Linear Algebra Methods for Forbidden Configurations

R.P. Anstee*and Balin Fleming[†] Mathematics Department
The University of British Columbia Vancouver, B.C. Canada V6T 1Z2

anstee@math.ubc.ca

September 7, 2008

Abstract

We say a matrix is *simple* if it is a (0,1)-matrix with no repeated columns. Given m and a $k \times l$ (0,1)-matrix F we define forb(m, F) as the maximum number of columns in a simple m-rowed matrix A for which no $k \times l$ submatrix of A is a row and column permutation of F. For all k-rowed F (simple or non-simple) Füredi has shown that forb(m, F) is $O(m^k)$. We are able to determine for which k-rowed F we have that forb(m, F) is $O(m^{k-1})$ and for which k-rowed F we have that forb(m, F) is $\Theta(m^k)$.

We need a bound for a particular choice of F. Define D_{12} to be the $k \times (2^k - 2^{k-2} - 1)$ (0,1)-matrix consisting of all nonzero columns on k rows that do not have $\begin{bmatrix} 1\\1 \end{bmatrix}$ in rows 1 and 2. Let **0** denote the column of k 0's. Define $F_k(t)$ to be the concatenation of **0** with t + 1 copies of D_{12} . We are able to show that forb $(m, F_k(t))$ is $\Theta(m^{k-1})$. Linear algebra methods and indicator polynomials originated in this context in a paper of the authors and Füredi and Sali. We provide a novel application of these methods.

The results are further evidence for the conjecture of Anstee and Sali on the asymptotics for fixed F of forb(m, F).

Keywords: VC-dimension, forbidden configurations

1 Introduction

It is convenient to use the language of matrix theory and of sets. We define a *simple* matrix as a (0,1)-matrix with no repeated columns. Let $[m] = \{1, 2, ..., m\}$. For a

^{*}Research supported in part by NSERC

[†]Research partially supported by NSERC of first author