly, according to all of the population 
discrepancies employed. More interesting is the poor performance of ADF estimation, 
indicating that ADF estimation is unsuited to this combination of model, population, 
and sample size.

Modeling in VB.NET

Visual Basic programs for this example are in the files Ex21-adf.vb, Ex21-gls.vb, 
Ex21-ml.vb, and Ex21-uls.vb.

Population discrepancy for evaluation: 

CADF CML CGLS CULS

Sample 
discrepancy 
for estimation

CADF 20.60 (0.22) 36.86 (0.57) 21.83 (0.26) 43686 (1012)
CML 19.19 (0.20) 26.57 (0.30) 18.96 (0.22) 34760 (830)
CGLS 19.45 (0.20) 31.45 (0.40) 19.03 (0.21) 37021 (830)
CULS 24.89 (0.35) 31.78 (0.43) 24.16 (0.33) 35343 (793)

C α̂b a,( )

C α̂b ab,( )

C α̂b ab,( )
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Specification Search

Introduction

This example takes you through two specification searches: one is largely 
confirmatory (with few optional arrows), and the other is largely exploratory (with 
many optional arrows). 

About the Data

This example uses the Felson and Bohrnstedt (1979) girls’ data, also used in Example 7. 

About the Model

The initial model for the specification search comes from Felson and Bohrnstedt 
(1979), as seen in Figure 22-1:
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Figure 22-1: Felson and Bohrnstedt’s model for girls

Specification Search with Few Optional Arrows

Felson and Bohrnstedt were primarily interested in the two single-headed arrows, 
academic←attract and attract←academic. The question was whether one or both, or 
possibly neither, of the arrows was needed. For this reason, you will make both arrows 
optional during this specification search. The double-headed arrow connecting error1 
and error2 is an undesirable feature of the model because it complicates the 
interpretation of the effects represented by the single-headed arrows, and so you will 
also make it optional. The specification search will help to decide which of these three 
optional arrows, if any, are essential to the model.

This specification search is largely confirmatory because most arrows are required 
by the model, and only three are optional.

Specifying the Model

E Open Ex22a.amw. If you performed a typical installation, the path is 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>\Ex22a.amw. 

The path diagram opens in the drawing area. Initially, there are no optional arrows, as 
seen in Figure 22-1.

E From the menus, choose Analyze → Specification Search.

The Specification Search window appears. Initially, only the toolbar is visible.
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E Click  on the Specification Search toolbar, and then click the double-headed arrow 
that connects error1 and error2. The arrow changes color to indicate that the arrow is 
optional.

Tip: If you want the optional arrow to be dashed as well as colored, as seen below, 
choose View → Interface Properties from the menus, click the Accessibility tab, and select 
the Alternative to color check box.

E To make the arrow required again, click  on the Specification Search toolbar, and 
then click the arrow. When you move the pointer away, the arrow will again display as 
a required arrow. 

E Click  again, and then click the arrows in the path diagram until it looks like this:
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When you perform the exploratory analysis later on, the program will treat the three 
colored arrows as optional and will try to fit the model using every possible subset of 
them.

Selecting Program Options

E Click the Options button  on the Specification Search toolbar.

E In the Options dialog box, click the Current results tab.

E Click Reset to ensure that your options are the same as those used in this example. 

E Now click the Next search tab. The text at the top indicates that the exploratory analysis 
will fit eight (that is, 23) models.

E In the Retain only the best ___ models box, change the value from 10 to 0. 

With a default value of 10, the specification search reports at most 10 one-parameter 
models, at most 10 two-parameter models, and so on. If the value is set to 0, there is no 
limitation on the number of models reported. 
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Limiting the number of models reported can speed up a specification search 
significantly. However, only eight models in total will be encountered during the 
specification search for this example, and specifying a nonzero value for Retain only 

the best ___ models would have the undesirable side effect of inhibiting the program 
from normalizing Akaike weights and Bayes factors so that they sum to 1 across all 
models, as seen later.

E Close the Options dialog box.

Performing the Specification Search

E Click  on the Specification Search toolbar. 

The program fits the model eight times, using every subset of the optional arrows. 
When it finishes, the Specification Search window expands to show the results. 
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The following table summarizes fit measures for the eight models and the saturated 
model:

The Model column contains an arbitrary index number from 1 through 8 for each of the 
models fitted during the specification search. Sat identifies the saturated model. 
Looking at the first row, Model 1 has 19 parameters and 2 degrees of freedom. The 
discrepancy function (which in this case is the likelihood ratio chi-square statistic) is 
2.761. Elsewhere in Amos output, the minimum value of the discrepancy function is 
referred to as CMIN. Here it is labeled C for brevity. To get an explanation of any 
column of the table, right-click anywhere in the column and choose What’s This? from 
the pop-up menu.

Notice that the best value in each column is underlined, except for the Model and 
Notes columns. 

Many familiar fit measures (CFI and RMSEA, for example) are omitted from this 
table. Appendix E gives a rationale for the choice of fit measures displayed.

Viewing Generated Models

E You can double-click any row in the table (other than the Sat row) to see the 
corresponding path diagram in the drawing area. For example, double-click the row for 
Model 7 to see its path diagram.
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Figure 22-2: Path diagram for Model 7

Viewing Parameter Estimates for a Model

E Click  on the Specification Search toolbar.

E In the Specification Search window, double-click the row for Model 7. 

The drawing area displays the parameter estimates for Model 7.

Figure 22-3: Parameter estimates for Model 7
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Using BCC to Compare Models

E In the Specification Search window, click the column heading BCC0. 

The table sorts according to BCC so that the best model according to BCC (that is, the 
model with the smallest BCC) is at the top of the list.

 

Based on a suggestion by Burnham and Anderson (1998), a constant has been added 
to all the BCC values so that the smallest BCC value is 0. The 0 subscript on BCC0 
serves as a reminder of this rescaling. AIC (not shown in the above figure) and BIC 
have been similarly rescaled. As a rough guideline, Burnham and Anderson (1998, 
p. 128) suggest the following interpretation of AIC0. BCC0 can be interpreted similarly.

Although Model 7 is estimated to be the best model according to Burnham and 
Anderson’s guidelines, Models 6 and 8 should not be ruled out.

AIC0 or BCC0 Burnham and Anderson interpretation

0 – 2

There is no credible evidence that the model should be 
ruled out as being the actual K-L best model for the 
population of possible samples. (See Burnham and 
Anderson for the definition of K-L best.)

2 – 4 There is weak evidence that the model is not the K-L 
best model.

4 – 7 There is definite evidence that the model is not the K-L 
best model.

7 – 10 There is strong evidence that the model is not the K-L 
best model.

>10 There is very strong evidence that the model is not the 
K-L best model.



327

Specif ication Search

Viewing the Akaike Weights

E Click the Options button  on the Specification Search toolbar.

E In the Options dialog box, click the Current results tab. 

E In the BCC, AIC, BIC group, select Akaike weights / Bayes factors (sum = 1).

In the table of fit measures, the column that was labeled BCC0 is now labeled BCCp and 
contains Akaike weights. (See Appendix G.)
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The Akaike weight has been interpreted (Akaike, 1978; Bozdogan, 1987; Burnham and 
Anderson, 1998) as the likelihood of the model given the data. With this interpretation, 
the estimated K-L best model (Model 7) is only about 2.4 times more likely (0.494 / 
0.205 = 2.41) than Model 6. Bozdogan (1987) points out that, if it is possible to assign 
prior probabilities to the candidate models, the prior probabilities can be used together 
with the Akaike weights (interpreted as model likelihoods) to obtain posterior 
probabilities. With equal prior probabilities, the Akaike weights are themselves 
posterior probabilities, so that one can say that Model 7 is the K-L best model with 
probability 0.494, Model 6 is the K-L best model with probability 0.205, and so on. The 
four most probable models are Models 7, 6, 8, and 1. After adding their probabilities 
(0.494 + 0.205 + 0.192 + 0.073 = 0.96), one can say that there is a 96% chance that the 
K-L best model is among those four. (Burnham and Anderson, 1998, pp. 127-129). The 
p subscript on BCCp serves as a reminder that BCCp can be interpreted as a probability 
under some circumstances.

Using BIC to Compare Models

E On the Current results tab of the Options dialog box, select Zero-based (min = 0) in the 
BCC, AIC, BIC group.
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E In the Specification Search window, click the column heading BIC0. 

The table is now sorted according to BIC so that the best model according to BIC (that 
is, the model with the smallest BIC) is at the top of the list.

Model 7, with the smallest BIC, is the model with the highest approximate posterior 
probability (using equal prior probabilities for the models and using a particular prior 
distribution for the parameters of each separate model). Raftery (1995) suggests the 
following interpretation of BIC0 values in judging the evidence for Model 7 against a 
competing model:

Using these guidelines, you have positive evidence against Models 6 and 8, and very 
strong evidence against all of the other models as compared to Model 7.

Using Bayes Factors to Compare Models

E On the Current results tab of the Options dialog box, select Akaike weights / Bayes factors 

(sum = 1) in the BCC, AIC, BIC group.

BIC0 Raftery (1995) interpretation

0 – 2 Weak
2 – 6 Positive
6 – 10 Strong
>10 Very strong
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In the table of fit measures, the column that was labeled BIC0 is now labeled BICp and 
contains Bayes factors scaled so that they sum to 1.

With equal prior probabilities for the models and using a particular prior distribution 
of the parameters of each separate model (Raftery, 1995; Schwarz, 1978), BICp values 
are approximate posterior probabilities. Model 7 is the correct model with probability 
0.860. One can be 99% sure that the correct model is among Models 7, 6, and 8 (0.860 
+ 0.069 + 0.065 = 0.99). The p subscript is a reminder that BICp values can be 
interpreted as probabilities.
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Madigan and Raftery (1994) suggest that only models in Occam’s window be used 
for purposes of model averaging (a topic not discussed here). The symmetric Occam’s 
window is the subset of models obtained by excluding models that are much less 
probable (Madigan and Raftery suggest something like 20 times less probable) than the 
most probable model. In this example, the symmetric Occam’s window contains 
models 7, 6, and 8 because these are the models whose probabilities (BICp values) are 
greater than .

Rescaling the Bayes Factors

E On the Current results tab of the Options dialog box, select Akaike weights / Bayes factors 

(max = 1) in the BCC, AIC, BIC group.

In the table of fit measures, the column that was labeled BICp is now labeled BICL and 
contains Bayes factors scaled so that the largest value is 1. This makes it easier to pick 
out Occam’s window. It consists of models whose BICL values are greater than 

; in other words, Models 7, 6, and 8. The L subscript on BICL is a 
reminder that the analogous statistic BCCL can be interpreted as a likelihood.

0.860 20⁄ 0.043=

1 20⁄ 0.05=
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Examining the Short List of Models

E Click  on the Specification Search toolbar. This displays a short list of models. 

In the figure below, the short list shows the best model for each number of parameters. 
It shows the best 16-parameter model, the best 17-parameter model, and so on. Notice 
that all criteria agree on the best model when the comparison is restricted to models 
with a fixed number of parameters. The overall best model must be on this list, no 
matter which criterion is employed.

Figure 22-4: The best model for each number of parameters

This table shows that the best 17-parameter model fits substantially better than the best 
16-parameter model. Beyond 17 parameters, adding additional parameters yields 
relatively small improvements in fit. In a cost-benefit analysis, stepping from 16 
parameters to 17 parameters has a relatively large payoff, while going beyond 17 
parameters has a relatively small payoff. This suggests adopting the best 17-parameter 
model, using a heuristic point of diminishing returns argument. This approach to 
determining the number of parameters is pursued further later in this example (see 
“Viewing the Best-Fit Graph for C” on p. 338 and “Viewing the Scree Plot for C” on 
p. 340). 
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Viewing a Scatterplot of Fit and Complexity

E Click  on the Specification Search toolbar. This opens the Plot window, which 
displays the following graph:

The graph shows a scatterplot of fit (measured by C) versus complexity (measured by 
the number of parameters) where each point represents a model. The graph portrays the 
trade-off between fit and complexity that Steiger characterized as follows:

In the final analysis, it may be, in a sense, impossible to define one best 
way to combine measures of complexity and measures of badness-of-fit 
in a single numerical index, because the precise nature of the best 
numerical trade-off between complexity and fit is, to some extent, a 
matter of personal taste. The choice of a model is a classic problem in 
the two-dimensional analysis of preference. (Steiger, 1990, p. 179.)

E Click any of the points in the scatterplot to display a menu that indicates which models 
are represented by that point and any overlapping points. 
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E Choose one of the models from the pop-up menu to see that model highlighted in the 
table of model fit statistics and, at the same time, to see the path diagram of that model 
in the drawing area.

In the following figure, the cursor points to two overlapping points that represent 
Model 6 (with a discrepancy of 2.76) and Model 8 (with a discrepancy of 2.90). 

The graph contains a horizontal line representing points for which C is constant. 
Initially, the line is centered at 0 on the vertical axis. The Fit values panel at the lower 
left shows that, for points on the horizontal line, C = 0 and also F = 0. (F is referred to 
as FMIN in Amos output.) NFI1 and NFI2 are two versions of NFI that use two different 
baseline models (see Appendix F). 

Initially, both NFI1 and NFI2 are equal to 1 for points on the horizontal line. The 
location of the horizontal line is adjustable. You can move the line by dragging it with 
the mouse. As you move the line, you can see the changes in the location of the line 
reflected in the fit measures in the lower left panel.

_Ref17272350
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Adjusting the Line Representing Constant Fit

E Move your mouse over the adjustable line. When the pointer changes to a hand, drag 
the line so that NFI1 is equal to 0.900. (Keep an eye on NFI1 in the lower left panel while 
you reposition the adjustable line.) 

NFI1 is the familiar form of the NFI statistic for which the baseline model requires the 
observed variables to be uncorrelated without constraining their means and variances. 
Points that are below the line have NFI1 > 0.900 and those above the line have 
NFI1 < 0.900. That is, the adjustable line separates the acceptable models from the 
unacceptable ones according to a widely used convention based on a remark by Bentler 
and Bonett (1980).
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Viewing the Line Representing Constant C – df

E In the Plot window, select C – df in the Fit measure group. This displays the following:

The scatterplot remains unchanged except for the position of the adjustable line. The 
adjustable line now contains points for which C – df is constant. Whereas the line was 
previously horizontal, it is now tilted downward, indicating that C – df gives some 
weight to complexity in assessing model adequacy. Initially, the adjustable line passes 
through the point for which C – df is smallest.

E Click that point, and then choose Model 7 from the pop-up menu. 

This highlights Model 7 in the table of fit measures and also displays the path diagram 
for Model 7 in the drawing area. 

The panel in the lower left corner shows the value of some fit measures that depend 
only on C – df and that are therefore, like C – df itself, constant along the adjustable 
line. CFI1 and CFI2 are two versions of CFI that use two different baseline models (see 
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Appendix G). Initially, both CFI1 and CFI2 are equal to 1 for points on the adjustable 
line. When you move the adjustable line, the fit measures in the lower left panel change 
to reflect the changing position of the line.

Adjusting the Line Representing Constant C – df

E Drag the adjustable line so that CFI1 is equal to 0.950. 

CFI1 is the usual CFI statistic for which the baseline model requires the observed 
variables to be uncorrelated without constraining their means and variances. Points that 
are below the line have CFI1 > 0.950 and those above the line have CFI1 < 0.950. That 
is, the adjustable line separates the acceptable models from the unacceptable ones 
according to the recommendation of Hu and Bentler (1999).
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Viewing Other Lines Representing Constant Fit

E Click AIC, BCC, and BIC in turn.

Notice that the slope of the adjustable line becomes increasingly negative. This reflects 
the fact that the five measures (C, C – df, AIC, BCC, and BIC) give increasing weight 
to model complexity. For each of these five measures, the adjustable line has constant 
slope, which you can confirm by dragging the line with the mouse. By contrast, the 
slope of the adjustable line for C / df is not constant (the slope of the line changes when 
you drag it with the mouse) and so the slope for C / df cannot be compared to the slopes 
for C, C – df, AIC, BCC, and BIC.

Viewing the Best-Fit Graph for C

E In the Plot window, select Best fit in the Plot type group.

E In the Fit measure group, select C.

Figure 22-5: Smallest value of C for each number of parameters
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Each point in this graph represents a model for which C is less than or equal to that of 
any other model that has the same number of parameters. The graph shows that the best 
16-parameter model has , the best 17-parameter model has , 
and so on. While Best fit is selected, the table of fit measures shows the best model for 
each number of parameters. This table appeared earlier on p. 332.

Notice that the best model for a fixed number of parameters does not depend on the 
choice of fit measure. For example, Model 7 is the best 17-parameter model according 
to C – df, and also according to C / df and every other fit measure. This short list of best 
models is guaranteed to contain the overall best model, no matter which fit measure is 
used as the criterion for model selection. 

You can view the short list at any time by clicking . The best-fit graph suggests 
the choice of 17 as the correct number of parameters on the heuristic grounds that it is 
the point of diminishing returns. That is, increasing the number of parameters from 16 
to 17 buys a comparatively large improvement in C ( ), while 
increasing the number of parameters beyond 17 yields relatively small improvements.

Viewing the Best-Fit Graph for Other Fit Measures

E While Best fit is selected, try selecting the other choices in the Fit measure group: 
C – df, AIC, BCC, BIC, and C / df. For example, if you click BIC, you will see this:

C 67.342= C 3.071=

67.342 3.071– 64.271=
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BIC is the measure among C, C – df, AIC, BCC, and BIC that imposes the greatest 
penalty for complexity. The high penalty for complexity is reflected in the steep 
positive slope of the graph as the number of parameters increases beyond 17. The graph 
makes it clear that, according to BIC, the best 17-parameter model is superior to any 
other candidate model.

Notice that clicking different fit measures changes the vertical axis of the best-fit 
graph and changes the shape of the configuration of points.1 However, the identity of 
each point is preserved. The best 16-parameter model is always Model 4, the best 17-
parameter model is always Model 7, and so on. This is because, for a fixed number of 
parameters, the rank order of models is the same for every fit measure.

Viewing the Scree Plot for C

E In the Plot window, select Scree in the Plot type group. 

1 The saturated model is missing from the C / df graph because C / df is not defined for the saturated model.
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E In the Fit measure group, select C.

The Plot window displays the following graph:

Figure 22-6: Scree plot for C

In this scree plot, the point with coordinate 17 on the horizontal axis has coordinate 
64.271 on the vertical axis. This represents the fact that the best 17-parameter model 
( ) fits better than the best 16-parameter model ( ), with the 
difference being . Similarly, the height of the graph at 18 
parameters shows the improvement in C obtained by moving from the best 17-
parameter model to the best 18-parameter model, and so on. The point located above 
21 on the horizontal axis requires a separate explanation. There is no 20-parameter 
model with which the best 21-parameter model can be compared. (Actually, there is 
only one 21-parameter model—the saturated model.) The best 21-parameter model 
( ) is therefore compared to the best 19-parameter model ( ). The 
height of the 21-parameter point is calculated as . That is, the 
improvement in C obtained by moving from the 19-parameter model to the 21-
parameter model is expressed as the amount of reduction in C per parameter.

C 3.071= C 67.342=
67.342 3.071 64.271=–

C 0= C 2.761=
2.761 0–( ) 2⁄
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The figure on either p. 338 or p. 341 can be used to support a heuristic point of 
diminishing returns argument in favor of 17 parameters. There is this difference: In the 
best-fit graph (p. 338), one looks for an elbow in the graph, or a place where the slope 
changes from relatively steep to relatively flat. For the present problem, this occurs at 
17 parameters, which can be taken as support for the best 17-parameter model. In the 
scree plot (p. 341), one also looks for an elbow, but the elbow occurs at 18 parameters 
in this example. This is also taken as support for the best 17-parameter model. In a 
scree plot, an elbow at k parameters provides support for the best ( ) parameter 
model.

The scree plot is so named because of its similarity to the graph known as a scree 
plot in principal components analysis (Cattell, 1966). In principal components 
analysis, a scree plot shows the improvement in model fit that is obtained by adding 
components to the model, one component at a time. The scree plot presented here for 
SEM shows the improvement in model fit that is obtained by incrementing the number 
of model parameters. The scree plot for SEM is not identical in all respects to the scree 
plot for principal components analysis. For example, in principal components, one 
obtains a sequence of nested models when introducing components one at a time. This 
is not necessarily the case in the scree plot for SEM. The best 17-parameter model, say, 
and the best 18-parameter model may or may not be nested. (In the present example, 
they are.) Furthermore, in principal components, the scree plot is always monotone 
non-increasing, which is not guaranteed in the case of the scree plot for SEM, even with 
nested models. Indeed, the scree plot for the present example is not monotone.

In spite of the differences between the traditional scree plot and the scree plot 
presented here, it is proposed that the new scree plot be used in the same heuristic 
fashion as the traditional one. A two-stage approach to model selection is suggested. 
In the first stage, the number of parameters is selected by examining either the scree 
plot or the short list of models. In the second stage, the best model is chosen from 
among those models that have the number of parameters determined in the first stage.

Viewing the Scree Plot for Other Fit Measures

E With Scree selected in the Plot type group, select the other choices in the Fit measure 
group: C – df, AIC, BCC, and BIC (but not C / df). 

For example, if you select BIC, you will see this:

k 1–
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For C – df, AIC, BCC, and BIC, the units and the origin of the vertical axis are different 
than for C, but the graphs are otherwise identical. This means that the final model 
selected by the scree test is independent of which measure of fit is used (unless C / df 
is used). This is the advantage of the scree plot over the best-fit plot demonstrated 
earlier in this example (see “Viewing the Best-Fit Graph for C” on p. 338, and 
“Viewing the Best-Fit Graph for Other Fit Measures” on p. 339). The best-fit plot and 
the scree plot contain nearly the same information, but the shape of the best-fit plot 
depends on the choice of fit measure while the shape of the scree plot does not (with 
the exception of C / df).

Both the best-fit plot and the scree plot are independent of sample size in the sense 
that altering the sample size without altering the sample moments has no effect other 
than to rescale the vertical axis.
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Specification Search with Many Optional Arrows

The previous specification search was largely confirmatory in that there were only 
three optional arrows. You can take a much more exploratory approach to constructing 
a model for the Felson and Bohrnstedt data. Suppose that your only hypothesis about 
the six measured variables is that 

academic depends on the other five variables, and 

attract depends on the other five variables. 

The path diagram shown in Figure 22-7 with 11 optional arrows implements this 
hypothesis. It specifies which variables are endogenous, and nothing more. Every 
observed-variable model that is consistent with the hypothesis is included in the 
specification search. The covariances among the observed, exogenous variables could 
have been made optional, but doing so would have increased the number of optional 
arrows from 11 to 17, increasing the number of candidate models from 2,048 (that is, 211) 
to 131,072 (that is, 217). Allowing the covariances among the observed, exogenous 
variables to be optional would have been costly, and there would seem to be little interest 
in searching for models in which some pairs of those variables are uncorrelated.

Figure 22-7: Highly exploratory model for Felson and Bohrnstedt’s girls’ data
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Specifying the Model

E Open Ex22b.amw. If you performed a typical installation, the path will be 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>\Ex22b.amw. 

Tip: If the last file you opened was in the Examples folder, you can open the file by 
double-clicking it in the Files list to the left of the drawing area. 

Making Some Arrows Optional

E From the menus, choose Analyze → Specification Search. 

E Click  on the Specification Search toolbar, and then click the arrows in the path 
diagram until it looks like the diagram on p. 344. 

Tip: You can change multiple arrows at once by clicking and dragging the mouse 
pointer through them. 

Setting Options to Their Defaults

E Click the Options button  on the Specification Search toolbar. 

E In the Options dialog box, click the Next search tab.

E In the Retain only the best ___ models box, change the value from 0 to 10. 
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This restores the default setting we altered earlier in this example. With the default 
setting, the program displays only the 10 best models according to whichever criterion 
you use for sorting the columns of the model list. This limitation is desirable now 
because of the large number of models that will be generated for this specification 
search.

E Click the Current results tab.

E In the BCC, AIC, BIC group, select Zero-based (min = 0).

Performing the Specification Search

E Click  on the Specification Search toolbar. 

The search takes about 10 seconds on a 1.8 GHz Pentium 4. When it finishes, the 
Specification Search window expands to show the results.
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Using BIC to Compare Models

E In the Specification Search window, click the BIC0 column heading. This sorts the table 
according to BIC0. 

Figure 22-8: The 10 best models according to BIC0

The sorted table shows that Model 22 is the best model according to BIC0. (Model 
numbers depend in part on the order in which the objects in the path diagram were 
drawn; therefore, if you draw your own path diagram, your model numbers may differ 
from the model numbers here.) The second-best model according to BIC0, namely 
Model 32, is the best according to BCC0. These models are shown below:

Model 22 Model 32
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Viewing the Scree Plot

E Click  on the Specification Search toolbar.

E In the Plot window, select Scree in the Plot type group. 

The scree plot strongly suggests that models with 15 parameters provide an optimum 
trade-off of model fit and parsimony. 

E Click the point with the horizontal coordinate 15. A pop-up appears that indicates the 
point represents Model 22, for which the change in chi-square is 46.22. 

E Click 22 (46.22) to display Model 22 in the drawing area.

Limitations

The specification search procedure is limited to the analysis of data from a single 
group.
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Example

23
Exploratory Factor Analysis by 
Specification Search

Introduction

This example demonstrates exploratory factor analysis by means of a specification 
search. In this approach to exploratory factor analysis, any measured variable can 
(optionally) depend on any factor. A specification search is performed to find the 
subset of single-headed arrows that provides the optimum combination of simplicity 
and fit. It also demonstrates a heuristic specification search that is practical for models 
that are too big for an exhaustive specification search.

About the Data

This example uses the Holzinger and Swineford girls’ (1939) data from Example 8.

About the Model

The initial model is shown in Figure 23-1 on p. 350. During the specification search, 
all single-headed arrows that point from factors to measured variables will be made 
optional. The purpose of the specification search is to obtain guidance as to which 
single-headed arrows are essential to the model; in other words, which variables 
depend on which factors.

The two factor variances are both fixed at 1, as are all the regression weights 
associated with residual variables. Without these constraints, all the models 
encountered during the specification search would be unidentified.
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Figure 23-1: Exploratory factor analysis model with two factors

Specifying the Model

E Open the file Ex23.amw. If you performed a typical installation, the path will be 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>\Ex23.amw. 

Initially, the path diagram appears as in Figure 23-1. There is no point in trying to fit this 
model as it stands because it is not identified, even with the factor variances fixed at 1.

Opening the Specification Search Window

E To open the Specification Search window, choose Analyze → Specification Search. 

Initially, only the toolbar is visible, as seen here:
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Making All Regression Weights Optional

E Click  on the Specification Search toolbar, and then click all the single-headed 
arrows in the path diagram. 

Figure 23-2: Two-factor model with all regression weights optional

During the specification search, the program will attempt to fit the model using every 
possible subset of the optional arrows.

Setting Options to Their Defaults

E Click the Options button  on the Specification Search toolbar. 

E In the Options dialog box, click the Current results tab.

E Click Reset to ensure that your options are the same as those used in this example. 
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E Now click the Next search tab. Notice that the default value for Retain only the best ___ 
models is 10.
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With this setting, the program will display only the 10 best models according to 
whichever criterion you use for sorting the columns of the model list. For example, if 
you click the column heading C / df, the table will show the 10 models with the smallest 
values of C / df, sorted according to C / df. Scatterplots will display only the 10 best 
1-parameter models, the 10 best 2-parameter models, and so on. It is useful to place a 
limit on the number of parameters to be displayed when there are a lot of optional 
parameters. 

In this example, there are 12 optional parameters so that there are  
candidate models. Storing results for a large number of models can affect performance. 
Limiting the display to the best 10 models for each number of parameters means that 
the program has to maintain a list of only about 10 × 13 = 130 models. The program 
will have to fit many more than 130 models in order to find the best 10 models for each 
number of parameters, but not quite as many as 4,096. The program uses a branch-and-
bound algorithm similar to the one used in all-possible-subsets regression (Furnival 
and Wilson, 1974) to avoid fitting some models unnecessarily.

Performing the Specification Search

E Click  on the Specification Search toolbar. 

The search takes about 12 seconds on a 1.8 GHz Pentium 4. When it finishes, the 
Specification Search window expands to show the results.

Initially, the list of models is not very informative. The models are listed in the order 
in which they were encountered, and the models encountered early in the search were 
found to be unidentified. The method used for classifying models as unidentified is 
described in Appendix D.

212 4096=
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Using BCC to Compare Models

E In the Specification Search window, click the column heading BCC0. 

The table sorts according to BCC so that the best model according to BCC (that is, the 
model with the smallest BCC) is at the top of the list.

Figure 23-3: The 10 best models according to BCC0

The two best models according to BCC0 (Models 52 and 53) have identical fit measures 
(out to three decimal places anyway). The explanation for this can be seen from the 
path diagrams for the two models. 

E In the Specification Search window, double-click the row for Model 52. This displays 
its path diagram in the drawing area. 
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E To see the path diagram for Model 53, double-click its row.

Figure 23-4: Reversing F1 and F2 yields another candidate model

This is just one pair of models where reversing the roles of F1 and F2 changes one 
member of the pair into the other. There are other such pairs. Models 52 and 53 are 
equivalent, although they are counted separately in the list of 4,096 candidate models. 
The 10 models in Figure 23-3 on p. 354 come in five pairs, but candidate models do 
not always come in equivalent pairs, as Figure 23-5 illustrates. The model in that figure 
does not occur among the 10 best models for six optional parameters and is not 
identified for that matter, but it does illustrate how reversing F1 and F2 can fail to yield 
a different member of the set of 4,096 candidate models.

Figure 23-5: Reversing F1 and F2 yields the same candidate model
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The occurrence of equivalent candidate models makes it unclear how to apply 
Bayesian calculations to select a model in this example. Similarly, it is unclear how to 
use Akaike weights. Furthermore, Burnham and Anderson’s guidelines (see p. 326) for 
the interpretation of BCC0 are based on reasoning about Akaike weights, so it is not 
clear whether those guidelines apply in the present example. On the other hand, the use 
of BCC0 without reference to the Burnham and Anderson guidelines seems 
unexceptionable. Model 52 (or the equivalent Model 53) is the best model according 
to BCC0.

Although BCC0 chooses the model employed in Example 8, which was based on a 
model of Jöreskog and Sörbom (1996), it might be noted that Model 62 (or its 
equivalent, Model 63) is a very close second in terms of BCC0 and is the best model 
according to some other fit measures. Model 63 has the following path diagram:

Figure 23-6: Model 63

The factors, F1 and F2, seem roughly interpretable as spatial ability and verbal ability 
in both Models 53 and 63. The two models differ in their explanation of scores on the 
cubes test. In Model 53, cubes scores depend entirely on spatial ability. In Model 63, 
cubes scores depend on both spatial ability and verbal ability. Since it is a close call in 
terms of every criterion based on fit and parsimony, it may be especially appropriate 
here to pay attention to interpretability as a model selection criterion. The scree test in 
the following step, however, does not equivocate as to which is the best model.
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Viewing the Scree Plot

E Click  on the Specification Search toolbar.

E In the Plot window, select Scree in the Plot type group. 

The scree plot strongly suggests the use of 13 parameters because of the way the graph 
drops abruptly and then levels off immediately after the 13th parameter. Click the point 
with coordinate 13 on the horizontal axis. A pop-up shows that the point represents 
Models 52 and 53, as shown in Figure 23-4 on p. 355.

Viewing the Short List of Models

E Click  on the Specification Search toolbar. Take note of the short list of models for 
future reference.

_Ref11692933
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Heuristic Specification Search

The number of models that must be fitted in an exhaustive specification search grows 
rapidly with the number of optional arrows. There are 12 optional arrows in Figure 
23-2 on p. 351 so that an exhaustive specification search requires fitting  
models. (The number of models will be somewhat smaller if you specify a small 
positive number for Retain only the best___models on the Next search tab of the Options 
dialog box.) A number of heuristic search procedures have been proposed for reducing 
the number of models that have to be fitted (Salhi, 1998). None of these is guaranteed 
to find the best model, but they have the advantage of being computationally feasible 
in problems with more than, say, 20 optional arrows where an exhaustive specification 
search is impossible.

Amos provides three heuristic search strategies in addition to the option of an 
exhaustive search. The heuristic strategies do not attempt to find the overall best model 
because this would require choosing a definition of best in terms of the minimum or 
maximum of a specific fit measure. Instead, the heuristic strategies attempt to find the 
1-parameter model with the smallest discrepancy, the 2-parameter model with the 
smallest discrepancy, and so on. By adopting this approach, a search procedure can be 
designed that is independent of the choice of fit measure. You can select among the 
available search strategies on the Next search tab of the Options dialog box. The 
choices are as follows:

All subsets. An exhaustive search is performed. This is the default.

Forward. The program first fits the model with no optional arrows. Then it adds one 
optional arrow at a time, always adding whichever arrow gives the largest 
reduction in discrepancy.

Backward. The program first fits the model with all optional arrows in the model. 
Then it removes one optional arrow at a time, always removing whichever arrow 
gives the smallest increase in discrepancy.

Stepwise. The program alternates between Forward and Backward searches, 
beginning with a Forward search. The program keeps track of the best 1-optional-
arrow model encountered, the best 2-optional-arrow model, and so on. After the 
first Forward search, the Forward and Backward search algorithms are modified by 
the following rule: The program will add an arrow or remove an arrow only if the 
resulting model has a smaller discrepancy than any previously encountered model 
with the same number of arrows. For example, the program will add an arrow to a 
5-optional-arrow model only if the resulting 6-optional-arrow model has a smaller 
discrepancy than any previously encountered 6-optional-arrow model. Forward 

212 4096=
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and Backward searches are alternated until one Forward or Backward search is 
completed with no improvement.

Performing a Stepwise Search

E Click the Options button  on the Specification Search toolbar. 

E In the Options dialog box, click the Next search tab.

E Select Stepwise.

E On the Specification Search toolbar, click .

The results in Figure 23-7 suggest examining the 13-parameter model, Model 7. Its 
discrepancy C is much smaller than the discrepancy for the best 12-parameter model 
and not much larger than the best 14-parameter model. Model 7 is also best according 
to both BCC and BIC. (Your results may differ from those in the figure because of an 
element of randomness in the heuristic specification search algorithms. When adding 
an arrow during a forward step or removing an arrow during a backward step, there 
may not be a unique best choice. In that case, one arrow is picked at random from 
among the arrows that are tied for best.)

Figure 23-7: Results of stepwise specification search

_Ref12419715
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Viewing the Scree Plot

E Click  on the Specification Search toolbar.

E In the Plot window, select Scree in the Plot type group. 

The scree plot confirms that adding a 13th parameter provides a substantial reduction 
in discrepancy and that adding additional parameters beyond the 13th provides only 
slight reductions.

Figure 23-8: Scree plot after stepwise specification search

E Click the point in the scree plot with horizontal coordinate 13, as in Figure 23-8. The 
pop-up that appears shows that Model 7 is the best 13-parameter model.

E Click 7 (25.62) on the pop-up. This displays the path diagram for Model 7 in the 
drawing area. 

Tip: You can also do this by double-clicking the row for Model 7 in the Specification 
Search window.

_Ref12421771
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Limitations of Heuristic Specification Searches

A heuristic specification search can fail to find any of the best models for a given 
number of parameters. In fact, the stepwise search in the present example did fail to 
find any of the best 11-parameter models. As Figure 23-7 on p. 359 shows, the best 
11-parameter model found by the stepwise search had a discrepancy (C) of 97.475. An 
exhaustive search, however, turns up two models that have a discrepancy of 55.382. For 
every other number of parameters, the stepwise search did find one of the best models.

Of course, it is only when you can perform an exhaustive search to double-check the 
result of a heuristic search that you can know whether the heuristic search was 
successful. In those problems where a heuristic search is the only available technique, 
not only is there no guarantee that it will find one of the best models for each number 
of parameters, but there is no way to know whether it has succeeded in doing so.

Even in those cases where a heuristic search finds one of the best models for a given 
number of parameters, it does not (as implemented in Amos) give information about 
other models that fit equally as well or nearly as well.
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Example

24
Multiple-Group Factor Analysis

Introduction

This example demonstrates a two-group factor analysis with automatic specification 
of cross-group constraints.

About the Data

This example uses the Holzinger and Swineford girls’ and boys’ (1939) data from 
Examples 12 and 15.

Model 24a: Modeling Without Means and Intercepts

The presence of means and intercepts as explicit model parameters adds to the 
complexity of a multiple-group analysis. The treatment of means and intercepts will 
be postponed until Model 24b. For now, consider fitting the following factor analysis 
model, with no explicit means and intercepts, to the data of girls and of boys:
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Figure 24-1: Two-factor model for girls and boys

This is the same two-group factor analysis problem that was considered in Example 12. 
The results obtained in Example 12 will be obtained here automatically.

Specifying the Model

E From the menus, choose File → Open.

E In the Open dialog box, double-click the file Ex24a.amw. In a typical installation, the 
path will be:
C:\Program Files\IBM\SPSS\Amos\19Examples\<language>\Ex24a.amw. 

The path diagram is the same for boys as for girls and is shown in Figure 24-1. Some 
regression weights are fixed at 1. These regression weights will remain fixed at 1 
throughout the analysis to follow. The assisted multiple-group analysis adds 
constraints to the model you specify but does not remove any constraints.

Opening the Multiple-Group Analysis Dialog Box

E From the menus, choose Analyze → Multiple-Group Analysis. 

E Click OK in the message box that appears. This opens the Multiple-Group Analysis 
dialog box.
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Figure 24-2: The Multiple-Group Analysis dialog box

Most of the time, you will simply click OK. This time, however, let's take a look at some 
parts of the Multiple-Group Analysis dialog box. 

There are eight columns of check boxes. Check marks appear only in the columns 
labeled 1, 2, and 3. This means that the program will generate three models, each with 
a different set of cross-group constraints.

Column 1 contains a single check mark in the row labeled Measurement weights, 
which is short for regression weights in the measurement part of the model. In the case 
of a factor analysis model, these are the factor loadings. The following section shows 
you how to view the measurement weights in the path diagram. Column 1 generates a 
model in which measurement weights are constant across groups (that is, the same for 
boys as for girls).

Column 2 contains check marks for Measurement weights and also Structural 
covariances, which is short for variances and covariances in the structural part of the 
model. In a factor analysis model, these are the factor variances and covariances. The 
following section shows you how to view the structural covariances in the path 
diagram. Column 2 generates a model in which measurement weights and structural 
covariances are constant across groups.

Column 3 contains all the check marks in column 2 and also a check mark next to 
Measurement residuals, which is short for variances and covariances of residual 
(error) variables in the measurement part of the model. The following section shows 
you how to view the measurement residuals in the path diagram. The three parameter 
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subsets that appear in a black (that is, not gray) font are mutually exclusive and 
exhaustive, so that column 3 generates a model in which all parameters are constant 
across groups.

In summary, columns 1 through 3 generate a hierarchy of models in which each 
model contains all the constraints of its predecessor. First, the factor loadings are held 
constant across groups. Then, the factor variances and covariances are held constant. 
Finally, the residual (unique) variances are held constant.

Viewing the Parameter Subsets

E In the Multiple-Group Analysis dialog box, click Measurement weights. 

The measurement weights are now displayed in color in the drawing area. If there is a 
check mark next to Alternative to color on the Accessibility tab of the Interface Properties 
dialog box, the measurement weights will also display as thick lines, as shown here: 

E Click Structural covariances to see the factor variances and covariances emphasized. 

E Click Measurement residuals to see the error variables emphasized. 

This is an easy way to visualize which parameters are affected by each cross-group 
constraint.
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Viewing the Generated Models

E In the Multiple-Group Analysis dialog box, click OK. 

The path diagram now shows names for all parameters. In the panel at the left of the 
path diagram, you can see that the program has generated three new models in addition 
to an Unconstrained model in which there are no cross-group constraints at all.

Figure 24-3: Amos Graphics window after automatic constraints

E Double-click XX: Measurement weights. This opens the Manage Models dialog box, 
which shows you the constraints that require the factor loadings to be constant across 
groups.
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Fitting All the Models and Viewing the Output

E From the menus, choose Analyze → Calculate Estimates to fit all models.

E From the menus, choose View → Text Output.

E In the navigation tree of the output viewer, click the Model Fit node to expand it, and 
then click CMIN.

The CMIN table shows the likelihood ratio chi-square statistic for each fitted model. 
The data do not depart significantly from any of the models. Furthermore, at each step 
up the hierarchy from the Unconstrained model to the Measurement residuals model, 
the increase in chi-square is never much larger than the increase in degrees of freedom. 
There appears to be no significant evidence that girls’ parameter values differ from 
boys’ parameter values.
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Here is the CMIN table:

E In the navigation tree, click AIC under the Model Fit node.

AIC and BCC values indicate that the best trade-off of model fit and parsimony is 
obtained by constraining all parameters to be equal across groups (the Measurement 
residuals model).

Here is the AIC table:

Customizing the Analysis

There were two opportunities to override the automatically generated cross-group 
constraints. In Figure 24-2 on p. 365, you could have changed the check marks in 
columns 1, 2, and 3, and you could have generated additional models by placing check 
marks in columns 4 through 8. Then, in Figure 24-3 on p. 367, you could have renamed 
or modified any of the automatically generated models listed in the panel at the left of 
the path diagram.

Model NPAR CMIN DF P CMIN/DF

Unconstrained 26 16.48 16 0.42 1.03
Measurement weights 22 18.29 20 0.57 0.91
Structural covariances 19 22.04 23 0.52 0.96
Measurement residuals 13 26.02 29 0.62 0.90
Saturated model 42 0.00 0
Independence model 12 337.55 30 0.00 11.25

Model AIC BCC BIC CAIC

Unconstrained 68.48 74.12
Measurement weights 62.29 67.07
Structural covariances 60.04 64.16
Measurement residuals 52.02 54.84
Saturated model 84.00 93.12
Independence model 361.55 364.16
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Model 24b: Comparing Factor Means

Introducing explicit means and intercepts into a model raises additional questions 
about which cross-group parameter constraints should be tested, and in what order. 
This example shows how Amos constrains means and intercepts while fitting the factor 
analysis model in Figure 24-1 on p. 364 to data from separate groups of girls and boys.

This is the same two-group factor analysis problem that was considered in Example 
15. The results in Example 15 will be obtained here automatically.

Specifying the Model

E From the menus, choose File → Open.

E In the Open dialog box, double-click the file Ex24b.amw. In a typical installation, the 
path will be:
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>\Ex24b.amw. 

The path diagram is the same for boys as for girls and is shown below. Some regression 
weights are fixed at 1. The means of all the unobserved variables are fixed at 0. In the 
following section, you will remove the constraints on the girls’ factor means. The other 
constraints (the ones that you do not remove) will remain in effect throughout the 
analysis.

Figure 24-4: Two-factor model with explicit means and intercepts
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Removing Constraints 

Initially, the factor means are fixed at 0 for both boys and girls. It is not possible to 
estimate factor means for both groups. However, Sörbom (1974) showed that, by 
fixing the factor means of a single group to constant values and placing suitable 
constraints on the regression weights and intercepts in a factor model, it is possible to 
obtain meaningful estimates of the factor means for all of the other groups. In the 
present example, this means picking one group, say boys, and fixing their factor means 
to a constant, say 0, and then removing the constraints on the factor means of the 
remaining group, the girls. The constraints on regression weights and intercepts 
required by Sörbom’s approach will be generated automatically by Amos.

The boys’ factor means are already fixed at 0. To remove the constraints on the girls' 
factor means, do the following:

E In the drawing area of the Amos Graphics window, right-click Spatial and choose 
Object Properties from the pop-up menu. 

E In the Object Properties dialog box, click the Parameters tab.

E Select the 0 in the Mean box, and press the Delete key.

E With the Object Properties dialog box still open, click Verbal in the drawing area. This 
displays the properties for the verbal factor in the Object Properties dialog box.

E In the Mean box on the Parameters tab, select the 0 and press the Delete key.

E Close the Object Properties dialog box.
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Now that the constraints on the girls’ factor means have been removed, the girls’ and 
boys’ path diagrams look like this:

Tip: To switch between path diagrams in the drawing area, click either Boys or Girls in 
the List of Groups pane to the left.

Generating the Cross-Group Constraints

E From the menus, choose Analyze → Multiple-Group Analysis. 

E Click OK in the message box that appears. This opens the Multiple-Group Analysis 
dialog box.
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The default settings, as shown above, will generate the following nested hierarchy of 
five models:

E Click OK.

Fitting the Models

E From the menus, choose Analyze → Calculate Estimates. 

The panel at the left of the path diagram shows that two models could not be fitted to 
the data. The two models that could not be fitted, the Unconstrained model with no 

Model Constraints

Model 1 (column 1) Measurement weights (factor loadings) are equal across 
groups.

Model 2 (column 2)
All of the above, and measurement intercepts (intercepts in 
the equations for predicting measured variables) are equal 
across groups.

Model 3 (column 3) All of the above, and structural means (factor means) are 
equal across groups.

Model 4 (column 4) All of the above, and structural covariances (factor variances 
and covariances) are equal across groups.

Model 5 (column 5) All parameters are equal across groups.
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cross-group constraints, and the Measurement weights model with factor loadings held 
equal across groups, are unidentified.

Viewing the Output

E From the menus, choose View → Text Output.

E In the navigation tree of the output viewer, expand the Model Fit node.

Some fit measures for the four automatically generated and identified models are 
shown here, along with fit measures for the saturated and independence models. 

E Click CMIN under the Model Fit node. 

The CMIN table shows that none of the generated models can be rejected when tested 
against the saturated model. 

On the other hand, the change in chi-square ( ) when introducing 
the equal-factor-means constraint looks large compared to the change in degrees of 
freedom ( ).

E In the navigation tree, click the Model Comparison node.

Model NPAR CMIN DF P CMIN/DF

Measurement intercepts 30 22.593 24 0.544 0.941
Structural means 28 30.624 26 0.243 1.178
Structural covariances 25 34.381 29 0.226 1.186
Measurement residuals 19 38.459 35 0.316 1.099
Saturated model 54 0.00 0
Independence model 24 337.553 30 0.00 11.252

30.62 22.59 8.03=–

26 24 2=–
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Assuming model Measurement intercepts to be correct, the following table shows that 
this chi-square difference is significant:

In the preceding two tables, two chi-square statistics and their associated degrees of 
freedom are especially important. The first,  with , allowed 
accepting the hypothesis of equal intercepts and equal regression weights in the 
measurement model. It was important to establish the credibility of this hypothesis 
because, without equal intercepts and equal regression weights, it would be unclear 
that the factors have the same meaning for boys as for girls and so there would be no 
interest in comparing their means. The other important chi-square statistic,  
with , leads to rejection of the hypothesis that boys and girls have the same 
factor means.

Group differences between the boys’ and girls’ factor means can be determined 
from the girls’ estimates in the Measurement intercepts model. 

E Select the Measurement intercepts model in the pane at the lower left of the output 
viewer.

E In the navigation tree, click Estimates, then Scalars, and then Means. 

The boys’ means were fixed at 0, so only the girls’ means were estimated, as shown in 
the following table:

These estimates were discussed in Model A of Example 15, which is identical to the 
present Measurement intercepts model. (Model B of Example 15 is identical to the 
present Structural means model.)

Model DF CMIN P NFI
Delta-1

IFI
Delta-2

RFI
rho-1

TLI
rho2

Structural means 2 8.030 0.018 0.024 0.026 0.021 0.023
Structural covariances 5 11.787 0.038 0.035 0.038 0.022 0.024
Measurement residuals 11 15.865 0.146 0.047 0.051 0.014 0.015

Estimate S.E. C.R. P Label

spatial –1.066 0.881 –1.209 0.226 m1_1
verbal 0.956 0.521 1.836 0.066 m2_1

χ2 22.59= df 24=

χ2 8.03=
df 2=
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Introduction

This example shows you how to automatically implement Sörbom’s alternative to 
analysis of covariance.

Example 16 demonstrates the benefits of Sörbom’s approach to analysis of 
covariance with latent variables. Unfortunately, as Example 16 also showed, the 
Sörbom approach is difficult to apply, involving many steps. This example 
automatically obtains the same results as Example 16.

About the Data

The Olsson (1973) data from Example 16 will be used here. The sample moments can 
be found in the workbook UserGuide.xls. Sample moments from the experimental 
group are in the worksheet Olss_exp. Sample moments from the control group are in 
the worksheet Olss_cnt.

About the Model

The model was described in Example 16. The Sörbom method requires that the 
experimental and the control group have the same path diagram.
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Figure 25-1: Sörbom model for Olsson data

Specifying the Model

E Open Ex25.amw. If you performed a typical installation, the path will be 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>\Ex25.amw. 

The path diagram is the same for the control and experimental groups and is shown in 
Figure 25-1. Some regression weights are fixed at 1. The means of all the residual 
(error) variable means are fixed at 0. These constraints will remain in effect throughout 
the analysis.

Constraining the Latent Variable Means and Intercepts

The model in Figure 25-1, Sörbom’s model for Olsson data, is unidentified and will 
remain unidentified for every set of cross-group constraints that Amos automatically 
generates. For every set of cross-group constraints, the mean of pre_verbal and the 
intercept in the equation for predicting post_verbal will be unidentified. In order to 
allow the model to be identified for at least some cross-group constraints, it is 
necessary to pick one group, such as the control group, and fix the pre_verbal mean 
and the post_verbal intercept to a constant, such as 0. 

E In the List of Groups pane to the left of the path diagram, ensure that Control is selected. 
This indicates that the path diagram for the control group is displayed in the drawing 
area.
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E In the drawing area, right-click pre_verbal and choose Object Properties from the pop-
up menu.

E In the Object Properties dialog box, click the Parameters tab. 

E In the Mean text box, type 0. 

E With the Object Properties dialog box still open, click post_verbal in the drawing area.

E In the Intercept text box of the Object Properties dialog box, type 0.

E Close the Object Properties dialog box. 

Now, the path diagram for the control group appears as follows:

The path diagram for the experimental group continues to look like Figure 25-1.

Generating Cross-Group Constraints

E From the menus, choose Analyze → Multiple-Group Analysis. 

E Click OK in the message box that appears. 

The Multiple-Group Analysis dialog box appears.
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E Click OK to generate the following nested hierarchy of eight models:

Model Constraints

Model 1 (column 1) Measurement weights (factor loadings) are constant across 
groups.

Model 2 (column 2)
All of the above, and measurement intercepts (intercepts in 
the equations for predicting measured variables) are constant 
across groups.

Model 3 (column 3) All of the above, and the structural weight (the regression 
weight for predicting post_verbal) is constant across groups.

Model 4 (column 4)
All of the above, and the structural intercept (the intercept in 
the equation for predicting post_verbal) is constant across 
groups.

Model 5 (column 5) All of the above, and the structural mean (the mean of 
pre_verbal) is constant across groups.

Model 6 (column 6) All of the above, and the structural covariance (the variance 
of pre_verbal) is constant across groups.

Model 7 (column 7) All of the above, and the structural residual (the variance of 
zeta) is constant across groups.

Model 8 (column 8) All parameters are constant across groups.
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Fitting the Models

E From the menus, choose Analyze → Calculate Estimates. 

The panel to the left of the path diagram shows that two models could not be fitted to 
the data. The two models that could not be fitted, the Unconstrained model and the 
Measurement weights model, are unidentified.

Viewing the Text Output

E From the menus, choose View → Text Output.

E In the navigation tree of the output viewer, expand the Model Fit node, and click CMIN. 
This displays some fit measures for the seven automatically generated and identified 
models, along with fit measures for the saturated and independence models, as shown 
in the following CMIN table:

Model NPAR CMIN DF P CMIN/DF

Measurement intercepts 22 34.775 6 0.000 5.796
Structural weights 21 36.340 7 0.000 5.191
Structural intercepts 20 84.060 8 0.000 10.507
Structural means 19 94.970 9 0.000 10.552
Structural covariances 18 99.976 10 0.000 9.998
Structural residuals 17 112.143 11 0.000 10.195
Measurement residuals 13 122.366 15 0.000 8.158
Saturated model 28 0.000 0
Independence model 16 682.638 12 0.000 56.887
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There are many chi-square statistics in this table, but only two of them matter. The 
Sörbom procedure comes down to two basic questions. First, does the Structural 
weights model fit? This model specifies that the regression weight for predicting 
post_verbal from pre_verbal be constant across groups. 

If the Structural weights model is accepted, one follows up by asking whether the 
next model up the hierarchy, the Structural intercepts model, fits significantly worse. 
On the other hand, if the Structural weights model has to be rejected, one never gets to 
the question about the Structural intercepts model. Unfortunately, that is the case here. 
The Structural weights model, with  and , is rejected at any 
conventional significance level.

Examining the Modification Indices

To see if it is possible to improve the fit of the Structural weights model: 

E Close the output viewer.

E From the Amos Graphics menus, choose View → Analysis Properties.

E Click the Output tab and select the Modification Indices check box. 

E Close the Analysis Properties dialog box.

E From the menus, choose Analyze → Calculate Estimates to fit all models.

Only the modification indices for the Structural weights model need to be examined 
because this is the only model whose fit is essential to the analysis. 

E From the menus, choose View → Text Output, select Modification Indices in the navigation 
tree of the output viewer, then select Structural weights in the lower left panel. 

E Expand the Modification Indices node and select Covariances. 

As you can see in the following covariance table for the control group, only one 
modification index exceeds the default threshold of 4: 

M.I. Par Change

eps2 <--> eps4 4.553 2.073

χ2 36.34= df 7=
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E Now click experimental in the panel on the left. As you can see in the following 
covariance table for the experimental group, there are four modification indices greater 
than 4:

Of these, only two modifications have an obvious theoretical justification: allowing 
eps2 to correlate with eps4, and allowing eps1 to correlate with eps3. Between these 
two, allowing eps2 to correlate with eps4 has the larger modification index. Thus the 
modification indices from the control group and the experimental group both suggest 
allowing eps2 to correlate with eps4.

Modifying the Model and Repeating the Analysis

E Close the output viewer.

E From the menus, choose Diagram → Draw Covariances.

E Click and drag to draw a double-headed arrow between eps2 and eps4. 

E From the menus, choose Analyze → Multiple-Group Analysis, and click OK in the 
message box that appears. 

E In the Multiple-Group Analysis dialog box, click OK.

E From the menus, choose Analyze → Calculate Estimates to fit all models.

E From the menus, choose View → Text Output.

E Use the navigation tree to view the fit measures for the Structural weights model. 

With the additional double-headed arrow connecting eps2 and eps4, the Structural 
weights model has an adequate fit (  with ), as shown in the 
following CMIN table:

M.I. Par Change

eps2 <--> eps4 9.314 4.417
eps2 <--> eps3 9.393 –4.117
eps1 <--> eps4 8.513 –3.947
eps1 <--> eps3 6.192 3.110

χ2 3.98= df 5=
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Now that the Structural weights model fits the data, it can be asked whether the 
Structural intercepts model fits significantly worse. Assuming the Structural weights 
model to be correct:

The Structural intercepts model does fit significantly worse than the Structural weights 
model. When the intercept in the equation for predicting post_verbal is required to be 
constant across groups, the chi-square statistic increases by 51.12 while degrees of 
freedom increases by only 1. That is, the intercept for the experimental group differs 
significantly from the intercept for the control group. The intercept for the 
experimental group is estimated to be 3.627.

Recalling that the intercept for the control group was fixed at 0, it is estimated that the 
treatment increases post_verbal scores by 3.63 with pre_verbal held constant.

The results obtained in the present example are identical to the results of Example 
16. The Structural weights model is the same as Model D in Example 16. The 
Structural intercepts model is the same as Model E in Example 16.

Model NPAR CMIN DF P CMIN/DF

Measurement intercepts 24 2.797 4 0.59 0.699
Structural weights 23 3.976 5 0.55 0.795
Structural intercepts 22 55.094 6 0.00 9.182
Structural means 21 63.792 7 0.00 9.113
Structural covariances 20 69.494 8 0.00 8.687
Structural residuals 19 83.194 9 0.00 9.244
Measurement residuals 14 93.197 14 0.00 6.657
Saturated model 28 0.000 0
Independence model 16 682.638 12 0.00 56.887

Model DF CMIN P NFI
Delta-1

IFI
Delta-2

RFI
rho-1

TLI
rho2

Structural intercepts 1 51.118 0.000 0.075 0.075 0.147 0.150
Structural means 2 59.816 0.000 0.088 0.088 0.146 0.149
Structural covariances 3 65.518 0.000 0.096 0.097 0.139 0.141
Structural residuals 4 79.218 0.000 0.116 0.117 0.149 0.151
Measurement residuals 9 89.221 0.000 0.131 0.132 0.103 0.105

Estimate S.E. C.R. P Label

post_verbal 3.627 0.478 7.591 <0.001 j1_2
pre_syn 18.619 0.594 31.355 <0.001 i1_1
pre_opp 19.910 0.541 36.781 <0.001 i2_1
post_syn 20.383 0.535 38.066 <0.001 i3_1
post_opp 21.204 0.531 39.908 <0.001 i4_1
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26
Bayesian Estimation

Introduction

This example demonstrates Bayesian estimation using Amos.

Bayesian Estimation

In maximum likelihood estimation and hypothesis testing, the true values of the 
model parameters are viewed as fixed but unknown, and the estimates of those 
parameters from a given sample are viewed as random but known. An alternative kind 
of statistical inference, called the Bayesian approach, views any quantity that is 
unknown as a random variable and assigns it a probability distribution. From a 
Bayesian standpoint, true model parameters are unknown and therefore considered to 
be random, and they are assigned a joint probability distribution. This distribution is 
not meant to suggest that the parameters are varying or changing in some fashion. 
Rather, the distribution is intended to summarize our state of knowledge, or what is 
currently known about the parameters. The distribution of the parameters before the 
data are seen is called a prior distribution. Once the data are observed, the evidence 
provided by the data is combined with the prior distribution by a well-known formula 
called Bayes’ Theorem. The result is an updated distribution for the parameters, 
called a posterior distribution, which reflects a combination of prior belief and 
empirical evidence (Bolstad, 2004).

Human beings tend to have difficulty visualizing and interpreting the joint 
posterior distribution for the parameters of a model. Therefore, when performing a 
Bayesian analysis, one needs summaries of the posterior distribution that are easy to 
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interpret. A good way to start is to plot the marginal posterior density for each 
parameter, one at a time. Often, especially with large data samples, the marginal 
posterior distributions for parameters tend to resemble normal distributions. The mean 
of a marginal posterior distribution, called a posterior mean, can be reported as a 
parameter estimate. The posterior standard deviation, the standard deviation of the 
distribution, is a useful measure of uncertainty similar to a conventional standard error.

The analogue of a confidence interval may be computed from the percentiles of the 
marginal posterior distribution; the interval that runs from the 2.5 percentile to the 97.5 
percentile forms a Bayesian 95% credible interval. If the marginal posterior 
distribution is approximately normal, the 95% credible interval will be approximately 
equal to the posterior mean ± 1.96 posterior standard deviations. In that case, the 
credible interval becomes essentially identical to an ordinary confidence interval that 
assumes a normal sampling distribution for the parameter estimate. If the posterior 
distribution is not normal, the interval will not be symmetric about the posterior mean. 
In that case, the Bayesian version often has better properties than the conventional one.

Unlike a conventional confidence interval, the Bayesian credible interval is 
interpreted as a probability statement about the parameter itself; 
Prob ) literally means that you are 95% sure that the true value of 

 lies between a and b. Tail areas from a marginal posterior distribution can even be 
used as a kind of Bayesian p value for hypothesis testing. If 96.5% of the area under 
the marginal posterior density for  lies to the right of some value a, then the Bayesian 
p value for testing the null hypothesis  against the alternative hypothesis  
is 0.045. In that case, one would actually say, I’m 96.5% sure that the alternative 
hypothesis is true.

Although the idea of Bayesian inference dates back to the late 18th century, its use 
by statisticians has been rare until recently. For some, reluctance to apply Bayesian 
methods stems from a philosophical distaste for viewing probability as a state of belief 
and from the inherent subjectivity in choosing prior distributions. But for the most part, 
Bayesian analyses have been rare because computational methods for summarizing 
joint posterior distributions have been difficult or unavailable. Using a new class of 
simulation techniques called Markov chain Monte Carlo (MCMC), however, it is now 
possible to draw random values of parameters from high-dimensional joint posterior 
distributions, even in complex problems. With MCMC, obtaining posterior summaries 
becomes as simple as plotting histograms and computing sample means and 
percentiles. 

a θ b≤ ≤( ) 0.95=
θ

θ
θ a≤ θ a>
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Selecting Priors

A prior distribution quantifies the researcher’s belief concerning where the unknown 
parameter may lie. Knowledge of how a variable is distributed in the population can 
sometimes be used to help researchers select reasonable priors for parameters of 
interest. Hox (2002) cites the example of a normed intelligence test with a mean of 100 
units and a standard deviation of 15 units in the general population. If the test is given 
to participants in a study who are fairly representative of the general population, then 
it would be reasonable to center the prior distributions for the mean and standard 
deviation of the test score at 100 and 15, respectively. Knowing that an observed 
variable is bounded may help us to place bounds on the parameters. For instance, the 
mean of a Likert-type survey item taking values 0, 1, …, 10 must lie between 0 and 10, 
and its maximum variance is 25. Prior distributions for the mean and variance of this 
item can be specified to enforce these bounds.

In many cases, one would like to specify prior distribution that introduces as little 
information as possible, so that the data may be allowed to speak for themselves. A 
prior distribution is said to be diffuse if it spreads its probability over a very wide range 
of parameter values. By default, Amos applies a uniform distribution from 

 to  to each parameter. 
Diffuse prior distributions are often said to be non-informative, and we will use that 

term as well. In a strict sense, however, no prior distribution is ever completely non-
informative, not even a uniform distribution over the entire range of allowable values, 
because it would cease to be uniform if the parameter were transformed. (Suppose, for 
example, that the variance of a variable is uniformly distributed from 0 to ; then the 
standard deviation will not be uniformly distributed.) Every prior distribution carries 
with it at least some information. As the size of a dataset grows, the evidence from the 
data eventually swamps this information, and the influence of the prior distribution 
diminishes. Unless your sample is unusually small or if your model and/or prior 
distribution are strongly contradicted by the data, you will find that the answers from a 
Bayesian analysis tend to change very little if the prior is changed. Amos makes it easy 
for you to change the prior distribution for any parameter, so you can easily perform 
this kind of sensitivity check.

3.4– 10 38–× 3.4 1038×

∞
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Performing Bayesian Estimation Using Amos Graphics

To illustrate Bayesian estimation using Amos Graphics, we revisit Example 3, which 
shows how to test the null hypothesis that the covariance between two variables is 0 by 
fixing the value of the covariance between age and vocabulary to 0. 

Estimating the Covariance

The first thing we need to do for the present example is to remove the zero constraint 
on the covariance so that the covariance can be estimated.

E Open Ex03.amw. If you performed a typical installation, the path will be 
C:\Program Files\IBM\SPSS\Amos\19\Examples\<language>.

E Right-click the double-headed arrow in the path diagram and choose Object Properties 
from the pop-up menu.

E In the Object Properties dialog box, click the Parameters tab.

E Delete the 0 in the Covariance text box.

E Close the Object Properties dialog box. 



389

Bayesian Estimation

This is the resulting path diagram (you can also find it in Ex26.amw): 

Results of Maximum Likelihood Analysis

Before performing a Bayesian analysis of this model, we perform a maximum 
likelihood analysis for comparison purposes. 

E From the menus, choose Analyze → Calculate Estimates to display the following 
parameter estimates and standard errors:

Covariances: (Group number 1 - Default model)

Estimate S.E. C.R. P Label
age <--> vocabulary –5.014 8.560 –0.586 0.558

Variances: (Group number 1 - Default model)

Estimate S.E. C.R. P Label
age 21.574 4.886 4.416 ***
vocabulary 131.294 29.732 4.416 ***
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Bayesian Analysis

Bayesian analysis requires estimation of explicit means and intercepts. Before 
performing any Bayesian analysis in Amos, you must first tell Amos to estimate means 
and intercepts.

E From the menus, choose View → Analysis Properties.

E Select Estimate means and intercepts. (A check mark will appear next to it.)

E To perform a Bayesian analysis, from the menus, choose Analyze → Bayesian 

Estimation, or press the keyboard combination Ctrl+B.



391

Bayesian Estimation

The Bayesian SEM window appears, and the MCMC algorithm immediately begins 
generating samples.

The Bayesian SEM window has a toolbar near the top of the window and has a results 
summary table below. Each row of the summary table describes the marginal posterior 
distribution of a single model parameter. The first column, labeled Mean, contains the 
posterior mean, which is the center or average of the posterior distribution. This can be 
used as a Bayesian point estimate of the parameter, based on the data and the prior 
distribution. With a large dataset, the posterior mean will tend to be close to the 
maximum likelihood estimate. (In this case, the two are somewhat close; compare the 
posterior mean of –6.536 for the age-vocabulary covariance to the maximum 
likelihood estimate of –5.014 reported earlier.) 
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Replicating Bayesian Analysis and Data Imputation Results

The multiple imputation and Bayesian estimation algorithms implemented in Amos 
make extensive use of a stream of random numbers that depends on an initial random 
number seed. The default behavior of Amos is to change the random number seed 
every time you perform Bayesian estimation, Bayesian data imputation, or stochastic 
regression data imputation. Consequently, when you try to replicate one of those 
analyses, you can expect to get slightly different results because of using a different 
random number seed.

If, for any reason, you need an exact replication of an earlier analysis, you can do 
so by starting with the same random number seed that was used in the earlier analysis.

Examining the Current Seed

To find out what the current random number seed is or to change its value:

E From the menus, choose Tools → Seed Manager.

By default, Amos increments the current random number seed by one for each 
invocation of a simulation method that makes use of random numbers (either Bayesian 
SEM, stochastic regression data imputation, or Bayesian data imputation). Amos 
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maintains a log of previous seeds used, so it is possible to match the file creation dates 
of previously generated analysis results or imputed datasets with the dates reported in 
the Seed Manager.

Changing the Current Seed

E Click Change and enter a previously used seed before performing an analysis.

Amos will use the same stream of random numbers that it used the last time it started 
out with that seed. For example, we used the Seed Manager to discover that Amos used 
a seed of 14942405 when the analysis for this example was performed. To generate the 
same Bayesian analysis results as we did:

E Click Change and change the current seed to 14942405.

The following figure shows the Seed Manager dialog box after making the change:

A more proactive approach is to select a fixed seed value prior to running a Bayesian 
or data imputation analysis. You can have Amos use the same seed value for all 
analyses if you select the Always use the same seed option. 
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Record the value of this seed in a safe place so that you can replicate the results of your 
analysis at a later date.

Tip: We use the same seed value of 14942405 for all examples in this guide so that you 
can reproduce our results.

We mentioned earlier that the MCMC algorithm used by Amos draws random values 
of parameters from high-dimensional joint posterior distributions via Monte Carlo 
simulation of the posterior distribution of parameters. For instance, the value reported 
in the Mean column is not the exact posterior mean but is an estimate obtained by 
averaging across the random samples produced by the MCMC procedure. It is 
important to have at least a rough idea of how much uncertainty in the posterior mean 
is attributable to Monte Carlo sampling. 

The second column, labeled S.E., reports an estimated standard error that suggests 
how far the Monte-Carlo estimated posterior mean may lie from the true posterior 
mean. As the MCMC procedure continues to generate more samples, the estimate of 
the posterior mean becomes more precise, and the S.E. gradually drops. Note that this 
S.E. is not an estimate of how far the posterior mean may lie from the unknown true 
value of the parameter. That is, one would not use ± 2 S.E. values as the width of a 
95% interval for the parameter. 
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The likely distance between the posterior mean and the unknown true parameter is 
reported in the third column, labeled S.D., and that number is analogous to the standard 
error in maximum likelihood estimation. Additional columns contain the convergence 
statistic (C.S.), the median value of each parameter, the lower and upper 50% 
boundaries of the distribution of each parameter, and the skewness, kurtosis, minimum 
value, and maximum value of each parameter. The lower and upper 50% boundaries 
are the endpoints of a 50% Bayesian credible set, which is the Bayesian analogue of a 
50% confidence interval. Most of us are accustomed to using a confidence level of 
95%, so we will soon show you how to change to 95%.

When you choose Analyze → Bayesian Estimation, the MCMC algorithm begins 
sampling immediately, and it continues until you click the Pause Sampling button to 
halt the process. In the figure on p. 391, sampling was halted after  
completed samples. Amos generated and discarded 500 burn-in samples prior to 
drawing the first sample that was retained for the analysis. Amos draws burn-in 
samples to allow the MCMC procedure to converge to the true joint posterior 
distribution. After Amos draws and discards the burn-in samples, it draws additional 
samples to give us a clear picture of what this joint posterior distribution looks like. In 
the example shown on p. 391, Amos has drawn 5,831 of these analysis samples, and it 
is upon these analysis samples that the results in the summary table are based. Actually, 
the displayed results are for 500 burn-in and 5,500 analysis samples. Because the 
sampling algorithm Amos uses is very fast, updating the summary table after each 
sample would lead to a rapid, incomprehensible blur of changing results in the 
Bayesian SEM window. It would also slow the analysis down. To avoid both problems, 
Amos refreshes the results after every 1,000 samples.

Changing the Refresh Options

To change the refresh interval:

E From the menus, choose View → Options.

E Click the Refresh tab in the Options dialog box to show the refresh options.

500 5831 6331=+
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You can change the refresh interval to something other than the default of 1,000 
observations. Alternatively, you can refresh the display at a regular time interval that 
you specify. 

If you select Refresh the display manually, the display will never be updated 
automatically. Regardless of what you select on the Refresh tab, you can refresh the 
display manually at any time by clicking the Refresh button on the Bayesian SEM 
toolbar.

Assessing Convergence

Are there enough samples to yield stable estimates of the parameters? Before 
addressing this question, let us briefly discuss what it means for the procedure to have 
converged. Convergence of an MCMC algorithm is quite different from convergence 
of a nonrandom method such as maximum likelihood. To properly understand MCMC 
convergence, we need to distinguish two different types. 

The first type, which we may call convergence in distribution, means that the 
analysis samples are, in fact, being drawn from the actual joint posterior distribution 
of the parameters. Convergence in distribution takes place in the burn-in period, during 
which the algorithm gradually forgets its initial starting values. Because these samples 
may not be representative of the actual posterior distribution, they are discarded. The 
default burn-in period of 500 is quite conservative, much longer than needed for most 
problems. Once the burn-in period is over and Amos begins to collect the analysis 
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samples, one may ask whether there are enough of these samples to accurately estimate 
the summary statistics, such as the posterior mean. 

That question pertains to the second type of convergence, which we may call 
convergence of posterior summaries. Convergence of posterior summaries is 
complicated by the fact that the analysis samples are not independent but are actually 
an autocorrelated time series. The 1001th sample is correlated with the 1000th, which, 
in turn, is correlated with the 999th, and so on. These correlations are an inherent 
feature of MCMC, and because of these correlations, the summary statistics from 
5,500 (or whatever number of) analysis samples have more variability than they would 
if the 5,500 samples had been independent. Nevertheless, as we continue to accumulate 
more and more analysis samples, the posterior summaries gradually stabilize.

Amos provides several diagnostics that help you check convergence. Notice the 
value 1.0083 on the toolbar of the Bayesian SEM window on p. 391. This is an overall 
convergence statistic based on a measure suggested by Gelman, Carlin, Stern, and 
Rubin (2004). Each time the screen refreshes, Amos updates the C.S. for each 
parameter in the summary table; the C.S. value on the toolbar is the largest of the 
individual C.S. values. By default, Amos judges the procedure to have converged if the 
largest of the C.S. values is less than 1.002. By this standard, the maximum C.S. of 
1.0083 is not small enough. Amos displays an unhappy face  when the overall C.S. 
is not small enough. The C.S. compares the variability within parts of the analysis 
sample to the variability across these parts. A value of 1.000 represents perfect 
convergence, and larger values indicate that the posterior summaries can be made more 
precise by creating more analysis samples.

Clicking the Pause Sampling button a second time instructs Amos to resume the 
sampling process. You can also pause and resume sampling by choosing Pause 
Sampling from the Analyze menu, or by using the keyboard combination Ctrl+E. The 
next figure shows the results after resuming the sampling for a while and pausing again.
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At this point, we have 22,501 analysis samples, although the display was most recently 
updated at the 22,500th sample. The largest C.S. is 1.0012, which is below the 1.002 
criterion that indicates acceptable convergence. Reflecting the satisfactory 
convergence, Amos now displays a happy face . Gelman et al. (2004) suggest that, 
for many analyses, values of 1.10 or smaller are sufficient. The default criterion of 
1.002 is conservative. Judging that the MCMC chain has converged by this criterion 
does not mean that the summary table will stop changing. The summary table will 
continue to change as long as the MCMC algorithm keeps running. As the overall C.S. 
value on the toolbar approaches 1.000, however, there is not much more precision to 
be gained by taking additional samples, so we might as well stop.

Diagnostic Plots

In addition to the C.S. value, Amos offers several plots that can help you check 
convergence of the Bayesian MCMC method. To view these plots:

E From the menus, choose View → Posterior.

Amos displays the Posterior dialog box. 
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E Select the age< - >vocabulary parameter from the Bayesian SEM window.
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The Posterior dialog box now displays a frequency polygon of the distribution of the 
age-vocabulary covariance across the 22,500 samples. 

One visual aid you can use to judge whether it is likely that Amos has converged to the 
posterior distribution is a simultaneous display of two estimates of the distribution, one 
obtained from the first third of the accumulated samples and another obtained from the 
last third. To display the two estimates of the marginal posterior on the same graph:

E Select First and last. (A check mark will appear next to the option.)
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In this example, the distributions of the first and last thirds of the analysis samples are 
almost identical, which suggests that Amos has successfully identified the important 
features of the posterior distribution of the age-vocabulary covariance. Note that this 
posterior distribution appears to be centered at some value near –6, which agrees with 
the Mean value for this parameter. Visual inspection suggests that the standard 
deviation is roughly 10, which agrees with the value of S.D. 

Notice that more than half of the sampled values are to the left of 0. This provides 
mild evidence that the true value of the covariance parameter is negative, but this result 
is not statistically significant because the proportion to the right of 0 is still quite large. 
If the proportion of sampled values to the right of 0 were very small—for example, less 
than 5%—then we would be able to reject the null hypothesis that the covariance 
parameter is greater than or equal to 0. In this case, however, we cannot.

Another plot that helps in assessing convergence is the trace plot. The trace plot, 
sometimes called a time-series plot, shows the sampled values of a parameter over 
time. This plot helps you to judge how quickly the MCMC procedure converges in 
distribution—that is, how quickly it forgets its starting values.
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E To view the trace plot, select Trace.

The plot shown here is quite ideal. It exhibits rapid up-and-down variation with no 
long-term trends or drifts. If we were to mentally break up this plot into a few 
horizontal sections, the trace within any section would not look much different from 
the trace in any other section. This indicates that the convergence in distribution takes 
place rapidly. Long-term trends or drifts in the plot indicate slower convergence. (Note 
that long-term is relative to the horizontal scale of this plot, which depends on the 
number of samples. As we take more samples, the trace plot gets squeezed together like 
an accordion, and slow drifts or trends eventually begin to look like rapid up-and-down 
variation.) The rapid up-and-down motion means that the sampled value at any 
iteration is unrelated to the sampled value k iterations later, for values of k that are 
small relative to the total number of samples.

To see how long it takes for the correlations among the samples to die down, we can 
examine a third plot, called an autocorrelation plot. This plot displays the estimated 
correlation between the sampled value at any iteration and the sampled value k 
iterations later for k = 1, 2, 3,….
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E To display this plot, select Autocorrelation.

Lag, along the horizontal axis, refers to the spacing at which the correlation is 
estimated. In ordinary situations, we expect the autocorrelation coefficients to die 
down and become close to 0, and remain near 0, beyond a certain lag. In the 
autocorrelation plot shown above, the lag-10 correlation—the correlation between any 
sampled value and the value drawn 10 iterations later—is approximately 0.50. The 
lag-35 correlation lies below 0.20, and at lag 90 and beyond, the correlation is 
effectively 0. This indicates that by 90 iterations, the MCMC procedure has essentially 
forgotten its starting position, at least as far as this covariance parameter is concerned. 
Forgetting the starting position is equivalent to convergence in distribution. If we were 
to examine the autocorrelation plots for the other parameters in the model, we would 
find that they also effectively die down to 0 by 90 or so iterations. This fact gives us 
confidence that a burn-in period of 500 samples was more than enough to ensure that 
convergence in distribution was attained, and that the analysis samples are indeed 
samples from the true posterior distribution.

In certain pathological situations, the MCMC procedure may converge very slowly 
or not at all. This may happen in data sets with high proportions of missing values, 
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when the missing values fall in a peculiar pattern, or in models with some parameters 
that are poorly estimated. If this should happen, the trace plots for one or more 
parameters in the model will have long-term drifts or trends that do not diminish as 
more and more samples are taken. Even as the trace plot gets squeezed together like an 
accordion, the drifts and trends will not go away. In that case, you will probably see 
that the range of sampled values for the parameter (as indicated by the vertical scale of 
the trace plot, or by the S.D. or the difference between Min and Max in the Bayesian 
SEM window) is huge. The autocorrelations may remain high for large lags or may 
appear to oscillate between positive and negative values for a long time. When this 
happens, it suggests that the model is too complicated to be supported by the data at 
hand, and we ought to consider either fitting a simpler model or introducing 
information about the parameters by specifying a more informative prior distribution.

Bivariate Marginal Posterior Plots

The summary table in the Bayesian SEM window and the frequency polygon in each 
Posterior dialog box describe the marginal posterior distributions of the estimands, one 
at a time. The marginal posterior distributions are very important, but they do not reveal 
relationships that may exist among the estimands. For example, two covariances or 
regression coefficients may share significance in the sense that either one could 
plausibly be 0, but both cannot. To help us visualize the relationships among pairs of 
estimands, Amos provides bivariate marginal posterior plots.

E To display the marginal posterior of two parameters, begin by displaying the posterior 
distribution of one of the parameters (for example, the variance of age). 

E Hold down the control (Ctrl) key on the keyboard and select the second parameter in 
the summary table (for example, the variance of vocabulary). 

Amos then displays a three-dimensional surface plot of the marginal posterior 
distribution of the variances of age and vocabulary.
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E Select Histogram to display a similar plot using vertical blocks.

E Select Contour to display a two-dimensional plot of the bivariate posterior density.
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Ranging from dark to light, the three shades of gray represent 50%, 90%, and 95% 
credible regions, respectively. A credible region is conceptually similar to a bivariate 
confidence region that is familiar to most data analysts acquainted with classical 
statistical inference methods. 
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Credible Intervals

Recall that the summary table in the Bayesian SEM window displays the lower and 
upper endpoints of a Bayesian credible interval for each estimand. By default, Amos 
presents a 50% interval, which is similar to a conventional 50% confidence interval.

Researchers often report 95% confidence intervals, so you may want to change the 
boundaries to correspond to a posterior probability content of 95%.

Changing the Confidence Level

E Click the Display tab in the Options dialog box.

E Type 95 as the Confidence level value. 

E Click the Close button. Amos now displays 95% credible intervals.
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Learning More about Bayesian Estimation

Gill (2004) provides a readable overview of Bayesian estimation and its advantages in 
a special issue of Political Analysis. Jackman (2000) offers a more technical treatment 
of the topic, with examples, in a journal article format. The book by Gelman, Carlin, 
Stern, and Rubin (2004) addresses a multitude of practical issues with numerous 
examples.
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27
Bayesian Estimation Using a 
Non-Diffuse Prior Distribution

Introduction

This example demonstrates using a non-diffuse prior distribution.

About the Example

Example 26 showed how to perform Bayesian estimation for a simple model with the 
uniform prior distribution that Amos uses by default. In the present example, we 
consider a more complex model and make use of a non-diffuse prior distribution. In 
particular, the example shows how to specify a prior distribution so that we avoid 
negative variance estimates and other improper estimates. 

More about Bayesian Estimation

In the discussion of the previous example, we noted that Bayesian estimation depends 
on information supplied by the analyst in conjunction with data. Whereas maximum 
likelihood estimation maximizes the likelihood of an unknown parameter θ when 
given the observed data y through the relationship L(θ|y) ∝ p(y|θ), Bayesian 
estimation approximates the posterior density of y, p(θ|y) ∝ p(θ)L(θ|y), where p(θ) is 
the prior distribution of θ, and p(θ|y) is the posterior density of θ given y. 
Conceptually, this means that the posterior density of y given θ is the product of the 
prior distribution of θ and the likelihood of the observed data (Jackman, 2000, p. 377).
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As the sample size increases, the likelihood function becomes more and more 
tightly concentrated about the ML estimate. In that case, a diffuse prior tends to be 
nearly flat or constant over the region where the likelihood is high; the shape of the 
posterior distribution is largely determined by the likelihood, that is by the data 
themselves. 

Under a uniform prior distribution for θ, p(θ) is completely flat, and the posterior 
distribution is simply a re-normalized version of the likelihood. Even under a non-
uniform prior distribution, the influence of the prior distribution diminishes as the 
sample size increases. Moreover, as the sample size increases, the joint posterior 
distribution for θ comes to resemble a normal distribution. For this reason, Bayesian 
and classical maximum likelihood analyses yield equivalent asymptotic results 
(Jackman, 2000). In smaller samples, if you can supply sensible prior information to 
the Bayesian procedure, the parameter estimates from a Bayesian analysis can be more 
precise. (The other side of the coin is that a bad prior can do harm by introducing bias.)

Bayesian Analysis and Improper Solutions

One familiar problem in the fitting of latent variable models is the occurrence of 
improper solutions (Chen, Bollen, Paxton, Curran, and Kirby, 2001). An improper 
solution occurs, for example, when a variance estimate is negative. Such a solution is 
called improper because it is impossible for a variance to be less than 0. An improper 
solution may indicate that the sample is too small or that the model is wrong. Bayesian 
estimation cannot help with a bad model, but it can be used to avoid improper solutions 
that result from the use of small samples. Martin and McDonald (1975), discussing 
Bayesian estimation for exploratory factor analysis, suggested that estimates can be 
improved and improper solutions can be avoided by choosing a prior distribution that 
assigns zero probability to improper solutions. The present example demonstrates 
Martin and McDonald’s approach to avoiding improper solutions by a suitable choice 
of prior distribution.

About the Data

Jamison and Scogin (1995) conducted an experimental study of the effectiveness of a 
new treatment for depression in which participants were asked to read and complete 
the homework exercises in Feeling Good: The New Mood Therapy (Burns, 1999). 
Jamison and Scogin randomly assigned participants to a control condition or an 
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experimental condition, measured their levels of depression, treated the experimental 
group, and then re-measured participants’ depression. The researchers did not rely on 
a single measure of depression. Instead, they used two well-known depression scales, 
the Beck Depression Inventory (Beck, 1967) and the Hamilton Rating Scale for 
Depression (Hamilton, 1960). We will call them BDI and HRSD for short. The data 
are in the file feelinggood.sav.

Fitting a Model by Maximum Likelihood

The following figure shows the results of using maximum likelihood estimation to fit 
a model for the effect of treatment (COND) on depression at Time 2. Depression at 
Time 1 is used as a covariate. At Time 1 and then again at Time 2, BDI and HRSD are 
modeled as indicators of a single underlying variable, depression (DEPR).

The path diagram for this model is in Ex27.amw. The chi-square statistic of 0.059 with 
one degree of freedom indicates a good fit, but the negative residual variance for post-
therapy HRSD makes the solution improper.



412

Example 27

Bayesian Estimation with a Non-Informative (Diffuse) Prior

Does a Bayesian analysis with a diffuse prior distribution yield results similar to those 
of the maximum likelihood solution? To find out, we will do a Bayesian analysis of the 
same model. First, we will show how to increase the number of burn-in observations. 
This is just to show you how to do it. Nothing suggests that the default of 500 burn-in 
observations needs to be changed.

Changing the Number of Burn-In Observations

To change the number of burn-in observations to 1,000:

E From the menus, choose View → Options.

E In the Options dialog box, select the MCMC tab.

E Change Number of burn-in observations to 1000.

E Click Close and allow MCMC sampling to proceed until the unhappy face  turns 
happy . 
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The summary table should look something like this: 
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In this analysis, we allowed Amos to reach its default limit of 100,000 MCMC 
samples. When Amos reaches this limit, it begins a process known as thinning. 
Thinning involves retaining an equally-spaced subset of samples rather than all 
samples. Amos begins the MCMC sampling process by retaining all samples until the 
limit of 100,000 samples is reached. At that point, if the data analyst has not halted the 
sampling process, Amos discards half of the samples by removing every alternate one, 
so that the lag-1 dependence in the remaining sequence is the same as the lag-2 
dependence of the original unthinned sequence. From that point, Amos continues the 
sampling process, keeping one sample out of every two that are generated, until the 
upper limit of 100,000 is again reached. At that point, Amos thins the sample a second 
time and begins keeping one new sample out of every four...and so on. 

Why does Amos perform thinning? Thinning reduces the autocorrelation between 
successive samples, so a thinned sequence of 100,000 samples provides more 
information than an unthinned sequence of the same length. In the current example, the 
displayed results are based on 53,000 samples that were collected after 1,000 burn-in 
samples, for a total of 54,000 samples. However, this is after the sequence of samples 
has been thinned three times, so that eight samples had to be generated for every one 
that was kept. If thinning had not been performed, there would have been 

 burn-in samples and  analysis samples.
The results of the Bayesian analysis are very similar to the maximum likelihood 

results. The posterior Mean for the residual variance of e5 is negative, just as the 
maximum likelihood estimate is. The posterior distribution itself lies largely to the left 
of 0.

1 000, 8 8 000,=× 53 000, 8 424 000,=×
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Fortunately, there is a remedy for this problem: Assign a prior density of 0 to any 
parameter vector for which the variance of e5 is negative. To change the prior 
distribution of the variance of e5:

E From the menus, choose View → Prior.

Alternatively, click the Prior button  on the Bayesian SEM toolbar, or enter the 
keyboard combination Ctrl+R. Amos displays the Prior dialog box. 
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E Select the variance of e5 in the Bayesian SEM window to display the default prior 
distribution for e5. 

E Replace the default lower bound of  with 0. 3.4– 10 38–×
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E Click Apply to save this change.

Amos immediately discards the accumulated MCMC samples and begins sampling all 
over again. After a while, the Bayesian SEM window should look something like this:
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The posterior mean of the variance of e5 is now positive. Examining its posterior 
distribution confirms that no sampled values fall below 0. 
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Is this solution proper? The posterior mean of each variance is positive, but a glance at 
the Min column shows that some of the sampled values for the variance of e2 and the 
variance of e3 are negative. To avoid negative variances for e2 and e3, we can modify 
their prior distributions just as we did for e5. 

It is not too difficult to impose such constraints on a parameter-by-parameter basis 
in small models like this one. However, there is also a way to automatically set the 
prior density to 0 for any parameter values that are improper. To use this feature:
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E From the menus, choose View → Options.

E In the Options dialog box, click the Prior tab.

E Select Admissibility test. (A check mark will appear next to it.)

Selecting Admissibility test sets the prior density to 0 for parameter values that result in 
a model where any covariance matrix fails to be positive definite. In particular, the 
prior density is set to 0 for non-positive variances.

Amos also provides a stability test option that works much like the admissibility test 
option. Selecting Stability test sets the prior density to 0 for parameter values that result 
in an unstable system of linear equations.

As soon as you select Admissibility test, the MCMC sampling starts all over, 
discarding any previously accumulated samples. After a short time, the results should 
look something like this:
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Notice that the analysis took only 73,000 observations to meet the convergence 
criterion for all estimands. Minimum values for all estimated variances are now 
positive. 
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Bayesian Estimation of Values Other 
Than Model Parameters

Introduction

This example shows how to estimate other quantities besides model parameters in a 
Bayesian analyses.

About the Example

Examples 26 and 27 demonstrated Bayesian analysis. In both of those examples, we 
were concerned exclusively with estimating model parameters. We may also be 
interested in estimating other quantities that are functions of the model parameters. 
For instance, one of the most common uses of structural equation modeling is the 
simultaneous estimation of direct and indirect effects. In this example, we 
demonstrate how to estimate the posterior distribution of an indirect effect. 

The Wheaton Data Revisited

In Example 6, we profiled the Wheaton et al. (1977) alienation data and described 
three alternative models for the data. Here, we re-examine Model C from Example 6. 
The following path diagram is in the file Ex28.amw: 
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Indirect Effects

Suppose we are interested in the indirect effect of ses on 71_alienation through the 
mediation of 67_alienation. In other words, we suspect that socioeconomic status 
exerts an impact on alienation in 1967, which in turn influences alienation in 1971.
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Estimating Indirect Effects

E Before starting the Bayesian analysis, from the menus in Amos Graphics, choose View 
→ Analysis Properties.

E In the Analysis Properties dialog box, click the Output tab.

E Select Indirect, direct & total effects and Standardized estimates to estimate standardized 
indirect effects. (A check mark will appear next to these options.)

E Close the Analysis Properties dialog box.
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E From the menus, choose Analyze → Calculate Estimates to obtain the maximum 
likelihood chi-square test of model fit and the parameter estimates. 

The results are identical to those shown in Example 6, Model C. The standardized 
direct effect of ses on 71_alienation is –0.19. The standardized indirect effect of ses on 
71_alienation is defined as the product of two standardized direct effects: the 
standardized direct effect of ses on 67_alienation (–0.56) and the standardized direct 
effect of 67_alienation on 71_alienation (0.58). The product of these two standardized 
direct effects is .0.56– 0.58 0.32–=×
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You do not have to work the standardized indirect effect out by hand. To view all 
the standardized indirect effects:

E From the menus, choose View → Text Output.

E In the upper left corner of the Amos Output window, select Estimates, then Matrices, 
and then Standardized Indirect Effects.

Bayesian Analysis of Model C

To begin Bayesian estimation for Model C:

E From the menus, choose Analyze → Bayesian Estimation.
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The MCMC algorithm converges quite rapidly within 22,000 MCMC samples.

Additional Estimands

The summary table displays results for model parameters only. To estimate the 
posterior of quantities derived from the model parameters, such as indirect effects:

E From the menus, choose View → Additional Estimands. 
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Estimating the marginal posterior distribution of the additional estimands may take a 
while. A status window keeps you informed of progress.

Results are displayed in the Additional Estimands window. To display the posterior 
mean for each standardized indirect effect:

E Select Standardized Indirect Effects and Mean in the panel at the left side of the window.
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E To print the results, select the items you want to print. (A check mark will appear next 
to them).

E From the menus, choose File → Print. 

Be careful because it is possible to generate a lot of printed output. If you put a check 
mark in every check box in this example, the program will print  
matrices.

E To view the posterior means of the standardized direct effects, select Standardized 

Direct Effects and Mean in the panel at the left. 

The posterior means of the standardized direct and indirect effects of socioeconomic 
status on alienation in 1971 are almost identical to the maximum likelihood estimates.

1 8 11×× 88=
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Inferences about Indirect Effects

There are two methods for finding a confidence interval for an indirect effect or for 
testing an indirect effect for significance. Sobel (1982, 1986) gives a method that 
assumes that the indirect effect is normally distributed. A growing body of statistical 
simulation literature calls into question this assumption, however, and advocates the 
use of the bootstrap to construct better, typically asymmetric, confidence intervals 
(MacKinnon, Lockwood, and Williams, 2004; Shrout and Bolger, 2002). These studies 
have found that the bias-corrected bootstrap confidence intervals available in Amos 
produce reliable inferences for indirect effects.

As an alternative to the Sobel method and the bootstrap for finding confidence 
intervals, Amos can provide (typically asymmetric) credible intervals for standardized 
or unstandardized indirect effects. The next figure shows the lower boundary of a 95% 
credible interval for each standardized indirect effect in the model. Notice that 95% 

Lower bound is selected in the panel at the left of the Additional Estimands window. 
(You can specify a value other than 95% in the Bayesian Sem Options dialog box.)
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The lower boundary of the 95% credible interval for the indirect effect of 
socioeconomic status on alienation in 1971 is –0.382. The corresponding upper 
boundary value is –0.270, as shown below:

We are now 95% certain that the true value of this standardized indirect effect lies 
between –0.382 and –0.270. To view the posterior distribution:

E From the menus in the Additional Estimands window, choose View → Posterior.

At first, Amos displays an empty posterior window. 
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E Select Mean and Standardized Indirect Effects in the Additional Estimands window. 
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Amos then displays the posterior distribution of the indirect effect of socioeconomic 
status on alienation in 1971. The distribution of the indirect effect is approximately, but 
not exactly, normal. 
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The skewness of the mean of the indirect effect values is –0.13; the kurtosis is 0.02. 
These values indicate very mild non-normality of the distribution of the mean indirect 
effect values. 





437

 
 

Example

29
Estimating a User-Defined Quantity
in Bayesian SEM

Introduction

This example shows how to estimate a user-defined quantity: in this case, the 
difference between a direct effect and an indirect effect.

About the Example

In the previous example, we showed how to use the Additional Estimands feature of 
Amos Bayesian analysis to estimate an indirect effect. Suppose you wanted to carry 
the analysis a step further and address a commonly asked research question: How 
does an indirect effect compare to the corresponding direct effect?

The Stability of Alienation Model 

You can use the Custom Estimands feature of Amos to estimate and draw inferences 
about an arbitrary function of the model parameters. To illustrate the Custom 
Estimands feature, let us revisit the previous example. The path diagram for the model 
is shown on p. 438 and can be found in the file Ex29.amw. The model allows 
socioeconomic status to exert a direct effect on alienation experienced in 1971. It also 
allows an indirect effect that is mediated by alienation experienced in 1967.

The remainder of this example focuses on the direct effect, the indirect effect, and 
a comparison of the two. Notice that we supplied parameter labels for the direct effect 
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(“c”) and the two components of the indirect effect (“a” and “b”). Although not 
required, parameter labels make it easier to specify custom estimands. 

To begin a Bayesian analysis of this model:

E From the menus, choose Analyze → Bayesian Estimation.

After a while, the Bayesian SEM window should look something like this: 
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E From the menus, choose View → Additional Estimands.

E In the Additional Estimands window, select Standardized Direct Effects and Mean.

The posterior mean for the direct effect of ses on 71_alienation is –0.195.
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E Select Standardized Indirect Effects and Mean.

The indirect effect of socioeconomic status on alienation in 1971 is –0.320. 
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The posterior distribution of the indirect effect lies entirely to the left of 0, so we are 
practically certain that the indirect effect is less than 0.

You can also display the posterior distribution of the direct effect. The program does 
not, however, have any built-in way to examine the posterior distribution of the 
difference between the indirect effect and the direct effect (or perhaps their ratio). This 
is a case of wanting to estimate and draw inferences about a quantity that the 
developers of the program did not anticipate. For this, you need to extend the 
capabilities of Amos by defining your own custom estimand.
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Numeric Custom Estimands

In this section, we show how to write a Visual Basic program for estimating the 
numeric difference between a direct effect and an indirect effect. (You can use C# 
instead of Visual Basic.) The final Visual Basic program is in the file Ex29.vb.

The first step in writing a program to define a custom estimand is to open the custom 
estimands window.

E From the menus on the Bayesian SEM window, choose View → Custom estimands.

This window displays a skeleton Visual Basic program to which we will add lines to 
define the new quantities that we want Amos to estimate. 

Note: If you want to use C# instead of Visual Basic, from the menus, choose File → New 

C# plug-in.
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The skeleton program contains a subroutine and a function. You have no control over 
when the subroutine and the function are called. They are called by Amos. 

Amos calls your DeclareEstimands subroutine once to find out how many new 
quantities (estimands) you want to estimate and what you want to call them. 

Amos calls your CalculateEstimands function repeatedly. Each time your 
CalculateEstimands function is called, Amos has to calculate the value of your 
custom estimands for a given set of parameter values.

Only the first line of the DeclareEstimands subroutine is shown initially. 

E To display all of the lines, double-click Sub DeclareEstimands or click the + sign in the 
little box at the beginning of the line.

You need to replace the placeholder ‘TODO: Your code goes here with lines that specify 
how many new quantities you want to estimate and what you want to call them. For 
this example, we want to estimate the difference between the direct effect of ses on 
71_alienation and the corresponding indirect effect. We will also write code for 
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computing the direct effect and the indirect individually, but this is only to show how 
to do it. The direct effect and the indirect effect individually can be estimated without 
defining them as custom estimands. To define each estimand, we use the keyword 
newestimand, as shown below:

The words “direct”, “indirect”, and “difference” are estimand labels. You can use different 
labels. 

The function CalculateEstimands computes the values of the estimands defined in 
the DeclareEstimands subroutine. Only the first line of the function is shown. 

E To display all of the lines, double-click Function CalculateEstimands or click the + sign 
in the little box at the beginning of the line.
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The placeholder ‘TODO: Your code goes here needs to be replaced with lines for 
evaluating the estimands called “direct”, “indirect” and “difference”. 

We start by writing Visual Basic code for computing the direct effect. In the 
following figure, we have already typed part of a Visual Basic statement: 
estimand(“direct”) .value =.
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We need to finish the statement by adding additional code to the right of the equals (=) 
sign, describing how to compute the direct effect. The direct effect is to be calculated 
for a set of parameter values that are accessible through the AmosEngine object that is 
supplied as an argument to the CalculateEstimands function. Unless you are an expert 
Amos programmer, you would not know how to use the AmosEngine object; however, 
there is an easy way to get the needed Visual Basic syntax by dragging and dropping.

Dragging and Dropping

E Find the direct effect in the Bayesian SEM window and click to select its row. (Its row 
is highlighted in the following figure.) 

E Move the mouse pointer to an edge of the selected row. Either the top edge or the 
bottom edge will do.
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Tip: When you get the mouse pointer on the right spot, a plus (+) symbol will appear 
next to the mouse pointer. 

E Hold down the left mouse button, drag the mouse pointer into the Visual Basic window 
to the spot where you want the expression for the direct effect to go, and release the 
mouse button.

When you complete this operation, Amos fills in the appropriate parameter expression, 
as shown in the next figure:
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The parameter on the right side of the equation is identified by the label (“c”) that was 
used in the path diagram shown earlier. 

We next turn our attention to calculating the indirect effect of socioeconomic status 
on alienation in 1971. This indirect effect is defined as the product of its two direct 
effects, the direct effect of socioeconomic status on alienation in 1967 (parameter a) 
and the direct effect of alienation in 1967 on alienation in 1971 (parameter b). 

E On the left side of the Visual Basic assignment statement for computing the indirect 
effect, type estimand(“indirect”) .value =. 
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Using the same drag-and-drop process as previously described, start dragging things 
from the Bayesian SEM window to the Unnamed.vb window. 

E First, drag the direct effect of socioeconomic status on alienation in 1967 to the right 
side of the equals sign in the unfinished statement. 
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E Next, drag and drop the direct effect of 1967 alienation on 1971alienation.

This second direct effect appears in the Unnamed.vb window as 
sem.ParameterValue(“b”).
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E Finally, use the keyboard to insert an asterisk (*) between the two parameter values.
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Hint: For complicated custom estimands, you can also drag and drop from the 
Additional Estimands window to the Custom Estimands window.

To compute the difference between the direct and indirect effects, add a third line of 
Visual Basic syntax, as seen in the following figure:
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E To find the posterior distribution of all three custom estimands, click Run.

The results will take a few seconds. A status window keeps you informed of progress.
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The marginal posterior distributions of the three custom estimands are summarized in 
the following table:

The results for direct can also be found in the Bayesian SEM summary table, and the 
results for indirect can be found in the Additional Estimands table. We are really 
interested in difference. Its posterior mean is –0.132. Its minimum is –0.412, and its 
maximum is 0.111. 

E To see its marginal posterior, from the menus, choose View → Posterior.

E Select the difference row in the Custom Estimands table. 
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Most of the area lies to the left of 0, meaning that the difference is almost sure to be 
negative. In other words, it is almost certain that the indirect effect is more negative 
than the direct effect. Eyeballing the posterior, perhaps 95% or so of the area lies to the 
left of 0, so there is about a 95% chance that the indirect effect is larger than the direct 
effect. It is not necessary to rely on eyeballing the posterior, however. There is a way 
to find any area under a marginal posterior or, more generally, to estimate the 
probability that any proposition about the parameters is true.
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Dichotomous Custom Estimands

Visual inspection of the frequency polygon reveals that the majority of difference 
values are negative, but it does not tell us exactly what proportion of values are 
negative. That proportion is our estimate of the probability that the indirect effect 
exceeds the direct effect. To estimate probabilities like these, we can use dichotomous 
estimands. In Visual Basic (or C#) programs, dichotomous estimands are just like 
numeric estimands except that dichotomous estimands take on only two values: true 
and false. In order to estimate the probability that the indirect effect is more negative 
than the direct effect, we need to define a function of the model parameters that is true 
when the indirect effect is more negative than the direct effect and is false otherwise.

Defining a Dichotomous Estimand

E Name each dichotomous estimand in the DeclareEstimands subroutine. For purposes of 
illustration, we will declare two dichotomous estimands, calling them “indirect is less 
than zero” and “indirect is smaller than direct”. 
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E Add lines to the CalculateEstimates function specifying how to compute them.

In this example, the first dichotomous custom estimand is true when the value of the 
indirect effect is less than 0. The second dichotomous custom estimand is true when 
the indirect effect is smaller than the direct effect.

E Click the Run button. 

Amos evaluates the truth of each logical expression for each MCMC sample drawn. 
When the analysis finishes, Amos reports the proportion of MCMC samples in which 
each expression was found to be true. These proportions appear in the Dichotomous 
Estimands section of the Custom Estimands summary table. 
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The P column shows the proportion of times that each evaluated expression was true 
in the whole series of MCMC samples. In this example, the number of MCMC samples 
was 29,501, so P is based on approximately 30,000 samples. The P1, P2, and P3 
columns show the proportion of times each logical expression was true in the first third, 
the middle third, and the final third of the MCMC samples. In this illustration, each of 
these proportions is based upon approximately 10,000 MCMC samples. 

Based on the proportions in the Dichotomous Estimands area of the Custom 
Estimands window, we can say with near certainty that the indirect effect is negative. 
This is consistent with the frequency polygon on p. 442 that showed no MCMC 
samples with an indirect effect value greater than or equal to 0. 

Similarly, the probability is about 0.975 that the indirect effect is larger (more 
negative) than the direct effect. The 0.975 is only an estimate of the probability. It is a 
proportion based on 29,501 correlated observations. However it appears to be a good 
estimate because the proportions from the first third (0.974), middle third (0.979) and 
final third (0.971) are so close together. 
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Data Imputation

Introduction

This example demonstrates multiple imputation in a factor analysis model.

About the Example

Example 17 showed how to fit a model using maximum likelihood when the data 
contain missing values. Amos can also impute values for those that are missing. In 
data imputation, each missing value is replaced by some numeric guess. Once each 
missing value has been replaced by an imputed value, the resulting completed dataset 
can be analyzed by data analysis methods that are designed for complete data. Amos 
provides three methods of data imputation.

In regression imputation, the model is first fitted using maximum likelihood. 
After that, model parameters are set equal to their maximum likelihood estimates, 
and linear regression is used to predict the unobserved values for each case as a 
linear combination of the observed values for that same case. Predicted values are 
then plugged in for the missing values.

Stochastic regression imputation (Little and Rubin, 2002) imputes values for 
each case by drawing, at random, from the conditional distribution of the missing 
values given the observed values, with the unknown model parameters set equal 
to their maximum likelihood estimates. Because of the random element in 
stochastic regression imputation, repeating the imputation process many times 
will produce a different completed dataset each time.
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Bayesian imputation is like stochastic regression imputation except that it takes 
into account the fact that the parameter values are only estimated and not known.

Multiple Imputation

In multiple imputation (Schafer, 1997), a nondeterministic imputation method (either 
stochastic regression imputation or Bayesian imputation) is used to create multiple 
completed datasets. While the observed values never change, the imputed values vary 
from one completed dataset to the next. Once the completed datasets have been 
created, each completed dataset is analyzed alone. For example, if there are m 
completed datasets, then there will be m separate sets of results, each containing 
estimates of various quantities along with estimated standard errors. Because the m 
completed datasets are different from each other, the m sets of results will also differ 
from one to the next.

After each of the m completed datasets has been analyzed alone, the data analyst has 
m sets of estimates and standard errors that must be combined into a single set of results. 
Well-known formulas attributed to Rubin (1987) are available for combining the results 
from multiple completed datasets. Those formulas will be used in Example 31.

Model-Based Imputation

In this example, imputation is performed using a factor analysis model. Model-based 
imputation has two advantages. First, you can impute values for any latent variables in 
the model. Second, if the model is correct and has positive degrees of freedom, the 
implied covariance matrix and implied means will be estimated more accurately than 
with a saturated model. (Imputation is based on the implied covariance matrix and 
means.) However, a saturated model like the model in Example 1 can be used for 
imputation when no other model is appropriate.

Performing Multiple Data Imputation Using Amos Graphics

For this example, we will perform Bayesian multiple imputation using the 
confirmatory factor analysis model from Example 17. The dataset is the incomplete 
Holzinger and Swineford (1939) dataset in the file grant_x.sav. The imputation of 
missing values is only the first step in obtaining useful results from multiple 
imputation. Eventually, all three of the following steps need to be carried out.
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Step 1: Use the Data Imputation feature of Amos to create m complete data files.

Step 2: Perform an analysis of each of the m completed data files separately.

Performing this analysis is up to you. You can perform the analysis in Amos but, 
typically, you would use some other program. For purposes of this example and the 
next, we will use SPSS Statistics to carry out a regression analysis in which one 
variable (sentence) is used to predict another variable (wordmean). Specifically, we 
will focus on the estimation of the regression weight and its standard error.

Step 3: Combine the results from the analyses of the m data files.

This example covers the first step. Steps 2 and 3 will be covered in Example 31.

E To generate the completed data files, open the Amos Graphics file Ex30.amw. 
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E From the menus, choose Analyze → Data Imputation.

Amos displays the Amos Data Imputation window. 

E Make sure that Bayesian imputation is selected.

E Set Number of completed datasets to 10. (This sets m = 10.) 

You might suppose that a large number of completed data files are needed. It turns out 
that, in most applications, very few completed data files are needed. Five to 10 
completed data files are generally sufficient to obtain accurate parameter estimates and 
standard errors (Rubin, 1987). There is no penalty for using more than 10 imputations 
except for the clerical effort involved in Steps 2 and 3. 

Amos can save the completed datasets in a single file (Single output file) with the 
completed datasets stacked, or it can save each completed dataset in a separate file 
(Multiple output files). In a single-group analysis, selecting Single output file yields one 
output data file, whereas selecting Multiple output files yields m separate data files.

In a multiple-group analysis, when you select the Single output file option, you get a 
separate output file for each analysis group; if you select the Multiple output files option, 
you get m output files per group. For instance, if you had four groups and requested 
five completed datasets, then selecting Single output file would give you four output 
files, and selecting Multiple output files would give you 20. Since we are going to use 
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SPSS Statistics to analyze the completed datasets, the simplest thing would be to select 
Single output file. Then, the split file capability of SPSS Statistics could be used in Step 
2 to analyze each completed dataset separately. However, to make it easy to replicate 
this example using any regression program:

E Select Multiple output files.

You can save imputed data in two file formats: plain text or SPSS Statistics format.

E Click File Names to display a Save As dialog box. 

E In the File name text box, you can specify a prefix name for the imputed datasets. Here, 
we have specified Grant_Imp. 

Amos will name the imputed data files Grant_Imp1, Grant_Imp2, and so on through 
Grant_Imp10.

E Use the Save as type drop-down list to select plain text (.txt) or the SPSS Statistics 
format (.sav). 
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E Click Save.

E Click Options in the Data Imputation window to display the available imputation 
options.

The online Help explains these options. To get an explanation of an option, place your 
mouse pointer over the option in question and press the F1 key. The figure below 
shows how the number of observations can be changed from 10,000 (the default) to 
30,000.

E Close the Options dialog box and click the Impute button in the Data Imputation 
window. After a short time, the following message appears:

E Click OK.

Amos lists the names of the completed data files.
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Each completed data file contains 73 complete cases. Here is a view of the first few 
records of the first completed data file, Grant_Imp1.sav: 
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Here is an identical view of the second completed data file, Grant_Imp2.sav: 

The values in the first two cases for visperc were observed in the original data file and 
therefore do not change across the imputed data files. By contrast, the values for these 
cases for cubes were missing in the original data file, Grant_x.sav, so Amos has 
imputed different values across the imputed data files for cubes for these two cases.

In addition to the original observed variables, Amos added four new variables to the 
imputed data files. Spatial and verbal are imputed latent variable scores. CaseNo and 
Imputation_ are the case number and completed dataset number, respectively.
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Analyzing Multiply Imputed Datasets

Introduction

This example demonstrates the analysis of multiply (pronounced multiplee) imputed 
datasets.

Analyzing the Imputed Data Files Using SPSS Statistics

Ten completed datasets were created in Example 30. That was Step 1 in a three-step 
process: Use the Data Imputation feature of Amos to impute m complete data files. 
(Here, m = 10.) The next two steps are:

Step 2: Perform an analysis of each of the m completed data files separately.

Step 3: Combine the results from the analyses of the m data files.

The analysis in Step 2 can be performed using Amos, SPSS Statistics, or any other 
program. Without knowing ahead of time what program will be used to analyze the 
completed datasets, it is not possible to automate Steps 2 and 3.

To walk through Steps 2 and 3 for a specific problem, we will analyze the 
completed datasets by using SPSS Statistics to carry out a regression analysis in 
which one variable (sentence) is used to predict another variable (wordmean). We will 
focus specifically on the estimation of the regression weight and its standard error.
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Step 2: Ten Separate Analyses

For each of the 10 completed datasets from Example 30, we need to perform a 
regression analysis in which sentence is used to predict wordmean. We start by opening 
the first completed dataset, Grant_Imp1.sav, in SPSS Statistics.

E From the SPSS Statistics menus, choose Analyze → Regression → Linear and perform 
the regression analysis. (We assume you do not need detailed instructions for this step.) 

The results are as follows:

We are going to focus on the regression weight estimate (1.106) and its estimated 
standard error (0.160). Repeating the analysis that was just performed for each of the 
other nine completed datasets gives nine more estimates for the regression weight and 
for its standard error. All 10 estimates and standard errors are shown in the following 
table:

Coefficientsa

-2.712 3.110 -.872 .386

1.106 .160 .634 6.908 .000

(Constant)

sentence

Model
1

B Std. Error

Unstandardized Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: wordmeana. 



471

Analyzing Mult iply Imputed Datasets

Step 3: Combining Results of Multiply Imputed Data Files

The standard errors from an analysis of any single completed dataset are not accurate 
because they do not take into account the uncertainty arising from imputing missing 
data values. The estimates and standard errors must be gathered from the separate 
analyses of the completed data files and combined into single summary values, one 
summary value for the parameter estimate and another summary value for the standard 
error of the parameter estimate. Formulas for doing this (Rubin, 1987) can be found in 
many places. The formulas below were taken from Schafer (1997, p. 109). The 
remainder of this section applies those formulas to the table of 10 estimates and 10 
standard errors shown above. In what follows:

Let m be the number of completed datasets (m = 10 in this case).

Let  be the estimate from sample t, so  = 1.106,  = 1.080, and so on. 

Let  be the estimated standard error from sample t, so  = 0.160,  = 
0.160, and so on.

Then the multiple-imputation estimate of the regression weight is simply the mean of 
the 10 estimates from the 10 completed datasets:

Imputation ML Estimate ML Standard Error

1 1.106 0.160
2 1.080 0.160
3 1.118 0.151
4 1.273 0.155
5 1.102 0.154
6 1.286 0.152
7 1.121 0.139
8 1.283 0.140
9 1.270 0.156
10 1.081 0.157

Q̂ t( ) Q̂ 1( ) Q̂ 2( )

U t( ) U 1( ) U 2( )

( ) 172.1ˆ1
1

== ∑
=

m

t

tQ
m

Q
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To obtain a standard error for the combined parameter estimate, go through the 
following steps:

E Compute the average within-imputation variance.

E Compute the between-imputation variance.

E Compute the total variance.

The multiple-group standard error is then

A test of the null hypothesis that the regression weight is 0 in the population can be 
based on the statistic

which, if the regression weight is 0, has a t distribution with degrees of freedom given 
by

A calculator that implements these formulas and also provides multiple-imputation 
confidence intervals can be downloaded from 
http://www.amosdevelopment.com/bayes/calculator.

Joseph Schafer’s NORM program also performs these calculations. NORM can be 
downloaded from http://www.stat.psu.edu/~jls/misoftwa.html#win.

U 1
m
---- U t( )

t 1=

m

∑ 0.0233= =

B 1
m 1–
------------- Q̂ t( ) Q–( )

t 1=

m

∑=
2

0.0085=

T U= 1 1
m
----+⎝ ⎠

⎛ ⎞B+ 0.0233= 1 1
10
------+⎝ ⎠

⎛ ⎞ 0.0085+ 0.0326=

T 0.0326 0.1807= =

Q
T

------- 1.172
0.1807
---------------- 6.49= =

v m 1–( )= 1 U

1 1
m
----+⎝ ⎠

⎛ ⎞B
-----------------------+

2

10 1–( )= 1 0.0233

1 1
10
------+⎝ ⎠

⎛ ⎞ 0.0085
-------------------------------------+

2

109=

http://www.amosdevelopment.com/bayes/calculator
http://www.stat.psu.edu/~jls/misoftwa.html#win
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Further Reading

Amos provides several advanced methods of handling missing data, including FIML 
(described in Example 17), multiple imputation, and Bayesian estimation. To learn 
more about each method, consult Schafer and Graham (2002) for an overview of the 
strengths of FIML and multiple imputation. Allison has a concise, readable monograph 
that covers both FIML and multiple imputation, including a number of worked 
examples and an excellent discussion of how to handle non-normal and categorical 
variables within the context of multiple imputation methods that assume multivariate 
normality (Allison, 2002). Schafer (1997) provides an in-depth, technical treatment of 
multiple imputation. Schafer and Olsen (1998) provide a readable, step-by-step guide 
to performing multiple imputation. 

A SEM-specific study comparing the statistical performance of FIML and multiple 
imputation in structural equation models is also available (Olinsky, Chen, and Harlow, 
2003). Lastly, it is worth noting that the Bayesian estimation approach discussed in 
Examples 26 through 29 is similar to FIML in its handling of missing data. Ibrahim 
and colleagues recently compared the performance of FIML, Bayesian estimation, 
probability weighting, and multiple imputation approaches to address incomplete data 
problems and concluded that these four approaches were generally similar in their 
satisfactory performance for handling incomplete data problems in which the missing 
data arose from a missing-at-random (MAR) process (Ibrahim, Chen, Lipsitz, and 
Herring, 2005). While their review considered generalized linear models rather than 
SEM, their results and conclusions should be generally applicable to a wide range of 
statistical models and data analysis scenarios, including those featuring SEM.





475

 
 

Example

32
Censored Data

Introduction

This example demonstrates parameter estimation, estimation of posterior predictive 
distributions, and data imputation with censored data.

About the Data

For this example, we use the censored data from 103 patients who were accepted into 
the Stanford Heart Transplantation Program during the years 1967 through 1974. The 
data were collected by Crowley and Hu (1977) and have been reanalyzed by 
Kalbfleisch and Prentice (2002), among others. The dataset is saved in the file 
transplant-a.sav.
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Reading across the first visible row in the figure above, Patient 17 was accepted into 
the program in 1968. The patient at that time was 20.33 years old. The patient died 35 
days later. The next number, 5.916, is the square root of 35. Amos assumes that 
censored variables are normally distributed. The square root of survival time will be 
used in this example in the belief that it is probably more nearly normally distributed 
than is survival time itself. Uncensored simply means that we know how long the 
patient lived. In other words, the patient has already died, and that is how we are able 
to tell that he lived for 35 days after being admitted into the program.

Some patients were still alive when last seen. For example, Patient 25 entered the 
program in 1969 at the age of 33.22 years. The patient was last seen 1,799 days later. 
The number 42.415 is the square root of 1,799. The word censored in the Status column 
means that the patient was still alive 1,799 days after being accepted into the program, 
and that is the last time the patient was seen. So, we can’t say that the patient survived 
for 1,799 days. In fact, he survived for longer than that; we just don’t know how much 
longer. There are more cases like that. Patient number 26 was last seen 1,400 days after 
acceptance into the program and, at that time, was still alive, so we know that that 
patient lived for at least 1,400 days.

It is not clear what is to be done with a censored value like Patient 25’s survival time 
of 1,799 days. You can’t just discard the 1,799 and all the other censored values 
because that amounts to discarding the patients who lived a long time. On the other 
hand, you can’t keep the 1,799 and treat it as an ordinary score because you know the 
patient really lived for more than 1,799 days.

In Amos, you can use the information that Patient 25 lived for more than 1,799 days, 
neither discarding the information nor pretending that the patient’s survival time is 
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known more precisely than it is. Of course, wherever the data provide an exact numeric 
value, as in the case of Patient 24 who is known to have survived for 218 days, that 
exact numeric value is used.

Recoding the Data

The data file needs to be recoded before Amos reads it. The next figure shows a portion 
of the dataset after recoding. (This complete dataset is in the file transplant-b.sav.)

Every uncensored observation appears in the new data file just the way it did in the 
original data file. Censored values, however, are coded differently. For example, 
Patient 25’s survival time, which is known only to be greater than 1,799, is coded as 
> 1799 in the new data file. (Spaces in a string like > 1799 are optional.) The square root 
of survival time is known to be greater than 42.415, so the timesqr column of the data 
file contains > 42.415 for Patient 25. For data file formats (like SPSS Statistics) that 
make a distinction between numeric and string variables, time and timesqr need to be 
coded as string variables.

Analyzing the Data

To specify the data file in Amos Graphics:

E From the menus, choose File → Data Files.
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E Then in the Data Files dialog box, click the File Name button.

E Select the data file transplant-b.sav. 

E Select Allow non-numeric data (a check mark appears next to it).

Recoding the data as shown above and selecting Allow non-numeric data are the only 
extra steps that are required for analyzing censored data. In all other respects, fitting a 
model with censored data and interpreting the results is exactly the same as if the data 
were purely numeric.

Performing a Regression Analysis

Let’s try predicting timesqr using age and year of acceptance (acceptyr) as predictors. 
Begin by drawing the following path diagram:

timesqr

age 0,

e
1

acceptyr
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To fit the model:

E Click  on the toolbar.

or

E From the menus, choose Analyze → Bayesian Estimation.

Note: The  button is disabled because, with non-numeric data, you can perform only 
Bayesian estimation.

After the Bayesian SEM window opens, wait until the unhappy face  changes into 
a happy face . The table of estimates in the Bayesian SEM window should look 
something like this:

(Only a portion of the table is shown in the figure.) The Mean column contains point 
estimates for the parameters. The regression weight for using acceptyr to predict 
timesqr is 1.45, so that each time the calendar advances by one year, you predict an 
increase of 1.45 in the square root of survival time. This suggests that the transplant 
program may have been improving over the period covered by the study. The 
regression weight for using age to predict timesqr is –0.29, so for every year older a 
patient is when admitted into the transplant program, you expect a decrease of 0.29 in 
the square root of survival time. The regression weight estimate of –0.29 is actually the 
mean of the posterior distribution of the regression weight. 

E To see the entire posterior distribution, right-click the row that contains the –0.29 
estimate and choose Show Posterior from the pop-up menu.
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The Posterior dialog box opens, displaying the posterior distribution of the regression 
weight.

The posterior distribution of the regression weight is indeed centered around –0.29. 
The distribution lies almost entirely between –0.75 and 0.25, so it is practically 
guaranteed that the regression weight lies in that range. Most of the distribution lies 
between –0.5 and 0, so we are pretty sure that the regression weight lies between –0.5 
and 0.
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Posterior Predictive Distributions

Recall that the dataset contains some censored values like Patient 25’s survival time. 
All we really know about Patient 25’s survival time is that it is longer than 1,799 days 
or, equivalently, that the square root of survival time exceeds 42.415. Even though we 
do not know the amount by which this patient’s timesqr exceeds 42.415, we can ask 
for its posterior distribution. Taking into account the fact that timesqr exceeds 42.415, 
assuming that the model is correct, and taking the patient’s age and acceptyr into 
account, what can be said about Patient 25’s survival time? To find out:

E Click the Posterior Predictive button .

or

E From the menus, choose View → Posterior Predictive.

The Posterior Predictive Distributions window shows a table with a row for every 
person and a column for every observed variable in the model. Looking in the 25th row, 
we see Patient 25’s age and acceptyr scores. For Patient 25’s timesqr, all we see is the 
symbol <<, which indicates that the data provide an inequality constraint on the timesqr 
score and not an actual numeric value.

To see the posterior distribution of Patient 25’s timesqr:

E Click <<. The posterior distribution appears in the Posterior window.
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The posterior distribution for Patient 25’s timesqr lies entirely to the right of 42.415. 
Of course, we knew from the data alone that timesqr exceeds 42.415, but now we also 
know that there is practically no chance that Patient 25’s timesqr exceeds 70. For that 
matter, there is only a slim chance that timesqr exceeds even 55.

To see a posterior predictive distribution that looks very different from Patient 25’s:

E Click the << symbol in the 100th row of the Posterior Predictive Distributions table.
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Patient 100 was still alive when last observed on the 38th day after acceptance into the 
program, so that his timesqr is known to exceed 6.164. The posterior distribution of 
that patient’s timesqr shows that it is practically guaranteed to be between 6.164 and 
70, and almost certain to be between, 6.164 and 50. The mean is 27.36, providing a 
point estimate of timesqr if one is needed. Squaring 27.36 gives 748, an estimate of 
Patient 100’s survival time in days.
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Imputation

You can use this model to impute values for the censored values.

E Close the Bayesian SEM window if it is open.

E From the Amos Graphics menu, choose Analyze → Data Imputation.

Notice that Regression imputation and Stochastic regression imputation are disabled. 
When you have non-numeric data such as censored data, Bayesian imputation is the only 
choice.

We will accept the options shown in the preceding figure, creating 10 completed 
datasets and saving all 10 in a single SPSS Statistics data file called transplant-
b_C.sav. To start the imputation:

E Click the Impute button.

The Bayesian SEM window opens along with the Data Imputation dialog box.
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E Wait until the Data Imputation dialog box displays a happy face  to indicate that 
each of the 10 completed datasets is effectively uncorrelated with the others.

Note: After you see a happy face but before you click OK, you may optionally choose to 
right-click a parameter in the Bayesian SEM window and choose Show Posterior from 
the pop-up menu. This will allow you to examine the Trace and Autocorrelation plots.

E Click OK in the Data Imputation dialog box.

The Summary window shows a list of the completed data files that were created. In this 
case, only one completed data file was created.
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E Double-click the file name to display the contents of the single completed data file, 
which contains 10 completed datasets. 

The file contains 1,030 cases because each of the 10 completed datasets contains 103 
cases. The first 103 rows of the new data file contain the first completed dataset. The 
Imputation_ variable is equal to 1 for each row in the first completed dataset, and the 
CaseNo variable runs from 1 through 103.
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The first row of the completed data file contains a timesqr value of 7. Because that was 
not a censored value, 7 is not an imputed value. It is just an ordinary numeric value that 
was present in the original data file. On the other hand, Patient 25’s timesqr was 
censored, so that patient has an imputed timesqr (in this case, 49.66.) The value of 
49.66 is a value drawn randomly from the posterior predictive distribution in the figure 
on p. 482.
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Normally, the next step would be to use the 10 completed datasets in transplant-
b_C.sav as input to some other program that cannot accept censored data. You would 
use that other program to perform 10 separate analyses, using each one of the 10 
completed datasets in turn. Then you would do further computations to combine the 
results of those 10 separate analyses into a single set of results, as was done in Example 
31. Those steps will not be carried out here.

General Inequality Constraints on Data Values

This example employed only inequality constraints like > 1799. Here are some other 
examples of string values that can be used in a data file to place inequality constraints 
on the value of an underlying numeric variable:

The string value < 5 means that the underlying numeric value is less than 5.

The string value 4<<5 means that the underlying numeric value is between 4 and 5.
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Introduction

This example shows how to fit a factor analysis model to ordered-categorical data. It 
also shows how to find the posterior predictive distribution for the numeric variable 
that underlies a categorical response and how to impute a numeric value for a 
categorical response.

About the Data

This example uses data on attitudes toward environment issues obtained from a 
questionnaire administered to 1,017 respondents in the Netherlands. The data come 
from the European Values Study Group (see the bibliography for a citation). The data 
file environment-nl-string.sav contains responses to six questionnaire items with 
categorical responses strongly disagree (SD), disagree (D), agree (A), and strongly 
agree (SA).
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One way to analyze these data is to assign numbers to the four categorical responses; 
for example, using the assignment 1 = SD, 2 = D, 3 = A, 4 = SA. If you assign numbers 
to categories in that way, you get the dataset in environment-nl-numeric.sav.

In an Amos analysis, it is not necessary to assign numbers to categories in the way just 
shown. It is possible to use only the ordinal properties of the four categorical responses. 
If you want to use only the ordinal properties of the data, you can use either dataset, 
environment-nl-string.sav or environment-nl-numeric.sav.
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It may be slightly easier to use environment-nl-numeric.sav because Amos will 
assume by default that the numbered categories go in the order 1, 2, 3, 4, with 1 being 
the lowest category. That happens to be the correct order. With environment-nl-
string.sav, by contrast, Amos will assume by default that the categories are arranged 
alphabetically in the order A, D, SA, SD, with A being the lowest category. That is the 
wrong order, so the default ordering of the categories by Amos has to be overridden.

The data file environment-nl-string.sav will be used for this example because then 
it will be clear that only the ordinal properties of the data are employed, and also you 
can see how to specify the correct ordering of the categories.

Specifying the Data File

E From the Amos Graphics menus , choose File → Data Files. 

E In the Data Files window, click the File Name button.

E Select the data file environment-nl-string.sav. 

E Select Allow non-numeric data (a check mark appears next to it).

E Click OK.
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Recoding the Data within Amos

The ordinal properties of the data cannot be inferred from the data file alone. To give 
Amos the additional information it needs so that it can interpret the data values SD, D, 
A, and SA:

E From the Amos Graphics menus, choose Tools → Data Recode. 

E Select item1 in the list of variables in the upper-left corner of the Data Recode window.

This displays a frequency distribution of the responses to item1 at the bottom of the 
window.
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In the box labeled Recoding rule, the notation No recoding means that Amos will read 
the responses to item1 as is. In other words, it will read either SD, D, A, SA, or an empty 
string. We can’t leave things that way because Amos doesn’t know what to do with SD, 
D, and so on.

E Click No recoding and select Ordered-categorical from the drop-down list.
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The frequency table at the bottom of the window now has a New Value column that 
shows how the item1 values in the data file will be recoded before Amos reads the data. 
The first row of the frequency table shows that empty strings in the original data file 
will be treated as missing values. The second row shows that the A response will be 
translated into the string <0.0783345405060296. Amos will interpret this to mean that 
there is a continuous numeric variable that underlies responses to item1, and that a 
person who gives the A response has a score that is less than 0.0783345405060296 on 
that underlying variable. Similarly, the third row shows that the D response will be 
translated into the string 0.0783345405060296<<0.442569286522029 and interpreted 
by Amos to mean that the score on the underlying numeric variable is between 
0.0783345405060296 and 0.442569286522029. The numbers, 0.0783345405060296, 
0.442569286522029, and so on, are derived from the frequencies in the Frequency 
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column, based on the assumption that scores on the underlying numeric variable are 
normally distributed with a mean of 0 and a standard deviation of 1.

The ordering of the categories in the Original Value column needs to be changed. To 
change the ordering:

E Click the Details button. The Ordered-Categorical Details dialog box opens.

The Ordered categories list box shows four response categories arranged in the order 
A, D, SA, SD, and separated from each other by dashed lines, <---->. The dashed 
lines represent three boundaries that divide the real numbers into four intervals, with 
the four intervals being associated with the four categorical responses. The assumption 
is made that a person who scores below the lowest boundary on some unobserved 
numeric variable gives the A response. A person who scores between the lowest 
boundary and the middle boundary gives the D response. A person who scores between 
the middle boundary and the highest boundary gives the SA response. Finally, a person 
who scores above the highest boundary gives the SD response.

The program is correct about there being four categories (intervals) and three 
boundaries, but it has the ordering of the categories wrong. The program arbitrarily 
alphabetized the categories. We need to keep the four categories and the three 
boundaries but rearrange them. We want SD to fall in the lowest interval (below the 
lowest boundary), and so on. 
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You can rearrange the categories and the boundaries. To do this:

E Drag and drop with the mouse.

or

E Select a category or boundary with the mouse and then click the Up or Down button.

After putting the categories and boundaries in the correct order, the Ordered-
Categorical Details dialog box looks like this:

The Unordered categories list box contains a list of values that Amos will treat as 
missing. At the moment, the list contains one entry, [empty string], so that Amos will 
treat an empty string as a missing value. If a response coded as an empty string was 
actually a response that could be meaningfully compared to SD, D, A, and SA, then you 
would select [empty string] in the Unordered categories list box and click the Down 
button to move [empty string] into the Ordered categories list box. 

Similarly, if a response in the Ordered categories list box, for example SD, was not 
comparable to the other responses, you would select it with the mouse and click the Up 
button to move it into the Unordered categories list box. Then SD would be treated as 
a missing value.
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Note: You can’t drag and drop between the Ordered categories list box and the 
Unordered categories list box. You have to use the Up and Down buttons to move a 
category from one box to the other.

We could stop here and close the Ordered-Categorical Details dialog box because we 
have the right number of boundaries and categories and we have the categories going 
in the right order. However, we will make a further change based on a suggestion by 
Croon (2002), who also worked with this dataset and concluded that the SD category 
occurred so seldom that it should be combined with the D category. To merge those 
two categories into a single category:

E Select the boundary between the two categories you want to merge.

E Click the Remove Boundary button. The Ordered categories list now looks like this:

Now the SD response and the D response are indistinguishable. Either response means 
that the person who gave the response has a score that lies in the lowest interval on the 
underlying numeric variable.

There remains the question of the values of the two boundaries that separate the 
three intervals. If you do not specify values for the boundaries, Amos will estimate the 
boundaries by assuming that scores on the underlying numeric variable are normally 
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distributed with a mean of 0 and a standard deviation of 1. Alternatively, you can 
assign a value to a boundary instead of letting Amos estimate it. To assign a value:

E Select the boundary with the mouse.

E Type a numeric value in the text box.

The following figure shows the result of assigning values 0 and 1 to the two 
boundaries.

Although it may not be obvious, it is permissible to assign 0 and 1, or any pair of 
numbers, to the two boundaries, as long as the higher boundary is assigned a larger 
value than the lower one. No matter how many boundaries there are (as long as there 
are at least two), assigning values to two of the boundaries amounts to choosing a zero 
point and a unit of measurement for the underlying numeric variable. The scaling of 
the underlying numeric variable is discussed further in the Help file under the topic 
“Choosing boundaries when there are three categories.”

E Click OK to close the Ordered-Categorical Details dialog box.
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The changes that were just made to the categories and the interval boundaries are now 
reflected in the frequency table at the bottom of the Data Recode window.

The frequency table shows how the values that appear in the data file will be recoded 
before Amos reads them. Reading the frequency table from top to bottom:

An empty string will be treated as a missing value.

The strings SD and D will be recoded as <0, meaning that the underlying numeric 
score is less than 0.

A will be recoded as 0<<1, meaning that the underlying numeric score is between 
0 and 1.

SA will be recoded as >1, meaning that the underlying numeric score is greater
than 1.
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That takes care of item1. What was just done for item1 has to be repeated for each of 
the five remaining observed variables. After specifying the recoding for all six 
observed variables, you can view the original dataset along with the recoded variables. 
To do this:

E Click the View Data button.

The table on the left shows the contents of the original data file before recoding. The 
table on the right shows the recoded variables after recoding. When Amos performs an 
analysis, it reads the recoded values, not the original values.

Note: You can create a raw data file in which the data recoding has already been 
performed. In other words, you can create a raw data file that contains the inequalities 
on the right-hand side of the figure above. In that case, you wouldn’t need to use the 
Data Recode window in Amos. Indeed, that approach was used in Chapter 32.

E Finally, close the Data Recode window before specifying the model.

Specifying the Model

After you have specified the rules for data recoding as shown above, the analysis 
proceeds just like any Bayesian analysis. For this example, a factor analysis model will 
be fitted to the six questionnaire items in the environment dataset. The first three items 
were designed to be measures of willingness to spend money to take care of the 
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environment. The other three items were designed to be measures of awareness of 
environmental issues. This design of the questionnaire is reflected in the following 
factor analysis model, which is saved in the file Ex33-a.amw.

The path diagram is drawn exactly as it would be drawn for numeric data. This is one 
of the good things about having at least three categories for each ordered-categorical 
variable: You can specify a model in the way that you are used to, just as though all the 
variables were numeric, and the model will work for any combination of numeric and 
ordered-categorical variables. If variables are dichotomous, you will need to impose 
additional parameter constraints in order to make the model identified. This issue is 
discussed further in the online Help under the topic “Parameter identification with 
dichotomous variables.”

Fitting the Model

E Click  on the toolbar.

or

E From the menus, choose Analyze → Bayesian Estimation.

Note: The  button is disabled because, with non-numeric data, you can perform only 
Bayesian estimation.
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After the Bayesian SEM window opens, wait until the unhappy face changes into a 
happy face. The Bayesian SEM window should then look something like this:

(The figure above shows some, but not all, of the parameter estimates.) The Mean 
column provides a point estimate for each parameter. For example, the regression 
weight for using WILLING to predict item1 is estimated to be 0.59. The skewness 
(0.09) and kurtosis (–0.01) of the posterior distribution are close to 0, which is 
compatible with the posterior distribution being nearly normal. The standard deviation 
(S.D.) is 0.03, so there is about a 67% chance that the regression weight is within 0.03 
of 0.59. Doubling the standard deviation gives 0.06, so there is about a 95% chance 
that the regression weight is within 0.06 of 0.59. 

To view the posterior distribution of the regression weight:

E Right-click its row and choose Show Posterior from the pop-up menu.
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The Posterior window displays the posterior distribution. The appearance of the 
distribution confirms what was concluded above from the mean, standard deviation, 
skewness, and kurtosis of the distribution. The shape of the distribution is nearly 
normal, and it looks like roughly 95% of the area lies between 0.53 and 0.65 (that is, 
within 0.06 of 0.59). 
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MCMC Diagnostics

If you know how to interpret the diagnostic output from MCMC algorithms (for 
example, see Gelman, et al, 2004), you might want to view the Trace plot and the 
Autocorrelation plot.
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The First and last plot provides another diagnostic. It shows two estimates of the 
posterior distribution (two superimposed plots), one estimate from the first third of the 
MCMC sample and another estimate from the last third of the MCMC sample.
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Posterior Predictive Distributions

When you think of estimation, you normally think of estimating model parameters or 
some function of the model parameters such as a standardized regression weight or an 
indirect effect. However, there are other unknown quantities in the present analysis. 
Each entry in the data table on p. 490 represents a numeric value that is either unknown 
or partially known. For example, Person 1 did not respond to item2, so we can only 
guess at (estimate) that person’s score on the underlying numeric variable. On the other 
hand, it seems like we ought to be able to make a fairly educated guess about the 
underlying numeric value, considering that we know how the person responded to the 
other items, and that we can also make use of the assumption that the model is correct.
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We are in an even better position to guess at Person 1’s score on the numeric 
variable that underlies item1 because Person 1 gave a response to item1. This person’s 
response places his or her score in the middle interval, between the two boundaries. 
Since the two boundaries were arbitrarily fixed at 0 and 1, we know that the score is 
somewhere between 0 and 1, but it seems like we should be able to say more than that 
by using the person’s responses on the other variables along with the assumption that 
the model is correct.

In Bayesian estimation, all unknown quantities are treated in the same way. Just as 
unknown parameter values are estimated by giving their posterior distribution, so are 
unknown data values. A posterior distribution for an unknown data value is called a 
posterior predictive distribution, but it is interpreted just like any posterior 
distribution. To view posterior predictive distributions for unknown data values:

E Click the Posterior Predictive button .

or

E From the menus, choose View → Posterior Predictive.

The Posterior Predictive Distributions window appears.
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The Posterior Predictive Distributions window contains a table with a row for every 
person and a column for every observed variable in the model. An asterisk (*) indicates 
a missing value, while << indicates a response that places inequality constraints on the 
underlying numeric variable. To display the posterior distribution for an item:

E Click on the table entry in the upper-left corner (Person 1’s response to item1).

The Posterior window opens, displaying the posterior distribution of Person 1’s 
underlying numeric score. At first, the posterior distribution looks jagged and random.
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That is because the program is building up an estimate of the posterior distribution as 
MCMC sampling proceeds. The longer you wait, the better the estimate of the 
posterior distribution will be. After a while, the estimate of the posterior distribution 
stabilizes and looks something like this:

The posterior distribution shows that Person 1’s score on the numeric variable that 
underlies his or her response to item1 is between 0 and 1 (which we knew already), and 
that the score is more likely to be close to 1 than close to 0.
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E Next, click the table entry in the first column of the 22nd row to estimate Person 22’s 
score on the numeric variable that underlies his or her response to item1. 

After you wait a while to get a good estimate of the posterior distribution, you see this:

Both Person 1 and Person 22 gave the agree response to item1, so both people have 
scores between 0 and 1 on the underlying numeric variable; however, their posterior 
distributions are very different

For another example of a posterior predictive distribution, select a missing value 
like Person 1’s response to item2. After allowing MCMC sampling to proceed long 
enough to get a good estimate of the posterior distribution, it looks like this:
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The mean of the posterior distribution (0.52) can be taken as an estimate of Person 1’s 
score on the underlying variable if a point estimate is required. Looking at the plot of 
the posterior distribution, we can be nearly 100% sure that the score is between –1 and 
2. The score is probably between 0 and 1 because most of the area under the posterior 
distribution lies between 0 and 1.

Posterior Predictive Distributions for Latent Variables

Suppose you want to estimate Person 1’s score on the WILLING factor. Amos can 
estimate posterior predictive distributions for unknown scores only for observed 
variables. It cannot estimate a posterior predictive distribution of a score on a latent 
variable. However, there is a trick that you can use to estimate the posterior predictive 
distribution of a score on WILLING. You can change WILLING to an observed 
variable, treating it not as a latent variable but as an observed variable that has a 
missing value for every case. That requires two changes – a change to the path diagram 
and a change to the data. 

In the path diagram, the WILLING ellipse has to be changed into a rectangle. To 
accomplish this:

E Right-click the WILLING ellipse and choose Toggle Observed/Unobserved from the pop-
up menu.

E Click the WILLING ellipse.

The WILLING ellipse changes to a rectangle so that the path diagram looks like this:
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That takes care of the path diagram. It is also necessary to make a change to the data 
because if WILLING is an observed variable, then there has to be a WILLING column 
in the data file. You can directly modify the data file. Since this is a data file in SPSS 
Statistics format, you would use SPSS Statistics to add a WILLING variable to the data 
file, making sure that all the scores on WILLING are missing. 

To avoid changing the original data file:

E Right-click the WILLING variable in the path diagram

E Choose Data Recode from the pop-up menu to open the Data Recode window.

E In the Data Recode window, click Create Variable. A new variable with the default 
name V1, appears in the New and recoded variables list box.
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E Change V1 to WILLING. (If necessary, click the Rename Variable button.)
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E You can optionally view the recoded dataset that includes the new WILLING variable 
by clicking the View Data button.
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The table on the left shows the original dataset. The table on the right shows the 
recoded dataset as read by Amos. It includes item1 through item6 after recoding, and 
also the new WILLING variable.

E Close the Data Recode window.

E Start the Bayesian analysis by clicking  on the Amos Graphics toolbar. 

E In the Bayesian SEM window, wait until the unhappy face  changes into a happy 
face  and then click the Posterior Predictive button .

E Click the entry in the upper-right corner of the table to display the posterior distribution 
of Person 1’s score on the WILLING factor.
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Imputation

Data imputation works the same way for ordered-categorical data as it does for 
numeric data. With ordered-categorical data, you can impute numeric values for 
missing values, for scores on latent variables, and for scores on the unobserved 
numeric variables that underlie observed ordered-categorical measurements.

You need a model in order to perform imputation. You could use the factor analysis 
model that was used earlier. There are several advantages and one disadvantage to 
using the factor analysis model for imputation. One advantage is that, if the model is 
correct, you can impute values for the factors. That is, you can create a new data set in 
which WILLING and AWARE are observed variables. The other advantage is that, if 
the factor analysis model is correct, it can be expected to give more accurate 
imputations for item1 through item6 than would be obtained from a less restrictive 
model. The disadvantage of using the factor analysis model is that it may be wrong. To 
be on the safe side, the present example will use the model that has the biggest chance 
of being correct, the saturated model shown in the following figure. (See the file
Ex33-c.amw.)
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After drawing the path diagram for the saturated model, you can begin the imputation.

E From the Amos Graphics menu, choose Analyze → Data Imputation.
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In the Amos Data Imputation window, notice that Regression imputation and Stochastic 
regression imputation are disabled. When you have non-numeric data, Bayesian 

imputation is the only choice.
We will accept the options shown in the preceding figure, creating 10 completed 

datasets and saving all 10 in a single SPSS Statistics data file called environment-nl-
string_C.sav. To start the imputation:

E Click the Impute button. 

The Bayesian SEM window opens along with the Data Imputation dialog box.

E Wait until the Data Imputation dialog box displays a happy face  to indicate that 
each of the 10 completed data sets is effectively uncorrelated with the others.

Note: After you see a happy face but before you click OK, you may optionally right-
click a parameter in the Bayesian SEM window and choose Show Posterior from the 
pop-up menu. This will allow you to examine the Trace and Autocorrelation plots.
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E Click OK in the Data Imputation dialog box.

The Summary window shows a list of the completed data files that were created. In this 
case, only one completed data file was created.

E Double-click the file name in the Summary window to display the contents of the 
single completed data file, which contains 10 completed data sets.

The file contains 10,170 cases because each of the 10 completed data sets contains 
1,017 cases. The first 1,017 rows of the new data file contain the first completed data 
set. The Imputation_ variable is equal to 1 for each row in the first completed data set, 
and the CaseNo variable runs from 1 through 1,017 before starting over again at 1.
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Normally, the next step would be to use the 10 completed data sets in environment-nl-
string_C.sav as input to some other program that requires numeric (not ordered-
categorical) data. You would use that other program to perform 10 separate analyses 
using each one of the 10 completed data sets in turn. Then, you would do further 
computations to combine the results of those 10 separate analyses into a single set of 
results, as was done in Example 31. Those steps will not be carried out here.
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34
Mixture Modeling with Training Data

Introduction

Mixture modeling is appropriate when you have a model that is incorrect for an entire 
population, but where the population can be divided into subgroups in such a way that 
the model is correct in each subgroup.

Mixture modeling is discussed in the context of structural equation modeling by 
Arminger, Stein, and Wittenberg (1999), Hoshino (2001), Lee (2007, Chapter 11), 
Loken (2004), Vermunt and Magidson (2005), and Zhu and Lee (2001), among 
others.

The present example demonstrates mixture modeling for the situation in which 
some cases have already been assigned to groups while other cases have not. It is up 
to Amos to learn from the cases that are already classified and to classify the others.

We begin mixture modeling with an example in which some cases have already 
been classified because setting up such an analysis is almost identical to setting up an 
ordinary multiple-group analysis such as in Examples 10, 11, and 12.

It is possible to perform mixture modeling when no cases have been classified in 
advance so that the program must classify every case. Example 35 demonstrates this 
type of analysis.

About the Data

The data for this example were collected by Anderson (1935) and used by Fisher 
(1936) to demonstrate discriminant analysis. The original data are in the file iris.sav, 
of which a portion is shown here:
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The dataset contains four measurements on flowers from 150 different plants. The first 
50 flowers were irises of the species setosa. The next 50 were irises of the species 
versicolor. The last 50 were of the species virginica.

A scatterplot of two of the numeric measurements, PetalLength and PetalWidth, 
suggests that those two measurements alone will be useful in classifying the flowers 
according to species.
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The setosa flowers are all by themselves in the lower left corner of the scatterplot. It 
should therefore be easy for Amos to use PetalLength and PetalWidth to distinguish 
the setosa flowers from the others. On the other hand, there is some overlap of 
versicolor and virginica, so we should expect that sometimes it will be hard to tell 
whether a flower is versicolor or virginica purely on the basis of PetalLength and 
PetalWidth.

This example will not use the iris.sav dataset, which gives the species of every 
flower. Instead, the example will use the iris3.sav dataset, which gives the species for 
only a few flowers. The following figure shows a portion of the iris3.sav dataset.
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Species information is available for 10 of the setosa flowers, 10 of the versicolor 
flowers, and 10 of the virginica flowers. Species is unknown for the remaining 120 
flowers. When Amos analyzes these data, it will have 10 examples of each kind of 
flower to assist in classifying the rest of the flowers.

Performing the Analysis

E From the menus, choose File → New to start a new path diagram.

E From the menus, choose Analyze → Manage Groups.

E In the Manage Groups dialog box, change the name in the Group Name text box from 
Group number 1 to PossiblySetosa.
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E Click New to create a second group.

E Change the name in the Group Name text box from Group number 2 to 
PossiblyVersicolor.

E Click New to create a third group.

E Change the name in the Group Name text box from Group number 3 to 
PossiblyVirginica.

E Click Close.
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Specifying the Data File

E From the menus, choose File → Data Files.

E Click PossiblySetosa to select that row.

E Click File Name, select the iris3.sav file that is in the Amos Examples directory, and 
click Open.

E Click Grouping Variable and double-click Species in the Choose a Grouping Variable 
dialog box. This tells the program that the Species variable will be used for classifying 
flowers.



527

Mixture Modeling with Training Data

E In the Data Files dialog box, click Group Value and then double-click setosa in the 
Choose Value for Group dialog box.
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The Data Files dialog box should now look like this:
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E Repeat the preceding steps for the PossiblyVersicolor group, but this time double-click 
versicolor in the Choose Value for Group dialog box.

E Repeat the preceding steps once more for the PossiblyVirginica group, but this time 
double-click virginica in the Choose Value for Group dialog box. The Data Files dialog 
box will end up looking like this:

So far, the analysis has been set up exactly like an ordinary three-group analysis in 
which the species of every flower is known. The next step is unique to mixture 
modeling. 

E Select Assign cases to groups (a check mark will appear next to it). The check mark tells 
Amos to assign a case to a group whenever the dataset does not specify which group 
that case belongs to.
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E Click OK to close the Data Files dialog box.

Specifying the Model

We will use a saturated model for the variables PetalLength and PetalWidth. The 
scatterplot that was shown earlier suggests that these two variables will allow the 
program to do a good job of classifying the flowers according to species.

Note that you are not limited to saturated models when doing mixture modeling. 
You can use a factor analysis model or a regression model or any other kind of model. 
See Example 36 for a demonstration of mixture modeling with a regression model.

E Draw the following path diagram. (This path diagram is saved as Ex34-a.amw.)
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E From the menus, choose View → Analysis Properties.

E Select Estimate means and intercepts (a check mark will appear next to it). 
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Fitting the Model

E Click  on the toolbar.

or

E From the menus, choose Analyze → Bayesian Estimation.

Note: The  button is disabled because, in mixture modeling, you can perform only 
Bayesian estimation.
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After the Bayesian SEM window opens, wait until the unhappy face  changes into 
a happy face . The table of estimates in the Bayesian SEM window should look 
something like this:

The Bayesian SEM window displays all of the parameter estimates that you would get 
in an ordinary three-group analysis. The table displays the results for one group at a 
time. You can switch from one group to another by clicking the tabs at the top of the 
table. In this example, the model parameters include only means, variances, and 
covariances. In a more complicated model, there would also be estimates of regression 
weights and intercepts.

In a mixture modeling analysis, you also get an estimate of the proportion of the 
population that lies in each group. The preceding figure shows that the proportion of 
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setosa flowers in the population is estimated to be 0.333. (It should be pointed out that 
it was by design that the sample contained equal numbers of setosa, versicolor, and 
virginica flowers. It is therefore not meaningful in this example to draw inferences 
about population proportions from the sample. Nevertheless, we will treat species here 
as a random variable in order to demonstrate how such inferences can be made.)

To view the posterior distribution of a population proportion, right-click the row that 
contains the proportion and choose Show Posterior from the popup menu.
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The Posterior window shows that the proportion of flowers that belong to the setosa 
species is almost certainly between 0.25 and 0.45. It looks like there is about a 50–50 
chance that the proportion is somewhere between 0.3 and 0.35.

Classifying Individual Cases

To obtain probabilities of group membership for each individual flower:

E Click the Posterior Predictive button .

or

E From the menus, choose View → Posterior Predictive.
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For each flower, the Posterior Predictive Distributions window shows the probability 
that that flower is setosa, versicolor, or virginica.

For the first 50 flowers (the ones that actually are setosa), the probability of 
membership in the setosa group is nearly 1. We expected that result because the setosa 
flowers were clearly separated from flowers of other species in the scatterplot shown 
earlier.

Most of the versicolor flowers (starting with case number 51) were also correctly 
classified. For example, flower number 51 has posterior probability 0.95 of being 
versicolor. However, classification errors do occur. Case number 71, for example, is 
misclassified. It is a versicolor flower, but it is estimated to have a 0.74 probability of 
being virginica.
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Latent Structure Analysis

It was mentioned earlier that you are not limited to saturated models when doing 
mixture modeling. You can use a factor analysis model, a regression model, or any 
model at all. You may want to become familiar with an important variation of the 
saturated model. Latent structure analysis (Lazarsfeld and Henry, 1968) is a variation 
of mixture modeling in which the measured variables are required to be independent 
within each group. When the measured variables are multivariate normal, they are 
required to be uncorrelated.

E To require that the measured variables be uncorrelated, delete the double-headed arrow 
in the path diagram of the saturated model. (This path diagram is saved as Ex34-
b.amw.)

E Click the Bayesian button  to perform the latent structure analysis. The results of the 
latent structure analysis will not be presented here.
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Introduction

Mixture modeling is appropriate when you have a model that is incorrect for an entire 
population, but where the population can be divided into subgroups in such a way that 
the model is correct in each subgroup.

When Amos performs mixture modeling, it allows you to assign some cases to 
groups before the analysis starts. Example 34 shows how to do that. In the present 
example, all cases are unclassified at the start of the mixture modeling analysis.

About the Data

This example uses the Anderson (1935) iris data that was used in Example 34. This 
time, however, we will not use the iris3.sav dataset, which contains species 
information for 30 of the 150 flowers. Instead, we will use the iris2.sav dataset, which 
contains no species information at all. That is the difference between Example 34 and 
the present example: In Example 34, some cases were pre-classified; in the present 
example, no cases are pre-classified. The following figure shows a portion of the 
iris2.sav dataset.
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Notice that the dataset contains a Species column, even though that column is empty. 
It is important that the Species column be present even if it contains no values. This is 
because Amos allows for the possibility that you might already know the species of 
some cases (as in Example 34). The variable that is used for classifying cases does not 
actually have to be named Species. Any variable name will do. The variable does, 
however, have to be a string (non-numeric) variable.

Performing the Analysis

E From the menus, choose File → New to start a new path diagram.

E From the menus, choose Analyze → Manage Groups.
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E Click New to create a second group.

E Click New once more to create a third group.

E Click Close.

This example fits a three-group mixture model. When you aren’t sure how many 
groups there are, you can run the program multiple times. Run the program once to fit 
a two-group model, then again to fit a three-group model, and so on.
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Specifying the Data File

E From the menus, choose File → Data Files.

E Click Group number 1 to select the first row.

E Click File Name, select the iris2.sav file that is in the Amos Examples directory, and 
click Open.

E Click Grouping Variable and double-click Species in the Choose a Grouping Variable 
dialog box. This tells the program that the Species variable will be used to distinguish 
one group from another.
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E Repeat the preceding steps for Group number 2, specifying the same data file (iris2.sav) 
and the same grouping variable (Species).

E Repeat the preceding steps once more for Group number 3, specifying the same data file 
(iris2.sav) and the same grouping variable (Species).
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E Select Assign cases to groups (a check mark will appear next to it).

So far, this has been just like any ordinary multiple-group analysis except for the check 
mark next to Assign cases to groups. That check mark turns this into a mixture 
modeling analysis. The check mark tells Amos to assign a flower to a group if the 
grouping variable in the data file does not already assign it to a group. Notice that it 
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was not necessary to click Group Value to specify a value for the grouping variable. The 
data file contains no values for the grouping variable (Species), so the program 
automatically constructed the following Species values for the three groups: Cluster1, 
Cluster2, and Cluster3. 

E Click OK to close the Data Files dialog box.

Specifying the Model

We will use a saturated model for the variables PetalLength and PetalWidth. The 
scatterplot in Example 34 suggests that these two variables will allow the program to 
do a good job of classifying the flowers according to species.

Note that you are not limited to saturated models when doing mixture modeling. 
You can use a factor analysis model, a regression model, or any other kind of model. 
Example 36 demonstrates mixture modeling with a regression model.

E Draw the following path diagram:

E From the menus, choose View → Analysis Properties.

E Select Estimate means and intercepts (a check mark will appear next to it).
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Constraining the Parameters

In this example, variances and covariances will be required to be invariant across 
groups. This is the assumption of homogeneity of variances and covariances that is 
often made in discriminant analysis and some kinds of clustering. In principle, the 
assumption of homogeneity of variances and covariances is not necessary in mixture 
modeling. The reason we will make the assumption here is that, for this example, the 
algorithm in Amos fails without that assumption. (It should be noted that the scatterplot 
in Example 34 suggests that the assumption is violated.)
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E Right-click PetalLength in the path diagram, choose Object Properties from the popup 
menu, and enter the parameter name, v1, in the Variance text box.

While the Object Properties dialog is still open, click PetalWidth in the path diagram.

E While the Object Properties dialog box is still open, click PetalWidth in the path 
diagram.

E In the Object Properties dialog box, enter the parameter name, v2, in the Variance text 
box.

E While the Object Properties dialog box is still open, click the double-headed arrow that 
represents the covariance between PetalLength and PetalWidth.
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E In the Object Properties dialog box, enter the parameter name, c12, in the Covariance 
text box.

The path diagram should now look like the following figure. (This path diagram is 
saved as Ex35-a.amw.)

Fitting the Model

E Click  on the toolbar.

or

E From the menus, choose Analyze → Bayesian Estimation.

Note: The  button is disabled because, in mixture modeling, you can perform only 
Bayesian estimation.
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After the Bayesian SEM window opens, wait until the unhappy face  changes into 
a happy face . The table of estimates in the Bayesian SEM window should then look 
something like this:

The Bayesian SEM window displays all of the parameter estimates that you would get 
in an ordinary three-group analysis. The table displays the estimates for one group at a 
time. You can switch from one group to another by clicking the tabs at the top of the 
table. In this example, the model parameters include only means, variances, and 
covariances. In a more complicated model, there would also be estimates of regression 
weights and intercepts.
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In a mixture modeling analysis, you also get an estimate of the proportion of the 
population that lies in each group. In the preceding figure, the proportion of setosa 
flowers in the population is estimated to be 0.306.

E To view the posterior distribution of a population proportion, right-click the row that 
contains the proportion and choose Show Posterior from the popup menu.

The graph of the posterior distribution in the Posterior window shows that the 
proportion of flowers that belong in Group number 1 is certainly between 0.15 and 
0.45. There is a very high probability that the proportion is between 0.25 and 0.35.
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Classifying Individual Cases

To obtain probabilities of group membership for each individual flower:

E Click the Posterior Predictive button .

or

E From the menus, choose View → Posterior Predictive.

For each flower, the Posterior Predictive Distributions window shows the probability 
that the value of the Species variable is Cluster1, Cluster2, or Cluster3.
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The first 50 cases, which we know to be examples of setosa, are placed in Group 
number 3 with a probability of 1, so Group number 3 clearly contains setosa flowers. 
Cases 51 through 100 fall mainly into Group number 2, so Group number 2 clearly 
contains versicolor flowers. Similarly, although the preceding figure does not show it, 
cases 101 through 150 are assigned mainly to Group number 1, so Group number 1 
clearly contains virginica flowers.
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Latent Structure Analysis

There is a variation of mixture modeling called latent structure analysis in which 
observed variables are required to be independent within each group.

E To require that PetalLength and PetalWidth be uncorrelated and therefore (because 
they are multivariate normally distributed) independent, remove the double-headed 
arrow that connects them in the path diagram. The resulting path diagram is shown 
here. (This path diagram is saved as the file, Ex35-b.amw.)

E Optionally, remove the constraints on the variances by deleting the parameter names, 
v1 and v2. (The resulting path diagram is saved as Ex35-c.amw.)

E After deleting the double-headed arrow and possibly removing the constraints on the 
variances, click the Bayesian button  to perform the latent structure analysis. The 
results of the latent structure analysis will not be reported here.
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Label Switching

If you attempt to replicate the analysis in this example, it is possible that you will get 
the results that are reported here but with the group names permuted. The results 
reported here for Group number 1 might correspond to the results you get for Group 
number 2 or Group number 3. This is sometimes called label switching (Chung, 
Loken, and Schafer, 2004). Label switching is not really a problem unless it occurs 
during the course of a single analysis. Unfortunately, label switching can in fact occur 
in the middle of an analysis. When label switching occurs, it is usually revealed by 
trace plots for individual parameters. To display a trace plot during Bayesian 
estimation:

E Right-click a parameter in the Bayesian SEM window and choose Show Posterior from 
the popup menu.

E In the Posterior window, select Trace.

Label switching did not occur in the analysis of the present example. The following 
figure, from another analysis, shows a trace plot that is typical of label switching. This 
trace plot came from an analysis of data with two clusters of cases. In one cluster, the 
mean of a variable called X was about 4. In the other cluster, the mean of the X variable 
was about 17. The trace plot shows that, in the group called Group number 1, the 
sampled values of the mean of X stayed close to 4 most of the time until about the 
5,000-th iteration of the MCMC algorithm. At about the 5,000-th iteration, sampled 
values started fluctuating around 17. This abrupt shift in the trace plot is evidence that 
the group labels (Group number 1 and Group number 2) were switched at about the 
5,000-th iteration. The trace plot shows that this label switching occurred several times 
during the first 20,000 iterations of the MCMC algorithm.
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Label switching can be revealed by a multi-model posterior distribution for one or 
more parameters. The preceding trace plot corresponds to the following posterior 
distribution estimate.

The preceding graph shows that the mean of a parameter’s posterior distribution may 
not be a meaningful estimate in a mixture modeling analysis when label switching 
occurs. Some methods for preventing label switching have been proposed (Celeux, 
Hurn, and Robert, 2000; Frühwirth-Schnatter, 2004; Jasra, Holmes, and Stephens, 
2005; Stephens, 2000). Chung, Loken, and Schafer (2004) suggest that pre-assigning 
even one or two cases to groups can be effective in eliminating label switching. Amos 
allows pre-assigning cases to groups, as shown in Example 34. Amos 19 does not 
implement any other method for preventing label switching.
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36
Mixture Regression Modeling

Introduction

Mixture regression modeling (Ding, 2006) is appropriate when you have a regression 
model that is incorrect for an entire population, but where the population can be 
divided into subgroups in such a way that the regression model is correct in each 
subgroup.

About the Data

Two artificial datasets will be used to explain mixture regression.

First Dataset

The following dataset is in the file DosageAndPerformance1.sav. Dosage is the 
intensity of some treatment. Performance is just some performance measure. Group 
is a string (non-numeric) variable whose role in mixture regression analysis will be 
explained later.
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A scatterplot of dosage and performance shows two distinct groups of people in the 
sample. In one group, performance improves as dosage goes up. In the other group, 
performance gets worse as dosage goes up.
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It would be a mistake to try to fit a single regression line to the whole sample. On the 
other hand, two straight lines, one for each group, would fit the data well. This is a job 
for mixture regression modeling. A mixture regression analysis would attempt to 
divide the sample up into groups and to fit a separate regression line to each group.

Second Dataset

The following dataset, in the file DosageAndPerformance2.sav, also contains data on 
the variables dosage, performance, and group.

Again, a scatterplot of the data shows evidence of two groups, with each group 
requiring its own regression line. In either group by itself, an increase of one unit in 
dosage is associated with an increase of about two units in performance, so that the 
slope of the regression line is about 2 within each group. On the other hand, the two 
groups have different intercepts. At any particular dosage level, performance is 5 
points or so higher in one group than in the other. A mixture regression analysis of this 
dataset would attempt to divide the sample up into groups and to fit a separate 
regression line to each group.
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The Group Variable in the Dataset

Both of the datasets just described include a string (non-numeric) variable called group 
that contains no data. In a mixture regression analysis, Amos will use the group 
variable to classify individual cases. (The fact that the variable is called group is not 
important. Any variable name will do; however, it does have to be a string variable.) 

If some cases have already been assigned to groups before the analysis starts, you 
can put the group names in the group column of the dataset. For example, if you know 
ahead of time (before the mixture regression analysis starts) that the sample contains 
high performers and low performers and you know that the first two people in the 
sample are high performers and that the next three people are low performers, then you 
can enter that information in the group column of the data table in the following way:
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The program will then use the five cases that have been pre-classified to assist in 
classifying the remaining cases. Pre-assigning selected individual cases to groups is 
mentioned here only as a possibility. In the present example, no cases will be pre-
assigned to groups.

Performing the Analysis

Only the DosageAndPerformance2.sav dataset will be analyzed in this example.

E From the menus, choose File → New to start a new path diagram.

E From the menus, choose Analyze → Manage Groups.
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E Click New to create a second group.

E Click Close.

This example fits a two-group mixture regression model. When you aren’t sure how 
many groups there are, you can run the program multiple times. Run the program once 
to fit a two-group model, then again to fit a three-group model, and so on.
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Specifying the Data File

E From the menus, choose File → Data Files.

E Click Group number 1 to select that row.

E Click File Name, select the DosageAndPerformance2.sav file that is in the Amos 
Examples directory, and click Open.

E Click Grouping Variable and double-click group in the Choose a Grouping Variable 
dialog box. This tells the program that the variable called group will be used to 
distinguish one group from another.



564

Example 36

E Repeat the preceding steps for Group number 2, specifying the same data file 
(DosageAndPerformance2.sav) and the same grouping variable (group).
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E Select Assign cases to groups (a check mark will appear next to it). 

So far, this has been just like any ordinary multiple-group analysis except for the check 
mark next to Assign cases to groups. That check mark turns this into a mixture 
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modeling analysis. The check mark tells Amos to assign a case to a group if the 
grouping variable in the data file does not already assign it to a group. Notice that it 
was not necessary to click Group Value to specify a value for the grouping variable. The 
data file contains no values for the grouping variable (group), so the program 
automatically constructed values for the group variable: Cluster1 for cases in Group 
number 1, and Cluster2 for cases in Group number 2.

E Click OK to close the Data Files dialog box.

Specifying the Model

E Draw a path diagram for the regression model, as follows. (This path diagram is saved 
as Ex36-a.amw.)

E From the menus, choose View → Analysis Properties.

E Select Estimate means and intercepts (a check mark will appear next to it). 
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Fitting the Model

E Click  on the toolbar.

or

E From the menus, choose Analyze → Bayesian Estimation.

Note: The  button is disabled because, in mixture modeling, you can perform only 
Bayesian estimation.
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After the Bayesian SEM window opens, wait until the unhappy face  changes into 
a happy face . The table of estimates in the Bayesian SEM window should then look 
something like this:

The Bayesian SEM window contains all of the parameter estimates that you would get 
in an ordinary multiple-group regression analysis. There is a separate table of estimates 
for each group. You can switch from group to group by clicking the tabs just above the 
table of estimates.
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The bottom row of the table contains an estimate of the proportion of the population 
that lies in an individual group. The preceding figure, which displays estimates for 
Group number 1, shows that the proportion of the population in Group number 1 is 
estimated to be 0.247. To see the estimated posterior distribution of that population 
proportion, right-click the proportion’s row in the table and choose Show Posterior 
from the popup menu.
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The graph in the Posterior window shows that the proportion of the population in 
Group number 1 is practically guaranteed to be somewhere between 0.15 and 0.35.

Let’s compare the regression weight and the intercept in Group number 1 with the 
corresponding estimates in Group number 2. In Group number 1, the regression weight 
estimate is 2.082 and the intercept estimate is 5.399. In Group number 2, the regression 
weight estimate (1.999) is about the same as in Group number 1 while the intercept 
estimate (9.955) is substantially higher than in Group number 1.
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Classifying Individual Cases

To obtain probabilities of group membership for each individual case:

E Click the Posterior Predictive button .

or

E From the menus, choose View → Posterior Predictive.

For each case, the Posterior Predictive Distributions window shows the probability that 
the group variable takes on the value Cluster1 or Cluster2.  Case 1 is estimated to have 
a 0.88 probability of being in Group number 1 and a 0.12 probability of being in Group 
number 2. Recall that the first group has an intercept of about 5.399 while the second 
group has an intercept of about 9.955, so Group number 1 is the low performing group. 
Therefore, there is an 88 percent chance that the first person in the sample is in the low 
performing group and a 12 percent chance that that person is in the high performing 
group.
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Improving Parameter Estimates

You can improve the parameter estimates (and also improve Amos’s ability to form 
clusters) by reducing the number of parameters that need to be estimated. As we have 
seen, the slope of the regression line is about the same for the two groups. Also, the 
variability about each regression line appears to be about the same for the two groups. 
It is possible to incorporate into the mixture modeling analysis the hypothesis that the 
slopes and the error variances are the same for the two groups, thereby reducing the 
number of distinct parameters to be estimated. To do this:

E On the path diagram, right-click the single-headed arrow that connects dosage and 
performance, choose Object Properties from the popup menu, and enter the parameter 
name, b, in the Regression weight text box.

E While the Object Properties dialog box is still open, click E1 in the path diagram.

E In the Object Properties dialog box, enter the parameter name, v, in the Variance text 
box.
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The path diagram should now look like the following figure. (This path diagram is 
saved as Ex36-b.amw.)

After constraining the slope and error variance to be the same for the two groups, you 
can repeat the mixture modeling analysis by clicking the Bayesian button . The 
results of that analysis will not be presented here.
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Prior Distribution of Group Proportions

For the prior distribution of group proportions, Amos uses a Dirichlet distribution with 
parameters that you can specify. By default, the Dirichlet parameters are 4, 4, ….

E To specify the Dirichlet parameters, right-click on a group proportion’s estimate in the 
Bayesian SEM window and choose Show Prior from the popup menu.
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Label Switching

It is possible that the results reported here for Group number 1 will match the results 
that you get for Group number 2, and that the results reported here for Group number 
2 will match those that you get for Group number 1. In other words, your results may 
match the results reported here, but with the group names reversed. This is sometimes 
called label switching (Chung, Loken, and Schafer, 2004). Label switching is 
discussed further at the end of Example 35.
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A
Notation

q = the number of parameters

 = the vector of parameters (of order q)

G = the number of groups

 = the number of observations in group g

 = the total number of observations in all groups combined

 = the number of observed variables in group g

 = the number of sample moments in group g. When means and intercepts are 
explicit model parameters, the relevant sample moments are means, 
variances, and covariances, so that . Otherwise, 
only sample variances and covariances are counted so that 

.

 = the number of sample moments in all groups combined

 = the number of degrees of freedom for testing the model

 = the r-th observation on the i-th variable in group g

 = the r-th observation in group g

 = the sample covariance matrix for group g
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 = the covariance matrix for group g, according to the model

 = the mean vector for group g, according to the model

 = the population covariance matrix for group g

 = the population mean vector for group g

 = the  distinct elements of  arranged in a single column 
vector

r = the non-negative integer specified by the ChiCorrect method. By default r = G. 
When the Emulisrel6 method is used, r = G and cannot be changed by using 
ChiCorrect.

n = N – r 

 = the vector of order p containing the sample moments for all groups; that is,  
contains the elements of  and also (if means and intercepts are 
explicit model parameters) .

 = the vector of order p containing the population moments for all groups; that is, 
 contains the elements of  and also (if means and intercepts 

are explicit model parameters) . The ordering of the elements of 
 must match the ordering of the elements of .

 = the vector of order p containing the population moments for all groups 
according to the model; that is,  contains the elements of 

 and also (if means and intercepts are explicit model 
parameters) . The ordering of the elements of  must 
match the ordering of the elements of .

 = the function (of �) that is minimized in fitting the model to the sample

 = the value of � that minimizes 
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Discrepancy Functions

Amos minimizes discrepancy functions (Browne, 1982, 1984) of the form:

(D1)

Different discrepancy functions are obtained by changing the way f is defined. If 
means and intercepts are unconstrained and do not appear as explicit model 
parameters,  and  will be omitted and f will be written .

The discrepancy functions  and  are obtained by taking f to be:

Except for an additive constant that depends only on the sample size,  is –2 times 
the Kullback-Leibler information quantity (Kullback and Leibler, 1951). Strictly 
speaking,  and  do not qualify as discrepancy functions according to 
Browne’s definition because .

For maximum likelihood estimation (ML), , and  are obtained by taking f to be:
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(D2)

For generalized least squares estimation (GLS), , and  are obtained by 
taking f to be:

(D3)

For asymptotically distribution-free estimation (ADF), , and  are obtained 
by taking f to be:

(D4)

where the elements of  are given by Browne (1984, Equations 3.1–3.4):
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For scale-free least squares estimation (SLS), , and  are obtained by taking 
f to be:

(D5)

where .

For unweighted least squares estimation (ULS), , and  are obtained by 
taking f to be:

(D6)

The Emulisrel6 method in Amos can be used to replace (D1) with:

(D1a)

F is then calculated as .

When G = 1 and r = 1, (D1) and (D1a) are equivalent, giving:

For maximum likelihood, asymptotically distribution-free, and generalized least 
squares estimation, both (D1) and (D1a) have a chi-square distribution for correctly 
specified models under appropriate distributional assumptions. Asymptotically, (D1) 
and (D1a) are equivalent; however, both formulas can exhibit some inconsistencies in 
finite samples. 
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Suppose you have two independent samples and a model for each. Furthermore, 
suppose that you analyze the two samples simultaneously, but that, in doing so, you 
impose no constraints requiring any parameter in one model to equal any parameter in 
the other model. Then, if you minimize (D1a), the parameter estimates obtained from 
the simultaneous analysis of both groups will be the same as from separate analyses of 
each group alone. 

Furthermore, the discrepancy function (D1a) obtained from the simultaneous 
analysis will be the sum of the discrepancy functions from the two separate analyses. 
Formula (D1) does not have this property when r is nonzero. Using formula (D1) to do 
a simultaneous analysis of the two groups will give the same parameter estimates as 
two separate analyses, but the discrepancy function from the simultaneous analysis 
will not be the sum of the individual discrepancy functions.

On the other hand, suppose you have a single sample to which you have fitted some 
model using Amos. Now suppose that you arbitrarily split the sample into two groups 
of unequal size and perform a simultaneous analysis of both groups, employing the 
original model for both groups and constraining each parameter in the first group to be 
equal to the corresponding parameter in the second group. If you have minimized (D1) 
in both analyses, you will get the same results in both. However, if you use (D1a) in 
both analyses, the two analyses will produce different estimates and a different 
minimum value for F.

All of the inconsistencies just pointed out can be avoided by using (D1) with the 
choice r = 0, so that (D1) becomes:
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C
Measures of Fit

Model evaluation is one of the most unsettled and difficult issues connected with 
structural modeling. Bollen and Long (1993), MacCallum (1990), Mulaik, et al. 
(1989), and Steiger (1990) present a variety of viewpoints and recommendations on 
this topic. Dozens of statistics, besides the value of the discrepancy function at its 
minimum, have been proposed as measures of the merit of a model. Amos calculates 
most of them.

Fit measures are reported for each model specified by the user and for two 
additional models called the saturated model and the independence model. 

In the saturated model, no constraints are placed on the population moments. The 
saturated model is the most general model possible. It is a vacuous model in the 
sense that it is guaranteed to fit any set of data perfectly. Any Amos model is a 
constrained version of the saturated model. 

The independence model goes to the opposite extreme. In the independence 
model, the observed variables are assumed to be uncorrelated with each other. 
When means are being estimated or constrained, the means of all observed variables 
are fixed at 0. The independence model is so severely and implausibly constrained 
that you would expect it to provide a poor fit to any interesting set of data. 

It frequently happens that each one of the models that you have specified can be so 
constrained as to be equivalent to the independence model. If this is the case, the 
saturated model and the independence model can be viewed as two extremes between 
which your proposed models lie.

For every estimation method except maximum likelihood, Amos also reports fit 
measures for a zero model, in which every parameter is fixed at 0.

PCLOSE
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Measures of Parsimony

Models with relatively few parameters (and relatively many degrees of freedom) are 
sometimes said to be high in parsimony, or simplicity. Models with many parameters 
(and few degrees of freedom) are said to be complex, or lacking in parsimony. This 
use of the terms simplicity and complexity does not always conform to everyday usage. 
For example, the saturated model would be called complex, while a model with an 
elaborate pattern of linear dependencies but with highly constrained parameter values 
would be called simple.

While one can inquire into the grounds for preferring simple, parsimonious models 
(such as Mulaik, et al., 1989), there does not appear to be any disagreement that 
parsimonious models are preferable to complex ones. When it comes to parameters, all 
other things being equal, less is more. At the same time, well-fitting models are 
preferable to poorly fitting ones. Many fit measures represent an attempt to balance 
these two conflicting objectives—simplicity and goodness of fit.

In the final analysis, it may be, in a sense, impossible to define one best way to 
combine measures of complexity and measures of badness-of-fit in a single 
numerical index, because the precise nature of the best numerical trade-off 
between complexity and fit is, to some extent, a matter of personal taste. The 
choice of a model is a classic problem in the two-dimensional analysis of 
preference. (Steiger, 1990, p. 179)

NPAR 

NPAR is the number of distinct parameters (q) being estimated. For example, two 
regression weights that are required to be equal to each other count as one parameter, 
not two.

Note: Use the \npar text macro to display the number of parameters in the output path 
diagram.

DF

DF is the number of degrees of freedom for testing the model

qpd −==df
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where p is the number of sample moments and q is the number of distinct parameters. 
Rigdon (1994a) gives a detailed explanation of the calculation and interpretation of 
degrees of freedom.

Note: Use the \df text macro to display the degrees of freedom in the output path 
diagram.

PRATIO

The parsimony ratio (James, Mulaik, and Brett, 1982; Mulaik, et al., 1989) expresses 
the number of constraints in the model being evaluated as a fraction of the number of 
constraints in the independence model

where d is the degrees of freedom of the model being evaluated and  is the degrees 
of freedom of the independence model. The parsimony ratio is used in the calculation 
of PNFI and PCFI (see “Parsimony Adjusted Measures” on p. 598).

Note: Use the \pratio text macro to display the parsimony ratio in the output path 
diagram.

Minimum Sample Discrepancy Function

The following fit measures are based on the minimum value of the discrepancy.

CMIN

CMIN is the minimum value, , of the discrepancy, C (see Appendix B).

Note: Use the \cmin text macro to display the minimum value  of the discrepancy 
function C in the output path diagram.

P

P is the probability of getting as large a discrepancy as occurred with the present 
sample (under appropriate distributional assumptions and assuming a correctly 

id
d=PRATIO

di

Ĉ

Ĉ

_Ref445723442
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specified model). That is, P is a “p value” for testing the hypothesis that the model fits 
perfectly in the population.

One approach to model selection employs statistical hypothesis testing to eliminate 
from consideration those models that are inconsistent with the available data. 
Hypothesis testing is a widely accepted procedure, and there is a lot of experience in 
its use. However, its unsuitability as a device for model selection was pointed out early 
in the development of analysis of moment structures (Jöreskog, 1969). It is generally 
acknowledged that most models are useful approximations that do not fit perfectly in 
the population. In other words, the null hypothesis of perfect fit is not credible to begin 
with and will, in the end, be accepted only if the sample is not allowed to get too big.

If you encounter resistance to the foregoing view of the role of hypothesis testing in 
model fitting, the following quotations may come in handy. The first two predate the 
development of structural modeling and refer to other model fitting problems.

The power of the test to detect an underlying disagreement between theory and 
data is controlled largely by the size of the sample. With a small sample an 
alternative hypothesis which departs violently from the null hypothesis may still 
have a small probability of yielding a significant value of . In a very large 
sample, small and unimportant departures from the null hypothesis are almost 
certain to be detected. (Cochran, 1952)

If the sample is small, then the  test will show that the data are ‘not 
significantly different from’ quite a wide range of very different theories, while 
if the sample is large, the  test will show that the data are significantly 
different from those expected on a given theory even though the difference may 
be so very slight as to be negligible or unimportant on other criteria. (Gulliksen 
and Tukey, 1958, pp. 95–96)

Such a hypothesis [of perfect fit] may be quite unrealistic in most empirical work 
with test data. If a sufficiently large sample were obtained this statistic would, 
no doubt, indicate that any such non-trivial hypothesis is statistically untenable. 
(Jöreskog, 1969, p. 200)

...in very large samples virtually all models that one might consider would have 
to be rejected as statistically untenable.... In effect, a nonsignificant chi-square 
value is desired, and one attempts to infer the validity of the hypothesis of no 
difference between model and data. Such logic is well-known in various 
statistical guises as attempting to prove the null hypothesis. This procedure 
cannot generally be justified, since the chi-square variate v can be made small by 
simply reducing sample size. (Bentler and Bonett, 1980, p. 591)

χ2

χ2

χ2

χ2
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Our opinion...is that this null hypothesis [of perfect fit] is implausible and that it 
does not help much to know whether or not the statistical test has been able to 
detect that it is false. (Browne and Mels, 1992, p. 78).

See also “PCLOSE” on p. 591.

Note: Use the \p text macro for displaying this p value in the output path diagram.

CMIN/DF

CMIN/DF is the minimum discrepancy, , (see Appendix B) divided by its degrees 
of freedom.

Several writers have suggested the use of this ratio as a measure of fit. For every 
estimation criterion except for ULS and SLS, the ratio should be close to 1 for correct 
models. The trouble is that it isn’t clear how far from 1 you should let the ratio get 
before concluding that a model is unsatisfactory.

Rules of Thumb

...Wheaton et al. (1977) suggest that the researcher also compute a relative chi-
square ( ).... They suggest a ratio of approximately five or less ‘as 
beginning to be reasonable.’ In our experience, however,  to degrees of 
freedom ratios in the range of 2 to 1 or 3 to 1 are indicative of an acceptable fit 
between the hypothetical model and the sample data. (Carmines and McIver, 
1981, p. 80)

...different researchers have recommended using ratios as low as 2 or as high as 
5 to indicate a reasonable fit. (Marsh and Hocevar, 1985).

...it seems clear that a  ratio > 2.00 represents an inadequate fit. (Byrne, 
1989, p. 55).

Note: Use the \cmindf text macro to display the value of CMIN/DF in the output path 
diagram.

Ĉ

d
Ĉ

χ2 df⁄
χ2

χ2 df⁄
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FMIN

FMIN is the minimum value, , of the discrepancy, F (see Appendix B).

Note: Use the \fmin text macro to display the minimum value  of the discrepancy 
function F in the output path diagram.

Measures Based On the Population Discrepancy

Steiger and Lind (1980) introduced the use of the population discrepancy function as 
a measure of model adequacy. The population discrepancy function, , is the value 
of the discrepancy function obtained by fitting a model to the population moments 
rather than to sample moments. That is, 

in contrast to

Steiger, Shapiro, and Browne (1985) showed that, under certain conditions,  
has a noncentral chi-square distribution with d degrees of freedom and noncentrality 
parameter . The Steiger-Lind approach to model evaluation centers 
around the estimation of  and related quantities. 

This section of the User’s Guide relies mainly on Steiger and Lind (1980) and 
Steiger, Shapiro, and Browne (1985). The notation is primarily that of Browne and 
Mels (1992).

NCP

 is an estimate of the noncentrality parameter, 
.

The columns labeled LO 90 and HI 90 contain the lower limit ( ) and upper limit 
( ) of a 90% confidence interval, on δ. is obtained by solving

F̂

F̂

F0

F0 min F α γ( ) α0,( )[ ]
γ

=

F̂ min F α γ( ) a,( )[ ]
γ

=

Ĉ nF̂=

δ C nF= =
F0

NCP max Ĉ d– 0,( )=
δ C0 nF0= =

δL
δU δL

( ) 95.,ˆ =Φ dC δ
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for , and  is obtained by solving

for , where  is the distribution function of the noncentral chi-squared 
distribution with noncentrality parameter  and d degrees of freedom.

Note: Use the \ncp text macro to display the value of the noncentrality parameter 
estimate in the path diagram, \ncplo to display the lower 90% confidence limit, and 
\ncphi for the upper 90% confidence limit.

F0

 is an estimate of .

The columns labeled LO 90 and HI 90 contain the lower limit and upper limit of a 90% 
confidence interval for .

 

Note: Use the \f0 text macro to display the value of  in the output path diagram, \f0lo 
to display its lower 90% confidence estimate, and \f0hi to display the upper 90% 
confidence estimate.

RMSEA

 incorporates no penalty for model complexity and will tend to favor models with 
many parameters. In comparing two nested models,  will never favor the simpler 
model. Steiger and Lind (1980) suggested compensating for the effect of model 
complexity by dividing  by the number of degrees of freedom for testing the model. 
Taking the square root of the resulting ratio gives the population root mean square 

δ δU

( ) 05.,|ˆ =Φ dC δ

δ Φ x δ d,( )
δ

F0 F̂0 max Ĉ d–
n

------------- 0,⎝ ⎠
⎛ ⎞ NCP

n
-----------= = = δ

n
--- F0=

F0

n
Lδ= 90 LO

n
Uδ

= 90 HI

F̂0
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error of approximation, called RMS by Steiger and Lind, and RMSEA by Browne and 
Cudeck (1993).

The columns labeled LO 90 and HI 90 contain the lower limit and upper limit of a 90% 
confidence interval on the population value of RMSEA. The limits are given by

Rule of Thumb

Practical experience has made us feel that a value of the RMSEA of about 0.05 or 
less would indicate a close fit of the model in relation to the degrees of freedom. 
This figure is based on subjective judgment. It cannot be regarded as infallible or 
correct, but it is more reasonable than the requirement of exact fit with the 
RMSEA = 0.0. We are also of the opinion that a value of about 0.08 or less for the 
RMSEA would indicate a reasonable error of approximation and would not want 
to employ a model with a RMSEA greater than 0.1. (Browne and Cudeck, 1993)

Note: Use the \rmsea text macro to display the estimated root mean square error of 
approximation in the output path diagram, \rmsealo for its lower 90% confidence 
estimate, and \rmseahi for its upper 90% confidence estimate.

d
F0RMSEA population =

d
F0
ˆ

RMSEA estimated =

d
nLδ= 90 LO

d
nUδ

= 90 HI
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PCLOSE

 is a p value for testing the null hypothesis that the 
population RMSEA is no greater than 0.05. 

By contrast, the p value in the P column (see “P” on p. 585) is for testing the hypothesis 
that the population RMSEA is 0.

Based on their experience with RMSEA, Browne and Cudeck (1993) suggest that a 
RMSEA of 0.05 or less indicates a close fit. Employing this definition of close fit, 
PCLOSE gives a test of close fit while P gives a test of exact fit.

Note: Use the \pclose text macro to display the p value for close fit of the population 
RMSEA in the output path diagram.

Information-Theoretic Measures

Amos reports several statistics of the form  or , where k is some positive 
constant. Each of these statistics creates a composite measure of badness of fit 
( or ) and complexity (q) by forming a weighted sum of the two. Simple models 
that fit well receive low scores according to such a criterion. Complicated, poorly 
fitting models get high scores. The constant k determines the relative penalties to be 
attached to badness of fit and to complexity. 

The statistics described in this section are intended for model comparisons and not 
for the evaluation of an isolated model.

All of these statistics were developed for use with maximum likelihood estimation. 
Amos reports them for GLS and ADF estimation as well, although it is not clear that 
their use is appropriate there.

AIC

The Akaike information criterion (Akaike, 1973, 1987) is given by

PCLOSE 1 Φ Ĉ .052nd d,( )–=

05.RMSEA :0 ≤H

0RMSEA :0 =H

Ĉ kq+ F̂ kq+

Ĉ F̂

qC 2ˆAIC +=

P \* Charformat
P \* Charformat
ECVI \* Charformat
ECVI \* Charformat
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See also “ECVI” on p. 593.

Note: Use the \aic text macro to display the value of the Akaike information criterion 
in the output path diagram.

BCC

The Browne-Cudeck (1989) criterion is given by

where  if the Emulisrel6 command has been used, or  if it 
has not.

BCC imposes a slightly greater penalty for model complexity than does AIC. BCC 
is the only measure in this section that was developed specifically for analysis of 
moment structures. Browne and Cudeck provided some empirical evidence suggesting 
that BCC may be superior to more generally applicable measures. Arbuckle (in 
preparation) gives an alternative justification for BCC and derives the above formula 
for multiple groups.

See also “MECVI” on p. 594.

Note: Use the \bcc text macro to display the value of the Browne-Cudeck criterion in 
the output path diagram.

BIC

The Bayes information criterion (Schwarz, 1978; Raftery, 1993) is given by the 
formula

In comparison to the AIC, BCC, and CAIC, the BIC assigns a greater penalty to model 
complexity and, therefore, has a greater tendency to pick parsimonious models. The 
BIC is reported only for the case of a single group where means and intercepts are not 
explicit model parameters.
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Note: Use the \bic text macro to display the value of the Bayes information criterion in 
the output path diagram.

CAIC

Bozdogan’s (1987) CAIC (consistent AIC) is given by the formula

CAIC assigns a greater penalty to model complexity than either AIC or BCC but not as 
great a penalty as does BIC. CAIC is reported only for the case of a single group where 
means and intercepts are not explicit model parameters. 

Note: Use the \caic text macro to display the value of the consistent AIC statistic in the 
output path diagram.

ECVI

Except for a constant scale factor, ECVI is the same as AIC.

The columns labeled LO 90 and HI 90 give the lower limit and upper limit of a 90% 
confidence interval on the population ECVI:

See also “AIC” on p. 591.

Note: Use the \ecvi text macro to display the value of the expected cross-validation 
index in the output path diagram, \ecvilo to display its lower 90% confidence estimate, 
and \ecvihi for its upper 90% confidence estimate.

( )( )1lnˆCAIC 1 ++= NqC

( )
n
qF

n
2ˆAIC1ECVI +==

n
qdL 2 90 LO ++= δ
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MECVI

Except for a scale factor, MECVI is identical to BCC.

where  if the Emulisrel6 command has been used, or  if it 
has not.

See also “BCC” on p. 592.

Note: Use the \mecvi text macro to display the modified ECVI statistic in the output 
path diagram.

Comparisons to a Baseline Model

Several fit measures encourage you to reflect on the fact that, no matter how badly your 
model fits, things could always be worse.

Bentler and Bonett (1980) and Tucker and Lewis (1973) suggested fitting the 
independence model or some other very badly fitting baseline model as an exercise to 
see how large the discrepancy function becomes. The object of the exercise is to put 
the fit of your own model(s) into some perspective. If none of your models fit very 
well, it may cheer you up to see a really bad model. For example, as the following 
output shows, Model A from Example 6 has a rather large discrepancy ( ) 
in relation to its degrees of freedom. On the other hand, 71.544 does not look so bad 
compared to 2131.790 (the discrepancy for the independence model).
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This things-could-be-much-worse philosophy of model evaluation is incorporated into 
a number of fit measures. All of the measures tend to range between 0 and 1, with 
values close to 1 indicating a good fit. Only NFI (described below) is guaranteed to be 
between 0 and 1, with 1 indicating a perfect fit. (CFI is also guaranteed to be between 
0 and 1, but this is because values bigger than 1 are reported as 1, while values less than 
0 are reported as 0.)

The independence model is only one example of a model that can be chosen as the 
baseline model, although it is the one most often used and the one that Amos uses. 
Sobel and Bohrnstedt (1985) contend that the choice of the independence model as a 
baseline model is often inappropriate. They suggest alternatives, as did Bentler and 
Bonett (1980), and give some examples to demonstrate the sensitivity of NFI to the 
choice of baseline model.

NFI

The Bentler-Bonett (1980) normed fit index (NFI), or Δ1 in the notation of Bollen 
(1989b) can be written

where  is the minimum discrepancy of the model being evaluated and 
 is the minimum discrepancy of the baseline model.

In Example 6, the independence model can be obtained by adding constraints to any 
of the other models. Any model can be obtained by constraining the saturated model. 
So Model A, for instance, with , is unambiguously in between the 
perfectly fitting saturated model ( ) and the independence model 
( ).

Model NPAR CMIN DF P CMIN/DF

Model A: No Autocorrelation 15 71.544 6 0.000 11.924
Model B: Most General 16 6.383 5 0.271 1.277
Model C: Time-Invariance 13 7.501 8 0.484 0.938
Model D: A and C Combined 12 73.077 9 0.000 8.120
Saturated model 21 0.000 0
Independence model 6 2131.790 15 0.000 142.119

bb F
F

C
C

ˆ
ˆ

1ˆ
ˆ

1NFI 1 −=−=Δ=

Ĉ nF̂=
Cb
ˆ nFb

ˆ=
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χ2 0=
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Looked at in this way, the fit of Model A is a lot closer to the fit of the saturated model 
than it is to the fit of the independence model. In fact, you might say that Model A has 
a discrepancy that is 96.6% of the way between the (terribly fitting) independence 
model and the (perfectly fitting) saturated model.

Rule of Thumb

Since the scale of the fit indices is not necessarily easy to interpret (e.g., the 
indices are not squared multiple correlations), experience will be required to 
establish values of the indices that are associated with various degrees of 
meaningfulness of results. In our experience, models with overall fit indices of 
less than 0.9 can usually be improved substantially. These indices, and the general 
hierarchical comparisons described previously, are best understood by examples. 
(Bentler and Bonett, 1980, p. 600, referring to both the NFI and the TLI)

Note: Use the \nfi text macro to display the normed fit index value in the output path 
diagram.

RFI

Bollen’s (1986) relative fit index (RFI) is given by

Model NPAR CMIN DF P CMIN/DF

Model A: No Autocorrelation 15 71.544 6 0.000 11.924
Model B: Most General 16 6.383 5 0.271 1.277
Model C: Time-Invariance 13 7.501 8 0.484 0.938
Model D: A and C Combined 12 73.077 9 0.000 8.120
Saturated model 21 0.000 0
Independence model 6 2131.790 15 0.000 142.119

966.
790.2131

54.711
790.2131

54.71790.2131 =−=−=NFI

bbbb dF
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where  and d are the discrepancy and the degrees of freedom for the model being 
evaluated, and  and  are the discrepancy and the degrees of freedom for the 
baseline model. 

The RFI is obtained from the NFI by substituting F / d for F. RFI values close to 1 
indicate a very good fit.

Note: Use the \rfi text macro to display the relative fit index value in the output path 
diagram.

IFI

Bollen’s (1989b) incremental fit index (IFI) is given by:

where  and d are the discrepancy and the degrees of freedom for the model being 
evaluated, and  and  are the discrepancy and the degrees of freedom for the 
baseline model. IFI values close to 1 indicate a very good fit.

Note: Use the \ifi text macro to display the incremental fit index value in the output path 
diagram.

TLI

The Tucker-Lewis coefficient (ρ2 in the notation of Bollen, 1989b) was discussed by 
Bentler and Bonett (1980) in the context of analysis of moment structures and is also 
known as the Bentler-Bonett non-normed fit index (NNFI). 

The typical range for TLI lies between 0 and 1, but it is not limited to that range. TLI 
values close to 1 indicate a very good fit.

Note: Use the \tli text macro to display the value of the Tucker-Lewis index in the 
output path diagram.
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CFI

The comparative fit index (CFI; Bentler, 1990) is given by

where , d, and NCP are the discrepancy, the degrees of freedom, and the 
noncentrality parameter estimate for the model being evaluated, and , , and 

are the discrepancy, the degrees of freedom, and the noncentrality parameter 
estimate for the baseline model.

The CFI is identical to McDonald and Marsh’s (1990) relative noncentrality index 
(RNI)

except that the CFI is truncated to fall in the range from 0 to 1. CFI values close to 1 
indicate a very good fit.

Note: Use the \cfi text macro to display the value of the comparative fit index in the 
output path diagram.

Parsimony Adjusted Measures

James, et al. (1982) suggested multiplying the NFI by a parsimony index so as to take 
into account the number of degrees of freedom for testing both the model being 
evaluated and the baseline model. Mulaik, et al. (1989) suggested applying the same 
adjustment to the GFI. Amos also applies a parsimony adjustment to the CFI.

See also “PGFI” on p. 601.
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PNFI

The PNFI is the result of applying James, et al.’s (1982) parsimony adjustment to the 
NFI

where d is the degrees of freedom for the model being evaluated, and  is the degrees 
of freedom for the baseline model.

Note: Use the \pnfi text macro to display the value of the parsimonious normed fit index 
in the output path diagram.

PCFI

The PCFI is the result of applying James, et al.’s (1982) parsimony adjustment to the 
CFI:

where d is the degrees of freedom for the model being evaluated, and  is the degrees 
of freedom for the baseline model.

Note: Use the \pcfi text macro to display the value of the parsimonious comparative fit 
index in the output path diagram.

GFI and Related Measures

The GFI and related fit measures are described here.

GFI

The GFI (goodness-of-fit index) was devised by Jöreskog and Sörbom (1984) for ML 
and ULS estimation, and generalized to other estimation criteria by Tanaka and Huba 
(1985). 

( )( )
bd

dNFIPRATIONFIPNFI ==

db

( )( )
bd

dCFI=PRATIOCFIPCFI =

db



600

Appendix C

The GFI is given by

where  is the minimum value of the discrepancy function defined in Appendix B and 
 is obtained by evaluating F with , g = 1, 2,...,G. An exception has to be 

made for maximum likelihood estimation, since (D2) in Appendix B is not defined for 
. For the purpose of computing GFI in the case of maximum likelihood 

estimation,  in Appendix B is calculated as

with , where  is the maximum likelihood estimate of . GFI is 
always less than or equal to 1. GFI = 1 indicates a perfect fit.

Note: Use the \gfi text macro to display the value of the goodness-of-fit index in the 
output path diagram.

AGFI

The AGFI (adjusted goodness-of-fit index) takes into account the degrees of freedom 
available for testing the model. It is given by

where

The AGFI is bounded above by 1, which indicates a perfect fit. It is not, however, 
bounded below by 0, as the GFI is.

Note: Use the \agfi text macro to display the value of the adjusted GFI in the output 
path diagram.
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PGFI

The PGFI (parsimony goodness-of-fit index), suggested by Mulaik, et al. (1989), is a 
modification of the GFI that takes into account the degrees of freedom available for 
testing the model

where d is the degrees of freedom for the model being evaluated, and

is the degrees of freedom for the baseline zero model.

Note: Use the \pgfi text macro to display the value of the parsimonious GFI in the 
output path diagram.

Miscellaneous Measures

Miscellaneous fit measures are described here.

HI 90

Amos reports a 90% confidence interval for the population value of several statistics. 
The upper and lower boundaries are given in columns labeled HI 90 and LO 90.

HOELTER

Hoelter’s (1983) critical N is the largest sample size for which one would accept the 
hypothesis that a model is correct. Hoelter does not specify a significance level to be 
used in determining the critical N, although he uses 0.05 in his examples. Amos reports 
a critical N for significance levels of 0.05 and 0.01. 

bd
dGFIPGFI =

( )∑
=

=
G

g

g
b pd

1
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Appendix C

Here are the critical N’s displayed by Amos for each of the models in Example 6:

Model A, for instance, would have been accepted at the 0.05 level if the sample 
moments had been exactly as they were found to be in the Wheaton study but with a 
sample size of 164. With a sample size of 165, Model A would have been rejected. 
Hoelter argues that a critical N of 200 or better indicates a satisfactory fit. In an analysis 
of multiple groups, he suggests a threshold of 200 times the number of groups. 
Presumably this threshold is to be used in conjunction with a significance level of 0.05. 
This standard eliminates Model A and the independence model in Example 6. Model B 
is satisfactory according to the Hoelter criterion. I am not myself convinced by 
Hoelter’s arguments in favor of the 200 standard. Unfortunately, the use of critical N 
as a practical aid to model selection requires some such standard. Bollen and Liang 
(1988) report some studies of the critical N statistic.

Note: Use the \hfive text macro to display Hoelter’s critical N in the output path 
diagram for , or the \hone text macro for .

LO 90

Amos reports a 90% confidence interval for the population value of several statistics. 
The upper and lower boundaries are given in columns labeled HI 90 and LO 90.

RMR

The RMR (root mean square residual) is the square root of the average squared amount 
by which the sample variances and covariances differ from their estimates obtained 
under the assumption that your model is correct.

Model HOELTER
0.05

HOELTER
0.01

Model A: No Autocorrelation 164 219
Model B: Most General 1615 2201
Model C: Time-Invariance 1925 2494
Model D: A and C Combined 216 277
Independence model 11 14

α 0.05= α 0.01=
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Measures of Fit

The smaller the RMR is, the better. An RMR of 0 indicates a perfect fit.
The following output from Example 6 shows that, according to the RMR, Model A 

is the best among the models considered except for the saturated model:

Note: Use the \rmr text macro to display the value of the root mean square residual in 
the output path diagram.

Selected List of Fit Measures

If you want to focus on a few fit measures, you might consider the implicit 
recommendation of Browne and Mels (1992), who elect to report only the following 
fit measures:

“CMIN” on p. 585

“P” on p. 585

“FMIN” on p. 588

“F0” on p. 589, with 90% confidence interval

“PCLOSE” on p. 591

“RMSEA” on p. 589, with 90% confidence interval

“ECVI” on p. 593, with 90% confidence interval (See also “AIC” on p. 591)

For the case of maximum likelihood estimation, Browne and Cudeck (1989, 1993) 
suggest substituting MECVI (p. 594) for ECVI.

Model RMR GFI AGFI PGFI

Model A: No Autocorrelation 0.284 0.975 0.913 0.279
Model B: Most General 0.757 0.998 0.990 0.238
Model C: Time-Invariance 0.749 0.997 0.993 0.380
Model D: A and C Combined 0.263 0.975 0.941 0.418
Saturated model 0.000 1.000
Independence model 12.342 0.494 0.292 0.353
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Append ix

D
Numeric Diagnosis of 
Non-Identifiability

In order to decide whether a parameter is identified or an entire model is identified, 
Amos examines the rank of the matrix of approximate second derivatives and of some 
related matrices. The method used is similar to that of McDonald and Krane (1977). 
There are objections to this approach in principle (Bentler and Weeks, 1980; 
McDonald, 1982). There are also practical problems in determining the rank of a 
matrix in borderline cases. Because of these difficulties, you should judge the 
identifiability of a model on a priori grounds if you can. With complex models, this 
may be impossible, so you will have to rely on the numeric determination of Amos. 
Fortunately, Amos is pretty good at assessing identifiability in practice.
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Append ix

E
Using Fit Measures to Rank Models

In general, it is hard to pick a fit measure because there are so many from which to 
choose. The choice gets easier when the purpose of the fit measure is to compare 
models to each other rather than to judge the merit of models by an absolute standard. 
For example, it turns out that it does not matter whether you use RMSEA, RFI, or TLI 
when rank ordering a collection of models. Each of those three measures depends on 

 and d only through , and each depends monotonically on . Thus, each 
measure gives the same rank ordering of models. For this reason, the specification 
search procedure reports only RMSEA.

The following fit measures depend on  and d only through , and they depend 
monotonically on . The specification search procedure reports only CFI as 
representative of them all.

Ĉ Ĉ d⁄ Ĉ d⁄

RMSEA Ĉ d–
nd

-------------
1
n
--- Ĉ

d
---- 1–⎝ ⎠
⎛ ⎞= =
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Ĉb db⁄
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Ĉb

db
------ 1–

----------------= =
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Appendix E

 (not reported by Amos)

The following fit measures depend monotonically on  and not at all on d. The 
specification search procedure reports only  as representative of them all.

Each of the following fit measures is a weighted sum of  and d and can produce a 
distinct rank order of models. The specification search procedure reports each of them 
except for CAIC.

NCP max Ĉ d– 0,( )=

F0 F̂0 max Ĉ d–
n

------------- 0,⎝ ⎠
⎛ ⎞= =

CFI 1 max Ĉ d– 0,( )
max Cb

ˆ db– Ĉ, d– 0,( )
------------------------------------------------------–=
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Using Fit Measures to Rank Models

Each of the following fit measures is capable of providing a unique rank order of 
models. The rank order depends on the choice of baseline model as well. The 
specification search procedure does not report these measures.

The following fit measures are the only ones reported by Amos that are not functions 
of  and d in the case of maximum likelihood estimation. The specification search 
procedure does not report these measures.

IFI Δ2=

PNFI

PCFI

Ĉ

GFI

AGFI

PGFI
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Append ix

F
Baseline Models for Descriptive Fit 
Measures

Seven measures of fit (NFI, RFI, IFI, TLI, CFI, PNFI, and PCFI) require a null or 
baseline bad model against which other models can be compared. The specification 
search procedure offers a choice of four null, or baseline, models:

Null 1: The observed variables are required to be uncorrelated. Their means and 
variances are unconstrained. This is the baseline Independence model in an ordinary 
Amos analysis when you do not perform a specification search.

Null 2: The correlations among the observed variables are required to be equal. The 
means and variances of the observed variables are unconstrained.

Null 3: The observed variables are required to be uncorrelated and to have means of 0. 
Their variances are unconstrained. This is the baseline Independence model used by 
Amos 4.0.1 and earlier for models where means and intercepts are explicit model 
parameters.

Null 4: The correlations among the observed variables are required to be equal. The 
variances of the observed variables are unconstrained. Their means are required to be 0.

Each null model gives rise to a different value for NFI, RFI, IFI, TLI, CFI, PNFI, and 
PCFI. Models Null 3 and Null 4 are fitted during a specification search only when 
means and intercepts are explicitly estimated in the models you specify. The Null 3 
and Null 4 models may be appropriate when evaluating models in which means and 
intercepts are constrained. There is little reason to fit the Null 3 and Null 4 models in 
the common situation where means and intercepts are not constrained but are 
estimated for the sole purpose of allowing maximum likelihood estimation with 
missing data.
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Appendix F

To specify which baseline models you want to be fitted during specification searches:

E From the menus, choose Analyze → Specification Search.

E Click the Options button  on the Specification Search toolbar.

E In the Options dialog box, click the Next search tab.

The four null models and the saturated model are listed in the Benchmark models 
group.
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Append ix

G
Rescaling of AIC, BCC, and BIC

The fit measures, AIC, BCC, and BIC, are defined in Appendix C. Each measure is of 
the form , where k takes on the same value for all models. Small values are 
good, reflecting a combination of good fit to the data (small ) and parsimony 
(small q). The measures are used for comparing models to each other and not for 
judging the merit of a single model.

The specification search procedure in Amos provides three ways of rescaling these 
measures, which were illustrated in Examples 22 and 23. This appendix provides 
formulas for the rescaled fit measures. 

In what follows, let , , and  be the fit values for model i.

Zero-Based Rescaling

Because AIC, BCC, and BIC are used only for comparing models to each other, with 
smaller values being better than larger values, there is no harm in adding a constant, 
as in:

Ĉ kq+
Ĉ

AIC i( ) BCC i( ) BIC i( )

AIC 0
i( ) AIC i( ) min

i
AIC i( )[ ]–=

BCC 0
i( ) BCC i( ) min

i
BCC i( )[ ]–=

BIC 0
i( ) BIC i( ) min

i
BIC i( )[ ]–=
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Appendix G

The rescaled values are either 0 or positive. For example, the best model according to 
AIC has , while inferior models have positive  values that reflect how 
much worse they are than the best model.

E To display , , and  after a specification search, click  on the 
Specification Search toolbar.

E On the Current results tab of the Options dialog box, click Zero-based (min = 0).

Akaike Weights and Bayes Factors (Sum = 1)

E To obtain the following rescaling, select Akaike weights and Bayes factors (sum = 1) on 
the Current results tab of the Options dialog box.

Each of these rescaled measures sums to 1 across models. The rescaling is performed 
only after an exhaustive specification search. If a heuristic search is carried out or if a 
positive value is specified for Retain only the best ___ models, then the summation in 
the denominator cannot be calculated, and rescaling is not performed. The  are 
called Akaike weights by Burnham and Anderson (1998).  has the same 
interpretation as . Within the Bayesian framework and under suitable 
assumptions with equal prior probabilities for the models, the  are approximate 
posterior probabilities (Raftery, 1993, 1995).

AIC0 0= AIC0
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-----------------------------=
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m
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Rescaling of AIC, BCC, and BI C

Akaike Weights and Bayes Factors (Max = 1)

E To obtain the following rescaling, select Akaike weights and Bayes factors (max = 1) on 
the Current results tab of the Options dialog box.

For example, the best model according to AIC has , while inferior models 
have  between 0 and 1. See Burnham and Anderson (1998) for further discussion 
of , and Raftery (1993, 1995) and Madigan and Raftery (1994) for further 
discussion of .

AICL
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max
m

e AIC m( ) 2⁄–[ ]
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additive constant (intercept), 221
ADF, asymptotically distribution-free, 580
admissibility test in Bayesian estimation, 420
AGFI, adjusted goodness-of-fit index, 600
AIC

Akaike information criterion, 309, 591
Burnham and Anderson’s guidelines for, 326

Akaike weights, 614, 615
interpreting, 328
viewing, 327

alternative to analysis of covariance, 145, 241
Amos Graphics, launching, 9
AmosEngine methods, 57
analysis of covariance, 147

alternative to, 145, 241
comparison of methods, 256

Anderson iris data, 521, 539
assumptions by Amos

about analysis of covariance, 241
about correlations among exogenous variables, 

77
about distribution, 35
about missing data, 270
about parameters in the measurement model, 245
about regression, 221

asymptotic, 30
autocorrelation plot, 402, 505

backwards heuristic specification search, 358
baseline model, 611

comparisons to, 594
specifying, 612

Bayes factors, 614, 615
rescaling of, 331

Bayes’ Theorem, 385

Bayesian estimation, 385
of additional estimands, 428

Bayesian imputation, 462
BCC

Browne-Cudeck criterion, 309, 592
Burnham and Anderson’s guidelines for, 326
comparing models using, 326

best-fit graph
for C, 338
for fit measures, 339
point of diminishing returns, 339

BIC
Bayes information criterion, 592
comparing models using, 347

bootstrap, 295–301
ADF, 314
approach to model comparison, 303–310
compare estimation methods, 311–318
failures, 309
GLS, 314
ML, 314
monitoring progress, 297
number of samples, 297, 307
samples, 303
shortcomings, 296
table of diagnostic information, 299
ULS, 314

boundaries. See category boundaries
burn-in samples, 395

CAIC, consistent AIC, 593
calculate

critical ratios, 110
standardized estimates, 33

category boundaries, 495
censored data, 475
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CFI, comparative fit index, 598
change

default behavior, 243
defaults, 243
fonts, 27
orientation of drawing area, 86

chi-square probability method, 281
chi-square statistic, 53

display in figure caption, 53
classification errors, 536
CMIN

minimum discrepancy function C, 120, 585
table, 368

CMIN/DF, minimum discrepancy function divided 
by degrees of freedom, 587

combining results of multiply imputed data files, 471
common factor analysis model, 139
common factor model, 138
common factors, 139
comparing models

using Bayes factors, 329
using BCC, 326
using BIC, 328, 347

complex model, 584
conditional test, 260
conditions for identifiability, 140
confidence limits, 601, 602
consistent AIC (CAIC), 309
constrain

covariances, 44
means and intercepts, 378
parameters, 14
variances, 42

constraints
add to improve model, 110

conventional linear regression, 67
conventions for specifying group differences, 161
convergence

in Bayesian estimation, 396
in distribution, 396
of posterior summaries, 397

copy
path diagram, 21

text output, 21
correlation estimates as text output, 34
correlations among exogenous variables, 77
covariances

draw, 190
label, 191
structural, 365
unbiased estimates, 242

create
a second group, 191
path diagram, 87

credible interval, 386
credible regions, 406
critical ratio, 30

calculate, 110
cross-group constraints, 232

generating, 379
parameters affected by, 366
setting manually, 369

custom estimands, 437

data and model specification methods, 57
data files, 11
data imputation, 270, 461, 484, 516
data input, 46
data recoding, 477, 492, 512
declarative methods, 57
defaults, changing, 243
degrees of freedom, 32
descriptive fit measures, 611
DF, degrees of freedom, 584
diagnostics

MCMC, 504
direct effect, 122
discrepancy functions, 579
distribution assumptions for Amos models, 35
drag properties option, 189
draw covariances, 190
drawing area

add covariance paths, 90
add unobserved variable, 90
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change orientation of, 86
viewing measurement weights, 366

duplicate measurement model, 88

ECVI, expected cross-validation index, 593
endogenous variables, 69, 76
EQS (SEM program), 243
equality constraints, 140
equation format for AStructure method, 78
establishing covariances, 27
estimate means and intercepts option

when not selected, 212
when selected, 212

estimating
indirect effects, 425
means, 209
variances and covariances, 23

European Values Study Group, 489
exhaustive specification search, 358
exogenous variables, 38, 69, 76, 78
exploratory analysis, 101
exploratory factor analysis, 344, 349

F0, population discrepancy function, 589
factor analysis, 137

exploratory, 349
model, 229
with structured means, 229

factor loadings, 139, 365
factor means

comparing, 370
removing constraints, 371

factor score weights, 122
Fisher iris data, 521, 539
fit measures, 583, 603, 607
fitting all models, 368

in a single analysis, 188
fixed variables, 35
FMIN, minimum value of discrepancy F, 588

forward heuristic specification search, 358
free parameters, 38

generated models, 367
generating cross-group constraints, 379
GFI, goodness-of-fit index, 599
GLS, generalized least squares, 580
graph

best-fit, 338
scatterplot of fit and complexity, 333
scree plot, 340

GroupName method, 172

heuristic specification search, 349, 358
backwards, 358
forward, 358
limitations of, 361
stepwise, 358, 359

HOELTER, critical N, 601
homogeneity of variances and covariances, 546
hypothesis testing, 52

identifiability, 67, 139, 605
conditions for, 140

identification constraints, 148
IFI, incremental fit index, 597
improper solutions, 410
imputation

Bayesian, 462
data, 461, 484, 516
model-based, 462
multiple, 462
regression, 461
stochastic regression, 461

independence model, 272, 275, 306, 583
indirect effects, 122

estimating, 425
finding a confidence interval for, 431
viewing standardized, 427
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inequality constraints on data, 481, 488
information-theoretic measures of fit, 591
iris data, 521, 539

journals about structural equation modeling, 4
just-identified model, 73

label
output, 51
variances and covariances, 191

label switching, 554, 576
latent structure analysis, 537, 553
latent variable

posterior predictive distribution, 511
linear dependencies, 69
LISREL (SEM program), 243
listwise deletion, 269

MCMC diagnostics, 504
means and intercept

modeling, 209
means and intercepts

constraining, 370, 378
measurement error, 69
measurement model, 83, 304
measurement residuals, 366
measurement weights, 365

viewing in the drawing area, 366
measures of fit, 583
MECVI, modified expected cross-validation index, 

594
methods for retrieving results, 57
minimum discrepancy function C, 120
missing data, 269–293
misuse of modification indices, 110
mixture modeling, 521
ML, maximum likelihood estimation, 579

model
common factor, 138
common factor analysis, 139
complex, 584
draw, 140
drawing arrows in, 13
drawing variables in, 11
factor analysis, 229
generated, 367
identification, 67, 70, 85, 103, 131, 139, 148, 230
improve by adding new constraints, 110
independence, 272, 275, 306, 583
just-identified, 73
measurement, 83, 304
modification, 104
naming variables in, 12
nested, 260
new, 10
nonrecursive, 76, 129, 131
recursive, 76
regression, 9
rejection of, 104
saturated, 73, 272, 275, 306, 583
simple, 584
simultaneous equations, 175
specification, 38
specify, 11
stable, 135
structural, 84
test one against another, 96
unstable, 135
without means and intercepts, 363
zero, 583

model-based imputation, 462
models

individual, view graphics for, 119
multiple in a single analysis, 116
multiple, view statistics for, 119

modification indices, 105, 110, 382
misuse of, 110
request, 149

move objects, 15
multiple imputation, 462
multiple models in a single analysis, 116
multiple-group analysis, 377



633

Index

multiple-group factor analysis, 363
multiply imputed data file, combining results, 471
multiply imputed data sets, 469
multivariate analysis of variance, 216

naming
groups, 196
variables, 26

NCP, noncentrality parameter, 588
negative variances, 153
nested models, 260
new group, 56, 77, 172
NFI, normed fit index, 595
NNFI, non-normed fit index, 597
non-diffuse prior distribution, 409
non-identifiability, 605
nonrecursive model, 76, 129, 131
normal distribution, 35
NPAR, number of parameters, 584
null model, 611
numeric custom estimands, 443

obtain
critical rations for parameter differences, 182
squared multiple correlations, 133
standardized estimates, 133, 142

Occam’s window, symmetric, 331
optional output, 16, 33, 48, 121
ordered-categorical data, 489

P, probability, 585
pairwise deletion, 270
parameter constraints, 41
parameter estimation

structure specification, 78
parameters

affected by cross-group constraints, 366
equal, benefits of specifying, 44

specifying equal, 43
parsimony, 584
parsimony index, 598
path diagram, 3

alter the appearance, 15
attach data file, 24, 46
constrain parameters, 14
copy, 21
create, 87
delete an object, 15
display chi-square statistics, 53
draw arrows, 13
duplicate measurement model, 88
format objects, 45
move objects, 15, 45
new, 24
print, 20
redo an action, 16
reshape an object, 15
rotate indicators, 88
specify group name in caption, 176
undo an action, 16

PCFI, parsimonious comparative fit index, 599
PCLOSE, for close fit of the population RMSEA, 

591
PGFI, parsimony goodness-of-fit index, 601
Plot window

display best-fit graphs, 339
scree plot, 340

PNFI, parsimonious normed fit index, 599
point of diminishing returns, 332, 339, 342
population discrepancy

measure of model adequacy, 588
posterior

distribution, 385
mean, 386
standard deviation, 386

posterior predictive distribution, 481, 506, 535, 551, 
572

for a latent variable, 511
PRATIO, parsimony ratio, 585
predictive distribution. See posterior predictive dis-

tribution
predictor variables, 36
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prior distribution, 385, 387, 409
of group proportions, 575

probability, 30

random number seed, 392
random variables, 35
recoding data, 477, 492, 512
recursive model, 76
regression imputation, 461
regression model, 9, 14, 478
regression weights

fix, 70
making optional, 351
unidentified, 73

request modification indices, 149
rescaled measures, 613
reshape an object, 15
RFI, relative fit index, 596
RMR, root mean square residual, 602
RMSEA, root mean square error of approximation, 

589
RNI, relative noncentrality index, 598
rotate indicators, 88

saturated model, 73, 272, 275, 306, 583
scatterplot

adjusting line of constant fit, 335
adjusting line representing C - df, 337
line representing C - df, 336
line representing constant fit, 335
of fit and complexity, 333
other lines representing constant fit, 338

scree plot, 342
for C, 340

seed, random number, 392
Semnet, 5
simple model, 584
simultaneous analysis of several groups, 159
simultaneous equations model, 175

simultaneous factor analysis, 195
SLS, scale-free least squares, 581
space vertically, 190
specification search, 319–348

Akaike weights, 327
CAIC, 608
CFI, 607
comparing models using Bayes factor, 329
comparing models using BCC, 326
comparing models using BIC, 328
confirmatory, 320
exploratory factor analysis, 344, 349
generated models, 324
heuristic, 349, 358
increasing speed of, 323
limiting models retained, 322
number of parameters to use, 332
optional arrows, 345
parameter estimates, 325
performing, 323
point of diminishing returns, 332
program options, 322
required arrows, 321
resetting defaults, 322, 345
RMSEA, 607
viewing fit measures, 323
with few optional arrows, 320

specify
benefits of equal parameters, 44
equal paramaters, 43
group name in figure caption, 176

specifying group differences
conventions, 161

squared multiple correlation, 144
stability index, 135
stability test in Bayesian estimation, 420
stable model, 135
standardized estimates, 33, 132

obtain, 142
view, 143

statistical hypothesis testing, 104
stochastic regression imputation, 461
structural covariances, 365
structural equation modeling, 2



635

Index

journals, 4
methods for estimating, 2

structural model, 84
structure specification, 57, 78, 79

parameter estimation, 78
survival time, 476
symettric Occam’s window, 331

test for uncorreletated variables, 60
testing hypotheses about means, 209
text file with results, 56
text macros, 52, 584–603
text output

copy, 21
thinning, 414
thresholds. See category boundaries
time-series plot, 401
TLI, Tucker-Lewis index, 597
total effect, 123
trace plot, 401, 504, 554
training data, 521

ULS, unweighted least squares, 581
unbiased estimates of variance and covariances, 242
uncorrelated variables, 60
unidentified regression weights, 73
unique factor, 139
unique variables, 78
unobserved variables, 81
unstable model, 135
using BCC to compare models, 354

variables
endogenous, 69, 76
entering names, 90
exogenous, 69, 76, 78
unique, 78
unobserved, 81

variances
label, 191
unbiased estimates, 242

view
generated models, 367
graphics output, 19, 28
parameter subsets, 366
standardized estimates, 143
standardized indirect effects, 427
text output, 18, 29

zero model, 583
zero-based rescaling, 613
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