
CHAPTER 11

Having a Hard Time? Explore
Parameterized Complexity!

Britta Dorn and Ildikó Schlotter

11.1 Motivation

More often than not, life teems with difficult problems. This is not less true if you
happen to be a researcher in computational social choice; however, in this case
you can spend considerable time focusing only on computational hardness.

Collective decision making has been studied from various aspects. Political
science, economics, mathematics, logic, and philosophy have all contributed to
the area of social choice. With the advance of computer science, computational
issues have become more and more important. Taking a casual look at the land-
scape of computational problems in social choice, we find an abundance of hard
problems. Within the theory of voting, already winner determination is NP-hard
for several voting rules like Dodgson, Young, or Kemeny voting. Considering cer-
tain forms of manipulation, control, or bribery in elections, or dealing with partial
information results in computationally hard problems as well. We can find ex-
amples in every area of social choice, let it be judgment aggregation, fair division
of goods, or matching under preferences.

Computational complexity: the classical approach. When considering the
computational tractability of a given problem, we focus on the time and space
necessary for an algorithm to solve it. In most cases, however, space is not the
scarcest resource, and therefore whether an algorithm is considered tractable or
not depends on its running time. Of course, running times depend on the actual
input, and to overcome this rather cumbersome difficulty, classical complexity
theory teaches us to view the running time of an algorithm as a function of the
length of its input. More precisely, the running time T (n) of a given algorithm A
is defined as the maximum number of computational steps performed by A on
any input of length n. Using this notion, a broadly accepted rule of thumb is to
consider A (and the problem solved by A) tractable if T (n) is a polynomial of n.

To grasp the notion of computational intractability, classical complexity theory
offers a hierarchy of complexity classes, but here we only focus on the central
concept of NP-hardness. Instead of repeating the formal definition here, we only
would like to recall its most vital property. Namely, there is strong evidence

2 B. Dorn and I. Schlotter

indicating that NP-hard problems are not solvable in polynomial time. From a
practical point of view, this means that we cannot expect to find an algorithm
solving an NP-hard problem that runs in reasonable time for large inputs.

Over the years, researchers facing NP-hard problems have come up with nu-
merous strategies to deal with intractability. Sometimes focusing on easy special
cases can be enough. In many areas, approximation algorithms turned out to be
extremely useful. Randomization and parallel computing might also help us re-
duce the running time, especially when combined with other approaches. Lately,
ever-growing computational capacities have made exponential-time (exact) algo-
rithms a viable choice in some cases. And when theory does not seem to offer
any help, heuristics still play an important role.

All of these strategies might be useful in computational social choice too. How-
ever, there is one crucial aspect shared by these approaches which dooms them
inefficient in a certain way: they are all one-dimensional in the sense that they
regard the running time merely as a function of the input length. In reality, there
are several properties of the input, explicit or implicit, that heavily influence the
complexity of the problem, and to neglect these is a deep source of inefficiency.

Parameterized complexity. So far the only well-developed framework that uses
a multidimensional approach to deal with computationally hard problems is pa-
rameterized complexity. This approach, developed first by Downey and Fellows
(1999), considers the complexity of a given problem with respect to several so-
called parameters, and views the running time of a given algorithm as the func-
tion of both the input length and the parameters. This simple idea allows us to
draw a much more detailed map of the complexity of a problem.

Each instance of a parameterized problem P is a pair (I, k) consisting of an
input I and a parameter k, which is usually an integer (we will explain later
how to handle multiple parameters within this framework). Since we are mostly
dealing with NP-hard problems, we cannot expect a polynomial-time algorithm
for P . Instead, what we are interested in is whether the exponential explosion in
the running time can be, in a sense, attributed to the parameter. More precisely,
we ask if P admits an algorithm that, on an instance (I, k) runs in time

f(k) · |I|O(1)

for some computable function f . Such an algorithm is called fixed-parameter
tractable (FPT), and the class of parameterized problems solvable by an FPT al-
gorithm is denoted FPT. Usually, the function f is exponential (or worse), but
observe that the dependency of the running time on the input length |I| is a poly-
nomial of constant degree. Hence the essential property of an FPT algorithm: it
works fast whenever the parameter value k is a small integer. Intuitively, this in-
dicates that the source of the computational hardness of P is the parameter: if k
is small, our instance is tractable, but as k grows, it quickly becomes intractable.

This approach has great potential from a practical perspective: if some param-
eter is likely to be small in typical real-world instances, then an FPT algorithm
can be highly efficient in practice. We can examine the computational complexity
of our problem from many different aspects by choosing different parameters and

Exploring Parameterized Complexity 3

searching for FPT algorithms with each parameterization—we hence exploit the
structure of the problem that is given in the input.

Why use parameterized complexity in social choice? Apart from the general
advantages of the parameterized framework, there are two additional reasons
why it might be particularly helpful in the field of computational social choice.

First, a typical problem in collective decision making contains a handful of
natural parameters that, in certain realistic scenarios, are likely to have small
values. The most obvious examples are the number of agents or alternatives
present, but for a typical problem we can easily detect several natural possibilities
for parameterization that may lead to efficient FPT algorithms. This phenomenon
can be explained by the fact that most problems in social choice model some
real-world situation, and such models tend to have a composite nature, involving
various entities and relations between them. Examples include the amount of
variety in a voting profile, the budget in a bribery scenario, or the ‘distance’
from an instance with a certain desirable property, such as single-peakedness
for voting profiles, stability for a matching, or envy-freeness of an allocation.

Second, certain problems in the area of social choice have the curious property
that their computational hardness might be, in fact, desirable. Such situations
often arise when the computational problem models actions of a malicious agent;
to name some examples, we can think about bribery, manipulation, or control
of some decision making process. For such a problem, computational hardness
means that the given process (e.g., a voting rule) is safe in the sense that a
malicious agent necessarily faces a computationally intractable situation.

Note however, that simple NP-hardness might not prevent malicious acts in
reality: as we have argued earlier, even NP-hard problems might admit efficient
algorithms that are applicable in practice. Thus, in such cases a more detailed
complexity analysis can become crucial—and this is exactly what we can ac-
complish by studying our problem from the parameterized aspect. Using the
intractability theory of the parameterized framework (see Section 11.3), we can
provide evidence that certain problems are not fixed-parameter tractable.

Parameterized complexity can hence contribute to a better evaluation of the
hardness of the problem in two ways: on the one hand, fixed-parameter tractabil-
ity with respect to a parameter shows that NP-hardness might only constitute a
theoretical barrier, in particular in applications where the value of this parameter
is small. On the other hand, parameterized complexity theory may help to justify
the shield provided by computational complexity: if a problem belongs to one of
the parameterized hardness classes with respect to a parameter k, it is unlikely
that an efficient algorithm can be found to solve it, even for small values of k.

Relation to existing literature and goal of this chapter. In the last decade,
parameterized complexity has been applied with great success to many prob-
lems in computational social choice. We refer to several surveys overviewing this
process, starting with the work by Lindner and Rothe (2008), followed by the
work of Betzler et al. (2012) on voting problems, the article by Bredereck et al.
(2014) presenting challenges in parameterized algorithmics for computational so-

4 B. Dorn and I. Schlotter

cial choice, and the recent article by Faliszewski and Niedermeier (2015). The goal
of this chapter is not to add another survey of current results, trends and chal-
lenges, but to provide a comprehensive introduction for anyone interested to get
into to this attractive area of research, tailored to applicability in computational
social choice, and illustrated with helpful examples.

The classical reference on parameterized complexity is the book by Downey
and Fellows (1999), see also the new edition (Downey and Fellows, 2013). The
emphasis in the book by Flum and Grohe (2006) is on complexity, and in the book
by Niedermeier (2006) on algorithmic techniques. For the most recent advances
in parameterized algorithmic techniques, we refer to the book by Cygan et al.
(2015).

Organization. We will first present in Section 11.2 some of the basic algorithmic
techniques for obtaining fixed-parameter tractability results, such as bounded
search trees, data reduction and problem kernels, integer linear programming,
and color-coding. We will also explain how to handle multiple parameters. We
then turn to parameterized intractability in Section 11.3 where we deal with FPT
reductions and the most common parameterized complexity classes. Some more
advanced techniques like lower bounds for kernelization and the relation between
approximation and parameterized algorithms are presented in Section 11.4. We
finish with our conclusions in Section 11.5.

11.2 Basic Algorithmic Techniques

To illustrate some basic techniques for designing FPT algorithms, we will use the
classical VERTEX COVER problem. Given a graph G, a vertex cover is a set S of
vertices in G such that each edge of G has at least one endpoint in S.

VERTEX COVER:
Input: An undirected graph G, and an integer k.
Question: Does G contain a vertex cover of size at most k?

Although this problem itself is not about collective decision making, we believe
that its importance as a graph problem renders VERTEX COVER essential also to
the researchers of this area. VERTEX COVER is a graph problem belonging to
the 21 problems proved to be NP-complete by Karp in his seminal paper (Karp,
1972). Thus, we obviously cannot hope to solve this problem by a polynomial-
time algorithm. Given the central role of VERTEX COVER in graph theory, several
researchers have attempted to design algorithms for it that would perform well in
practical situations. In recent decades, VERTEX COVER became one of the most
prominent problems in parameterized complexity, showing how successfully this
framework can be applied in practice.

Brute force approach. Let (G, k) be an instance of VERTEX COVER with G hav-
ing n vertices. The most simple, brute force approach is the following: try every
possible set S of at most k vertices, and check if S is indeed a vertex cover. Since

Exploring Parameterized Complexity 5

this latter condition for a given set S can be checked in O(|E(G)|) time, the whole
process can be performed in

(
n
k

)
O(|E(G)|) time.1

Clearly, we can assume that G is a simple graph, and we may also assume
|E(G)| 6 k(n − 1) = O(nk): since k vertices can cover (i.e., be adjacent to) at
most k(n − 1) edges, |E(G)| > k(n − 1) would immediately prove (G, k) to be a
‘no’-instance. Using this, the brute force algorithm described above has running
time

(
n
k

)
O(nk) = O(knk+1), which becomes intractable already for relatively small

graphs: it cannot even deal with an instance where n = 100 and k = 10.
In what follows, we shall see some basic techniques in parameterized com-

plexity that can be used to design much more efficient algorithms. Currently the
fastest algorithm for VERTEX COVER, developed by Chen et al. (2010), runs in
time O(1.2738k + kn). This renders VERTEX COVER solvable even for instances as
large as n = 106 and k = 40.

11.2.1 Bounded Search Tree

Let us start with a simple observation that allows us to create a more efficient
algorithm for VERTEX COVER: if S is a vertex cover for G, then for any edge e of G,
at least one of its endpoints must belong to S. The basic idea is to ‘guess’ which
endpoint of e belongs to S. Of course, ‘guessing’ means that we have to check
both possible outcomes of such a guess, which can be thought of as creating a
branching in our algorithm. The key to the efficiency of such an approach is the
following: if S contains at most k vertices, then we need to perform at most k
such guesses, resulting in at most 2k possibilities in total.

Before elaborating these ideas in a more general form, let us discuss in detail
how this approach works for VERTEX COVER.

Example: Bounded Search Tree for VERTEX COVER

Let us be given an instance (G, k) of VERTEX COVER. Our algorithm starts with
an empty set S, and adds vertices to S one by one to create a vertex cover. The
general step is to pick an edge e = {u, v} ∈ E(G) that is not yet covered by S, and
guess which endpoint of e should be put into S. In other words, the algorithm
performs a branching into two directions, adding u to S in the one branch, and
adding v to S in the other. Then the algorithm proceeds recursively in both
branches, decreasing the parameter k to k − 1 in both branches. The algorithm
stops if either all edges are covered by S in which case it outputs S as a solution,
or if the parameter reaches 0 in which case it stops without producing a solution.
If no solution is found in any of the branches, then the algorithm returns ‘no’.

Let VC-BST(G, k, S) denote a call for the above algorithm with input graph G,
parameter k and a set S ⊆ V (G) which is the partial solution found so far; see
Algorithm 1 for a more formal description.

1Here and later on, we will rely on the standard notation in graph theory, as used for example in
the book by Diestel (2005). In particular, V (G) denotes the set of vertices of G, and E(G) denotes the
set of edges of G.

6 B. Dorn and I. Schlotter

Algorithm 1 Search tree algorithm for VERTEX COVER

procedure VC-BST(G, k, S)
if there exists an edge {u, v} ∈ E(G) with {u, v} ∩ S = ∅ then

if k > 0 then
Branch 1: VC-BST(G, k − 1, S ∪ {u});
Branch 2: VC-BST(G, k − 1, S ∪ {v});

else output ‘no’;
else output S;

Algorithms with a recursive structure that use branchings similarly as in VC-
BST are called search tree algorithms. A useful representation is to think of each
call of the given algorithm as a node in a rooted tree T , where the children of a
node are the recursive calls performed in the given call as a result of branching.

The expression bounded search tree refers to the fact that to obtain an efficient
algorithm, we need to bound the size of T (that is, |V (T)|). If F (|I|, k) is an upper
bound on the time necessary for the computations in any given node of the search
tree (where I and k are the input and the parameter values provided for the
initial call), then the running time of the whole search tree algorithm is at most
F (|I|, k) · |V (T)|. Hence, if both the size of the search tree and F (|I|, k) are fixed-
parameter tractable, then the resulting running time is also FPT. In a typical
scenario, F (|I|, k) is simply a polynomial in |I|, and the size of the search tree is
bounded by a function of the parameter k. The bound on |V (T)| is often achieved
by providing a limit both on the maximum number of branches, say b, and the
depth of the search tree, say d, implying |V (T)| 6

∑d
i=0 b

i = O(bd+1).
In our example for VERTEX COVER, the size of the search tree associated with

a run of Algorithm VC-BST(G, k, ∅) is at most 2k+1 − 1. Since the computation in
each node takes time O(|E(G)|), we obtain a running time of the form O(2k|E(G)|).
This shows that VERTEX COVER is FPT with respect to parameter k.

Example: Bounded Search Tree for MINIMAL APPROVAL VOTING

MINIMAX APPROVAL VOTING models a situation in voting where we aim to find a
committee of pre-defined size that minimizes the maximum distance between any
vote and the given committee. Formally, an approval election is a pair (C,V) where
C is a set of candidates and V is a collection of votes. Each vote is a subset of
the candidates approved by the given voter. We call a subset C ⊆ C a committee,
and we define the distance of a vote v and the committee C as their symmetric
difference dist(C, v) = |C \ v|+ |v \ C|.

MINIMAX APPROVAL VOTING :
Input: An approval election E = (C,V), integers k and d.
Question: Does there exist a committee C ⊆ C with |C| = k such

that dist(C, v) 6 d for any v ∈ V?

Let us present a bounded search tree algorithm for MINIMAX APPROVAL VOTING

proposed by Misra et al. (2015) that is fixed-parameter tractable with respect to

Exploring Parameterized Complexity 7

the parameter d (see also Cygan et al. (2016) for a note on the running time).
The algorithm starts from an appropriate candidate committee C0 of size k,

and tries to find a fixed solution S by iteratively modifying C0. Initially, we take
any vote v0 ∈ V, and either add or delete at most d candidates from it to obtain
a committee C0 of size k (if this is not possible, then v0 cannot be at distance
at most d from any size-k committee, so we can output ‘no’). By the triangle
inequality, we get dist(C0, S) 6 dist(C0, v0) + dist(v0, S) 6 2d.

The algorithm then calls a recursive procedure MAV-BST(C, δ) that keeps track
of our candidate committee C and an upper bound δ on dist(C, S), initially set to
C0 and 2d, respectively; see Algorithm 2 for a description.

Algorithm 2 Search tree algorithm for MINIMAX APPROVAL VOTING

procedure MAV-BST(C, δ)
if δ < 0 then output ‘no’;
else if dist(C, v) > d+ δ for some v ∈ V then output ‘no’;
else if dist(C, v) 6 d for each v ∈ V then output C;
else

choose v ∈ V such that dist(C, v) > d;
if |v \ C| 6 d+ 1 then P1 ← v \ C;
else fix any P1 ⊆ v \ C with |P1| = d+ 1;
if |C \ v| 6 d+ 1 then P2 ← C \ v;
else fix any P2 ⊆ C \ v with |P2| = d+ 1;
for all c1 ∈ P1 and c2 ∈ P2 do

Branch (c1, c2): MAV-BST(C ∪ {c1} \ {c2}, δ − 2);

At each step, MAV-BST first checks certain simple stopping conditions: as-
suming dist(C, S) 6 δ, neither δ < 0 nor dist(C, v) > d + δ for some v ∈ V can
hold (the latter follows from dist(C, v) 6 dist(C, S) + dist(S, v)). So if one of these
conditions holds, then the algorithm returns ‘no’ correctly. Otherwise, MAV-BST
searches for a vote v ∈ V whose distance from C is more than d. If no such vote ex-
ists, then it outputs C as a solution; otherwise, dist(C, v) > d implies that S must
be ‘closer’ to v than C. The algorithm tries to decrease the distance of C from v
by adding a candidate c1 ∈ v \ C to C and deleting a candidate c2 ∈ C \ v from C;
note that this way the size of the committee remains k. In fact, by |v \ S| 6 d, any
subset P1 of v \ C of size d + 1 must contain a candidate in S. Similarly, we can
use any subset P2 of C \ v of size d + 1 instead of C \ v. Hence, for some c1 ∈ P1

and c2 ∈ P2, branch (c1, c2) is correct in the sense that c1 ∈ S and c2 /∈ S.
To analyze the running time of MAV-BST, let us calculate the size of the search

tree. At each branching step, there are at most (d+ 1)2 ways to choose c1 and c2.
Let us give an upper bound on the depth of the search tree: initially, we have
δ 6 2d, and we decrease δ by 2 with each recursion, stopping whenever it becomes
negative. Hence, the depth of the search tree is at most d, and thus contains at
most ((d+ 1)2)d+1 nodes. Since the computations in each node of the search tree
require polynomial time, we obtain an overall running time O?(d2d).2

2The notation O? suppresses polynomial factors.

8 B. Dorn and I. Schlotter

11.2.2 Kernelization

A great tool in parameterized algorithmics is data reduction by kernelization. One
can think of it as a preprocessing procedure: The problem at hand is a hard one,
but it might contain some relatively easy parts. The idea is to get rid of these
in a (polynomial-time) preprocessing step and to obtain the ‘really hard’ core,
the so-called problem kernel, of the problem. If the size of this kernel does not
depend on the input size |I| of the original problem any more, but is bounded by
a function depending on the parameter k only, we are done: applying any brute
force algorithm on this hard kernel leads directly to an FPT running time where
the combinatorial explosion only happens in k. The existence of a problem kernel
whose size is bounded by a function of k hence implies for a problem to be in FPT
with respect to k, and one can show that the converse holds as well.

More formally, we say that a parameterized problem admits a problem kernel
with respect to parameter k, if an instance (I, k) can be transformed in polynomial
time (measured in the input size |I|) into an equivalent instance (I ′, k′) such
that |I ′| + k′ 6 g(k) for a computable function g only depending on k. The rules
describing the transformation are then called data reduction rules, and the new
instance (I ′, k′) is called the problem kernel. For practical applicability, one is in
particularly interested in kernels of polynomial size.

Example: Data Reduction and a O(k2) Kernel for VERTEX COVER

For the VERTEX COVER problem, one can immediately think of two easy reduction
rules. Let (G, k) be our input. First, it is obvious that we can safely delete isolated
vertices (i.e., vertices without incident edges) from G, as they cannot cover any
edge. Second, if there is a vertex v ∈ V (G) having more than k incident edges, then
v clearly has to belong to any solution S of size k—a vertex cover not containing v
must contain all its (more than k) neighbors, which is too much. Hence, it is safe
to put any vertex of degree strictly greater than k into S, delete all its incident
edges, and decrement the value of k by one. This rule is known as the Buss
rule. If G admits a vertex cover of size k, then after applying these two rules
exhaustively, we end up with a graph G′ having at most k2 edges (as the Buss
rule is not applicable anymore, G′ has maximum degree at most k, and hence k
vertices in G′ can cover at most k2 edges) and at most k2 + k vertices (as there are
no isolated vertices in G′). This yields a kernel of size O(k2) for VERTEX COVER.

Example: Polynomial Kernel for COALITIONAL MANIPULATION for Copeland

Given a voting profile consisting of the voters’ preference orders over the set C of
candidates, the COALITIONAL MANIPULATION problem asks if a set of m manipula-
tors is able to make a given candidate win the election by casting their votes in an
appropriate way. A Copeland winner of the election is a candidate who maximizes
the number of candidates that he beats in pairwise comparisons (for simplicity,
we assume that the number of voters is odd). Dey et al. (2016) show that if m is
polynomial in the number |C| of candidates, then COALITIONAL MANIPULATION for
Copeland voting admits a polynomial kernel with respect to |C|.

Exploring Parameterized Complexity 9

They consider the weighted majority graph of the election where vertices cor-
respond to the candidates, and for any two candidates x and y, the weight of the
edge (x, y) is the number of voters who prefer x to y minus the number of voters
who prefer y to x. The idea of the reduction rule is to replace large edge weights
(those greater than m) by smaller ones (m + 1 or m + 2, so that the parity of the
weight is preserved). This guarantees that each weight in the new majority graph
is in O(m), that the parities of the weights are unchanged, and that the Copeland
score of each candidate remains the same after the application of the rule. Using
a construction by McGarvey (1953), such a new majority graph can be realized
by a voting profile of size O(|C|2 ·m), giving us a kernel of size polynomial in |C|.

We remark that Dey et al. (2016) show for the more general POSSIBLE WIN-
NER problem that no kernel of size polynomial in |C| is likely to exist (cf. Sec-
tion 11.4.1).

Example: Trivial Kernel for EEF ALLOCATION

Bliem et al. (2016) study the problem of assigning a set O of indivisible objects
to a set N of agents in a Pareto efficient and envy-free way. An instance of
EEF ALLOCATION can be described as a triple I = (N,O,%) where % contains a
preference relation %i for each agent i ∈ N . The task is to find an allocation of the
objects to the agents that is envy-free and Pareto efficient. Naturally, each object
must be allocated to only one agent, so any allocation π : N → 2O must satisfy
π(i) ∩ π(j) = ∅ for any two different agents i, j ∈ N . We say that an allocation π is
envy-free if for any two agents i, j we have π(i) %i π(j). We call π Pareto efficient,
if there is no allocation π′ such that π′(i) %i π(i) for each agent i, and at least one
agent is strictly better off in π′ than in π (for more precise definitions, see Bliem
et al. (2016)).

Assuming monotonic additive preferences, each agent i has a non-negative
utility function wi : O → R+

0 such that Y %i X exactly if
∑

o∈X wi(o) 6
∑

o∈Y wi(o)
for any two sets X,Y of objects. In such a model, we can safely assume that
each agent assigns a positive utility to at least one object, and similarly, each
object has positive utility for at least one agent. However, this implies that if
|N | > |O|, then no allocation can be envy-free: any agent that obtains no objects
at all envies at least one other agent. This yields a trivial kernel for parameter |O|,
the number of objects: if |N | > |O|, then we can replace the instance I with any
small ‘no’-instance; otherwise, |N | 6 |O| and thus the size of the whole instance
I is bounded by a function of the parameter |O|.

We remark that another promising approach is to consider (the weaker con-
cept of) partial kernels. Roughly speaking, this means that for problems featuring
several dimensions of the input (such as the number of voters and the number
of candidates in a voting problem), one can also try and reduce at least one of
the dimensions such that its size only depends on the parameter value. For more
details, we refer to Section 3.5 of the article by Bredereck et al. (2014).

10 B. Dorn and I. Schlotter

11.2.3 Integer Linear Programming

Many problems can be formulated in terms of an optimization task with a linear
objective function and several constraints given by linear (in)equalities. These
linear programs can be described in their canonical form as follows:

Linear Programming (LP):
Input: Matrix A ∈ Rm,n, two vectors b ∈ Rm, c ∈ Rn.
Task: Find a vector x ∈ Rn with x > 0 that fulfills Ax 6 b and,

among all such vectors, maximizes the dot product cTx.

The problem can equivalently be formulated in other variants, e.g., as a mini-
mization problem, or with equalities.

LP problems are known to be solvable in polynomial time. If the variables
can only take integral values, one speaks of an ILP (Integer Linear Program). This
makes the problem more difficult in general: the corresponding decision problem
is NP-complete (Karp, 1972). However, an ILP formulation of a problem can help
us obtain an FPT result: A famous theorem by Lenstra (1983) states that solving
an ILP is fixed-parameter tractable if the parameter is the number of variables or
the number of constraints. Lenstra’s running time was later improved by Kannan
(1987) and Frank and Tardos (1987), yielding that an ILP with p variables can be
solved in O(p2.5p+o(p) · |I|) time, where |I| is the input size.

However, we shall remark that the combinatorial explosion of the running time
shown by Lenstra is terrible, rendering it impractical. Lenstra’s result should
therefore be seen as a classification theorem in the first place. We refer to a more
detailed discussion about ILP-based fixed-parameter tractability by Bredereck
et al. (2014, Section 3.1).

Example: ILP for VERTEX COVER

We start by giving a negative example for VERTEX COVER. For each vertex v ∈
V (G), we create a binary variable xv ∈ {0, 1}: including some vertex v in the
vertex cover corresponds to setting the value of variable xv to 1. The following ILP
computes a minimum vertex cover for G:

Minimize
∑

v∈V (G) xv
subject to xu + xv > 1 ∀{u, v} ∈ E(G);

xv ∈ {0, 1} ∀v ∈ V (G).
However, the number of variables here is |V (G)|, and thus depends not only

on the parameter k but on the input size, so Lenstra’s result is not applicable.

Example: ILP for EEF ALLOCATION

Bliem et al. (2016) encode an instance I = ({1, . . . , n},O,%) of EEF ALLOCATION

as an ILP, assuming 0/1 preferences. In such a model, the preferences of each
agent i ∈ {1, . . . , n} are determined by a utility function wi : O → {0, 1}.

To formulate this problem as an ILP, we define the fingerprint of an object
o ∈ O as the (binary) vector fo = (w1(o), . . . , wn(o)); let F = {fo | o ∈ O} be the set of

Exploring Parameterized Complexity 11

all fingerprints. We can then describe any allocation by the number xfi of objects
with fingerprint f assigned to agent i, for any f ∈ F and i ∈ {1, . . . , n}. Using the
variables xfi , formulating envy-freeness is straightforward; to express efficiency,
we need to observe that Pareto efficiency under 0/1 preferences is equivalent
to assigning each object to an agent for whom it carries utility 1. Hence, an
allocation is EEF if it fulfills the following constraints:

xfi = 0 for each f ∈ F and i ∈ {1, . . . , n} with f [i] = 0;∑n
i=1 x

f
i = |{o ∈ O | fo = f}| for each f ∈ F ;∑

f∈F x
f
i · f [i] >

∑
f∈F x

f
j · f [i] for each i, j ∈ {1, . . . , n} with i 6= j.

As each fingerprint is a binary vector of length n, we get |F | 6 2n. The number
of variables in our ILP is therefore at most n2n, implying that EEF ALLOCATION is
FPT with respect to parameter n, the number of agents.

11.2.4 Color-coding

Let us discuss here an elegant technique called color-coding, introduced by Alon
et al. (1995), originally developed to solve certain cases of SUBGRAPH ISOMOR-
PHISM. This randomized method is helpful when introducing constraints on a
solution enables us to find them more easily. Instead of giving formal definitions,
let us illustrate how color-coding works through the following example.

Example: Color-coding for MINIMAL APPROVAL VOTING

Let I = (E , k, d) be an instance of MINIMAX APPROVAL VOTING with E = (C,V) (cf.
the example in Section 11.2.1). We present a randomized FPT algorithm MAV-CC
with parameter |V| + k proposed by Misra et al. (2015); see Algorithm 3. Let us
assume that I is a ‘yes’-instance, and S is a solution committee of size k.

Algorithm 3 Color-coding algorithm for MINIMAX APPROVAL VOTING

procedure MAV-CC(E = (C,V), d, k)
choose a coloring κ : C → {1, . . . , k} randomly;
for all v ∈ V do

choose a set Xv ⊆ {κ(x) | x ∈ v} with |Xv| > (|k + |v| − d)/2 randomly;
S′ ← ∅;
for all c ∈ {1, . . . , k} do

Ac ←
⋂
{candidates of v with color c | v ∈ V, c ∈ Xv};

if Ac 6= ∅ then put any ac ∈ Ac into S′;
if |S′| = k then output S′;
else output ‘no’;

First, we color our candidates with k colors randomly (independently, with
a uniform distribution). Given a coloring κ : C → {1, . . . , k}, for each color c ∈
{1, . . . , k} we define the color class Cc = {x ∈ C | κ(x) = c} as the set of candidates
receiving color c. We call the coloring κ good, if it makes our solution S colorful,

12 B. Dorn and I. Schlotter

meaning that S ∩ Cc 6= ∅ for each color c; clearly, a colorful solution must contain
exactly one candidate from each color class.

Let us assume that κ is a good coloring. Next, for each vote v ∈ V we guess
the set Xv of consensus colors for v, containing the colors of the candidates in
v ∩ S. Notice that the consensus colors for a vote determines its distance from S,
namely dist(S, v) = |S \ v| + |v \ S| = k + |v| − 2|Xv|. Hence, we can immediately
discard those guesses where dist(S, v) > d for some vote v ∈ V.

Given the consensus colors for each vote, finding a colorful solution is easy:
for each color c, we need to check whether all sets v ∩ Cc where v ∈ V, c ∈ Xv have
at least one common candidate. If so, we put one such candidate ac into our
solution S′ for each c. Observe that S′ is indeed a solution, as each vote contains
at least |Xv| candidates from S′. Since S always yields some ac ∈ S contained
in all votes which have c as a consensus color, we are bound to find a solution
(supposing we guessed the consensus colors correctly).

Let us consider the running time of MAV-CC. Given a good coloring, we need
to consider all possible consensus color sets for each vote, which means (2k)n

possibilities (where n = |V|). For each of these cases, looking for a solution takes
O(kn|C|) time. But how can we obtain a good coloring? Clearly, our random
coloring κ is good with probability k!

kk > e−k. Thus, repeating the whole procedure
ek times guarantees that we will obtain a good coloring, and hence a solution,
with high probability. This yields a total running time of ek2nkO(kn|C|), which is
fixed-parameter tractable with respect to parameter n+ k.

To de-randomize the above algorithm, we need to deterministically construct
a family of coloring functions such that any given committee of size k becomes
colorful in at least one of the colorings. This can be achieved by so-called k-
perfect families of hash functions; an explicit construction of such a family of size
ekkO(log k) log |C| is given by Naor et al. (1995).

11.2.5 Multiple Parameters

For a truly detailed insight into a problem’s computational complexity, one can
typically determine several parameters that might influence its tractability. Al-
lowing for multiple parameters is thus crucial in the parameterized framework.

Suppose we want to handle t parameters in our problem, so each instance I is
associated with parameters k1, . . . , kt. Intuitively, a fixed-parameter tractable al-
gorithm in such a model is one that runs in time f(k1, . . . , kt)|I|O(1) for some com-
putable function f . However, instead of extending the formalism of the original
framework, it suffices to define the parameter as the t-tuple (k1, . . . , kt); such com-
posite parameters are usually called combined parameters. Equivalently, we can
simply define the sum k1+ · · ·+kt or the maximum max{k1, . . . , kt} as the parame-
ter; either of these choices yields the same notion of fixed-parameter tractability.

To exploit the full power of parameterized complexity, allowing for multiple
parameters is just the first step. Looking for an FPT algorithm with parameters
k1, . . . , kt amounts to searching for an algorithm that is efficient if all of the values
k1, . . . , kt are small. A much more informative approach is to adopt a multidimen-
sional view (also called multivariate algorithmics; see the paper by Niedermeier

Exploring Parameterized Complexity 13

(2010)), and regard each value ki as either (i) a fixed constant, (ii) a parameter,
or (iii) unbounded. This yields 3t variants of the original problem, and deter-
mining the (parameterized) complexity for each of these variants offers a detailed
landscape of its computational tractability.

A nice example for such a multidimensional analysis is the work by De Haan
(2016a) who investigated the complexity of judgment aggregation based on the
Kemeny rule with respect to five parameters and all their possible combinations.

11.3 Parameterized Intractability

In the previous sections, we have gotten to know some basic techniques for show-
ing fixed-parameter tractability of a hard problem. But what can we do if none
of these techniques seems to be applicable to our problem at hand? There are
many more techniques that we could give a try; see the literature referred to in
the introduction. However, it might also happen that the problem on hand sim-
ply is not in FPT. For such cases, we can try to provide evidence that the problem
does not admit an FPT algorithm: similarly to the theory of NP-hardness, param-
eterized complexity offers an intractability theory which provides the possibility
to compare the computational hardness of parameterized problems. For a more
detailed view on this topic, we refer to the books by Downey and Fellows (1999,
2013), and by Flum and Grohe (2006).

Before we start, let us introduce two well-known notions from graph theory.
Given a graph G, an independent set is a set I ⊆ V (G) of vertices in G such that
no two of them are adjacent to each other in G. A clique is a set C ⊆ V (G) of
vertices that are pairwise adjacent in G. The notions of vertex cover, independent
set, and clique are closely related: S ⊆ V (G) is a vertex cover of G if and only if
I := V (G) \ S is an independent set of G, which in turn holds if and only if I is a
clique in the complement graph G.3

INDEPENDENT SET:
Input: An undirected graph G, and an integer k.
Question: Does G contain an independent set of size at least k?

CLIQUE:
Input: An undirected graph G, and an integer k.
Question: Does G contain a clique of size at least k?

The two problems above were proved to be NP-complete by Karp (1972), so
their classical complexity is the same as that of VERTEX COVER. However, when
parameterized by k, they exhibit a great difference: despite the relentless effort to
design efficient algorithms for these problems, neither CLIQUE nor INDEPENDENT

SET has been shown to admit an FPT algorithm.

3The complement graph of G is the graph G which has the same set of vertices as G, and there is
an edge between two different vertices in G if and only if there is no edge between them in G.

14 B. Dorn and I. Schlotter

11.3.1 FPT Reduction

In classical complexity theory, a polynomial-time many-to-one (or Karp) reduction
from problem P to problem P ′ transforms—in polynomial time—an instance I
of P into an equivalent instance I ′ of P ′, meaning that I is a ‘yes’-instance of P if
and only if I ′ is a ‘yes’-instance of P ′. We now describe a similar notion of reduc-
tion for parameterized problems that can transfer fixed-parameter tractability.

Let P and P ′ be two parameterized problems. An FPT reduction (also called
parameterized reduction) from P to P ′ is an algorithm that runs in FPT time (i.e.,
in time f(k) · |I|O(1) for a computable function f) and transforms an instance
(I, k) of P into an equivalent instance (I ′, k′) of P ′ such that k′ 6 g(k) for some
computable function g. The difference from a polynomial-time reduction is thus
two-fold: we have to ensure that the parameter of the new instance only depends
on the original parameter, but the transformation may take FPT time. The key
property of an FPT reduction is the following: if P ′ ∈ FPT, then an FPT reduction
from P to P ′ implies P ∈ FPT as well.

The classical polynomial-time reduction from INDEPENDENT SET to CLIQUE

transforms an instance (G, k) of INDEPENDENT SET into an equivalent instance
(G, k) of CLIQUE. Thus, if we regard k as the parameter in both problems, then
this transformation becomes an FPT reduction. Applying the same reduction the
other way around shows that CLIQUE to INDEPENDENT SET are equally hard, even
in the parameterized form.

By contrast, the classical polynomial-time reduction from INDEPENDENT SET

to VERTEX COVER is not an FPT reduction: it transforms an instance (G, k) of
INDEPENDENT SET into an equivalent instance (G, k′ = |V (G)| − k) of VERTEX

COVER, but the new parameter k′ depends not only on k but also on |V (G)|.
Hence, this does not prove fixed-parameter tractability of INDEPENDENT SET.

11.3.2 Parameterized Complexity Classes

Parameterized complexity offers a whole hierarchy of hardness classes, called
the weft hierarchy, based on weighted variants of the satisfiability problem for
Boolean circuits. It contains the classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t] ⊆ · · · ⊆
W[SAT] ⊆ W[P], where all inclusions are believed to be strict. All these classes
are closed under FPT reductions, and are contained in the class XP of slicewise
polynomial problems, containing parameterized problems that, given an instance
(I, k), can be solved in time |I|f(k), where f is a computable function only de-
pending on k. The class XP is known to be strictly larger than FPT.

WEIGHTED 2-CNF-SATISFIABILITY (W-2-CNF-SAT):
Input: A Boolean formula F in conjunctive normal form (CNF)

with at most two literals per clause, and an integer k.
Question: Does F have a satisfying truth assignment of weight ex-

actly k, i.e., with exactly k variables set to true?

The class W[1] contains all problems that can be reduced to the above defined
W-2-CNF-SAT problem (parameterized by k) by an FPT reduction. If all problems

Exploring Parameterized Complexity 15

in W[1] are FPT reducible to a parameterized problem P , then P is called W[1]-
hard. If in addition P is contained in W[1], then it is W[1]-complete.

To prove that P is W[1]-hard, and consequently is not likely to admit an
FPT algorithm, it suffices to provide an FPT reduction from an already known
W[1]-hard problem to P . Besides W-2-CNF-SAT—which is W[1]-complete by
definition—both CLIQUE and INDEPENDENT SET are W[1]-complete with respect
to the parameter k (Downey and Fellows, 1999). The following useful variant of
CLIQUE is also W[1]-complete with respect to the number k of colors.

MULTICOLORED CLIQUE:
Input: An undirected graph G whose vertices are colored with

k colors.
Question: Is there a clique in G containing one vertex from each

color class?

As another example, UNARY BIN PACKING, defined as below, is also W[1]-hard
with respect to the number b of bins, even if the total weight of the items equals
the total bin capacity, i.e.,

∑m
i=1 wi = b · C (Jansen et al., 2013).

UNARY BIN PACKING:
Input: Positive integers w1, . . . , wm, b, C, all in unary encoding.
Question: Is there a packing of m items with weights w1, . . . , wm to

b bins such that each bin has total weight at most C?

Analogously to W[1], the definition of the class W[2] is based on the WEIGHTED

CNF-SATISFIABILITY problem where the clauses of the input formula can be of
any size. A typical W[2]-complete problem is DOMINATING SET, asking if a graph
G has a dominating set of size k, i.e., a subset D ⊆ V (G) of k vertices such that
each vertex in V (G) \D is adjacent to at least one vertex of D; the parameter is k.

DOMINATING SET:
Input: An undirected graph G, and an integer k.
Question: Does G contain a dominating set of size at most k?

Example: W[1]-hardness of EEF ALLOCATION

Bliem et al. (2016) give a parameterized reduction from UNARY BIN PACKING to
show W[1]-hardness for EEF ALLOCATION with respect to the number of agents
(see the examples in Sections 11.2.2 and 11.2.3 for the definitions), even if agents
express their utilities encoded in unary. Given an instance (w1, . . . , wm, b, C) of
UNARY BIN PACKING with

∑m
i=1 wi = b ·C, we construct an instance of EEF ALLO-

CATION as follows: the set of objects is {o1, . . . , om}, and there are b agents with
identical preferences, each assigning utility wi to object oi, for i ∈ {1, . . . ,m}.

Observe that an allocation is Pareto efficient and envy-free exactly if the total
utility assigned to each agent is (

∑m
i=1 wi)/b = C: each agents needs to be assigned

the same total utility, and each object must be allocated. Therefore, an EEF-
allocation of the objects to the b agents immediately gives a packing of all items

16 B. Dorn and I. Schlotter

into the b bins respecting the bin capacities (where assigning object oi to the j-th
agent corresponds to packing the item wi into the j-th bin), and vice versa.

Clearly, the instance of EEF ALLOCATION can be constructed in polynomial
time, and the parameter b in the UNARY BIN PACKING instance equals the number
of agents in the constructed EEF ALLOCATION instance. Thus, we obtain W[1]-
hardness with respect to the number of agents. We remark that if agents express
their utilities in binary encoding, then the problem is NP-hard already for two
agents (Bouveret and Lang, 2008).

11.4 Advanced Techniques

Here we briefly mention a few of the more advanced techniques of parameterized
complexity which can help us investigate the complexity of a computationally
hard problem. For further reading, we refer to the book by Cygan et al. (2015)
on lower bounds for kernelization and on lower bounds assuming ETH; the latter
topic is also covered by Lokshtanov et al. (2011). The survey by Marx (2008) offers
an excellent summary on the connection between fixed-parameter tractability
and approximation. For an extension of the parameterized framework dealing
with problems beyond NP, see the recent PhD thesis by De Haan (2016b).

11.4.1 Lower Bounds for Kernelization

As already mentioned in Section 11.2.2, a parameterized problem is FPT if and
only if it admits a kernel. But an exponential-size kernel may not be very useful
in practice, and so the more interesting question is whether a given (FPT) problem
admits a kernel of polynomial size.

Recently the field of kernelization has undergone exciting improvements: a
series of new results have established a framework for proving lower bounds for
the existence of polynomial kernels. This breakthrough started with a paper by
Fortnow and Santhanam (2008), followed by Bodlaender et al. (2009) who proved
the following: if a parameterized problem Q whose unparameterized version is
NP-hard admits an OR-composition, then it does not admit a polynomial kernel,
unless NP ⊆ coNP/poly (considered very unlikely in complexity theory). Here, an
OR-composition for Q is an algorithm that, given t instances (I1, k), . . . , (It, k) of Q,
in time polynomial in

∑t
j=1 |Ij |+k computes a new instance (I ′, k′) with k′ = kO(1)

such that (I ′, k′) ∈ Q if and only if (Ij , k) ∈ Q for at least one index j ∈ {1, . . . , t}.
OR-cross-compositions offer a more flexible method (Bodlaender et al., 2011a).

Roughly speaking, an OR-cross-composition algorithm takes as input t instances
of any NP-hard problem L, and produces an instance (I, k) such that (I, k) ∈ Q
if and only if one of the t instances is in L; the parameter k must be polyno-
mially bounded in the maximum size of the input instances plus log t. Using
this extended framework, Bliem et al. (2016) proved that EEF-ALLOCATION with
monotonic dichotomous preferences parameterized by the number of objects does
not admit a polynomial kernel (unless NP ⊆ coNP/poly).

We remark that instead of OR-(cross-)compositions, one can also use AND-
(cross-)compositions, defined analogously, due to a result by Drucker (2012).

Exploring Parameterized Complexity 17

Bodlaender et al. (2011b) proposed another tool that can be used to prove the
non-existence of polynomial kernels. Given two parameterized problems Q and
Q′, a polynomial parameter transformation (PPT) from Q to Q′ is a function that
for any instance (I, k) of Q computes in polynomial time an equivalent instance
(I ′, k′) of Q′, where k′ is bounded by a fixed polynomial of k. Essentially, if there
is a PPT from Q to Q′ and Q admits no polynomial kernel, then Q′ does not admit
a polynomial kernel either.4 Using this concept, Dey et al. (2016) showed for
various voting rules that POSSIBLE WINNER is not likely to admit a polynomial
kernel if the parameter is the number of candidates.

Finally, let us mention the technique of weak compositions by Dell and van
Melkebeek (2010); Hermelin and Wu (2012); Dell and Marx (2012) which can be
used to derive more refined lower bounds, ruling out not polynomial kernels in
general, but kernels of a certain size (such as, say, a linear kernel).

11.4.2 Lower Bounds Assuming ETH

Impagliazzo et al. (2001) formulated the Exponential Time Hypothesis (ETH) that,
roughly speaking, states that 3-SAT cannot be solved in subexponential time.
Assuming ETH, one can obtain stronger lower bounds for various computational
problems than only assuming the weaker assumption P 6= NP.

As shown by Chen et al. (2006), ETH implies that CLIQUE, INDEPENDENT SET,
and DOMINATING SET cannot be solved in f(k)no(k) time for any function f on n-
vertex graphs with parameter k. This shows that ETH is a stronger assumption
than W[1] 6= FPT. One can obtain lower bounds also for problems in FPT; as an
example, Cai and Juedes (2003) proved that VERTEX COVER cannot be solved in
2o(k)nO(1) time on an n-vertex graph with parameter k, unless ETH fails.

Such lower bounds can be transferred by appropriate reductions; the obtained
lower bound depends on how the reduction changes the parameter. With this
method, Cygan et al. (2016) proved that MINIMAX APPROVAL VOTING admits no
algorithm running in O?(2o(d log d)) time, showing that the algorithm by Misra et al.
(2015) described in Section 11.2.1 is essentially optimal.

11.4.3 Approximation and Parameterized Algorithms

Approximation algorithms have a polynomial running time, but produce only
suboptimal solutions; by contrast, parameterized algorithms provide optimal so-
lutions, but at a cost of increased running time. Combining these two approaches
yields a variety of methods to deal with computationally hard problems; here we
only highlight a few ideas and results connected to computational social choice.

Given an optimization problem Q, we can ask whether Q admits an FPT-
approximation algorithm: one that produces an approximate solution and runs
in FPT time with respect to a given parameter. This idea can be extended to
FPT-approximation schemes; an example is the algorithm by Cygan et al. (2016)
for MINIMAX APPROVAL VOTING that for any ε > 0 in time O?((3/ε)2d) produces an
ε-approximation (i.e., a committee with distance at most (1 + ε)d from any vote).

4In fact, we also need a polynomial reduction from Q′ to Q, which is guaranteed if Q is NP-hard
and Q′ is in NP.

18 B. Dorn and I. Schlotter

Another strong connection between approximation schemes and parameter-
ized complexity was observed by Bazgan (1995), and independently, Cesati and
Trevisan (1997): if Q admits an EPTAS5, then deciding whether an instance of
Q admits a solution with value at least (or, if Q is a minimization problem, at
most) k is FPT with parameter k. This fact is often used in negative form: e.g., as
observed by Gurski and Roos (2014), the W[2]-hardness of constructive control
by adding/deleting candidates in Lull or Copeland elections implies that these
problems do not admit an EPTAS, unless W[2] = FPT.

11.4.4 Parameterized Complexity for Problems Beyond NP

Recently, a new theoretical framework has been developed that combines the
idea of parameterized complexity with the practice of converting hard problems
into well-studied, standardized problems like SAT and using already existing
solvers to deal with the transformed instance; the thesis by De Haan (2016b)
offers a thorough introduction to this framework. SAT solvers are highly efficient
in practice, but their use is limited by the fact that only problems belonging
to NP admit a polynomial-time reduction to SAT. Hence, for problems that lie
in higher classes of the Polynomial Hierarchy (so, are ‘beyond’ NP), it might be
helpful to allow transformations into SAT that take FPT time with respect to some
parameter.

This idea can be formalized in different ways, leading to various new meth-
ods and complexity classes; we only mention two prominent concepts. The first
is to consider parameterized problems that admit a many-to-one FPT reduction
to SAT; the corresponding complexity class is called para-NP, a direct param-
eterized analog of NP.6 Another possibility is to use Turing reductions instead
of many-to-one reductions when converting a parameterized problem into SAT.
This leads to the definition of complexity classes like FPTNP[few], containing prob-
lems solvable by an FPT algorithm that has access to a SAT oracle, with the
restriction that the number of oracle queries must be upper-bounded by a func-
tion of the parameter. An example from social choice is the agenda safety problem
for the majority rule in judgment aggregation which was shown to be FPTNP[few]-
complete with respect to the agenda size as parameter by Endriss et al. (2015).

11.5 Conclusion

This chapter is meant to be a gentle introduction to parameterized complexity
for researchers in computational social choice. We have presented the basic
approach, several standard techniques and ideas, and tried to give some sim-
ple examples that allow for a quick start in parameterized complexity. We also
wanted to give some glimpse of what there is beyond the basic techniques in
order to provide a good starting point for the interested reader to get into this

5An Efficient Polynomial-Time Approximation Scheme or EPTAS is an algorithm that produces an
ε-approximate solution in f(ε) · |I|O(1) time for any instance I.

6The class para-NP can be alternatively defined as the set of parameterized problems solvable by a
nondeterministic Turing machine in FPT time.

Exploring Parameterized Complexity 19

beautiful research area. In this context, we also refer to the collection of PhD
theses in computational social choice (www.illc.uva.nl/COMSOC/theses.html)—
several of them use parameterized complexity and can serve as a signpost for
future directions and trends.

The area of parameterized complexity has experienced an immense boom in
recent years, and many new results and techniques have made this area a very
active and exciting one. We are convinced that this development also means a big
chance for the analysis of problems from computational social choice. Shedding
some more light on the complexity landscape of hard problems, parameterized
complexity does not only offer a possibility to face the criticism that complexity
theory is only a worst-case analysis and hence not suitable to serve as a barrier
against manipulative behavior. It might also contribute to make you see the many
faces of a hard problem and to gain a better feeling of what really makes it hard.
We admit that parameterized complexity cannot always save you from having a
hard time with your problems—but probably it can make you enjoy them more!

Acknowledgment

We thank Ulle Endriss for inviting us to write this chapter, and we are indebted to
Ronald de Haan for carefully reading a preliminary version of it and providing us
with helpful advice. Ildikó Schlotter was supported by the Hungarian Scientific
Research Fund (OTKA grants no. K-108383 and no. K-108947).

Bibliography

N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995.

C. Bazgan. Schémas d’approximation et complexité paramétrée. Technical report,
Université Paris Sud, 1995. Mémoire de DEA.

N. Betzler, R. Bredereck, J. Chen, and R. Niedermeier. Studies in computational
aspects of voting—a parameterized complexity perspective. In H. L. Bodlaender,
R. Downey, F. V. Fomin, and D. Marx, editors, The Multivariate Algorithmic
Revolution and Beyond, pages 318–363, Berlin, Heidelberg, 2012. Springer.

B. Bliem, R. Bredereck, and R. Niedermeier. Complexity of efficient and envy-free
resource allocation: Few agents, resources, or utility levels. In Proceedings of
the 25th International Joint Conference on Artificial Intelligence (IJCAI), pages
102–108, 2016.

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels. Journal of Computer and System Sciences, 75(8):
423–434, 2009.

H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Cross-composition: A new
technique for kernelization lower bounds. In Proceedings of the 28th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS), pages
165–176, 2011a.

20 B. Dorn and I. Schlotter

H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and
disjoint paths. Theoretical Computer Science, 412(35):4570–4578, 2011b.

S. Bouveret and J. Lang. Efficiency and envy-freeness in fair division of indivisible
goods: Logical representation and complexity. Journal of Artificial Intelligence
Research, 32(1):525–564, 2008.

R. Bredereck, J. Chen, P. Faliszewski, J. Guo, R. Niedermeier, and G. J. Woegin-
ger. Parameterized algorithmics for computational social choice: Nine research
challenges. Tsinghua Science and Technology, 19(4):358–373, 2014.

L. Cai and D. W. Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences, 67(4):789–807, 2003.

M. Cesati and L. Trevisan. On the efficiency of polynomial time approximation
schemes. Information Processing Letters, 64(4):165–171, 1997.

J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):
1346–1367, 2006.

J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theo-
retical Computer Science, 411(40-42):3736–3756, 2010.

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

M. Cygan, Ł. Kowalik, A. Socała, and K. Sornat. Approximation and parame-
terized complexity of minimax approval voting. CoRR, abs/1607.07906, 2016.
arXiv:607.07906 [cs.DS].

H. Dell and D. Marx. Kernelization of packing problems. In Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 68–
81, 2012.

H. Dell and D. van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. In Proceedings of the 42nd
Annual ACM Symposium on Theory of Computing (STOC), pages 251–260, 2010.

P. Dey, N. Misra, and Y. Narahari. Kernelization complexity of possible winner
and coalitional manipulation problems in voting. Theoretical Computer Science,
616:111–125, 2016.

R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, Heidelberg, 2005.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, New York, 1999.

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, London, 2013.

Exploring Parameterized Complexity 21

A. Drucker. New limits to classical and quantum instance compression. In Pro-
ceedings of the 53rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 609–618, 2012.

U. Endriss, R. de Haan, and S. Szeider. Parameterized complexity results for
agenda safety in judgment aggregation. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
127–136, 2015.

P. Faliszewski and R. Niedermeier. Parameterization in computational social
choice. In M.-Y. Kao, editor, Encyclopedia of Algorithms. Springer, 2015.

J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, New York, 2006.

L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 133–142. ACM, 2008.

A. Frank and É. Tardos. An application of simultaneous diophantine approxima-
tion in combinatorial optimization. Combinatorica, 7:49–65, 1987.

F. Gurski and M. Roos. Binary linear programming solutions and non-
approximability for control problems in voting systems. Discrete Applied Math-
ematics, 162:391–398, 2014.

R. de Haan. Parameterized complexity results for the Kemeny rule in judgment
aggregation. In Proceedings of the 22nd European Conference on Artificial Intel-
ligence (ECAI), volume 285 of Frontiers in Artificial Intelligence and Applications,
pages 1502–1510, 2016a.

R. de Haan. Parameterized Complexity in the Polynomial Hierarchy. PhD thesis,
Technische Universität Wien, 2016b.

D. Hermelin and X. Wu. Weak compositions and their applications to polynomial
lower bounds for kernelization. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 104–113, 2012.

R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

K. Jansen, S. Kratsch, D. Marx, and I. Schlotter. Bin packing with fixed number
of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.

R. Kannan. Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Research, 12:415–440, 1987.

R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, 1972.

22 B. Dorn and I. Schlotter

H. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8:538–548, 1983.

C. Lindner and J. Rothe. Fixed-parameter tractability and parameterized com-
plexity applied to problems from computational social choice. In A. Holder, ed-
itor, Mathematical Programming Glossary. INFORMS Computing Society, 2008.

D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the Exponen-
tial Time Hypothesis. Bulletin of European Association for Theoretical Computer
Science, 105:41–71, 2011.

D. Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

D. C. McGarvey. A theorem on the construction of voting paradoxes. Economet-
rica, 21:608–610, 1953.

N. Misra, A. Nabeel, and H. Singh. On the parameterized complexity of mini-
max approval voting. In Proceedings of the 14th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 97–105, 2015.

M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal deran-
domization. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science (FOCS), pages 182–191, 1995.

R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press,
Oxford, 2006.

R. Niedermeier. Reflections on multivariate algorithmics and problem parame-
terization. In Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 17–32, 2010.

	Motivation
	Basic Algorithmic Techniques
	Bounded Search Tree
	Kernelization
	Integer Linear Programming
	Color-coding
	Multiple Parameters

	Parameterized Intractability
	FPT Reduction
	Parameterized Complexity Classes

	Advanced Techniques
	Lower Bounds for Kernelization
	Lower Bounds Assuming ETH
	Approximation and Parameterized Algorithms
	Parameterized Complexity for Problems Beyond NP

	Conclusion

