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CHAPTER 1

Introduction

Hard problems exist. Although this has always been common knowledge, the systematic
study of computability only started in the 1930s. Numerous great mathematicians of that
time such as Gödel [68], Turing [132, 133], Church [31, 32], and Post [116] worked out different
mathematical foundations to capture the concept of computability and decidability, based on
formal systems in logic, λ-calculus and recursion theory. In the forthcoming years, the Turing
machine became the most successful theoretical model for computation. Based on this model,
in 1965 Hartmanis and Stearns introduced a notion for describing the efficiency of algorithms,
by measuring the worst-case time and space complexity required by an algorithm as a function
of the input length [76]. In a few years, several important results were proved by researchers
focusing on the connections between time and space complexities, and the underlying models
of computation [131, 23, 14, 128, 33].

In 1965, Edmonds [49] argued that polynomial-time solvability is a good formalization of
efficient computation. He noted that a wide range of problems can be solved by deterministic
algorithms that run in polynomial time, many of them requiring only time that is a linear,
quadratic, or cubic function of the length of the input. His work based the definitions of the
complexity classes P and NP containing problems that are solvable in deterministic and non-
deterministic polynomial time, respectively [48]. Since then, the most basic question arising
in the study of any computational problem is whether we can solve the given problem by an
algorithm whose worst-case running time is a polynomial function of the input length.

In 1971 and 1973, Cook [36] and Levin [91] independently defined the concept of NP-hard-
ness, and showed the existence of NP-hard problems. Their work yielded a powerful tool to
prove that some problems are computationally intractable. Following Karp [85], theoretical
computer scientists in the 1970s identified a large class of NP-hard problems [62], appearing
to be intractable by polynomial-time algorithms. Since these problems are ubiquitous in com-
puter science, researchers have been developing numerous ways to deal with them. In the last
two decades, parameterized complexity theory has proved to be successful in finding efficient
algorithms for NP-hard problems, by offering a framework for the detailed investigation of
hidden structural properties of such problems.

This thesis contains the study of several computationally hard problems in the context of
parameterized complexity. In this framework, an integer k, called the parameter, is attributed
to each instance of a given problem. Thanks to this notion, we can express the running time
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of an algorithm solving a problem as a function depending on both the size n of the input
and the parameter k, instead of regarding the running time only as a function that solely
depends on n. This two-dimensional analysis allows us to study the complexity of a given
problem in more detail.

The main objective of parameterized complexity is to develop efficient algorithms. We
say that an algorithm is fixed-parameter tractable or FPT, if it has running time f(k)nc for
some function f and constant c. Though such algorithms can have exponential running time
in general, they might still be efficient in practice, if the parameter k is small. We say that a
parameterized problem is FPT, if it admits such an algorithm. Then again, the parameterized
complexity investigation of a problem might also reveal its W[1]-hardness, which shows that
the problem is unlikely to be solvable by an FPT algorithm.

This thesis contributes to the parameterized complexity study of problems in connection
to the following areas:

• Apex graphs. Planarity is a central notion in classical graph theory. We say that
a graph is k-apex, if it contains k vertices such that removing these vertices results
in a planar graph. The celebrated results of Robertson and Seymour in graph minor
theory [120, 121] imply that the problem of recognizing k-apex graphs is FPT, if k is
the parameter. However, the proof of this result is existential, and does not actually
construct an FPT algorithm. Chapter 2 of this thesis presents an FPT algorithm for
this problem.

• Almost isomorphic graphs. The complexity of deciding whether two graphs are iso-
morphic is among the most important open questions of complexity theory. Polynomial-
time algorithms exist for special cases, such as the case where the input graphs are pla-
nar graphs [78] or interval graphs [96]. In this thesis, we study a variant of this problem,
which asks whether two graphs can be made isomorphic by deleting k vertices from the
larger graph. We investigate the parameterized complexity of this graph modification
problem is Chapters 3 and 4, with the parameter being the number k of vertices to
delete.

• Stable matchings. The classical Stable Matching or Stable Marriage problem deals
with the following situation: we are given n men and n women, and each person ranks
the members of the opposite sex in order of preference. The task is to find a matching
(an assignment between men and women) that is stable in the following sense: there is
no man-woman pair that are not matched to each other, and prefer each other to their
partners in the matching. This problem is highly motivated by practice, as it models
several situations where we face a matching problem in a two-sided market where pref-
erences play an important role. Typically, the Stable Marriage problem has applications
connected to admission systems, like the detailing process of the US Navy [118], the
NRMP program for assigning medical residents in the USA [124, 127], or many other
establishments in education [11, 2, 3].

Although the Stable Marriage problem can be solved in linear time by the Gale-Shapley
algorithm [60], many important extensions of the problem are computationally hard.
Here, we consider two generalizations of this problem. In Chapter 5, we examine the
Stable Marriage with Ties and Incomplete Lists problem, where the agents
need not rank each member of the opposite sex, and the preference lists of the agents
might also contain ties. Chapter 6 deals with the Hospitals/Residents with Cou-
ples problem, which is a generalization of the Stable Marriage problem that allows
some agents (on the same side of the market) to form couples and have joint prefer-
ences.
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In the cases where the obtained results show the computational hardness of some prob-
lem, we also investigate the theoretical possibilities for applying local search methods for
the given problem. Local search is a metaheuristic that is widely applied to deal with opti-
mization problems where an exact solution cannot be found in polynomial time. The basic
mechanism of local search is to iteratively improve a given solution of the problem instance
by using only local modification steps. The key task of this iterative method is to explore the
local neighborhood of the actual solution. We can formulate this problem as follows: given
an instance I of the problem, a solution S for I, and an integer `, find a solution S′ for I in
the `-neighborhood of S such that S′ is better than S. Clearly, by searching a larger neigh-
borhood, we can hope for a better solution. The efficiency of local search can be significantly
improved if this neighborhood exploration task can be carried out effectively, allowing us to
search relatively large neighborhoods in moderate time. We investigate this issue using the
framework of parameterized complexity.

The main results of this thesis are listed below. For simplicity, we do not state our results in
the most precise manner here. Some of the results only hold under some standard complexity
theoretic assumptions.

• We give a quadratic FPT algorithm for recognizing k-apex graphs in Theorem 2.4.3,
where the parameter is k.

• We investigate the complexity of the following problem: given two graphs H and G,
decide whether removing k vertices from G can result in a graph isomorphic to H . More
precisely, we obtain the following results:

− Theorem 3.1.6 yields an FPT algorithm with parameter k for the case where H
and G are both planar graphs, and H is 3-connected.

− Theorem 3.2.3 presents an FPT algorithm with parameter k for the case where H
is a tree and G can be arbitrary.

− Theorem 4.3.1 gives an FPT algorithm with parameter k for the case where H
and G are both interval graphs.

− Theorems 3.1.1 and 4.2.1 show NP-completeness for the cases where H and G are
either both 3-connected planar graphs, or they are both interval graphs, respec-
tively.

• We study the Stable Marriage with Ties and Incomplete Lists (or SMTI)
problem, obtaining the following results:

− Theorem 5.1.1 shows that finding the maximum stable matching is FPT, if the
parameter is the total length of the ties.

− Theorem 5.1.2 shows that finding the maximum stable matching is W[1]-hard, if
the parameter is the number of ties.

− Theorems 5.2.1 and 5.2.2 prove that no local search algorithm for this problem
runs in FPT time where the radius of the explored neighborhood is considered as
a parameter, and either all ties have length two, or we regard the number of ties
as a parameter as well.

− Theorems 5.3.1, 5.3.2, and 5.3.3 investigate the parameterized complexity of two
optimization problems connected to SMTI, namely the Minimum Regret SMTI
and the and the Egalitarian SMTI problems.
Theorem 5.3.1 shows that both these problems are FPT if the parameter is the
total length of the ties, but Theorems 5.3.2 and 5.3.3 present strong inapprox-
imability results, stating that no approximation algorithms (with certain ratio
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guarantee) can have FPT running time for these problems, if the parameter is the
number of ties.

• We study the Hospitals/Residents with Couples (or HRC) problem, obtaining
the following results:

− Theorem 6.1.1 states that deciding whether a stable assignment exists for an in-
stance of the Hospitals/Residents with Couples problem is W[1]-hard, where
the parameter is the number of couples.

− Theorem 6.2.2 presents a local search algorithm for the maximization version
of the HRC problem that runs in FPT time, if we regard both the number of
couples and the radius of the explored neighborhood as a parameter. By contrast,
Theorem 6.2.1 proves that no such algorithm can have FPT running time, if the
only parameter is the radius of the neighborhood explored.

− In Theorem 6.3.1, we prove that a simplified version of HRC where no preferences
are involved, called the Maximum Matching with Couples problem, can be
solved in randomized FPT time if the parameter is the number of couples.

− Theorem 6.3.5 shows that no permissive local search algorithm for Maximum
Matching with Couples runs in FPT time, if the parameter is the radius of
the explored neighborhood.

The results in Chapters 2, 3, 4, 5, and 6 appear in the papers [104], [106], [108] [105],
and [107], respectively.

The organization of the remaining sections of this chapter is the following. After fixing
our notation in Section 1.1, we provide a brief introduction to parameterized complexity
theory in Section 1.2. Then, we discuss the algorithmic aspects of local search methods in
Section 1.3, and we give a short overview of the area of stable assignments in Section 1.4.

1.1 Notation

Let us introduce the notation we use throughout the thesis. We assume that the reader is
familiar with the standard definitions of graph theory and classical complexity theory. For
an overview on these topics, refer to [41] and [62]. Here we only introduce formal notation
for some basic concepts, more complex definitions will be convenient to give later when they
are used.

We write [n] for the set {1, . . . , n} and
(
[n]
2

)
for the set {(i, j) | 1 ≤ i < j ≤ n}. The

vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively. We
consider the edges of a graph as unordered pairs of its vertices. The set of the neighbors
of x ∈ V (G) is denoted by NG(x). For some X ⊆ V (G) we let NG(X) =

⋃
x∈X NG(x) \ X

and NG[X ] = NG(X) ∪ X . The degree of x in G is dG(x) = |NG(x)|. If Z ⊆ V (G) and G is
clear from the context, then we let NZ(x) = NG(x) ∩ Z and NZ(X) = NG(X) ∩ Z.

For some X ⊆ V (G), G − X is obtained from G by deleting the vertices X , and the
subgraph of G induced by X is G[X ] = G − (V (G) \ X). For a subgraph G′ of G, we
let G−G′ be the graph G−V (G′). We say that two distinct subsets of V (G) are independent
in G, if no edge of G runs between them. Otherwise, they are neighboring. For some vertex x,
sometimes we will use only x instead of {x}, but this will not cause any confusion.

A matching in G is a set M of edges such that no two edges in M share an endpoint. If x
is an endpoint of some edge in M , then x is covered by M . For some x covered by M , we
write M(x) = y if xy ∈ M .
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An isomorphism from a graph G into a graph G′ is a bijection ϕ : V (G) ∪ E(G) →
V (G′) ∪ E(G′) that maps vertices of G to vertices of G′, edges of G to edges of G′, and
preserves incidence. For a subgraph H of G, ϕ(H) is the subgraph of G′ that consists of the
images of the vertices and edges of H .

A graph is called planar, if it can be drawn in the plane such that its edges do not cross
each other. For a more formal definition on planarity, see [41]. A planar graph together with
a planar embedding is called a plane graph.

A decision problem in classical complexity theory can be described as follows. Given a
finite alphabet Σ and a set Q ⊆ Σ∗, the task of the decision problem corresponding to Q is
to decide whether a given input w ∈ Σ∗ is contained in Q or not. When defining decision
problems, we often omit Σ and Q from the definition, and instead we only describe the task
of the problem. For example, the well known Clique problem can be defined as follows.

Clique

Input: A graph G and an integer k.
Task: Decide whether G has a clique of size k.

Besides decision problems, we will often deal with optimization problems as well. In such
problems, for each input w we define the set S(w) of feasible solutions and an objective
function T assigning a real value to each solution in S(w). Given the input w, the task of the
corresponding minimization or maximization problem is to find a feasible solution S ∈ S(w)
such that the value T (S) is the smallest or largest possible, respectively. For example, the
optimization version of Clique, called Maximum Clique, is the following.

Maximum Clique

Input: A graph G.
Task: Find a clique of G that has maximum size.

1.2 Parameterized complexity

In this section, we give a brief overview of the framework of parameterized complexity, which
is the research methodology of this thesis. We start with describing the reasons that motivate
the use of this framework in Section 1.2.1. After introducing the fundamental definition of
fixed-parameter tractability in Section 1.2.2, Section 1.2.3 shows the various possibilities that
can be applied when choosing the parameterization of a given problem. In Section 1.2.4, we
present the toolkit of parameterized hardness theory which can be used to prove negative
results.

All the definitions and arguments in this section are part of the standard framework
of parameterized complexity. For a comprehensive introduction to this area, refer to the
monograph of Downey and Fellows [44]. For more details and a newer perspective, see also
[114] and [57].

1.2.1 Motivation

In the classical complexity investigation of a decision problem Q, we are usually interested
in the question whether we can give an algorithm for Q with running time polynomial in the
size of the input, or show that Q is NP-complete. This latter means that a polynomial-time
algorithm for Q would yield a polynomial-time algorithm for every decision problem in the
class NP. Since this class contains many problems that are considered computationally hard,
the NP-completeness of Q is considered as a strong evidence suggesting that Q does not
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admit a polynomial-time algorithm. Therefore, usually we only hope for an exponential time
algorithm for such problems.

However, an NP-completeness result is never sufficient from a practical point of view.
First, it does not give any suggestions to handle the given problem in practice. Clearly,
even if a polynomial-time algorithm is out of reach, finding a moderately exponential-time
algorithm might be of practical use. Comparing exponential-time algorithms is therefore an
important goal.

Second, knowing that a problem is NP-complete does not yield too much insight into the
problem. The classical complexity analysis only examines the running time of an algorithm
as a function of the input size. However, there may exist other properties of the input that
influence the running time in a crucial way. A more detailed, multidimensional analysis of
the running time can help the understanding of the given problem, and can help finding
more efficient solutions for it. In many cases, such an analysis shows that the hardness of the
problem mainly depends on some decisive property of the input. In such a case, we can try to
make restrictions on this property of the input on order to obtain algorithms with tractable
running times.

The aim of parameterized complexity, a framework developed mainly by Downey and
Fellows, is to address these problems. In this framework, a parameter in N is assigned to
each input of a given problem Q ⊆ Σ∗. Hence a parameterized problem can be considered
as a problem Q ⊆ Σ∗ together with a parameterization function κ : Σ∗ → N that assigns a
parameter to each possible input. We study the running time of an algorithm solving Q as a
function of both the input size and the parameter value. Although we define the parameter
as a nonnegative integer, the framework can easily handle those cases as well where the
parameter is a tuple of integers.

To see an example for a parameterized problem, let us define the parameterized Clique
problem as follows.

Clique (standard parameterization)

Input: a graph G and an integer k.
Parameter: the integer k.
Task: decide whether G has a clique of size k.

In Clique, the parameter is the size of the clique we are looking for. In the Dominating
Set problem, we are given a graph G and an integer k, and the task is to find a dominating
set of a graph G, i.e. a set of vertices D ⊆ V (G) such that each vertex in V (D)\D is adjacent
to some vertex in D. If we consider k as the parameter, then this problem turns out to be hard
from a parameterized viewpoint. However, when the parameter is not the solution size, but
a crucial property of the input graph, called its treewidth, then the obtained parameterized
problem becomes easier to deal with. For the definition of treewidth, see Section 2.1, for more
on the topic refer to [18, 41].

Dominating Set (parameterized by treewidth)

Input: a graph G and an integer k.
Parameter: the treewidth t of G.
Task: decide whether G has a dominating set of size k.

We can also investigate the dependence of the complexity of a problem on more than one
parameters, like in the following example.
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n = 102 n = 104 n = 106 n = 109

k = 10 3; 5; 22 5; 7; 44 7; 9; 66 10; 12; 99
k = 20 3; 8; 42 5; 10; 84 7; 12; 126 10; 15; 189
k = 50 5; 11; 102 5; 13; 204 7; 15; 306 10; 18; 459
k = 100 10; 32; 202 10; 34; 404 10; 36; 606 11; 39; 909

Table 1.1: A table comparing different values of the functions f1(n, k) = 1.2738k + kn,
f2(n, k) = 2kn, and f3(n, k) = nk+1. Each table entry contains the values blog10(fi(n, k))c
for i = 1, 2, 3, separated by semicolons.

d-Hitting Set (parameterized by d and the solution size)

Input: a collection C of subsets of size at most d of a set S, and an
integer k.
Parameter: the integers d and k.
Task: decide whether there is a set S′ ⊆ S with |S′| ≤ k such that no
element in C is disjoint from S′.

As we will see in the next section, the parameterized complexity framework offers us a
useful tool to handle computationally hard problems, by using the notion of fixed-parameter
tractability.

1.2.2 FPT algorithms

In this section, we introduce the central concept of parameterized complexity, which is the
definition of an FPT algorithm. But first, let us have a look on the parameterized version
of the NP-hard Vertex Cover problem. Here the input is a graph G and some integer k,
with k being the parameter, and the task is to decide whether G has a vertex cover of size k.
(A vertex cover of a graph is a set of vertices S such that each edge in the graph has at least
one endpoint in S.)

It is easy to see that Vertex Cover can be solved in nk+1 time where n is the number of
vertices in the input graph, by trying all possibilities to choose k vertices and check whether
they form a vertex cover. Fortunately, more efficient algorithms are also known: one can show
a very simple O(2kn) algorithm for it, but even a running time of O(1.2738k + kn) can be
achieved [27].

Observe that if k is relatively small compared to n, then these algorithms are more
efficient than the trivial nk+1 algorithm. To illustrate this, Table 1.1 shows a comparison of
such running times for different values of n and k. The key idea that leads to the efficiency of
these algorithms is to restrict the combinatorial explosion only to the parameter, so that the
exponential part of the running time is a function of k only. This leads us to the following
definition.

Given a parameterized problem, we say that an algorithm is fixed-parameter tractable
or FPT, if its running time on an input I having parameter k can be upper bounded
by f(k)|I|O(1) for some computable function f . Observe, that since the exponent of |I| is
a constant, the running time can only depend on the input size in a polynomial way. How-
ever, the function f can be exponential or an even faster growing function, but note that it
only depends on the parameter. We say that a parameterized problem is FPT, if it admits
an FPT algorithm.

The usual aim of parameterized complexity is to find FPT algorithms for parameterized
problems. The research for such algorithms has led to a wide range of fruitful techniques that
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are commonly used in designing both parameterized and classical (non-parameterized) algo-
rithms. These techniques include bounded search tree methods, color-coding, kernelization,
the application of graph minor theory, treewidth-based approaches and many others. Besides,
parameterized complexity also includes a hardness theory, offering a useful negative tool for
showing that some parameterized problem is unlikely to be FPT. Analogously to NP-hard-
ness in classic complexity theory, there exist W[1]-hard problems which can be considered as
problems that are hard from a parameterized viewpoint. We will give a short introduction to
this area in Section 1.2.4.

In a typical NP-hard problem, there can be many relevant parts of the input that influence
the complexity of the given problem. Thus, if a parameterized problem turns out to be
intractable with a given parameterization, then considering another parameterization may
lead to an efficient algorithm. We can also investigate whether considering more than one
parameters might result in a fixed-parameter tractable problem. We discuss the topic of
choosing the parameterization in Section 1.2.3.

1.2.3 Choosing the parameter

When parameterizing a problem, we have many possibilities to choose the parameter. It can
be any part or property of the input that has relevant effects on the complexity of the given
problem. Throughout the thesis we will present different types of parameterization. To name
a few of the numerous possibilities, we present some examples.

One of the most frequently used parameterizations is the following “standard” parame-
terization of optimization problems. Given some optimization problem Q with an objective
function T to, say, maximize, we can transform it into a decision problem by asking for
a given an input w of Q and some integer k, whether there is a feasible solution S for w
with T (S) ≥ k. Now, the standard parameterization is to consider the objective value k as
the parameter. In many situations, the objective value is the size of a solution, so the stan-
dard parameterization in such cases this is to choose the parameter of the given problem to
be the size of the solution.

The standard parameterization of Clique, where the parameter is the size of the clique to
be found, is a simple example for this. A similar example, which has already been mentioned,
is the standard parameterization of Vertex Cover where the parameter is the size of the
desired vertex cover. The parameterized k-Apex Graph problem studied in this thesis also
belongs to this class. In this problem, the task is to decide whether a given graph can be
made planar by deleting k vertices from it, and we consider k as the parameter.

Another simple way to choose the parameter for a given problem is to consider such
properties of the input as parameter that usually have crucial consequences on computa-
tional complexity. For example, if the input of a problem is a graph, then we can consider its
maximum degree, its density, or its treewidth as the parameter. The general observation un-
derlying such parameterizations is that graphs with small maximum degree, few edges, small
treewidth, etc. tend to be tractable instances for many combinatorial problems. Considering
geometrical problems, a similar parameter can be the dimension of the considered problem.

Another commonly used parameterization is to define the parameter of a given instance as
its distance from some trivially solvable case. This parameterization catches the expectation
that tractable instances should be close to some easy case of the problem. For instance, the
Stable Marriage with Ties and Incomplete Lists problem can be solved in polynomial
time in the case when there are no ties contained in the preference lists. Thus, the number
of ties in an instance describes its distance from this easily solvable case. Hence, taking
the number of ties to be the parameter, we can study how the complexity of this problem
depends on this distance from triviality. Notice that the k-Apex Graph problem can also
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be considered as an example of this type of parameterization: since we can decide in linear
time whether a graph is planar [78], we can regard the case when the parameter k is zero as
trivial.

Yet another intuitive parameterization is to pick a part of the problem that tends to
be small in the practical instances. Since FPT algorithms are efficient when the parameter
value is moderate, such a parameterization results in algorithms that are fast in practice. The
Hospitals/Residents Assignment with Couples problem yields a good illustration for
this parameterization. This problem can be solved in linear time if no couples are involved
[60, 72], but the presence of couples makes it NP-hard. Now, since the number of couples
is typically small compared to the total number of residents (and thus to the total size of
the instance), taking the number of couples to be the parameter of an instance yields a
parameterization that is useful in practice.

We can also mention the concept of dual parameterization, which leads to interesting
problems in many cases. This idea can be best presented through an example: the dual of
the standard parameterization of Vertex Cover asks whether a graph G contains a vertex
cover of size n − k, where n = |V (G)| and k is the parameter. Thus, the parameter is not
the size of the vertex cover to be found, but the number of the remaining vertices. Since
the complement of a vertex cover is always an independent set and vice versa, this problem
is exactly the standard parameterization of the Independent Set problem, where given a
graph G and a parameter k, we ask whether G has an independent set of size k.

Such a parameterization also appears in this thesis, arising in the study of the Induced
Subgraph Isomorphism problem. The task of this problem is to determine whether for
two given graphs G and H it holds that H is an induced subgraph of G. The standard
parameter of this problem is |V (H)|, the number of vertices of the smaller graph. The dual
of this parameterization is to regard |V (G)| − |V (H)| as the parameter, which makes sense
in situations where the two graphs are close to each other in size.

Although we defined the parameter as a nonnegative integer, the framework can be ex-
tended in a straightforward way to handle cases where we have several nonnegative integers
as parameters. For example, if k1, k2, . . . , kn ∈ N are each regarded as parameters, then an
FPT algorithm must have running time at most f(k1, k2, . . . , kn)|I|O(1) for some function f ,
where I denotes the given input of the algorithm. It can be easily seen that all definitions
can be modified in a straightforward way in order to handle cases with more parameters.

However, there is also a simple trick that allows us to handle cases where we have more
than one parameters from N, without extending the framework directly. Clearly, given non-
negative integers k1, k2, and n, a function T (n, k1, k2) can be bounded by f(k1, k2) for
some f if and only if it can be bounded by f ′(k1 + k2) for some f ′. Therefore, regard-
ing k1, k2, . . . , kn ∈ N as parameters is equivalent to setting k =

∑n
i=1 ki to be the unique

parameter.

To see an example where it is natural to examine more than one parameters, consider
the Stable Marriage with Ties and Incomplete Lists problem. This problem can be
solved in linear time if no ties are contained in the given instance [60, 72], but in general it
is NP-hard. Hence, ties play a key role in the complexity analysis of the problem. Therefore,
a natural parameter is the number of ties appearing in the input. But as we will see in
Chapter 5, the length of the ties is also important. This leads us to the parameterization
where both the number of ties and the maximum length of ties in an instance are regarded
as parameters.
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1.2.4 Parameterized hardness theory

In this section, we describe the hardness theory of parameterized complexity, widely used for
showing that some problem is not likely to admit an FPT algorithm. The theory of param-
eterized intractability is analogous to the theory of NP-hardness in the classical complexity
theory. Just as polynomial-time reductions play a key role in the definition of NP-hardness,
the theory of parameterized hardness also relies on the concept of reductions.

Let us give the definition of a parameterized reduction. Let (Q, κ) and (Q′, κ′) be two
parameterized problems, meaning that Q, Q′ ⊆ Σ∗ are two decision problems and κ, κ′ :
Σ∗ → N are the corresponding parameterization functions. We say that L : Σ∗ → Σ∗ is a
parameterized or FPT reduction from (Q, κ) to (Q′, κ′) if there exist computable functions f
and g such that the followings are true for every x ∈ Σ∗:

• x ∈ Q if and only if L(x) ∈ Q′,

• if κ(x) = k and κ′(L(x)) = k′, then k′ ≤ g(k), and

• L(x) can be computed in f(k)|x|O(1) time, where k = κ(x).

Using this definition we can define the class of W[1]-hard problems. We say that a pa-
rameterized problem (Q, κ) is W[1]-hard if there exists a parameterized reduction from the
fundamental Short Turing Machine Acceptance problem to (Q, κ). We will not need
the exact definition of this problem, but basically its task is to decide whether a given nonde-
terministic Turing-machine can accept a given word in k steps, where k is the parameter. If
any W[1]-hard problem would admit an FPT algorithm, then this would result in the collapse
of the W-hierarchy. Namely, we would obtain fixed-parameter tractability for a whole class
of problems, resulting in the equivalence of the classes FPT and W[1], which is considered
highly unlikely. Thus, W[1]-hardness can be thought of a strong evidence showing that we
cannot expect an FPT algorithm for the given problem.

The general technique to show that a problem Q is W[1]-hard with parameterization κ is
to give an FPT reduction from an already known W[1]-hard problem to (Q, κ). In particular,
all W[1]-hardness proofs in this thesis contain a reduction from the W[1]-hard parameterized
Clique problem (with the standard parameterization).

1.3 Local search and parameterized complexity

This section outlines the idea of local search and its connection to parameterized complexity.
Sections 1.3.1 and 1.3.2 present standard knowledge in this field, but in Section 1.3.3 we
present a new contribution that differentiates between two types of local search algorithms.

1.3.1 Local search

Local search is a simple and extremely useful metaheuristic that is widely applied in opti-
mization problems [1]. Its basic idea is to start with a feasible solution of the problem, and
then iteratively improve it by searching for better solutions in the local neighborhood of the
actual solution. Thus, local search algorithms explore the space of feasible solutions by mov-
ing from solution to solution. In each step, the algorithm searches the neighborhood of the
actual solution, and chooses the next solution by using only local information. The efficiency
of such a method depends both on the neighborhood relation defined in the space of feasible
solutions, and the strategy which determines the next solution in a given neighborhood.

In the most simple variant, the algorithm always chooses the best solution found in some
small local neighborhood of the actual solution, and iterates this step until it either finds a
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solution that is better enough, or until some time bound elapses. Although this method, also
called “hill-climbing”, usually does not necessarily lead to an optimal solution, it is considered
as a scalable heuristic.

In the last thirty years, many efforts have been made to improve the efficiency of this basic
heuristic. Simulated annealing [88, 134] enhances the chance of finding an optimal solution
by using a probabilistic method. Here, the next solution is chosen randomly according to a
distribution that depends on the quality of the given solution (and also on a global variable
describing “temperature”). Tabu search tries to increase the size of the solution space explored
by maintaining a tabu list that contains solutions that have already been investigated [67].
Greedy randomized adaptive search procedure (GRASP) combines the local search technique
with a greedy constructive approach [54].

Although all these approaches use the local search heuristic in a different way, each of
them needs to explore the local neighborhood of a given solution efficiently. Clearly, there
is a trade off between the expected quality of the solution to be found in a step and the
size of the neighborhood we search. (See also the literature on very large-scale neighborhood
search (VLNS) algorithms [7]). Thus, to speed up local search algorithms, we need to find
algorithms that explore the neighborhood of a given solution efficiently. In the followings, we
define this core step of local search more formally.

Let Q be an optimization problem with an objective function T which we want to, say,
maximize. To define the concept of neighborhoods, we suppose there is some distance d(S, S0)
defined for each pair (S, S0) of solutions for some instance I of Q. We say that S is `-close
to S0 if d(S, S0) ≤ `. Now, we can describe the task of a local search algorithm for Q: given
an instance I of Q, a solution S0 for I, and some ` ∈ N, decide whether I has a solution S
such that T (S) > T (S0) and d(S, S0) ≤ `. We will refer to this problem as the local search
or neighborhood search problem for Q. Section 1.3.2 discusses the parameterized complexity
aspects of this issue.

1.3.2 The parameterized neighborhood search problem

Although local search is a popular technique to handle computationally hard problems, in-
vestigations considering the connection of local search and parameterized algorithms have
only been started a few years ago. However, research in this area has been gaining increasing
attention lately [99].

In the previous section we formalized the neighborhood search problem that has to be
solved many times when applying local search methods to deal with an optimization prob-
lem Q. Its task is the following: given an input instance I of Q, an initial solution S0 and an
integer `, find a solution for I that is better than S0 but is `-close to S0.

Typically, the `-neighborhood of a solution S0 can be explored in nO(`) time by examining
all possibilities to find those parts of S0 that should be modified. Here, n denotes the size
of the input. However, in some cases the dependency on ` can be improved by getting ` out
of the exponent of n, resulting in a running time of the form f(`)nO(1) for some function f .
Observe that this means that the neighborhood search problem is fixed-parameter tractable
with parameter `. Consequentially, it is natural to ask whether we can give an FPT algorithm
for the local search problem with this parameterization.

This question has already been studied in connection with different optimization prob-
lems [86, 129]. Krokhin and Marx [90] investigated both the classical and the parameter-
ized complexity of this neighborhood exploration problem for Boolean constraint satisfaction
problems. They found a considerable amount of CSP problems that are NP-hard, but fixed-
parameter tractable when parameterized by the radius of the neighborhood to be searched.
As a negative example, Marx [103] showed that the neighborhood exploration problem is
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W[1]-hard for the Metric Traveling Salesperson Problem. Fellows et al. [52] consid-
ered the applicability of local search for numerous classical problems such as Dominating
Set, Vertex Cover, Odd Cycle Transversal, Maximum Cut and Minimum Bisec-
tion. They presented FPT algorithms solving the corresponding neighborhood exploration
problems on sparse graphs (like graphs of bounded local treewidth and graphs excluding a
fixed graph as a minor), and provided hardness results indicating that brute force search is
unavoidable in more general classes of sparse graphs, like 3-degenerate graphs.

1.3.3 Strict and permissive local search

In this section, we contribute to the framework of the theory of local search by making
a minor distinction between a “strict” and a “permissive” version of neighborhood search
algorithms. We will refer to the standard formulation of the neighborhood search problem
for some optimization problem Q as the strict local search problem for Q. For simplicity, we
assume that Q is a maximization problem, with T denoting its objective functions.

Strict local search for Q

Input: (I, S0, `) where I is an instance of Q, S0 is a solution for I, and ` ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ ` and T (S) >

T (S0), then output such an S.

In contrast, a permissive local search algorithm for Q is allowed to output a solution
that is not close to S0, provided that it is better than S0. In local search methods, such an
algorithm is as useful as its strict version. Formally, its task is as follows:

Permissive local search for Q

Input: (I, S0, `) where I is an instance of Q, S0 is a solution for I, and ` ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ ` and T (S) >

T (S0), then output any solution S′ for I with T (S′) > T (S).

Note that if an optimal solution can be found by some algorithm, then this yields a
permissive local search algorithm for the given problem. Yet, finding a strict local search
algorithm might be hard even if an optimal solution is easily found. An example for such
a case is the Vertex Cover problem for bipartite graphs [90]. Besides, proving that no
permissive local search algorithm exists for some problem is clearly harder than it is for
strict local search algorithms. We also present results of this kind in this thesis.

1.4 Stable matchings

This section gives a brief overview of the area of stable matchings. First, we introduce the
classical formulation of the Stable Marriage problem in Section 1.4.1. After that, we describe
the extensions of this problem which allow the presence of ties or couples in Sections 1.4.2
and 1.4.3, respectively.

1.4.1 Classical stable matching problems

The Stable Marriage or Stable Matching problem was introduced by Gale and Shapley [60].
In the classical problem setting, we are given a set of women, a set of men, and a preference
list for each person, containing a strict ordering of the members of the opposite sex. The task
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Figure 1.1: Illustration of a Stable Marriage instance. White circles represent men, black
circles represent women. The small numbers on the edges represent the preferences. The
matching represented by bold edges is unstable in Figure (a), but stable in Figures (b)
and (c).

is to find a matching between men and women that is stable in the following sense: there are
no man m and woman w both preferring each other to their partners in the given matching.

Figure 1.1 shows an example where there are three men m1, m2, m3 and three women w1,
w2, w3 with preference lists as follows. We denote by L(x) the preference list for a person x.

L(m1) : w1, w2, w3 L(w1) : m2, m3, m1

L(m2) : w3, w2, w1 L(w2) : m3, m2, m1

L(m3) : w2, w1, w3 L(w3) : m1, m3, m2

In this instance, the matching {m1w1, m2w2, m3w3} shown in (a) of Figure 1.1 is not
stable, because m3 and w1 both prefer each other to their partner in the matching. In such
a case, we say that m3w1 is a blocking pair. Observe that m3 and w2 form a blocking pair
as well. This instance can be easily seen to admit two stable matchings, which are depicted
in (b) and (c) of Figure 1.1.

A slightly more general formulation of the Stable Marriage problem is the Hospitals/Res-
idents problem, which was introduced by Gale and Shapley [60] to model the following situ-
ation. We are given a set of hospitals, each having a number of open positions, and a set of
residents applying for jobs in the hospitals. Each resident has a ranking over the hospitals, and
conversely, each hospital has a ranking over the residents. The task of the Hospitals/Residents
problem is to assign as many residents to some hospital as possible, with the restrictions that
the capacities of the hospitals are not exceeded and the resulting assignment is stable. We
consider an assignment as unstable, if there is a hospital h and a resident r such that r is not
assigned to h, but both h and r would benefit from contracting with each other instead of
accepting the given assignment. The number of residents that are assigned to some hospital
is called the size of the assignment. Note that if each hospital has capacity one, then we
obtain an instance of the Stable Marriage problem.

Both of these problems are linear-time solvable by the classical algorithm of Gale and
Shapley [60, 72]. Given an instance of the Hospitals/Residents problem, their algorithm
always finds a stable assignment. Moreover, the Gale-Shapely algorithm can even handle
the case when the preference lists of the hospitals and the residents may be “incomplete”,
meaning that residents can refuse to be applied in some of the hospitals, and vice versa. It is
also true that every stable assignment must have the same size, hence any stable assignment
has maximum size [72], even in the case of incomplete preference lists.

The area of stable matchings has several practical application. Among others, we can
mention the NRMP program for assigning medical residents in the USA [124, 127], the
detailing process of the US Navy [118], or many application in the field of education like the
admission system of higher education in Hungary [11]. Although understanding the original
version of the Stable Marriage problem is of crucial importance, most of the applications
motivate some kind of extension or modification of this problem. In the recent decade various
versions have been investigated. For example, we can extend the model so that it allows
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Figure 1.2: Illustration of an SMTI instance admitting two stable matchings of different
sizes. Double black circles represent women who have ties in their preference lists.

preference lists to contain ties, or residents to form couples. The case when the market of
the agents is one-sided, called the Stable Roommates problem [79, 82], and the case when
the assignment may be a many-to-many matching [125, 13, 47] are also among the most
frequently studied variants.

1.4.2 Ties

One of the most important generalizations of the classical Stable Marriage problem is the
Stable Marriage with Ties and Incomplete Lists (or SMTI) problem, where we
not only allow for incomplete preference lists, but we also allow ties in the preference list,
meaning that the ordering represented by the preference lists may not be strict. This extension
is highly motivated by practice, see e.g. the various applications in educational admission
systems [11, 2, 3].

When ties are involved, the concept of stability has to be redefined. We consider a match-
ing to be stable, if there are no man m and woman w both strictly preferring each other to
their partners in the given matching. We remark that other definitions of stability are also
in use, such as strong and super-stability [80]. The definition of stability used by us, which
received the most attention, is sometimes referred to as weak stability.

It is easy to see that, by breaking ties in an arbitrary way and applying the Gale-Shapley
algorithm, a stable matching can always be found. But as opposed to the case when no ties
are allowed, stable matchings of various size may exist. To see an example, let us consider
the following instance, containing men m1, m2, m3 and women w1, w2, w3 with the preference
lists below. This instance contains one tie, present in the preference list of w2, and both the
lists L(w3) and L(m3) are incomplete, as they are unacceptable for each other. (Through-
out this thesis, we denote ties in the preference lists of some SMTI instance with rounded
parenthesis.)

L(m1) : w1, w2, w3 L(w1) : m2, m1, m3

L(m2) : w2, w3, w1 L(w2) : (m2, m3), m1

L(m3) : w1, w2 L(w3) : m2, m1

It is easy to verify that this instance admits two stable matchings. As Figure 1.2 shows,
one of them has size two, and the other has size three.

When ties are present in an instance, the usual aim is to maximize the size of the stable
matching. The resulting problem is called the Maximum Stable Marriage with Ties
and Incomplete Lists (or MaxSMTI) problem. It has been proven that finding a stable
matching of maximum size in this situation is NP-hard [84]. Since then, several researchers
have attacked the problem, most of them presenting approximation algorithms [83, 87]. We
study this problem in more detail in Chapter 5,



1.4. Stable matchings 15

(a) (b) (c)

s1s1 s1s2s2 s2c1c1 c1c2c2 c2

h1h1 h1h2h2 h2

1
1

1 1

1
1

1 1

1
1

1 1

2

2

2
2

2

2

2
2

2

2

2
2

3

3

3

3

3

3

4

4

4

4

4

4

Figure 1.3: Illustration of a HRC instance. Circles represent residents and rectangles repre-
sent hospitals. Bold edges show the assignments M1, M2, and M3 on figures (a), (b), and (c),
respectively.

1.4.3 Couples

Here we introduce an extension of the Hospitals/Residents problem called Hospitals/Res-
idents with Couples or HRC. In this problem, residents may form couples and thus
have joint rankings over the hospitals. This means that instead of ranking the hospitals
individually, couples rank pairs of hospitals according to their preferences. This allows them
to express intentions such as being applied in the same hospital, or in hospitals that are close
to each other. If we allow joint preferences, the notion of stability has to be adopted to fit this
context as well. Although we only give the details later, together with the formal definition
of the problem in Chapter 6, we show an intuitive example.

We define an instance of HRC that contains residents s1, s2, c1, c2 and hospitals h1, h2.
Let s1 and s2 be singles, and let (c1, c2) form a couple c. The capacity of both h1 and h2 is 2.
The preference lists of the agents are the following (see Figure 1.3 for an illustration):

L(s1) : h1, h2 L(h1) : s1, c1, s2, c2

L(s2) : h2, h1 L(h2) : c1, s1, c2, s2

L(c) : (h1, h1), (h2, h2), (h1, h2)
Part (a) of 1.3 depicts an assignment M1 that assigns both members of the couples c

to h1 and both singles to h2. This assignment is not stable, since the single s1 and the
hospital h1 would both benefit from contracting each other, so they form a blocking pair
for M1. Part (b) of the figure shows an assignment M2 where s1 and c1 are assigned to h1,
and s2 and c2 are assigned to h2. Note that both the couples c and the hospital h2 would
benefit from contracting each other. Therefore, they block the assignment, yielding that M2

is unstable as well. Finally, we illustrate a stable assignment M3 in (c), where M3 assigns the
singles to h1, and both members of c to h2.

The task of the Hospitals/Residents with Couples problem is to decide whether a
stable assignment exists in an instance where couples are involved. This problem was first
introduced by Roth [124] who also discovered that a stable assignment need not exist. Later,
Ronn [123] proved that the problem is NP-hard.

In Chapter 6 we will give an example showing that an instance of the Hospitals/Resi-
dents with Couples problem may admit stable assignments of different sizes. We denote
by Maximum Hospitals/Residents with Couples the optimization problem where the
task is to determine a stable assignment of maximum size for a given instance. Note that
this problem is trivially NP-hard, as it contains the Hospitals/Residents with Couples
problem.

We remark that HRC models a situation that arises in many real world applications
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[127, 126]. In the last decade, various approaches have been investigated to deal with its
intractability, but most researchers examined different assumptions on the preferences of
couples that guarantee some kind of tractability [45, 26, 89, 112]. We examine this problem
from different viewpoints in Chapter 6.



CHAPTER 2

Recognizing k-apex graphs

In this chapter, we propose a newly developed FPT algorithm for the following problem:
given a graph G, find a set of k vertices whose deletion makes G planar. We parameterize
this problem by k, the number of vertices which we are allowed to delete.

Planar graphs are subject of wide research interest in graph theory. There are many
generally hard problems which can be solved in polynomial time when considering planar
graphs, e.g., Maximum Clique, Maximum Cut, and Subgraph Isomorphism [50, 73].
For problems that remain NP-hard on planar graphs, we often have efficient approximation
algorithms. For example, the problems Independent Set, Vertex Cover, and Domi-
nating Set admit an efficient linear-time approximation scheme [10, 94]. The research for
efficient algorithms for problems on planar graphs is still very intensive.

Many results on planar graphs can be extended to almost planar graphs, which can be
defined in various ways. For example, we can consider possible embeddings of a graph in a
surface other than the plane. The genus of a graph is the minimum number of handles that
must be added to the plane to embed the graph without any crossings. Although determining
the genus of a graph is NP-hard [130], the graphs with bounded genus are subjects of wide
research. A similar property of graphs is their crossing number, i.e., the minimum possible
number of crossings with which the graph can be drawn in the plane. Determining the crossing
number is also NP-hard [63].

Cai [24] introduced another notation to capture the distance of a graph G from a graph
class F , based on the number of certain elementary modification steps. He defines the distance
of G from F as the minimum number of modifying steps needed to make G a member of F .
Here, modification can mean the deletion or addition of edges or vertices. We consider the
following question: given a graph G and an integer k, is there a set of at most k vertices in G,
whose deletion makes G planar?

It was proven by Lewis and Yannakakis [92] that the node-deletion problem is NP-com-
plete for every non-trivial hereditary graph property decidable in polynomial time. As pla-
narity is such a property, the problem of finding a maximum induced planar subgraph is
NP-complete, so we cannot hope to find a polynomial-time algorithm that answers the above
question. Therefore, the parameterized complexity framework seems suitable for the analysis
of this problem.

The standard parameterized version of our problem is the following:
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k-Apex

Input: a graph G and an integer k.
Parameter: the integer k.
Task: decide whether deleting at most k vertices from G can result
in a planar graph.

We refer to this parameterized problem as the k-Apex problem, because a set of vertices
whose deletion makes the graph planar is sometimes called apex vertices or apices. We will
denote the class of graphs for which the answer of the problem is ‘yes’ by Apex(k). Observe
that the parameter k indeed expresses the distance of an input instance from planarity. We
note that Cai, who also used the parameterized complexity framework for his examinations,
used the notation Planar + kv to denote this class [24].

In the parameterized complexity literature, numerous similar node-deletion problems have
been studied. A classical result of this type by Bodlaender [16] and Downey and Fellows [43]
states that the Feedback Vertex Set problem, asking whether a graph can be made
acyclic by the deletion of at most k vertices, is FPT. The parameterized complexity of the
directed version of this problem has been a long-standing open question, and it has only
been proved recently that it is FPT as well [28]. Fixed-parameter tractability has also been
proved for the problem of finding k vertices whose deletion results in a bipartite graph [117],
or in a chordal graph [101]. On the negative side, the corresponding node-deletion problem
for wheel-free graphs was proved to be W[2]-hard [95].

Considering the graph class Apex(k), we can observe that this family of graphs is closed
under taking minors. The celebrated graph minor theorem by Robertson and Seymour states
that such families can be characterized by a set of excluded minors [121]. They also showed
that for each graph H it can be tested in cubic time whether a graph contains H as a
minor [120]. As a consequence, membership for such graph classes can be decided in cubic
time. In particular, we know that there exists an algorithm with running time f(k)n3 that
can decide whether a graph belongs to Apex(k). However, the proof of the graph minor
theorem is non-constructive in the following sense. It proves the existence of an algorithm
for the membership test that uses the excluded minor characterization of the given graph
class, but does not provide any algorithm for determining this characterization. In 2008,
an algorithm was presented by Adler, Grohe, and Kreutzer [5] for constructing the set of
excluded minors for a given graph class closed under taking minors, which yields a way to
explicitly construct the algorithm whose existence was proved by Robertson and Seymour.
We remark that it follows also from a paper by Fellows and Langston [53] that an algorithm
for testing membership in Apex(k) can be constructed explicitly.

Although these results provide a general tool that can be applied to our specific problem,
so far no direct FPT algorithm has been proposed for it1 In this chapter, we present a
new algorithm which solves Apex(k) in f(k)n2 time. Note that the presented algorithm
runs in quadratic time, and hence yields a better running time than any algorithm using
the minor testing algorithm that is applied in the above mentioned approaches. Moreover,
if G ∈ Apex(k) then our algorithm also returns a solution, i.e., a set S ∈ V (G), |S| ≤ k such
that G − S is planar.

The presented algorithm is strongly based on the ideas used by Grohe [69] for computing
crossing number. Grohe uses the fact that the crossing number of a graph is an upper bound
for its genus. Since the genus of a graph in Apex(k) cannot be bounded by a function of k,
we need some other ideas. As in [69], we exploit the fact that in a graph with large treewidth
we can always find a large grid minor [122]. Examining the structure of the graph with such a

1Recently, a paper by Ken-ichi Kawarabayashi with title Planarity allowing few error vertices in linear

time has been accepted to FOCS 2009 proposing an algorithm for this problem.
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Figure 2.1: The hexagonal grids H1, H2, and H3.

grid minor, we can reduce our problem to a smaller instance. Applying this reduction several
times, we finally get an instance with bounded treewidth. Then we make use of Courcelle’s
Theorem [38], which states that every graph property that is expressible in monadic second-
order logic can be decided in linear time on graphs of bounded treewidth.

In Section 2.1 we summarize some useful definitions used in this chapter. Section 2.2
outlines the FPT algorithm solving the k-Apex problem, and Sections 2.3 and 2.4 describe
the two phases of the algorithm. The results of this chapter were published in [104].

2.1 Preliminaries

In this section, graphs are assumed to be simple, since both loops and multiple edges are
irrelevant in the k-Apex problem.

A graph H is a minor of a graph G if it can be obtained from a subgraph of G by
contracting some of its edges. Here contracting an edge e with endpoints a and b means
deleting e, and then identifying vertices a and b.

A graph H is a subdivision of a graph G if G can be obtained from H by contracting some
of its edges that have at least one endpoint of degree two. Or, equivalently, H is a subdivision
of G if H can be obtained from G by replacing some of its edges with newly introduced paths
such that the inner vertices of these paths have degree two in H . We refer to these paths
in H corresponding to edges of G as edge-paths. A graph H is a topological minor of G if G
has a subgraph that is a subdivision of H . We say that G and G′ are topologically isomorphic
if they both are subdivisions of a graph H .

The g × g grid is the graph Gg×g where V (Gg×g) = {vij | 1 ≤ i, j ≤ g} and E(Gg×g) =
{vijvi′j′ | |i − i′| + |j − j′| = 1}. Instead of giving a formal definition for the hexagonal grid
of radius r, which we will denote by Hr, we refer to the illustration shown in Figure 2.1. A
cell of a hexagonal grid is one of its cycles of length 6.

A tree decomposition of a graph G is a pair (T, (Vt)t∈V (T )) where T is a tree, Vt ⊆ V (G)
for all t ∈ V (T ), and the following are true:

• for all v ∈ V (G) there exists a t ∈ V (T ) such that v ∈ Vt,

• for all xy ∈ E(G) there exists a t ∈ V (T ) such that x, y ∈ Vt,

• if t lies on the path connecting t′ and t′′ in T , then Vt ⊇ Vt′ ∩ Vt′′ .

The width of such a tree decomposition is the maximum of |Vt|−1 taken over all t ∈ V (T ).
The treewidth of a graph G, denoted by tw(G), is the smallest possible width of a tree
decomposition of G. For an introduction to treewidth see e.g. [18, 41].
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2.2 Overview of the algorithm

Here we outline an algorithm Apex which solves the k-Apex problem in time f(k)n2 for some
function f , where n is the number of vertices in the input graph. Algorithm Apex works in two
phases. In the first phase (Section 2.3) we compress the given graph repeatedly, and finally
either conclude that there is no solution for our problem or construct an equivalent problem
instance with a graph having bounded treewidth. The bounded treewidth case is solved in
the second phase of the algorithm (Section 2.4) by applying Courcelle’s Theorem which gives
a linear-time algorithm for the evaluation of MSO-formulas on bounded treewidth graphs.

To describe the first step of our algorithm, we need some deep results from graph minor
theory. The following result states that every graph having large treewidth must contain a
large grid as a minor.

Theorem 2.2.1 (Excluded Grid Theorem, [119]). For every integer r there exists an inte-
ger w(r) such that if tw(G) > w(r) then G contains Gr×r as a minor.

The grid minor guaranteed by this theorem in the case when the treewidth of the graph G
is large can be found in cubic time. However, we need a linear-time algorithm for finding a
large grid minor, so we have to make use of the following result, which states that if the
graph is planar, then the bound on w(r) is linear:

Theorem 2.2.2 (Excluded Grid Theorem for Planar Graphs, [122]). For every integer r
and every planar graph G, if tw(G) > 6r − 5 then G contains Gr×r as a minor.

Also, we will use the following algorithmic results:

Theorem 2.2.3 ([17, 115]). For every fixed integer w there exists a linear-time algorithm
that, given a graph G, does the following:

• either produces a tree decomposition of G of width at most w, or

• outputs a subgraph G′ of G with tw(G′) > w, together with a tree decomposition of G′

of width at most 2w.

Theorem 2.2.4 ([9]). For every fixed graph H and integer w there exists a linear-time
algorithm that, given a graph G and a tree decomposition for G of width w, returns a minor
of G isomorphic to H, if this is possible.

Now, we are ready to state our first lemma, which provides the key structures for the
mechanism of our algorithm. In this lemma, we focus on hexagonal grids instead of rectangular
grids. The reason for this is the well-known fact that if a graph of maximum degree three
is a minor of another graph, then it is also contained in it as a topological minor [41]. This
property of the hexagonal grid will be very useful later on.

Lemma 2.2.5. For every pair of fixed integers r and k there is a linear-time algorithm
GridStructure, that, given an input graph G, does the following:

• either produces a tree decomposition of G of width w(r, k) = 24r − 11 + k, or

• finds a subdivision of Hr in G, or

• correctly concludes that G /∈ Apex(k).

Proof. Let r and k be arbitrary fixed integers. Run the algorithm provided by Theorem 2.2.3
for w = w(r, k) on graph G. If it produces a tree decomposition of width w(r, k) for G, then
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we output it. Otherwise let G′ be the subgraph of G with tw(G′) > w(r, k) that has been
provided together with a tree decomposition T ′ for it having width at most 2w(r, k).

On the one hand, if G′ /∈ Apex(k), then G /∈ Apex(k) also holds as G′ is a subgraph of G.
On the other hand, if G′ ∈ Apex(k), then there exists a set S ⊆ V (G) with |S| ≤ k such
that G′−S is planar. Deleting a vertex of a graph can only decrease its treewidth by at most
one, so tw(G′ − S) > w(r, k) − k = 6(4r − 1) − 5. Now, Theorem 2.2.2 implies that G′ − S
contains G(4r−1)×(4r−1) as a minor. Since the hexagonal grid with radius r is a subgraph of
the (4r − 1)× (4r − 1) grid, we get that G′ − S must also contain Hr as a minor, and hence
as a topological minor.

Thus, we get that either G /∈ Apex(k), or G′ (and hence G) contains Hr as a (topological)
minor. Now, using the algorithm of Theorem 2.2.4 for G′ and T ′, we can find a subgraph of G′

isomorphic to a subdivision of Hr in linear time, if possible. If the algorithm produces such
a subgraph, then we output it, otherwise we can correctly conclude that G /∈ Apex(k).

In algorithm Apex we will run GridStructure several times. As long as the result is a
hexagonal grid of radius r as topological minor, we will run Phase I of algorithm Apex,
which compresses the graph G. If at some step algorithm GridStructure gives us a tree
decomposition of width w(r, k), we run Phase II. (The constant r will be fixed later.) And of
course if at some step GridStructure finds out that G /∈ Apex(k), then algorithm Apex can
stop with the output “No solution.”

Clearly, we can assume without loss of generality that the input graph is simple, and
it has at least k + 3 vertices. So if G ∈ Apex(k), then deleting k vertices from G (which
means the deletion of at most k(|V (G)| − 1) edges) results in a planar graph, which has at
most 3|V (G)|−6 edges. Therefore, if |E(G)| > (k +3)|V (G)| then surely G /∈ Apex(k). Since
this can be detected in linear time, we can assume that |E(G)| ≤ (k + 3)|V (G)|.

2.3 Phase I of Algorithm Apex

In Phase I we assume that after running GridStructure on G we get a subgraph H ′
r that is a

subdivision of Hr. Our goal is to find a set of vertices X such that G−X is planar, and |X | ≤ k.
Let ApexSets(G, k) denote the family of sets of vertices that have these properties, i.e., let
ApexSets(G, k) = {X ⊆ V (G) | |X | ≤ k and G − X is planar}. Since the case k = 1 is very
simple we can assume that k > 1.

Reduction A: Flat zones. In the following we regard the grid H ′
r as a fixed subgraph

of G. Let us define z zones in it. Here z is a constant depending only on k, which we
will determine later. A zone is a subgraph of H ′

r which is topologically isomorphic to the
hexagonal grid H2k+5. We place such zones next to each other in the well-known radial
manner with radius q, i.e., we replace each hexagon of Hq with a subdivision of H2k+5.
It is easy to show that in a hexagonal grid with radius (q − 1)(4k + 9) + (2k + 5) we can
define this way 3q(q − 1) + 1 zones that only intersect in their outer circles. So let r =
(q − 1)(4k + 9) + (2k + 5), where we choose q big enough to get at least z zones, i.e., q is the
smallest integer such that 3q(q − 1) + 1 ≥ z. Let the set of these innerly disjoint zones be Z,
and the subgraph of these zones in H ′

r be R.

Let us define two types of grid-components. An edge which is not contained in R is a
grid-component if it connects two vertices of R. A subgraph of G is a grid-component if it is
a (maximal) connected component of G − R. A grid-component K is attached to a vertex v
of the grid R if it has a vertex adjacent to v, or (if K is an edge) one of its endpoints is v.
The core of a zone is the (unique) subgraph of the zone which is topologically isomorphic
to H2k+3 and lies in the middle of the zone. Let us call a zone Z ∈ Z open if there is a
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(a) (b)

Figure 2.2: (a) An induced subgraph of a flat zone, together with its grid components.
Among them, there are two edges, four edge-components (shown in light gray) and five
cell-components (dark gray). (b) The ring R3 of Z.

vertex in its core that is connected to a vertex v of another zone in Z, v /∈ V (Z), through a
grid-component. A zone is closed if it is not open.

For a subgraph H of R we let T (H) denote the subgraph of G induced by the vertices
of H and the vertices of the grid-components which are only attached to H . Let us call a
zone Z flat if it is closed and T (Z) is planar. Let Z be such a flat zone. See Figure 2.2 (a)
for an illustration of a flat zone together with its grid-components. A grid-component is an
edge-component if it is either only attached to one edge-path of Z or only to one vertex of Z.
Otherwise, it is a cell-component if it is only attached to vertices of one cell. As a consequence
of the fact that all embeddings of a 3-connected graph are equivalent (see e.g. [41]), and Z
is a subdivision of such a graph, every grid-component attached to some vertex in the core
of Z must be one of these two types. Note that we can assume that in an embedding of T (Z)
in the plane, all edge-components are embedded in an arbitrarily small neighborhood of the
edge-path (or vertex) which they belong to.

Let us define the ring Ri (1 ≤ i ≤ 2k + 4) as the union of those cells in Z that have
common vertices both with the i-th and the (i + 1)-th concentric circle of Z. Let R0 be the
cell of Z that lies in its center. The zone Z can be viewed as the union of 2k + 5 concentric
rings, i.e., the union of the subgraphs Ri for 0 ≤ i ≤ 2k+4. Figure 2.2 (b) depicts the ring R3.

Lemma 2.3.1. Let Z be a flat zone in R, and let G′ be the graph G − T (R0). Then X ∈
ApexSets(G′, k) implies X ∈ ApexSets(G, k).

Proof. Suppose X ∈ ApexSets(G′, k). Since G − T (R0) − X is planar, we can fix a planar
embedding φ of it. If Ri ∩ X = ∅ for some i (2 ≤ i ≤ 2k + 2) then let Wi denote the
maximal subgraph of G − T (R0) − X for which φ(Wi) is in the region determined by φ(Ri)
(including Ri). If Ri∩X is not empty then let Wi be the empty graph. Note that if 2 ≤ i ≤ 2k
then Wi and Wi+2 are disjoint. Therefore, there exists an index i for which Wi∩X = ∅ and Wi

is not empty. Let us fix this i.
Let Qi denote T (

⋃i
j=0 Rj). We prove the lemma by giving an embedding for G − X ′

where X ′ = X \ V (Qi−1). The region φ(Ri) divides the plane in two other regions. As Z
is flat, vertices of Qi−1 can only be adjacent to vertices of Qi. Thus we can assume that in
the finite region only vertices of Qi−1 are embedded, so G − X ′ − (Qi−1 ∪ Wi) is entirely
embedded in the infinite region. Let U denote those vertices in Qi−1 which are adjacent to
some vertex in G−Qi−1. Observe that the vertices of U lie on the i-th concentric circle of Z,
hence, the restriction of φ to G − X ′ − (Qi−1 − U) has a face whose boundary contains U .

Now let θ be a planar embedding of T (Z), and let us restrict θ to Qi−1. Note that U
only contains vertices which are either adjacent to some vertex in Ri or are adjacent to cell-
components belonging to a cell of Ri. But θ embeds Ri and its cell-components also, and
therefore the restriction of θ to Qi−1 results in a face whose boundary contains U . Here we
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Figure 2.3: Illustration for Lemma 2.3.2. The edges of Cx and Cy are shown in bold.

used also that Ri is a subdivision of a 3-connected graph whose embeddings are equivalent.
Now it is easy to see that we can combine θ and φ in such a way that we embed G−X ′−

(Qi−1 − U) according to φ and, similarly, Qi−1 according to θ, and then “connect” them by
identifying φ(u) and θ(u) for all u ∈ U . This gives the desired embedding of G−X ′. Finally,
we have to observe that X ′ ∈ ApexSets(G, k) implies X ∈ ApexSets(G, k), since X ′ ⊆ X
and |X | ≤ k.

This lemma has a trivial but crucial consequence: X ∈ ApexSets(G, k) if and only if X ∈
ApexSets(G − T (R0), k), so deleting T (R0) reduces our problem to an equivalent instance.
Let us denote this deletion as Reduction A.

Note that the closedness of a zone Z can be decided by a simple breadth first search,
which can also produce the graph T (Z). Planarity can also be tested in linear time [78].
Therefore we can test whether a zone is flat, and if so, we can apply Reduction A on it in
linear time.

Later we will see that unless there are some easily recognizable vertices in our graph
which must be included in every solution, a flat zone can always be found (Lemma 2.3.6).
This yields an easy way to handle graphs with large treewidth: compressing our graph by
repeatedly applying Reduction A we can reduce the problem to an instance with bounded
treewidth.

Reduction B: Well-attached vertices. A subgraph of R is a block if it is topologically
isomorphic to Hk+3. A vertex of a given block is called inner vertex if it is not on the outer
circle of the block. (We define the outer circle of the block using the “standard” planar
embedding of Hk+3. Instead of a formal definition, we refer to the illustration in Figure 2.3.)

Lemma 2.3.2. Let X ∈ ApexSets(G, k). Let x and y be inner vertices of the disjoint
blocks Bx and By, respectively. If P is an x − y path that (except for its endpoints) does
not contain any vertex from Bx or By, then X must contain a vertex from Bx, By or P .

Proof. See Figure 2.3 for the illustration of this proof. Let Cx and Cy denote the outer circle
of Bx and By, respectively. Let us notice that since Bx and By are disjoint blocks, there
exist at least k +3 vertex disjoint paths between their outer circles, which—apart from their
endpoints—do not contain vertices from Bx and By. Moreover, it is easy to see that these
paths can be defined in a way such that their endpoints that lie on Cx are on the border of
different cells of Bx. To see this, note that the number of cells which lie on the border of a
given block is 6k + 12. At least three of these paths must be in G − X also. Since x can lie
only on the border of at most two cells having common vertices with Cx, we get that there
is a path P ′ in G−X whose endpoints are ax and ay (lying on Cx and Cy , resp.), and there
exist no cell of Bx whose border contains both ax and x.
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Figure 2.4: A well-attached vertex.

Let us suppose that Bx ∪ By ∪ P is a subgraph of G − X . Since all embeddings of a
3-connected planar graph are equivalent, we know that if we restrict an arbitrary planar
embedding of G−X to Bx, then all faces having x on their border correspond to a cell in Bx.
Since x and y are connected through P and V (P ) ∩ V (Bx) = {x}, we get that y must be
embedded in a region F corresponding to a cell CF of Bx. But this implies that By must
entirely be embedded also in F .

Since V (P ′−ax −ay)∩V (Bx) = ∅ and P ′ connects ax ∈ V (Bx) and ay ∈ V (By) we have
that ay must lie on the border of F . But then CF is a cell of Bx containing both ax and x
on its border, which yields the contradiction.

Using this lemma we can identify certain vertices that have to be deleted. Let x be a well-
attached vertex in G if there exist paths P1, P2, . . . , Pk+2 and disjoint blocks B1, B2, . . . , Bk+2

such that Pi connects x with an inner vertex of Bi (1 ≤ i ≤ k + 2), the inner vertices of Pi

are not in R, and if i 6= j then the only common vertex of Pi and Pj is x.

Lemma 2.3.3. Let X ∈ ApexSets(G, k). If x is well-attached, then x ∈ X.

Proof. If x /∈ X , then after deleting X from G (which means deleting at most k vertices)
there would exist indices i 6= j such that no vertex from Pi, Pj , Bi, and Bj was deleted.
But then the disjoint blocks Bi and Bj were connected by the path Pi − x − Pj , and by the
previous lemma, this is a contradiction.

We can decide whether a vertex v is well-attached in time f ′(k)e using standard flow
techniques, where e = |E(G)|. This can be done by simply testing for each possible set
of k + 2 disjoint blocks whether there exist the required disjoint paths that lead from x to
these blocks. Since the number of blocks in R depends only on k, and we can find p disjoint
paths starting from a given vertex of a graph G in time O(p|E(G)|), we can observe that this
can be done indeed in time f ′(k)e.

Finding flat zones. Now we show that if there are no well-attached vertices in the
graph G, then a flat zone exists in our grid.

Lemma 2.3.4. Let X ∈ ApexSets(G, k), and let G not include any well-attached vertices.
If K is a grid-component, then there cannot exist (k + 1)2 disjoint blocks such that K is
attached to an inner vertex of each block.

Proof. Let us assume for contradiction that there exist (k+1)2 such blocks. Since |X | ≤ k, at
least (k + 1)2 − k of these blocks do not contain any vertex of X . So let x1, x2, . . . x(k+1)2−k

be adjacent to K and let B1, B2, . . . , B(k+1)2−k be disjoint blocks of G − X such that xi is
an inner vertex of Bi.

Since G − X is planar, it follows from Lemma 2.3.2 that a component of K − X cannot
be adjacent to different vertices from {xi | 1 ≤ i ≤ (k + 1)2 − k}. So let Ki be the connected
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component of K−X that is attached to xi in G−X . K is connected in G, hence for every Ki

there is a vertex of T = K ∩ X that is adjacent to it in G. Since there are no well-attached
vertices in G, every vertex of T can be adjacent to at most k + 1 of these subgraphs. But
then |T | ≥ ((k + 1)2 − k)/(k + 1) > k which is a contradiction since T ⊆ X .

Let us now fix the constant d = (k + 1)((k + 1)2 − 1).

Lemma 2.3.5. Let X ∈ ApexSets(G, k), let G not include any well-attached vertices, and
let x be a vertex of the grid R. Then there cannot exist B1, B2, . . . , Bd+1 disjoint blocks
such that for all i (1 ≤ i ≤ d + 1) an inner vertex of Bi and x are both attached to some
grid-component Ki.

Proof. As a consequence of Lemma 2.3.4, each of the grid-components Ki can be attached
to at most (k +1)2−1 disjoint blocks. But since x is not a well-attached vertex, there can be
only at most k + 1 different grid-components among the grid-components Ki, 1 ≤ i ≤ d + 1.
So the total number of disjoint blocks that are attached to x through a grid-component is at
most (k + 1)((k + 1)2 − 1) = d.

Lemma 2.3.6. Let X ∈ ApexSets(G, k), and let G not include any well-attached vertices.
Then there exists a flat zone Z in G.

Proof. Let Z ∈ Z be an open zone which has a vertex w in its core that is attached to a
vertex v of another zone in Z (v /∈ V (Z)) through a grid-component K. By the choice of
the size of the zones and their cores, we have disjoint blocks Bw and Bv containing w and v
respectively as inner points. We can also assume that Bw is a subgraph of Z which does not
intersect the outer circle of Z.

By Lemma 2.3.2 we know that Bw, Bv or K contains a vertex from X . Let Z1 denote the
set of zones in Z with an inner vertex in X , let Z2 denote the set of open zones in Z with
a core vertex to which a grid-component, having a common vertex with X , is attached, and
finally let Z3 be the set of the remaining open zones in Z. Since |X | ≤ k and a grid-component
can be attached to inner vertices of at most (k +1)2 disjoint blocks by Lemma 2.3.4, we have
that |Z1| ≤ k and |Z2| ≤ k(k + 1)2.

Let us count the number of zones in Z3. To each zone Z in Z3 we assign a vertex u(Z)
of the grid not in Z, which is connected to the core of Z by a grid-component. First, let us
bound the number of zones Z in Z3 for which u(Z) ∈ X . Lemma 2.3.5 implies that any v ∈ X
can be connected this way to at most d zones, so we can have only at most kd such zones.

Now let U = {v | v = u(Z), Z ∈ Z3}. Let a and b be different members of U , and let a be
connected through the grid-component Ka with the core vertex za of Za ∈ Z3. Let Ba denote
a block which only contains vertices that are inner vertices of Za, and contains za as inner
vertex. Such a block can be given due to the size of a zone and its core. Let us define Kb, zb,
Zb, and Bb similarly. Note that V (Ba) ∩ X = V (Bb) ∩ X = ∅ by Za, Zb /∈ Z1.

Now let us assume that a and b are in the same component of R − X . Let P be a path
connecting them in R−X . If P has common vertices with Ba (or Bb) then we modify P the
following way. If the first and last vertices reached by P in Za (or Zb, resp.) are w and w′,
then we swap the w − w′ section of P using the outer circle of Za (or Zb, resp.). This way
we can fix a path in R − X that connects a and b, and does not include any vertex from Ba

and Bb. But this path together with Ka and Kb would yield a path in G − X that connects
two inner vertices of Ba and Bb, contradicting Lemma 2.3.2.

Therefore, each vertex of U lies in a different component of R−X . But we can only delete
at most k vertices, and each vertex in a hexagonal grid has at most 3 neighbors, thus we can
conclude that |U | ≤ 3k. As for different zones Z1 and Z2 in Z we cannot have u(Z1) = u(Z2)
(which is also a consequence of Lemma 2.3.2) we have that |Z3| ≤ 3k. So if we choose the
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Phase I of algorithm Apex

Input: G = (V, E).
Let W = ∅.

1. Run algorithm GridStructure on G, w(r, k), and r.
If it returns a subgraph H ′

r topologically isomorphic to Hr then go to
Step 2. If it returns a tree decomposition T of G, then output (G, W , T ).
Otherwise output “No solution”.

2. For all zones Z do:
If Z is flat then G := G − T (R0), and go to Step 1.

3. Let U = ∅. For all x ∈ V : if x is well-attached then U := U ∪ {x}.
If |U | = ∅ or |W | + |U | > k then output “No solution”.
Otherwise W := W ∪ U , G := G − U and go to Step 1.

Figure 2.5: Phase I of algorithm Apex.

number of zones in Z to be z = 7k + k(k +1)2 + kd+1 we have that there are at least 3k +1
zones in Z which are not contained in Z1 ∪ Z2 ∪ Z3, indicating that they are closed. Since
a vertex can be contained by at most 3 zones, |X | ≤ k implies that there exist a closed
zone Z∗ ∈ Z, which does not contain any vertex from X , and all grid-components attached
to Z∗ are also disjoint from X . This immediately implies that T (Z∗) is a subgraph of G−X ,
and thus T (Z∗) is planar.

Algorithm for Phase I. The exact steps of Phase I of the algorithm Apex are shown in
Figure 2.5. It starts with running algorithm GridStructure on the graph G and integers w(r, k)
and r. If GridStructure returns a hexagonal grid as a topological minor, then the algorithm
proceeds with the next step. If GridStructure returns a tree decomposition T of width w(r, k),
then Phase I returns the triple (G, W, T ). Otherwise G does not have Hr as minor and its
treewidth is larger than w(r, k), so by Lemma 2.2.5 we can conclude that G /∈ Apex(k).

In the next step the algorithm tries to find a flat zone Z. If such a zone is found, then
the algorithm executes a deletion, whose correctness is implied by Lemma 2.3.1. Note that
after altering the graph, the algorithm must find the hexagonal grid again and thus has to
run GridStructure several times.

If no flat zone was found in Step 2, the algorithm removes well-attached vertices from
the graph in Step 3. The vertices already removed this way are stored in W , and U is the
set of vertices to be removed in the actual step. By Lemma 2.3.3, if X ∈ ApexSets(G, k)
then W ∪ U ⊆ X , so |W | + |U | > k means that there is no solution. By Lemma 2.3.6, the
case U = ∅ also implies G /∈ Apex(k). In these cases the algorithm stops with the output
“ No solution.” Otherwise it proceeds with updating the variables W and G, and continues
with Step 1.

The output of the algorithm can be of two types: it either refuses the instance (outputting
“No solution.”) or it returns an instance for Phase II. For the above mentioned purposes the
new instance is equivalent with the original problem instance in the following sense:

Theorem 2.3.7. Let (G′, W, T ) be the triple returned by Apex at the end of Phase I. Then
for all X ⊆ V (G) it is true that X ∈ ApexSets(G, k) if and only if W ⊆ X and (X \ W ) ∈
ApexSets(G′, k − |W |).
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Now let us examine the running time of this phase. The first step can be done in
time f ′′(k)n according to [122, 17, 115] where n = |V (G)|. Since the algorithm only runs
algorithm GridStructure again after reducing the number of the vertices in G, we have that
GridStructure runs at most n times. This takes f ′′(k)n2 time. The second step requires only
linear time (a breadth first search and a planarity test). Deciding whether a vertex is well-
attached can be done in time f ′(k)e (where e = |E(G)|), so we need f ′(k)ne time to check
every vertex at a given iteration in Step 3. Note that the third step is executed at most k +1
times, since at each iteration |W | increases. Hence, this phase of algorithm Apex uses total
time f ′′(k)n2 + f ′(k)kne = f(k)n2, as the number of edges is O(kn).

2.4 Phase II of Algorithm Apex

At the end of Phase I of algorithm Apex we either conclude that G /∈ Apex(k), or we have
a triple (G′, W, T ) for which Theorem 2.3.7 holds. Here T is a tree decomposition for G′

of width at most w(r, k). This bound only depends on r which is a function of k. From
the choice of the constants r, q, z, and d we can derive by a straightforward calculation
that tw(G′) ≤ w(r, k) ≤ 100(k + 2)7/2.

In order to solve our problem, we only have to find out if there is a set Y ∈ ApexSets(G′, k′)
where k′ = k − |W |. For such a set, Y ∪ W would yield a solution for the original k-Apex
problem.

A theorem by Courcelle states that every graph property defined by a formula in monadic
second-order logic (MSO) can be evaluated in linear time if the input graph has bounded
treewidth. Here we consider graphs as relational structures of vocabulary {V, E, I}, where V
and E denote unary relations interpreted as the vertex set and the edge set of the graph,
and I is a binary relation interpreted as the incidence relation. For instance, a formula stating
that x and y are neighboring vertices is the following: ∃e : Ixe ∧ Iye. We will denote by UG

the universe of the graph G, i.e., UG = V (G)∪E(G). Variables in monadic second-order logic
can be element or set variables, and the containment relation between an element variable x
and a set variable X is simply expressed by the formula Xx. For the complete description of
MSO logic refer to [46], and for a survey on MSO logic on graphs see [39].

Following Grohe [69], we use a strengthened version of Courcelle’s Theorem:

Theorem 2.4.1. ([56]) Let ϕ(x1, . . . , xi, X1, . . . , Xj , y1, . . . , yp, Y1, . . . , Yq) denote an MSO-
formula and let w ≥ 1. Then there is a linear-time algorithm that, given a graph G with
tw(G) ≤ w and b1, . . . , bp ∈ UG, B1, . . . , Bq ⊆ UG, decides whether there exist a1, . . . , ai ∈
UG, A1, . . . , Aj ⊆ UG such that

G � ϕ(a1, . . . , ai, A1, . . . , Aj , b1, . . . , bp, B1, . . . , Bq),

and, if this is the case, computes such elements a1, . . . , ai and sets A1, . . . , Aj.

It is well-known that there is an MSO-formula ϕplanar that describes the planarity of
graphs, i.e., for every graph G the statement G � ϕplanar holds if and only if G is planar.
The following simple claim shows that we can also create a formula describing the Apex(k)
graph class.

Theorem 2.4.2. For every integer k′, there exists an MSO-formula apex(x1, . . . , xk′) for
which G � apex(v1, . . . , vk′ ) holds if and only if {v1, . . . , vk′} ∈ ApexSets(G, k′).

Proof. We will use the simple characterization of planar graphs by Kuratowski’s Theorem:
a graph is planar if and only if it does not contain any subgraph topologically isomorphic
to K5 or K3,3. To formulate the existence of these subgraphs as an MSO-formula, we need
some more simple formulas.
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First, it is easy to see that the following formula expresses the property that (X, Y ) is a
partition of the set Z:

partition(X, Y, Z) := ∀z : (Zz → ((Xz → ¬Y z) ∧ (¬Xz → Y z)))

Using this, we can express that the vertex set Z contains a path connecting a and b, by saying
that every partition of Z that separates a and b has to separate two neighboring vertices:

connected(a, b, Z) := Za ∧ Zb ∧ ∀X∀Y :

((partition(X, Y, Z) ∧ Xa ∧ Y b) → (∃c∃d∃e : Xc ∧ Y d ∧ Ice ∧ Ide))

The following two formulas express that two sets are disjoint, or their intersection is some
given unique vertex.

disjoint(X, Y ) := ∀z : (Xz → ¬Y z)

almost-disjoint(X, Y, a) := ∀z : (Xz → (¬Y z ∨ (z = a)))

Now, we can state formulas expressing that a given subgraph has K5 or K3,3 as a topolog-
ical minor. For brevity, we only give the formula which states that there is a subdivision of K5

in the graph such that the vertices v1, v2, . . . , v5 correspond to the vertices of the K5, and
the vertex sets P12, P13, . . . , P45 contain the subdivisions of the corresponding edges of K5.

K5-top-minor (v1, v2, . . . , v5, P12, P13, . . . , P45) :=

connected(v1, v2, P12) ∧ · · · ∧ connected(v4, v5, P45) ∧
almost-disjoint(P12, P13, v1) ∧ · · · ∧ almost-disjoint(P35, P45, v5) ∧
disjoint(P12, P34) ∧ · · · ∧ disjoint(P23, P45)

The formula K3,3-top-minor can be similarly created. Now, we are ready to give the apex
formula having k′ free variables and fulfilling the property that G � apex(v1, . . . , vk′) holds
if and only if {v1, . . . , vk′} ∈ ApexSets(G, k′). The formula makes use of the fact that G −
{v1, v2, . . . , vk′} is planar if and only if every subdivision of K5 or K3,3 in G involves at least
one vertex from {v1, v2, . . . , vk′}.

apex(v1, v2, . . . , vk′) :=

∀x1∀x2 . . . ∀x5∀X1∀X2 . . .∀X10 : (K5-top-minor(x1, x2, . . . , x5, X1, X2, . . . , X10)

→




∨

1≤i≤5,
1≤j≤k′

(xi = vj) ∨
∨

1≤i≤10,
1≤j≤k′

(Xivj)


 ∧

∀x1∀x2 . . . ∀x6∀X1∀X2 . . .∀X9 : (K3,3-top-minor(x1, x2, . . . , x6, X1, X2, . . . , X9)

→




∨

1≤i≤6,
1≤j≤k′

(xi = vj) ∨
∨

1≤i≤9,
1≤j≤k′

(Xivj)




Now let us apply Theorem 2.4.1. Let C be the algorithm which, given a graph G of bounded
treewidth, decides whether there exist v1, . . . , vk′ ∈ UG such that G � apex(v1, . . . , vk′) is
true, and if possible, also produces such variables. By Theorem 2.4.2, running C on G′ either
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returns a set of vertices U ∈ ApexSets(G′, k′), or reports that this is not possible. Hence, we
can finish algorithm Apex in the following way: if C returns U then output(U ∪W ), otherwise
output(“No solution”).

The running time of Phase II is g(k)n for some function g.

Remark. Phase II of the algorithm can also be done by applying dynamic programming, using
the tree decomposition T returned by GridStructure. This also yields a linear-time algorithm,
with a double exponential dependence on tw(G′) (and hence on k). Since the proof is quite
technical and detailed, we omit it.

Finally, we can summarize the main theorem of this chapter as follows.

Theorem 2.4.3. Algorithm Apex presented here solves the k-Apex problem in time f(k)n2

for some function f , where n is the number of vertices in the input graph.





CHAPTER 3

Recognizing almost isomorphic graphs

In this chapter, we investigate the parameterized complexity of the following problem, called
the Induced Subgraph Isomorphism problem: given two graphs G and H , decide whether
we can delete some vertices of G to obtain a graph isomorphic to H . We parameterize this
problem by k = |V (G)| − |V (H)|, the number of vertices which we have to delete from G
to obtain a graph isomorphic to H . We propose newly developed FPT algorithms for this
problem in the following three cases:

• G is an arbitrary graph but H is a tree, or

• both G and H are planar graphs and H is 3-connected, or

• both G and H are interval graphs.

In the first and the third case, we also prove that the given problem is NP-hard (this was
already known in the second case). We discuss the first two cases in this chapter, but we
dedicate a new chapter to the case of interval graphs, due to the involved techniques we used
to attack it.

Problems related to graph isomorphisms play a significant role in algorithmic graph the-
ory. The Induced Subgraph Isomorphism problem is one of the basic problems of this
area: given two graphs H and G, find an induced subgraph of G isomorphic to H , if this
is possible. In this general form, Induced Subgraph Isomorphism is NP-hard, since it
contains several well-known NP-hard problems, such as Clique, Independent Set and
Induced Path.

As Induced Subgraph Isomorphism has a wide range of important applications,
polynomial-time algorithms have been given for numerous special cases, such as the case
when both input graphs are trees [111] or 2-connected outerplanar graphs [93]. However,
Induced Subgraph Isomorphism remains NP-hard even if H is a forest and G is a tree,
or if H is a path and G is a cubic planar graph [62].

Note that Induced Subgraph Isomorphism is solvable in time O(|V (G)||V (H)||V (H)|2)
on input graphs H and G by trying every possible subgraph of G, or more precisely, by check-
ing for every possible injective mapping from V (H) to V (G) whether it is an isomorphism.
As H is typically much smaller than G in applications related to pattern matching, the
usual parameterization of Induced Subgraph Isomorphism is to define the parameter k
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to be |V (H)|. FPT algorithms with this parameterization are known if G is planar [50],
has bounded degree [25], or if H is a log-bounded fragmentation graph and G has bounded
treewidth [74]. We note that this parameterization yields a W[1]-complete problem when G
can be arbitrary and H ∈ H for some graph class H of infinite cardinality [30].

In this thesis, we consider another parameterization of Induced Subgraph Isomor-
phism, where the parameter is the difference |V (G)| − |V (H)|. Considering the presence of
extra vertices as some kind of error or noise, the problem of finding the original graph H in
the “dirty” graph G containing errors is clearly meaningful. In other words, the task is to
“clean” the graph G containing errors in order to obtain H . For two graph classes H and G we
define the Cleaning(H,G) problem: given a pair of graphs (H, G) with H ∈ H and G ∈ G,
find a set of vertices S in G such that G − S is isomorphic to H . The parameter associated
with the input (H, G) is |V (G)| − |V (H)|. Clearly, the size of the set S to be found has to
be equal to the parameter. For the case when G or H is the class of all graphs, we will use
the notation Cleaning(H,−) or Cleaning(−,G), respectively.

In the special case when the parameter is 0, the problem is equivalent to the Graph
Isomorphism problem, so we cannot hope to give an FPT algorithm for the general problem
Cleaning(−,−). Thus, we consider special graph classes where the Graph Isomorphism
problem is solvable in polynomial time. The most important graph classes on which Graph
Isomorphism is polynomial-time solvable are planar graphs [78], interval graphs [96], per-
mutation graphs [34], graphs having bounded treewidth [15], bounded genus [113, 55], or
bounded degree [97]. We focus on the class of planar graphs and interval graphs, denoted
by Planar and Interval, respectively. Since we were not able to solve the Cleaning(Planar,

Planar) problem in general, we consider special graph classes of planar graphs such as trees
and 3-connected planar graphs, denoted by Tree and 3-Connected-Planar, respectively.

We give FPT algorithms for the problems Cleaning(Tree,−), Cleaning(3-Connected-

Planar, Planar) and Cleaning(Interval, Interval). Note that these problems differ from the
Feedback Vertex Set, the k-Apex problems, and the Interval Deletion problems,
where the task is to delete a minimum number of vertices from the input graph to get an
arbitrary acyclic, planar, or interval graph, respectively.

Without parameterization, Cleaning(Tree,−) is NP-hard because it contains Induced
Path. We show NP-hardness for Cleaning(3-Connected-Planar, 3-Connected-Planar) and
Cleaning(Interval, Interval) too. A polynomial-time algorithm is known for Cleaning(Tree,

Tree) [111], and an FPT algorithm is known for Cleaning(Grid,−) where Grid is the class
of rectangular grids [40].

In Table 3.1 we summarize the complexity of the Cleaning(H,G) problem for differ-
ent graph classes H and G. Table 3.1 contains results for three versions of the problem:
without parameterization, with the standard parameter |V (H)|, and finally with the param-
eter |V (G)| − |V (H)| yielding the parameterization discussed in this chapter.

In Section 3.1, we show that Cleaning(3-Connected-Planar, 3-Connected-Planar) is
NP-complete, and we also present an FPT algorithm for Cleaning(3-Connected-Planar,

Planar). We discuss the Cleaning(Tree,−) problem in Section 3.2. Our results for the
Cleaning(Interval, Interval), including an NP-hardness proof and an FPT algorithm for
the problem, are contained in Chapter 4. (Although this problem logically belongs to the
issue of Chapter 3, we moved its discussion to Chapter 4 because of its length and the
differences of the techniques applied.)

The results of this chapter were published in [106], and the results of Chapter 4 can be
found in [108].
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Parameter

Graph classes (H,G) None |V (H)| |V (G)| − |V (H)|
(Tree, Tree) P [111] FPT (trivial) FPT (trivial)
(Tree,−) NP-complete [62] W[1]-complete [29] FPT∗

(3-Connected-Planar, Planar) NP-complete∗ FPT [50] FPT∗

(−, Planar) NP-complete [62] FPT [50] Open
(Interval, Interval) NP-complete∗ W[1]-hard∗ FPT∗

(Grid,−) NP-complete [62] W[1]-complete [30] FPT [40]

Table 3.1: Summary of some known results for the Cleaning(H,G) problem. The new results
obtained by us are marked with an asterisk.

3.1 3-connected planar graphs

In this section, we present an algorithm for Cleaning(3-Connected-Planar, Planar). Since
3-connected planar graphs can be considered as “rigid” graphs in the sense that they can-
not be embedded in the plane in essentially different ways, this problem seems to be easy.
However, Theorem 3.1.1 shows that it is NP-hard.

Theorem 3.1.1. Cleaning(3-connected-Planar, 3-Connected-Planar) is NP-hard.

Proof. We give a reduction from the NP-complete Planar 3-Colorability problem [62].
Let F be the planar input graph given. W.l.o.g. we assume that F is connected. We construct
3-connected planar graphs H and G such that Cleaning(3-Connected-Planar, 3-Connected-

Planar) with input (H, G) is solvable if and only if F is 3-colorable.
The high-level idea of the reduction is the following. For each vertex in F , we construct a

wheel-like gadget in G and a similar gadget in H with the property that the gadget of H can
be obtained as the induced subgraph of the gadget in G in three different ways (as illustrated
by Figure 3.1). These three different ways correspond to the three possible colorings of the
given vertex of F . The hard task is to force that H can only be an induced subgraph of G if
the coloring indicated by the deleted vertices of the gadgets in G is a proper coloring of F .
This will be ensured using connection gadgets for each edge of F .

The gadgets we construct are shown in Figure 3.1. For every x ∈ V (F ) we set an in-
teger 9|V (F )| ≤ p(x) ≤ 10|V (F )| such that p(x) 6= p(y) for any x 6= y ∈ V (F ). For every
vertex x ∈ V (F ) we build a node-gadget Nx in G as follows. We introduce a central vertex ax,
together with a cycle consisting of the vertices bx

0 , bx
1 , . . . , bx

6p(x)−1 with each bx
i being con-

nected to ax, and finally the vertices cx
0 , . . . , cx

3p(x)−1 with each cx
i being connected to three

consecutive vertices from the cycle bx
0bx

1 . . . bx
6p(x)−1, as illustrated in Figure 3.1. Formally,

the edge set of the node-gadget Nx is {axbx
j , bx

j−1b
x
j | j ∈ [6p(x)]} ∪ {cx

j bx
2j , c

x
j bx

2j+1, c
x
j bx

2j+2 |
0 ≤ j < 3p(x)} where bx

6p(x) = bx
0 . The node-gadget Nx can be considered as a plane graph,

supposing that the vertices bx
0 , bx

1 , . . . , bx
6p(x)−1 (and thus cx

0 , cx
1 , . . . , cx

3p(x)−1) are embedded

in a clockwise order around ax. We define the j-th block Bx
j of Nx to be (cx

3j , c
x
3j+1, c

x
3j+2),

for every 0 ≤ j < p(x). The type of cx
j can be 0, 1, or 2, according to the value of j modulo 3.

We set Cx = {cx
j | 0 ≤ j < 3p(x)}.

Let us fix an arbitrary ordering of the vertices of F . For each x < y with xy ∈ E(F )
we build a connection Exy in G that uses 9 consecutive blocks from each of Nx and Ny,
say Bx

i , . . . , Bx
i+8 and By

j , . . . , By
j+8. These blocks are the base blocks for Exy, and we also

define q(x, y) = (i, j). Note that since p(x) ≥ 9|V (F )| > 9dF (x), we can define connections
such that no two connections share a common base block. To build Exy with q(x, y) = (i, j),
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Figure 3.1: A node-gadget and a connection in G, and the corresponding subgraphs of H
used in the proof of Theorem 3.1.1.

we introduce new vertices dxy
1 , dxy

2 , dxy
3 and edges {cx

3i+26−6m+`d
xy
m , cy

3j+6m−`d
xy
m | m ∈ [3], ` ∈

[6]} ∪ {cx
3ic

y
3j+24, c

x
3i+4c

y
3j+22, c

x
3i+8c

y
3j+20} (see Figure 3.1). By choosing the base blocks for

each connection in a way that the order of the connections around a node-gadget is the same
as the order of the corresponding edges around the corresponding vertex for some fixed planar
embedding of F , we can give a planar embedding of G. Moreover, it is easy to see that G is
also 3-connected.

To construct H , we make a disjoint copy Ḡ of G, and delete some edges and vertices from
it as follows. For the copy of cx

j (ax, Cx, etc.) we write c̄x
j (āx, C̄x, etc. respectively). To

get H , we delete from Ḡ the three edges connecting vertices of C̄x and C̄y for every x < y
and xy ∈ E(F ), and also the vertices c̄x

3j+1 and c̄x
3j+2 for every x ∈ V (F ), 0 ≤ j < p(x).

Clearly, H is planar, and observe that it remains 3-connected.
Now, we prove that if Cleaning(3-Connected-Planar, 3-Connected-Planar) has a solu-

tion S for the input (H, G), then F is 3-colorable. Let ϕ be an isomorphism from H to G−S.
First, observe that since p(x) 6= p(y) if x 6= y, and the integers {p(x) | x ∈ V (F )} are large
enough, ϕ must map āx to ax because of its degree. For each x ∈ V (F ), the vertices in Cx \S
must have the same type, so let the color of x be this type. If xy ∈ E(F ), then the color
of x and y must differ, otherwise one of the edges cx

3ic
y
3j+24, c

x
3i+4c

y
3j+22, c

x
3i+8c

y
3j+20 would be

in G − S where q(x, y) = (i, j), as for every type t, one of these edges connects two vertices
of type t. Thus the coloring is proper.

For the other direction, let t : V (F ) → {0, 1, 2} be a coloring of F . For each x ∈ V (F ),
let S contain those vertices in Cx whose type is not t(x). Let ϕ map āx and d̄xy

m (for every
meaningful x, y, m) to ax and dxy

m , respectively, and let ϕ map c̄x
j to cx

j+t(x). By adjusting ϕ

on the vertices b̄x
i in the natural way, we can prove that ϕ is an isomorphism. It is clear

that the restriction of ϕ on N̄x is an isomorphism. Note that the only vertex of Bx
j present

in G−S is cx
3j+t(x) = ϕ(c̄x

3j), so independently from t(x) and t(y), the neighborhood of d̄xy
m is

also preserved. We only have to check that the edges connecting Cx and Cy are not present
in G−S. This is implied by the properness of the coloring, as all such edges connect vertices
of the same type, but for xy ∈ E(F ) the types of the vertices in Cx \S and Cy \S differ.

We present an FPT algorithm for Cleaning(3-Connected-Planar, Planar) where the
parameter is k = |V (G)|−|V (H)| for input (H, G). We assume n = |V (H)| > k+2 and n ≥ 4
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as otherwise we can solve the problem by brute force. We also assume that H and G are
simple graphs.

Let S be a solution. First observe that if C is a set of at most 2 vertices such that G−C is
not connected, then there is a component K of G−C such that the 3-connected graph G−S
is contained in G[V (K) ∪ C]. Clearly, |V (K)| ≥ n − 2, so K is unique by n > k + 2. Since
such a separating set C can be found in linear time [77], K can also be found in linear time.
If no component of G − C has size at least n − 2, the algorithm outputs ’No’, otherwise it
proceeds with G[V (K) ∪ C] as input.

So we can assume that G is 3-connected. First, the algorithm determines a planar embed-
ding of H and G. Every planar embedding determines a circular order of the edges incident
to a given vertex. Two embeddings are equivalent, if these orderings are the same for each
vertex in both of the embeddings. It is well-known that a 3-connected planar graph has
exactly two planar embeddings, and these are reflections of each other (see e.g. [41]). Let
us fix an arbitrary embedding θ of H . By the 3-connectivity of G, one of the two possible
embeddings of G yields an embedding of G−S that is equivalent to θ. The algorithm checks
both possibilities. From now on, we regard H and G as plane graphs, and we are looking for
an isomorphism ϕ from H into G − S which preserves the embedding.

Before going into the details, we need two definitions concerning plane graphs. For a
subgraph H of a plane graph G, an edge e ∈ E(H) is called an outer edge of (H, G) if G has
a face Fe incident to e which is not in H . In this case, Fe is an outer face of e w.r.t. (H, G).
The border of H in G is the subgraph formed by the outer edges of (H, G).

In a general step of the algorithm, we grow a partial mapping, which is a restriction of ϕ.
We assume that ϕ is already determined on a connected subgraph D of H having at least
one edge. The definition of D implies ϕ(V (D)) ∩ S = ∅, so if at some point the algorithm
would have to delete vertices from ϕ(D), it outputs ’No’.

The algorithm grows the subgraph D on which ϕ is determined step by step. At each
step, it chooses an outer edge e of (D, H), and either deletes some vertices of G−ϕ(D) that
must be in S, or adds to D an outer face F of e w.r.t. (D, H). The algorithm chooses e and F
in a way such that after the first step the following property will always hold:

Invariant 1 : the outer edges of (D, H) form a cycle.

We refer to this as choosing a suitable face. Formally, a face F is suitable for (D, H) if it is an
outer face w.r.t. (D, H) and Invariant 1 holds after adding F to D. Lemma 3.1.2 argues that
a suitable face can always be found. We will see that the algorithm can only add a face F
to D if ϕ(F ) is a face of G as well (that is, the interior of ϕ(F ) does not contain vertices
from S). Hence, this method ensures that all vertices of ϕ(V (H − D)) and S are embedded
on the same side of the border of ϕ(D), allowing us to assume the following:

Invariant 2 : the vertices of V (G) \ ϕ(V (D)) are embedded in the unique un-
bounded region determined by the border of ϕ(D) in G.

The most important consequence of Invariant 2 is that ϕ yields a bijection between the outer
edges of (D, H) and the outer edges of (ϕ(D), G).

Lemma 3.1.2. If D is a subgraph of a 3-connected graph H such that |V (D)| < |V (H)| and
the border of D in H is a cycle C, then there exists a suitable face for (D, H).

Proof. By |V (D)| < |V (H)|, each edge of C has an outer face w.r.t. (D, H). The planarity
of H implies that if a, b, c, d are four vertices appearing in this order on C, then there cannot
exist two outer faces F1, F2 of (D, H) such that F1 contains a and c, and F2 contains b and d.
Given an outer face F of (D, H), let the gap of F be the maximum length of a subpath of C
whose endpoints are in V (F ) but has no internal vertices in V (F ).
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D ϕ(D)

GH

a
b

Figure 3.2: Common neighbors test. Vertices of M are indicated by double circles, vertices
of S by squares. By Lemma 3.1.3, we obtain that b ∈ S but a /∈ S.

Now, consider an outer face F ∗ of (D, H) that has minimum gap. If the gap of F ∗ is at
least 2, then there is a subpath Q of C having at least two edges such that V (F ∗) ∩ V (C)
contains exactly the endpoints of Q. Consider any outer face FQ of (D, H) that is incident to
an edge of Q. By the observation of the previous paragraph, such a face cannot be incident to
a vertex of C that is not in Q. Thus, FQ must have smaller gap than F ∗, which contradicts
to the minimality of F ∗. Therefore, F ∗ must have gap 1. Hence, the vertices of V (F ∗)∩V (C)
are consecutive vertices of C, implying that F ∗ is suitable.

To find an initial partial mapping, we try to find a pair of edges ab and a′b′ in H and G,
respectively, such that ϕ(a) = a′ and ϕ(b) = b′. To do that, the algorithm fixes an arbitrary
edge ab in H and guesses ϕ(a) and ϕ(b). This yields 2|E(G)| possibilities. After this, the
algorithm applies one of the following steps.

3-connectivity test. Although in the beginning G is assumed to be 3-connected, the
algorithm may delete vertices from G throughout its running, and thus it can happen that G
ceases to be 3-connected. This can be handled as described above, by finding a separating
set C of size at most 2, and determining the component K of G−C with at least |V (H)|− 2
vertices. If no such component exists, or if it does not include ϕ(D), then the algorithm
outputs ’No’, otherwise it deletes V (G − C − K).

Common neighbors test. Let M = {ϕ(v) | v ∈ V (D), dH(v) < dG(ϕ(v))}. First, note
that every vertex in M must have a neighbor in S, thus if |M | > 2k, then some vertex in S is
adjacent to at least three vertices in M . By Invariant 2, the vertices of S ⊆ V (G) \ ϕ(V (D))
are embedded in the unbounded region determined by the border of ϕ(D) in G, the vertices
of M lie on this border. The algorithm checks every vertex q ∈ V (G)\ϕ(V (D)) having at least
three neighbors on the border of ϕ(D), and determines whether q ∈ S, using Lemma 3.1.3
below. If no such vertex of S can be found in spite of |M | > 2k, then the algorithm outputs
’No’. Figure 3.2 shows an example.

Lemma 3.1.3. Let q ∈ V (G) \ ϕ(V (D)) be adjacent to different vertices x, y and z on the
border of ϕ(D) in G. Then q ∈ S if and only if there is no vertex p ∈ V (H) \ V (D) which is
a common neighbor of ϕ−1(x), ϕ−1(y) and ϕ−1(z).

Proof. For contradiction, let us assume q ∈ S and suppose that a vertex p exist as described.
As Invariant 1 holds for (D, H) and ϕ preserves the embedding, the outer edges of (ϕ(D), G)
and the edges ϕ(p)x, ϕ(p)y and ϕ(p)z cut the plane into four regions, and the only region
among these containing all three of x, y and z is the bounded region determined by the outer
edges of (ϕ(D), G). But as no vertex in S can be embedded in this region by Invariant 2, q
cannot be adjacent to all of x, y and z, a contradiction. In the case where there is no vertex
in V (H) \ V (D) adjacent to ϕ−1(x), ϕ−1(y) and ϕ−1(z), then q ∈ S is trivial.
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F F ′

GH

D

e

a

b

c
t0 tf t′0 t′f ′

ϕ(e)

ϕ(D)

Figure 3.3: Examining an outer face. Vertices of {tj | j ∈ R} and {t′j | j ∈ R} are indicated
by double circles, vertices of S by squares. By Lemma 3.1.4, we obtain that {a, b, c}∩S 6= ∅.
Note that in general F might have more than one common edge with D.

Examining an outer face. In this step, the algorithm takes an outer edge e = xy
of (D, H) with a suitable outer face F in H , and the corresponding outer face F ′ of ϕ(e)
w.r.t. (ϕ(D), G). Lemma 3.1.2 shows that a suitable face can always be found. If the algorithm
finds that V (F ′) ∩ S = ∅ must hold because of a sufficient condition given in Lemma 3.1.4
below, then it extends ϕ by adding F to D. Otherwise, V (F ′) may contain vertices in S, so
the algorithm branches into a bounded number of directions.

In the branch assuming V (F ′) ∩ S = ∅, the extension of ϕ is performed. In the branches
when V (F ′) ∩ S 6= ∅ is assumed, the algorithm tries to find and delete the first vertex s on
the border of F ′ in S, and branches according to the choice of s. Lemma 3.1.4 bounds the
possibilities to choose s.

Intuitively, if there is a vertex of S on the border of F ′, then its deletion decreases the
degree of at least two other vertices in V (F ′). Also, the 3-connectedness of G−S implies that
deleting a vertex of S not in V (F ′) can decrease the degree of at most two vertices on the
border of F ′. Lemma 3.1.4 states the consequences of these observations in a precise manner.
See Figure 3.3 for an illustration.

Lemma 3.1.4. Let e = t0tf be an outer edge of (D, H) and F its outer face w.r.t. (D, H)
such that its vertices in clockwise ordering are t0, t1, . . . , tf . Similarly, let F ′ be the outer face
of ϕ(e) w.r.t. (ϕ(D), G), where the vertices of F ′ are t′0 = ϕ(t0), t

′
1, . . . , t

′
f ′−1 in clockwise

ordering and t′f ′ = ϕ(tf ). Let also R = {j | 0 ≤ j ≤ min(f, f ′), dH(tj) 6= dG(t′j)} and let the
indices in R be r1 < · · · < r|R|.

(1) If |R| ≤ 1 and f = f ′, then V (F ′) ∩ S = ∅ and ϕ(ti) = t′i for every i ∈ [f ].

(2) If V (F ′)∩S 6= ∅ and t′i∗ is the first vertex on the border of F ′ that is in S, then i∗−1 ∈
{rj | j ∈ [min(|R|, 2k + 1)]}.

Proof. Let e0 = t0tf and let ei = titi−1 for every i ∈ [f ], so ei is followed by ei−1 in the
clockwise circular order of the edges incident to ti for every i ∈ [f ]. Similarly, we define e′i =
t′it

′
i−1 for every i ∈ [f ′]. Supposing V (F ′) ∩ S = ∅, we prove by induction that ϕ(ti) = t′i

for every i ∈ {0, 1, . . . , f}. This is clear for i = 0, so assume that it holds for each index
smaller than i. Since ϕ is an isomorphism, we have ϕ(ei−1) = e′i−1. Now, e′i ∈ E(G − S)
implies ϕ(ei) = e′i as well, since ϕ preserves the embedding. This proves the claim.

Now, if V (F ′)∩S 6= ∅ and t′i∗ is the first vertex on the border of F ′ that is in S, then the
vertices t′0, . . . , t

′
i∗−1 are not in S, so by applying the above argument we get ϕ(t`) = t′` for

all ` < i∗. But t′i∗−1 has a neighbor in S, hence dG(t′i∗−1) > dG−S(t′i∗−1) = dG−S(ϕ(ti∗−1)) =
dH(ti∗−1). This implies i∗−1 ∈ R. Letting j∗ be the last vertex on the border of F ′ that is in S,
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GrowSolution(H, G, D, ϕ)

1. If k = |V (G)| − |V (H)| < 0 then output(’No’).

2. Perform the 3-connectivity test.

3. If D equals H then output(’Yes’).

4. Perform the common neighbors test.

5. Examine an outer face. If for the chosen pair (F, F ′) of faces |V (F )| = |V (F ′)|
and |R| ≤ 1, then extend ϕ on F , and go to Step 3. Otherwise branch as follows:

• for all j ∈ [2k + 1]: let i∗ = rj + 1 and call GrowSolution(H, G − t′i∗ , D, ϕ).

• if |V (F )| = |V (F ′)| then extend ϕ on F and call GrowSolution(H, G, D, ϕ).

Figure 3.4: The algorithm GrowSolution.

and using f = f ′ and the same argument as above, we get j∗+1 ∈ R. Clearly i∗−1 < j∗ +1,
so V (F ′) ∩ S 6= ∅ would imply |R| ≥ 2. Hence, the conditions of (1) imply V (F ′) ∩ S = ∅,
proving also ϕ(ti) = t′i for every i ∈ [f ].

To prove (2), suppose V (F ′) ∩ S 6= ∅. As i∗ − 1 ∈ R, i∗ − 1 = r`∗ for some `∗. We
claim `∗ ≤ 2k + 1, which clearly implies i∗ − 1 ∈ {rj | j ∈ [min(|R|, 2k + 1)]}. To see the
claim, first observe that the definition of i∗ implies S ∩ {ti | i < i∗} = ∅, so if ` < `∗

then ϕ(tr`
) = t′r`

. But from the definition of R we know dH(tr`
) 6= dG(t′r`

), so we get that t′r`

must be adjacent to a vertex s ∈ S. As r` < i∗− 1, this vertex s cannot be in the region of G
corresponding to the face F of H . Note that in a 3-connected graph with at least four vertices
no three vertices on the border of a single face can also lie on the border of another face, so no
three vertices in V (F ′) can be adjacent to the same s ∈ S. Therefore, each vertex of s can be
adjacent to at most two vertices from {tr`

| ` ∈ [`∗−1]}, so we obtain `∗−1 ≤ 2|S| = 2k.

Now let us describe the key mechanism of our algorithm. The essential work is done
by a recursive algorithm that we call GrowSolution, described in Figure 3.4. The input of
GrowSolution is a 4-tuple (H, G, D, ϕ), where H and G are plane graphs, H is 3-connected,
D is a subgraph of H which is either an edge (in the first step) or the union of faces whose
border in H is a cycle (Invariant 1), and ϕ is an embedding preserving isomorphism from D
to an induced subgraph of G, such that the vertices of V (G) \ ϕ(V (D)) are embedded in
the unique unbounded region determined by the border of ϕ(D) in G (Invariant 2). The
algorithm finds out whether there is an S ⊆ V (G) \ ϕ(V (D)) such that ϕ can be extended
to map H to G− S while remaining an isomorphism that preserves embedding. In each call,
GrowSolution may stop or branch into a few directions. According to this, we will speak of
terminal and branching calls. In each branch of a branching call, GrowSolution either deletes
a vertex from G, or extends ϕ by adding a new face to D. If at the end of a branch a vertex
is deleted, then this is a deletion branch, otherwise it is an extension branch. (Actually, the
algorithm may extend ϕ also in the deletion branches before performing the deletion.) At the
end of each branch, GrowSolution calls itself recursively with the modified input.

In a single call, the algorithm first checks whether |V (G)| < |V (H)|, and if so, then cor-
rectly outputs ’No’. Next, it handles the case when G is not 3-connected. If D equals H ,
then Step 3 outputs ’Yes’. Note that this step allows V (G) \ ϕ(V (H)) = S 6= ∅ as well. To
proceed, the algorithm searches for common neighbors, as described above. Recall that the
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algorithm might output ’No’ or delete vertices from G at this step according to Lemma 3.1.3.
If the algorithm deletes vertices S′ ⊆ S in Step 2 or Step 4, then this means that it
calls GrowSolution(H, G − S′, D, ϕ). Now, if the algorithm does not stop or delete vertices,
it examines an outer face. If for the chosen pair of faces (F, F ′) the conditions of (1) in
Lemma 3.1.4 are fulfilled, then we know V (F ′) ∩ S = ∅, so the algorithm proceeds by ex-
tending ϕ on F according to the lemma. When GrowSolution performs this extension, it also
adds F to D, and checks whether ϕ is still an isomorphism on D, and if not, outputs ’No’.
This is correct by Lemma 3.1.4. This extension step is iterated until either a vertex is deleted
or the algorithm stops in Step 3, 4 or 5, or the conditions of (1) in Lemma 3.1.4 do not hold.

In the last case, we do not know whether V (F ′) ∩ S is empty or not, so the algorithm
branches into at most 2k + 2 directions. First we assume V (F ′) ∩ S 6= ∅, in this case state-
ment (2) of Lemma 3.1.4 implies that i∗ ∈ {rj + 1 | j ∈ [min(2k + 1, |R|)]} where t′i∗
is the first vertex on the border of F ′ being in S. The algorithm branches on these at
most 2k + 1 possibilities to delete t′i∗ . The last branch is an extension branch corresponding
to the case V (F ′)∩S = ∅. Here, GrowSolution performs the extension of ϕ on F as described
above. Note that this branch is only necessary if |V (F )| = |V (F ′)|.

Observe that Lemmas 3.1.3 and 3.1.4 directly imply the correctness of the algorithm.
Although GrowSolution only answers the decision problem, it is straightforward to modify it
in order to output the set S and the mapping ϕ.

To analyze the running time of the algorithm, we assign a search tree T (I) to a run of
GrowSolution with a given input I. The nodes of this tree correspond to the calls of GrowSolu-
tion. The leaves represent the terminal calls and the internal nodes represent branching calls.
The edge(s) leaving a node represent the branch(es) of the corresponding call of GrowSolution,
so e heads from x to y if y is called in the branch represented by e in the call corresponding
to x. The parameter of a node with input I = (H, G, D, ϕ) is kI = |V (G)| − |V (H)|. The
parameter clearly decreases in a deletion branch, which cannot happen more than k+1 times.
However, in the extension branches this is not true, which seems to make it problematic to
bound the size of the search tree. The following lemma shows that this problem does not
arise, thanks to Step 4 of the algorithm.

Lemma 3.1.5. The size of T (I) is bounded by f(k) = 2(2k + 2)13k2−1 where k = kI .

Proof. Let E∗ denote the edges in T (I) that correspond to extension branches. The value of
the parameter decreases in each deletion branch, and it can only be negative in a leaf. Thus
a path P leading from the root to a leaf in T (I) can include at most k + 1 edges which are
not in E∗. Let Q = v0v1 . . . vq be a subpath of P containing only edges in E∗.

First, we observe the fact that given a set L of vertices in a simple 3-connected planar
graph G and a set F of faces each having at least 2 vertices from L on their border, we
have |F| ≤ max{6|L|−12, 2}. To see this, we define the planar graph G′ such that V (G′) = L
and for each face F ∈ F there is an edge in G′ connecting two vertices in V (F )∩L. It is easy
to observe that in a 3-connected simple graph each pair of vertices can lie on the border of
at most two faces. As G is 3-connected, this implies that every edge in G′ has multiplicity
at most 2. Now, if |V (G′)| ≥ 3 then the planarity of G′ yields |E(G′)| ≤ 2(3|L| − 6). By
contrast, if |V (G′)| ≤ 2 then |E(G′)| ≤ 2 is trivial. For each face in F we defined an edge
in G′, so |F| ≤ |E(G′)| ≤ max{6|L| − 12, 2}.

For a node w representing a call with input (H, G, D, ϕ), we define M(w) to be the
set containing those vertices ϕ(t) on the border of ϕ(D) in G such that dH(t) < dG(ϕ(t)).
As M(vi) can only decrease after the deletion of some vertices, we get M(vi−1) ⊆ M(vi) for
every i ∈ [q]. Observe that in Step 5 of the branch represented by the edge vi−1vi, a face is
added to ϕ(D) that has at least two vertices in M(vi) ⊆ M(vq). This follows because the
conditions of (1) in Lemma 3.1.4 cannot hold in this step, and so the set R ⊆ M(vi) in Step 5
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3-Connected Planar Cleaning (H, G)

1. Perform the 3-connectivity test.

2. Let Hθ denote an embedded version of H , and let Gθ1
and Gθ2

be the two
possible embedded versions of G. For i = 1, 2 do:

3. Let xy ∈ E(H) be arbitrary. For all (a, b) where ab ∈ E(G) do:

4. Let ϕa,b denote the function mapping x to a and y to b.
Output(’Yes’) if GrowSolution(Hθ, Gθi

, xy, ϕa,b) returns ’Yes’.

5. Output(’No’).

Figure 3.5: The algorithm solving Cleaning(3-Connected-Planar, Planar).

has cardinality at least 2. By Step 4 of the algorithm, |M(vq)| ≤ 2k. As shown above, there
can be at most max{12k−12, 2} ≤ 12k−10 faces in G that are adjacent to at least 2 vertices
in M(vq), so the number of extensions branches in Q, i.e. the length of Q is at most 12k−10.
This enables us to bound the length of P , which is at most k + 1+ (k + 1)(12k− 10) < 13k2.

As every node in T (I) has at most 2k + 2 children, there are at most (2k + 2)13k2−1 leaves

in T (I), so the number of nodes in T (I) is at most f(k) = 2(2k + 2)13k2−1.

By careful implementation, it can be ensured that the amount of work done when ex-
tending ϕ on a face F is linear in |V (F )|, as we only spend constant time at a given vertex.
This implies that the consecutive iteration of Steps 3, 4, and 5 can be performed in a total
of linear time in |V (G)|. As other steps also can be performed in time linear in |V (G)|, by
Lemma 3.1.5 we can conclude that the running time of GrowSolution on input (H, G, D, ϕ)

is f(k)|V (G)| = 2(2k + 2)13k2−1|V (G)|, where k = |V (G)| − |V (H)|.
As a result, there is an algorithm that solves Cleaning(3-Connected-Planar, Planar)

in FPT time. The steps of the decision version of this algorithm are described in Fig-
ure 3.5. Its correctness easily follows from the discussion above. As it calls GrowSolution
at most 4|E(G)| = O(n) times, we can conclude:

Theorem 3.1.6. The Cleaning(3-Connected-Planar, Planar) problem on input (H, G) can

be solved in time kO(k2)n2, where n = |V (H)| and |V (G)| = n + k.

3.2 Trees

The aim of this section is to present an FPT algorithm for Cleaning(Tree,−). We parame-
terize this problem by assigning the parameter k = |V (G)| − |V (T )| for an input (T, G).

Note that if (T, G) is solvable, meaning that T is an induced subgraph of G, then the
treewidth of G is at most k + 1. However, this does not yield an obvious way to deal
with the problem, as problems related to isomorphism typically remain hard for graphs
of bounded treewidth. In particular, Induced Subgraph Isomorphism remains NP-hard
when restricted to inputs (H, G) where H is a tree and G has treewidth 2 [110]. Although
the restriction of Graph Isomorphism to graphs of treewidth at most k can be solved
in O(nk+4.5) [15], the parameterized complexity of this problem with k being the parameter
is still unknown. Note also that since Cleaning(Tree,−) contains the Induced Path prob-
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Figure 3.6: Figures (a) and (b) illustrating Reductions A and B, respectively.

lem, the standard parameterization where the parameter is |V (T )| yields a W[1]-complete
problem [29].

W.l.o.g. we can assume that G is simple, n = |V (T )| > k (otherwise we can solve the
problem by a brute force algorithm) and e = |E(G)| = O(kn) (as we can automatically refuse
instances where e > n−1+k(n+k−1)). Let S be a fixed solution, i.e. let G−S = TS be a tree
isomorphic to T . Throughout the run of the algorithm, we can assume that G is connected,
since by n > k it is trivial to find the unique connected component of G containing TS .

3.2.1 Preprocessing

First, we introduce two kinds of reductions, each deleting some vertices from G which must
be included in S. See Figure 3.6 for an illustration.

Reduction A: cycles with one common vertex. If for some vertex x ∈ V (G) there
exist cycles C1, . . . , Ck+1 in G such that V (Ci) ∩ V (Cj) = {x} for each pair i 6= j, then
delete x.

The soundness of Reduction A is easy to see. Indeed, if such an x is not contained
in S, then S must contain at least one vertex from each cycle Ci, implying |S| ≥ k + 1, a
contradiction.

To implement Reduction A, we can check whether the condition given in the reduction
above holds for some x ∈ V (G), by applying a technique based on generalized matchings,
proposed by Bodlaender [19].

Using this method, we can reduce our problem to a b-matching problem in a graph hav-
ing O(|V (G)|) vertices and O(|E(G)|) edges, with the degree constraints being at most 2k+2
for each vertex and O(|V (G)|) in total. Applying the algorithm of Gabow [59] for the ob-
tained problem, we can solve it in O(

√
|V (G)||E(G)|) = O(

√
ne) = O(kn

√
n) time. This

means that Reduction A can be performed in O(kn5/2) total time for all vertices of G.
Reduction B: disjoint paths between two vertices. Suppose for some x, y ∈ V (G)

that there exist paths P1, . . . , Pk+2 from x to y which are disjoint apart from their endpoints.
Then, branch in two directions, deleting x in the first, and deleting y in the second branch.

The correctness of this rules can be seen by showing that x or y must be included in
any solution S of size at most k. Indeed, assuming x, y /∈ S implies the existence of a cycle
through x and y in G − S, which is a contradiction. Using standard flow techniques we can
check in time O(ke) whether (x, y) is such a pair of vertices, so finding such a pair takes
time O(ken2) = O(k2n3). Since |S| = k, we can apply Reduction B at most k times, which
means a total of at most 2k branches.

Now denote by K the minimal connected subgraph of G containing every cycle of G. Note
that K is unique, and is an induced subgraph of G. Let K3 denote the vertices of K whose
degree in K is at least 3.

Lemma 3.2.1. If Reductions A and B cannot be applied, then dK(x) ≤ k2 + k for every x ∈
V (K − S) and |K3| < g(k) = 2k3(k + 1) + 3k = O(k4).
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Proof. Let us assume that x ∈ V (K − S) has neighbors v1, v2, . . . , vk2+k+1 in K. Observe
that K − S is a tree, and each of its leaves is adjacent to some vertex of S. Using this, we
obtain that the edges xvi (for i ∈ [k2 + k + 1]) can be extended to internally disjoint paths
in K starting from x, ending in a vertex of S, and having internal vertices in K − S. We
note that such a path can be of length 1. As |S| ≤ k, there must exist a vertex s ∈ S such
that at least d(k2 + k + 1)/ke = k + 2 of these paths end in s. Now, these paths form at
least k + 2 internally disjoint paths between x and s, yielding a possibility for Reduction B,
a contradiction. This shows that dK(x) ≤ k2 + k for every x ∈ V (K − S).

Next, we are going to show that a vertex s in S cannot be adjacent to too many vertices
in V (K−S), as this would imply the existence of k+1 cycles whose only common vertex is s.
For this reasoning, we need to prove the following simple fact: given a tree T ′ with maximum
degree d and a set Z ⊆ V (T ′) with cardinality at least pd + 2, there always exists a set P
of p + 1 disjoint paths connecting vertices of Z.

To prove this claim, let us regard T ′ as a rooted tree. We add paths to P in the following
manner: we always choose a new path to put in P such that its distance from the root is the
largest possible. When adding the path P to P , we delete those vertices from Z that can no
longer be connected to the root without crossing P . This ensures that connecting any two
vertices of Z in T ′ always results in a path that can be added to P . Note that by our choice
on P and by the maximum degree d of T ′ we obtain that |Z| can decrease at most by d in
each step, except for the case when P contains the root and thus |Z| might decrease by d+1.
Therefore, we can indeed put p + 1 paths into P .

Now, for a vertex s ∈ S, let Ts denote the unique minimal subtree of K−S containing Zs =
NV (K−S)(s). Suppose |Zs| ≥ k(k2 + k) + 2 for some s. As every vertex in Ts has maximum
degree k2 +k by the first claim of the lemma, using the claim proved above we get that there
are k+1 disjoint paths in Ts connecting vertices of Zs. These paths together with s form k+1
cycles whose only common vertex is s, contradicting our assumption that Reduction A is not
applicable.

Thus, we get |Zs| ≤ k(k2 + k) + 1 = k2(k + 1) + 1 for each s ∈ S. Let L denote the leaves
of K − S. Every vertex in L has a neighbor in S, so L ⊆ NV (K−S)(S) =

⋃
s∈S Zs, imply-

ing |L| ≤ |NV (K−S)(S)| ≤ k3(k +1)+k. Observe that every vertex in K3 \ (S∪NV (K−S)(S))
has degree at least 3 also in K −S. Since the number of vertices in the tree K −S having de-
gree at least 3 is less than the number |L| of leaves, we get |K3| < |S|+ |NV (K−S)(S)|+ |L| ≤
|S| + 2|NV (K−S)(S)|, implying |K3| < 2k3(k + 1) + 3k.

3.2.2 Growing a mapping

From now on, we assume that Reductions A and B cannot be applied. At this point, the
algorithm checks whether the conditions of Lemma 3.2.1 are fulfilled, and correctly outputs
’No’ if the conditions do not hold. Let φ denote the isomorphism from T to TS that we are
looking for. As in Section 3.1, we try to grow a partial mapping from T to TS, which is always
a restriction of φ. To begin, the algorithm chooses an arbitrary starting vertex r0 in T , and
branches on the choice of φ(r0) in G, which means |V (G)| possibilities.

Throughout its running, the algorithm may modify G by deleting vertices of S from it.
We denote by Gi the graph obtained from G after the i-th step, with G = G0. Assume that
in the i-th step of the algorithm there is a subtree Di of T on which φ is already known. The
algorithm proceeds step by step, choosing a leaf ri of Di in the i-th step that has not been
examined yet. For the chosen vertex ri, it determines φ on NT (ri) by applying a method
described below. This means also that it adds NT (ri) to Di to get Di+1, deletes NG(φ(ri))∩S
from Gi to get Gi+1, and checks whether φ is still an isomorphism. When determining φ
on NT (ri), the algorithm may branch into a bounded number of branches, or may proceed
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with a single branch. Accordingly, we distinguish between branching and simple cases.
Let us describe the details of a single step executed by the algorithm. First, it checks

whether |V (Gi)| ≥ |V (T )| holds, outputting ’No’ if the condition fails. Next, it verifies some
simple conditions considering the neighbors of ri and φ(ri) = r′i. To do this, it determines
the minimal connected subgraph Ki of Gi containing every cycle of Gi. Note that Ki can be
constructed from Gi easily in linear time, as the 2-connected components of a graph can be
determined in linear time, e.g. by applying depth first search [37].

To proceed, let us introduce some new notation. We divide the vertices of NT (ri) into
two groups as follows:

• those neighbors of ri that are in Di,

• those neighbors of ri that are not in Di. Let ti1, . . . , t
i
αi denote these vertices, and let T i

j

be the tree component of T − ri containing tij .

Similarly, we classify the vertices of NG(r′i) into three groups:

• those neighbors of r′i that are in φ(Di),

• those neighbors of r′i outside φ(Di) that are connected to r′i by edges not in Ki.
Let t′i1 , . . . , t′iβi denote these vertices, and T ′i

j denote the component of Gi − r′i that

includes t′ij . Observe that either T ′i
j is a tree, or r′i /∈ V (Ki) and T ′i

j contains Ki.

• those neighbors of r′i outside φ(Di) that are connected to r′i by edges in Ki. Let γi be
the number of such vertices.

Clearly, αi ≤ βi + γi, and the equality holds if and only if NGi(r′i) ∩ S = ∅. Thus, if the
algorithm finds that αi > βi + γi, then it outputs ’No’.

First, let us observe that if the tree T i
h is isomorphic to T ′i

j for some h and j, then w.l.o.g.

we can assume that φ(T i
h) = T ′i

j . As the trees of a forest can be classified into equivalence
classes with respect to isomorphism in time linear in the size of the forest [6, 78], this case
can be noticed easily. Given two isomorphic trees, an isomorphism between them can also be
found in linear time, so the algorithm can extend φ on T i

h, adding also T i
h to the subgraph Di.

Hence, we only have to deal with the following case: no tree T i
h (h ∈ [αi]) is isomorphic to

one of the graphs T ′i
j (j ∈ [βi]). This argument makes our situation significantly easier,

since every graph T ′i
j must contain some vertex from S. Therefore βi ≤ |S| = k. Clearly,

if r′i /∈ V (Ki) then γi = 0. If r′i ∈ V (Ki) then r′i can have degree at most k2 + k in K0, and
thus in Ki, by Lemma 3.2.1. Thus, we get γi ≤ k2 + k, implying also αi ≤ βi + γi ≤ k2 +2k.
The algorithm determines αi, βi and γi in each step, and outputs ’No’ if these bounds do not
hold for them.

The algorithm faces one of the following two cases at each step.
Simple case: βi + γi ≤ 1. In this case, αi ≤ 1. If βi + γi = 0 then αi = 0, hence

the algorithm proceeds with the next step by choosing another leaf of Di not yet visited.
Otherwise, let v be the unique vertex in NGi(r′i) \ V (φ(Di)). If αi = 0 then v must be in S,
otherwise φ(ti1) = v. According to this, the algorithm deletes v or extends φ on ti1, adding
also ti1 to Di.

Branching case: βi + γi ≥ 2. In this case, the algorithm branches on every possible
choice of determining φ on NT (ri). Guessing φ(v) for a vertex v ∈ NV (T−Di)(r

i) can result
in at most βi + γi possibilities, so the number of possible branches in a branching step is at
most (βi + γi)αi ≤ (k2 +2k)k2+2k. After guessing φ(v) for each vertex v ∈ NV (T−Di)(r

i), the
algorithm puts the remaining vertices NG(r′i) \ {φ(v) | v ∈ NT (ri)} into S, deleting them
from Gi.
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Lemma 3.2.2. In a single branch of a run of the algorithm described above on a solvable input
for the Cleaning(Tree,−) problem with parameter k, there can be at most g(k) + 2k − 2 =
2k3(k + 1) + 5k − 2 = O(k4) branching steps.

Proof. We use the notation applied in the description of the algorithm. The i-th step can
only be a branching case if either γi ≥ 2, βi ≥ 2, or βi = γi = 1 holds. For each of these
cases, we give an upper bound on the number of steps in a single branch of a run of the
algorithm where these cases can happen.

To determine a bound for the case γi ≥ 2, let r∗ be the first vertex in T examined in
a step such that φ(r∗) is in K0. Recall that K0 − S is a tree, so supposing φ(ri) ∈ V (K0)
we get that if ri 6= r∗ then for the edge e incident to ri in Di it must hold that φ(e) is
in K0. Now, observe that if γi ≥ 2 holds, then this implies that either ri = r∗ or φ(ri) has
at least three edges incident to it in K0. The latter means that ri ∈ K3, where K3 denotes
the vertices of K0 having degree at least three in K0. Thus, the condition γi ≥ 2 can hold
in at most |K3| + 1 ≤ g(k) steps, by Lemma 3.2.1.

Now, if the algorithm finds βi ≥ 2, then recall that both T ′i
1 and T ′i

2 include at least one
vertex from S, and thus Gi −φ(Di) has more connected components containing vertices of S
than Gi − φ(Di − ri) has. It is easy to see that this can be true for only at most |S| − 1 such
vertices ri, so this case can happen at most k − 1 times in a single branch of a run of the
algorithm.

Finally, let S∗ denote those vertices of S that are not contained in K0. Clearly, if s ∈ S∗,
then s is not contained in any cycle of G, so |NG(s) ∩ V (TS)| ≤ 1. Now, if βi = γi = 1,
then r′i ∈ V (K) and the edge r′it′i1 must be one of the edges that connect to K0 a tree
in G − K0 containing a vertex in S∗. Observe that there can be at most |S∗| ≤ k − 1 such
edges. Therefore, the claim follows.

As Lemma 3.2.2 only bounds the number of branching steps for solvable inputs, the
algorithm ensures the same bound on every input by maintaining a counter for these steps.
Thus, it outputs ’No’ if it encounters a branching case for the (g(k) + 2k − 1)-th time.

As the number of branches in a branching case is kO(k2), and the number of branching
cases in a single branch of a run of the algorithm is O(k4), the number of leaves in the search
tree explored by the algorithm (i.e. the number of steps where the algorithm stops, regarding

all the branches in total) is kO(k6). At each vertex, the algorithm uses time at most linear
in |V (G)|. The number of steps performed in a single branch of a run of the algorithm is at
most |V (T )|, hence the algorithm needs quadratic time after choosing φ(r0) for the starting
vertex r0. Trying all possibilities for φ(r0) increases this to cubic time. Reductions A and B
can also be executed in cubic time, as argued before, so we can conclude:

Theorem 3.2.3. The Cleaning(Tree,−) problem on input (T, G) can be solved in kO(k6)n3

time, where n = |V (T )| and |V (G)| = n + k.



CHAPTER 4

Induced Subgraph Isomorphism on interval graphs

In this chapter, we discuss the parameterized complexity of the following problem: given
two interval graphs G and H , decide whether we can delete some vertices of G to obtain
a graph isomorphic to H . On the one hand, we prove that this special case of Induced
Subgraph Isomorphism is NP-hard, and we show that it is W[1]-hard when parameterized
by the |V (H)|, denoting the number of vertices in the smaller graph.

On the other hand, we present a newly developed FPT algorithm for this problem, when
parameterized by the number |V (G)| − |V (H)|, denoting the number of vertices which we
have to delete from G to obtain a graph isomorphic to H . Using the notation of the previous
chapter, we will denote the resulting parameterized problem by Cleaning(Interval, Interval),
with Interval standing for the class of interval graphs.

Interval graphs form an important and widely studied class of graphs. Thanks to their
strict structure, many NP-hard problems become polynomial-time solvable when restricted to
interval graphs [64, 51]. They have numerous applications in scheduling problems but also in
various areas of computational biology. Apart from the theoretical interest, the investigation
of the Cleaning problem for interval graphs is also motivated by its similarity with an
important problem in biology, namely the Arc-Preserving Subsequence problem [109].

In Section 4.1 we give a brief introduction to a data structure called labeled PQ-trees
which yield a canonical form for interval graphs. Section 4.2 contains the obtained hardness
results, and Sections 4.3 and 4.4 cover our FPT algorithm for Cleaning(Interval, Interval).
The results of this chapter appear in [108].

4.1 Interval graphs and labeled PQ-trees

Let G be an interval graph, meaning that G can be regarded as the intersection graph of a
set of intervals. Formally, an interval representation of G is a set {Ii | i ∈ [n]} of intervals,
where Ii and Ij intersect each other if and only if vi and vj are adjacent. We say that two
intervals properly intersect, if they intersect, but none of them contains the other.

Let C(G) be the set of all maximal cliques in G, and let C(v) = {C | v ∈ C, C ∈ C(G)} for
some v ∈ V (G). It is known that a graph is an interval graph if and only if its maximal cliques
can be ordered consecutively, i.e. there is an ordering of C(G) such that the cliques in C(v)
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form a consecutive subsequence [65]. Note that any interval representation gives rise to a
natural ordering of C(G), which is always a consecutive ordering. The set of all consecutive
orderings of C(G) are usually represented by PQ-trees, a data structure introduced by Booth
and Lueker [22].

A PQ-tree of G is a rooted tree T with ordered edges with the following properties: every
non-leaf node is either a Q-node or a P-node, each P-node has at least 2 children, each Q-node
has at least 3 children, and the leaves of T are bijectively associated with the elements of C(G).
For an illustration, see Figure 4.1. The frontier F (T ) of the PQ-tree T is the permutation
of C(G) that is obtained by ordering the cliques associated with the leaves of T simply from
left to right. Two PQ-trees T1 and T2 are equivalent, if one can be obtained from the other
by applying a sequence of the following transformations: permuting the children of a P-node
arbitrarily, or reversing the children of a Q-node. The consecutive orderings of the maximal
cliques of a graph can be represented by a PQ-tree in the following sense: for each interval
graph G there exists a PQ-tree T , such that {F (T ′) | T ′ is a PQ-tree equivalent to T } yields
the set of all consecutive orderings of C(G). Such a PQ-tree represents G. For any interval
graph G a PQ-tree representing it can be constructed in linear time [22].

This property of PQ-trees can be used in the recognition of interval graphs. However, to
examine isomorphism of interval graphs, the information stored in a PQ-tree is not sufficient.
For this purpose, a new data structure, the labeled PQ-tree has been defined [96, 35]. For a
PQ-tree T and some node s ∈ V (T ), let Ts denote the subtree of T rooted at s. For each
vertex v in G, let the characteristic node R(v) of v in a PQ-tree T representing G be the
deepest node s in T such that the frontier of Ts contains C(v). For a node s ∈ V (T ), we will
also write R−1(s) = {x ∈ V (G) | R(x) = s}, and if T ′ is a subtree of T , then R−1(T ′) = {x ∈
V (G) | R(x) ∈ V (T ′)}. Observe that if R(v) is a P-node, then every clique in the frontier
of TR(v) contains v. It is also true that if R(v) is a Q-node with children x1, x2, . . . , xm, then
those children of R(v) whose frontier contains v form a consecutive subseries of x1, . . . xm.
Formally, there must exist two indices i < j such that C(v) = {C | C ∈ F (Txh

) for some i ≤
h ≤ j}.

A labeled PQ-tree of G is a labeled version of a PQ-tree T of G where the labels store
the following information. If x is a P-node or a leaf, then its label is simply |R−1(x)|. If q
is a Q-node with children x1, x2, . . . , xm (from left to right), then for each v ∈ R−1(Tq) we
define Qq(v) to be the pair [a, b] such that xa and xb are the leftmost and rightmost children
of q whose frontier in T contains C(v). (See again Figure 4.1.) Also, if Qq(v) = [a, b] for
some vertex v, then we let Qleft

q (v) = a and Qright
q (v) = b. For some 1 ≤ a ≤ b ≤ m, the

pair [a, b] is a block of q. Considering blocks of a Q-node, we will use a terminology that
treats them like intervals, so two blocks can be disjoint, intersecting, they contain indices,
etc. The label L(q) of q encodes the values |Lq(a, b)| for each a < b in [m], where Lq(a, b) is
the set {v ∈ R−1(q) | Qq(v) = [a, b]}.

Note that a PQ-tree can be labeled in linear time. Two labeled PQ-trees are identical,
if they are isomorphic as rooted trees and the corresponding vertices have the same labels.
Two labeled PQ-trees are equivalent, if they can be made identical by applying a sequence
of transformations as above, with the modification that when reversing the children of a Q-
node, its label must also be adjusted correctly. The key theorem that yields a way to handle
isomorphism questions on interval graphs is the following:

Theorem 4.1.1 ([96]). Let G1 and G2 be two interval graphs, and let T L(G1) and T L(G2) be
the labeled version of a PQ-tree representing G1 and G2, respectively. Then G1 is isomorphic
to G2 if and only if T L(G1) is equivalent to T L(G2).

Given a Q-node q in a PQ-tree T , let x1, . . . , xm denote its children from left to right. For
a given child xi of q, we define Mq(i) to be the set of vertices v ∈ R−1(q) for which Qq(v)
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g : [2, 3]

c2 : [1, 2]
c3 : [1, 3]
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d2 : [3, 5]
d3 : [4, 5]

e1 : [2, 4]
e2 : [2, 4]

− − −

−

Figure 4.1: An interval representation of an interval graph G and a labeled PQ-tree T
representing G. Squares, white and black circles represent Q-nodes, P-nodes and leaves,
resp. For each node x in T , we listed the vertices in R−1(x), together with the val-
ues Qx(v) for each v ∈ R−1(x) where x is a Q-node. As an example, the frontier of p2

is ({b1, b2, f, g}, {b3, f, g}).

contains i, i.e. Mq(i) is the union of those sets Lq(a, b) for which [a, b] contains i. Clearly,
Mq(i) 6= Mq(j) if i 6= j, since this would imply the interchangeability of the nodes xi and xj .
We say that some w ∈ R−1(q) starts or ends at i if Qleft

q (v) = i or Qright
q (v) = i, respectively.

We also denote by M+
q (i) and M−

q (i) the set of vertices that start or end at i, respectively.
The maximality of the cliques in F (Txi

) implies the following observation.

Proposition 4.1.2. If q is a Q-node in a PQ-tree T and xi is the i-th child of q, then
neither R−1(Txi

) ∪ M+
q (i) nor R−1(Txi

) ∪ M−
q (i) can be empty.

Given some interval representation ρ for an interval graph G, we denote by vleft
ρ and vright

ρ

the left and right endpoints of the interval representing v ∈ V (G). If no confusion arises, then
we may drop the subscript ρ.

4.2 Hardness results

In this section, we prove the NP-hardness of Induced Subgraph Isomorphism for the
case of interval graphs (the Cleaning(Interval, Interval) problem), and we also show the
parameterized hardness of this problem, where the parameter is the size of the smaller graph.

Theorem 4.2.1. (1) The Induced Subgraph Isomorphism problem is W[1]-hard if both
input graphs are interval graphs, and the parameter is the number of vertices in the smaller
input graph.
(2) The Induced Subgraph Isomorphism problem is NP-complete if both input graphs are
interval graphs.

Proof. To prove (1), we give an FPT reduction from the parameterized Clique problem.
Let F = (V, E) and k be the input graph and the parameter given for Clique. We assume
w.l.o.g. that F is simple and V = {vi | i ∈ [n]}. We construct two interval graphs G and H
with |V (H)| = O(k2) such that H is an induced subgraph of G if and only if F has a k-clique.
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Figure 4.2: Illustration of the construction of the graph G. (The picture assumes vivj ∈ E.)

The vertex set of G consist of the vertices as
i , b

s
i , c

s
i , d

s
i , fi,i for each i ∈ [n] and s ∈ {−, +},

vertices fi,j, fj,i for each vivj ∈ E, and two vertices g− and g+. Note that |V (G)| = 9n+2|E|+
2, which is polynomial in n. We define the edge set of G by giving an interval representation
for G. The intervals I(x) representing a vertex x ∈ V (F ) are defined below. See also the
illustration of Figure 4.2.

I(a+
i ) = [10i − 8, 10i − 5] I(a−

i ) = [−10i + 5,−10i + 8] if i ∈ [n]
I(b+

i ) = [10i − 6, 10i− 3] I(b−i ) = [−10i + 3,−10i + 6] if i ∈ [n]
I(c+

i ) = [10i − 4, 10i − 1] I(c−i ) = [−10i + 1,−10i + 4] if i ∈ [n]
I(d+

i ) = [10i − 2, 10i] I(d−i ) = [−10i,−10i + 2] if i ∈ [n]
I(fi,i) = [−10i + 5, 10i − 5] if i ∈ [n]
I(fi,j) = [−10i + 7, 10j − 7] I(fj,i) = [−10j + 7, 10i − 7] if vivj ∈ E
I(g−) = [−10n,−1] I(g−) = [1, 10n]

Note that this construction is symmetric in the sense that for any interval [x1, x2] in this
interval representation, the interval [−x2,−x1] is also present.

Also, we define the graph H , having k2 + 8k + 2 vertices, as follows. Let the vertex set
of H consist of the vertices ãs

i , b̃
s
i , c̃

s
i , d̃

s
i for each i ∈ [k] and s ∈ {−, +}, the vertices f̃i,j for

each (i, j) ∈ [k]2, and two vertices g̃− and g̃+. Again, we define the edge set of H by giving
an interval representation for H as follows.

I(ã+
i ) = [10i − 8, 10i − 5] I(ã−

i ) = [−10i + 5,−10i + 8] if i ∈ [k]

I (̃b+
i ) = [10i − 6, 10i− 3] I (̃b−i ) = [−10i + 3,−10i + 6] if i ∈ [k]

I(c̃+
i ) = [10i − 4, 10i − 1] I(c̃−i ) = [−10i + 1,−10i + 4] if i ∈ [k]

I(d̃+
i ) = [10i − 2, 10i] I(d̃−i ) = [−10i,−10i + 2] if i ∈ [k]

I(f̃i,i) = [−10i + 5, 10 − 5] if i ∈ [k]

I(f̃i,j) = [−10i + 7, 10j − 7] I(f̃j,i) = [−10j + 7, 10i − 7] if i, j ∈ [k], i 6= j
I(g̃−) = [−10k,−1] I(g̃−) = [1, 10k]

First, if C is a set of k vertices in F that form a clique, then H is isomorphic to the
subgraph of G induced by the vertices as

i , b
s
i , c

s
i , d

s
i , fi,i for each vi ∈ C and s ∈ {−, +}, the

vertices fi,j , fj,i for each {vi, vj} ⊆ C, and the two vertices g− and g+. This can be proven
by presenting an isomorphism ϕ from H to the subgraph of G induced by these vertices. It
is easy to verify that the function ϕ defined below indeed yields an isomorphism. Here, c(i)
denotes the index of the i-th vertex in the clique C, i.e. C = {vc(i) | i ∈ [k]}.

ϕ(x̃s
i ) = xs

c(i) for each x ∈ {a, b, c, d}, s ∈ {−, +}, i ∈ [k]

ϕ(f̃i,j) = fs
c(i),c(j) for each i, j ∈ [k]2

ϕ(g̃s) = gs for each s ∈ {−, +}
For the other direction, suppose that ϕ is an isomorphism from H to an induced subgraph

of G. We set F = {fi,j | i = j or vivj ∈ E}, and we define Z to contain those vertices of G
whose interval contains 0.

Claim. If there is a disjoint union of two k-stars in K with centers u1 and u2, induced by
vertices {u1, u2}∪J , then {ϕ(u1), ϕ(u2)} = {g−, g+} and ϕ(J)∩F = ∅. To prove this claim,
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note that the vertices of J are independent, so there can be at most one vertex in ϕ(J) whose
interval contains 0. Thus, either ϕ(u1) or ϕ(u2) must not be in Z, and must be adjacent
to at least k vertices not in Z. This implies that ϕ(u1) or ϕ(u2) must indeed be g− or g+.
Assuming, say, ϕ(u1) = g− (the remaining cases are analogous), we obtain that the only
common neighbor of the k vertex of ϕ(J) not adjacent to ϕ(u1) can be g+. This immediately
implies {ϕ(u1), ϕ(u2)} = {g−, g+}. From this, ϕ(J) ∩ F = ∅ is clear, since no vertex of J is
adjacent to both u1 and u2. Hence, the claim is true.

Now, note that for some x ∈ {a, b, c, d}, the vertex set {x̃s
i | i ∈ [k], s ∈ {−, +}} ∪

{g̃−, g̃+} induces the disjoint union of two k-stars having centers g̃− and g̃+ in H . There-
fore, applying the above claim to each these vertex sets with x ∈ {a, b, c, d}, we obtain

that {ϕ(g̃−), ϕ(g̃+)} = {g−, g+}, and also that ϕ(X̃) ∩ F = ∅ for the set X̃ containing the
vertices of the form x̃s

i where x ∈ {a, b, c, d}, s ∈ {−, +} and i ∈ [k]. By the symmetry of H
and G, we can assume w.l.o.g. that ϕ(g̃−) = g− and ϕ(g̃+) = g+.

From this, we have that exactly 4k vertices of ϕ(X̃) are represented by an interval whose

left endpoint is positive, and the remaining 4k vertices of ϕ(X̃) are represented by an interval

whose right endpoint is negative. Now, observe that the vertices of X̃ induce exactly 2k paths
of length 4 in H , which leads us to the fact that their images by ϕ must also induce 4-paths.
Using this, it follows that for each i ∈ [k] we can define c(i, +), c(i,−) ∈ [n] such that

ϕ({ãs
i , b̃

s
i , c̃

s
i , d̃

s
i }) = {as

c(i,s), b
s
c(i,s), c

s
c(i,s), d

s
c(i,s)}

for each i ∈ [k] and s ∈ {−, +}.
Note also that for both s ∈ {−, +}, the vertex f̃i,i is adjacent to exactly two vertices

from {ãs
i , b̃

s
i , c̃

s
i , d̃

s
i }. However, the unique vertex that is adjacent to exactly two vertices in

the set {as
c(i,s), b

s
c(i,s), c

s
c(i,s), d

s
c(i,s)} is the vertex fc(i,s),c(i,s). From this, we get that ϕ(f̃i,i) =

fc(i,−),c(i,−) = fc(i,+),c(i,+), implying also c(i,−) = c(i, +).

Finally, observe that if i 6= j, then the vertex f̃i,j is adjacent to exactly one vertex both

from {ã−
i , b̃−i , c̃−i , d̃−i } and from {ã+

j , b̃+
j , c̃+

j , d̃+
j }. This implies that ϕ(f̃i,j = fc(i,−),c(j,+) must

hold, but fc(i,−),c(j,+) only exists if vc(i,−) and vc(j,+) are adjacent in F . Clearly, this implies
that the vertices {vc(i,−) = vc(i,+) | i ∈ [k]} form a clique in F , hence the second direction of
the reduction is correct as well.

Observe that by the size of G and H , this yields an FPT-reduction from the parameterized
Clique problem to the Cleaning(Interval, Interval) problem (i.e. the Induced Subgraph
Isomorphism problem for interval graphs) parameterized by the number of vertices in the
smaller input graph, proving (1). Also, note that the construction of G and H takes time poly-
nomial in |V (F )| and k, so by the NP-hardness of the (unparameterized) Maximum Clique
problem, this proves that the (unparameterized) Cleaning(Interval, Interval) problem is
NP-hard as well. Its containment in NP is trivial, finishing the proof of (2).

4.3 Cleaning an interval graph

In this section, we present an algorithm that solves the Cleaning(Interval, Interval) problem.
Given an input (G′, G) of this problem, we call a set S ⊆ V (G) a solution for (G′, G), if G′ is
isomorphic to G−S. In this case, let φS denote an isomorphism from G′ to G−S. Remember
that k = |V (G)|−|V (G′)| is the parameter of the instance (G′, G). We denote by T and T ′ the
labeled PQ-tree representing G and G′, respectively. Let us fix an interval representation of G.
For a subset X of V (G), let X left = min{xleft | x ∈ X} and Xright = max{xright | x ∈ X}.

Our algorithm for Cleaning(Interval, Interval) is based on an algorithm denoted by A
whose output on an input (G′, G) can be one of the following three concepts:
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• a necessary set. We call a set N ⊆ V (G) a necessary set for (G′, G), if (G′, G) has
a solution if and only if there is a vertex x ∈ N such that (G′, G − x) has a solution.
Given a necessary set for (G′, G), we can branch on including one of its vertices in the
solution.

• a reduced input. For subgraphs H and H ′ of G and G′, respectively, we say that
(H ′, H) is a reduced input for (G′, G), if (G′, G) is solvable if and only if (H ′, H) is
solvable, every solution for (H ′, H) is a solution for (G′, G), and |V (H ′)| + |V (H)| <
|V (G′)| + |V (G)|. Given a reduced input for (G′, G), we can clearly solve it instead of
solving (G′, G).

• an independent subproblem. For subgraphs H and H ′ of G and G′, respectively,
we say that (H ′, H) is an independent subproblem of (G′, G) having parameter k, if its
parameter is at least 1 but at most k−1, for any solution S of (G′, G) the set S∩V (H)
is a solution for (H ′, H), and if (G′, G) admits a solution then any solution S of (H ′, H)
can be extended to be a solution for (G′, G). Note that given an independent subproblem
of (G′, G), we can find a vertex of the solution by solving the independent subproblem
having parameter smaller than k.

Observe that if N is a necessary set for either an independent subproblem or a reduced input
for (G′, G), then N must be a necessary set for (G′, G) as well.

In Section 4.3.1 we make some useful observations about the structure of an interval
graph. In Sections 4.3.2 and 4.4, we describe algorithm A, that, given an input instance of
Cleaning(Interval, Interval) with parameter k, does one of the followings in linear time:

• either determines a reduced input for (G′, G),

• or branches into at most f1(k) = kO(k3) possibilities, in each of the branches producing
a necessary set of size at most 2k + 1 or an independent subproblem of (G′, G).

Note that in the first case no branching is involved. If the second case applies and A branches,
then the collection of outputs returned in the obtained branches must contain a correct
output. In other words, at least one of the branches must produce an output that is indeed
a necessary set of the required size or an independent subproblem of (G′, G).

Let us show how such an algorithm can be used as a sub-procedure in order to solve
the Cleaning(Interval, Interval) problem. (See Figure 4.3 for an outline of the algorithm.)
First, we construct an algorithm called NecessarySet that given an instance (G′, G) of Clean-
ing(Interval, Interval) finds a necessary set for (G′, G) in quadratic time. NecessarySet works
by running A repeatedly, starting with the given input. In the case when A returns a reduced
input, NecessarySet runs A with this reduced input again. In the case when A branches, re-
turning a necessary set or an independent subproblem in each branch, NecessarySet runs A
on each independent subproblem produced in any of the branches. Applying this method
iteratively (and thus possibly branching again), we will get a necessary set at the end of each
branch. Note that the parameter of the input decreases whenever a branching happens, and
thus the corresponding search tree has at most f1(k)k = kO(k4) leaves. Since at least one of
the branches is correct, by taking the union of the necessary sets produced in the leaves of
the search tree, we get a necessary set of size f2(k) = (2k + 1)f1(k)k = kO(k4) for (G′, G). As
each run of A takes linear time, and the number of calls of A is also linear in a single chain
of branches, the whole algorithm takes quadratic time.

Now, we can solve Cleaning(Interval, Interval) by using NecessarySet. First, given an
input (G′, G), we run NecessarySet on it. We branch on choosing a vertex s from the produced
output to put into the solution, and repeat the whole procedure with input (G′, G− s). This

means a total of f2(k) = (2k + 1)f1(k)k = kO(k4) new inputs to proceed with. We have to
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IntervalCleaning(G′, G)

1. If |V (G)| > |V (G′)| then do:

for each s ∈ NecessarySet(G′, G) do:

if IntervalCleaning(G′, G − s) return ’Yes’, then return ’Yes’.

2. Otherwise, if G′ is isomorphic to G then return ’Yes’.

3. Return ’No’.

NecessarySet(G′, G)

1. Set N = ∅.

2. Call A(G′, G).
If it returns a reduced input (H ′, H), then N := NecessarySet(H ′, H).
If it branches, then

for each necessary set X returned in a branch:

set N := N ∪ X ,

for each independent subproblem (H ′, H) returned in a branch:

set N := N ∪ NecessarySet(H ′, H).

3. Return N .

Figure 4.3: Outline of algorithms IntervalCleaning and NecessarySet.

repeat this at most k times, so the whole algorithm has running time f2(k)k|I|2 = kO(k5)|I|2,
where |I| is the size of the original input of the problem. We can state this in the following
theorem:

Theorem 4.3.1. Cleaning(Interval, Interval) on input (G′, G) can be solved in kO(k5)n2

time, where |V (G′)| = n and |V (G)| = n + k.

4.3.1 Some structural observations

A nonempty set M ⊆ V (G) is a module of G, if for every x ∈ V (G) \ M , NG(x) either
includes M or is disjoint from M . A module M in G is complete, if G[M ] is connected and
there is no vertex in x ∈ NG(M) such that NG(x) ⊆ NG[M ]. Lemma 4.3.2 gives a characteri-
zation of the complete modules of an interval graph. For an illustration, see Figure 4.1. Note
that {a1} and {a2, a3} are modules of G that are not complete. The sets {a1, a2, a3}, {b1, b2}
and {c1, c2, c3, c4, d1, d2, d3, d4, e1, e2} are examples of complete module characterized by (a)
of Lemma 4.3.2, and the set {e1, e2} illustrates the complete modules characterized by (b) of
Lemma 4.3.2.

Lemma 4.3.2. Given an interval graph G and a labeled PQ-tree T representing G, some
set M ⊆ V (G) is a complete module of G, if and only if one of the following statements
holds:
(a) M = R−1(Tz) for some z ∈ V (T ), and if z is a P-node then R−1(z) 6= ∅
(b) M = Lq(a, b) for some Q-node q ∈ V (T ) having children x1, . . . , xm and some pair (a, b)
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with a < b, such that R−1(Txi
) = ∅ for each i contained in [a, b], and Lq(a

′, b′) = ∅ for
each [a′, b′] properly contained in [a, b].

Proof. First, let M be a complete module in G. Let us choose a vertex v ∈ M such that R(v)
is the closest possible to the root of T . Since G[M ] is connected, v is unique, and we also
get R−1(TR(v)) ⊇ M . First, suppose that R(v) is a P-node or a leaf. Then v is contained
in each clique of F (TR(v)). Thus, if R(x) is in TR(v) for some vertex x, then NG(x) ⊆
NG(v) ⊆ NG[M ]. By the completeness of M , we get x ∈ M . Hence, R−1(TR(v)) ⊆ M
implying R−1(TR(v)) = M . Therefore, (a) holds in this case.

Now, suppose that R(v) is a Q-node q with children x1, . . . , xm, and let Mq = M∩R−1(q).
Let a = min{Qleft

q (w) | w ∈ Mq} and b = max{Qright
q (w) | w ∈ Mq} Using the completeness

of M , we can argue again that R−1(Txh
) ⊆ M for each h contained in [a, b] and that w ∈ M

holds for each w ∈ R−1(q) such that Qq(w) is contained in [a, b]. Thus, if [a, b] = [1, m]
then M = R−1(Tq), implying that (a) holds. Otherwise, as q is a Q-node, there must exist a
vertex u ∈ R−1(q) \ M such that Qq(u) properly intersects [a, b]. As u must be adjacent to
each vertex of M (as M is a module), we get that R−1(Txh

) = ∅ for every h in [a, b] that is
not contained in Qq(u). In particular, we get that either R−1(Txa

) = ∅ or R−1(Txb
) = ∅. We

can assume w.l.o.g. that R−1(Txa
) = ∅ holds. Thus, M−

q (a) 6= ∅, and since M−
q (a) ∩ M 6= ∅,

using again that M is a module, we obtain that each w ∈ Mq must start in a and also
that R−1(Txh

) = ∅ for every h in [a, b]. Note that this implies Mq = M . Now, from R−1(Txb
) =

∅ we get in a similar way that each w ∈ M must end in b, proving Qq(w) = [a, b] for
every v, w ∈ M . Now, using the completeness of M and putting together these facts, we get
that the conditions of (b) must hold.

For the other direction, it is easy to see that if (a) holds for some M , then M indeed must
be a complete module of G. Second, if M = Lq(a, b) for some q and [a, b], then M is clearly
a module, and the remaining conditions of (b) ensure that M is complete.

We will say that a complete module M is simple, if the conditions in (b) hold for M .
Clearly, NG(M) is a clique if and only if M is not simple, and if M is simple then G[M ] is a
clique. In Figure 4.1, {e1, e2} is a simple complete module.

For a graph H , some set M ⊆ V (G) is an occurrence of H in G as a complete module,
if M is a complete module for which G[M ] is isomorphic to H . Let M(H, G) be the set of
the occurrences of H in G as a complete module. Using that each element of M(H, G) is a
subset of V (G) having size |V (H)|, we obtain the following consequence of Lemma 4.3.2.

Proposition 4.3.3. For a graph H, the elements M(H, G) are pairwise disjoint.

Moreover, if the graph H is not a clique, then none of the occurrences of H in G as a
complete module can be simple, so each set in M(H, G) must be of the form R−1(Tz) for
some non-leaf node z of T . This yields that the sets in M(H, G) are independent (where two
vertex sets in a graph are independent if there is no edge between them). Lemma 4.3.4 below
states some observations about what happens to a set of disjoint and independent complete
modules in a graph after adding or deleting a vertex.

Lemma 4.3.4. Suppose that s ∈ V (G).
(1) If M1, . . . , M` are disjoint independent complete modules in G− s, then Mi is a complete
module in G for at least ` − 4 indices i ∈ [`].
(2) If M1, . . . , M` are disjoint independent complete modules in G, then Mi is a complete
module in G − s for at least ` − 4 indices i ∈ [`].

Proof. As Mi and Mj are independent if i 6= j, we can assume that M left
1 ≤ M right

1 < · · · <

M left
` ≤ M right

` . Recall that each Mi is connected by the definition of a complete module. We
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s1 s2

s3

s4 s5

s6

s7

MiMi−1 Mi+1

Figure 4.4: Mi−1, Mi, and Mi+1 illustrate complete modules of G − S. The set Mi is
untouched by s1, s2, and s3, but this is not true for any vertex sj , j ≥ 4.

say that Mi is untouched (by s), if either sleft ≤ M right
i−1 and sright ≥ M left

i+1, or sright < M right
i−1 ,

or sleft > M left
i+1. (See also Figure 4.4.) If Ma and Mb are the first and the last one, respectively,

among the sets M1, . . . , M` that have a vertex adjacent to s, then each Mi except for Ma−1,
Ma, Mb, and Mb+1 must be untouched by s.

To see (1), we show that if a complete module of G−s is untouched, then it is a complete
module of G. So assume that Mi is untouched. Clearly, s /∈ Mi. Since either NG(s) ⊇ Mi

or NG(s)∩Mi = ∅, Mi remains to be a module in G. Also, if s ∈ NG(Mi), then s must have
a neighbor in Mi−1 and Mi+1. Thus, NG(s) 6⊆ NG[Mi], so the completeness of Mi in G − s
implies its completeness in G as well.

To prove (2), suppose that Mi is an untouched complete module in G. Clearly, Mi is a
module in G− s as well, and since s /∈ Mi, Mi remains connected in G− s. Let x be a vertex
in NG(Mi). By the completeness of Mi, x is adjacent to some vertex y /∈ NG[Mi]. Suppose
that x does not have a neighbor outside NG−s[Mi] in G − s. This can only happen if y = s.
Now, since y /∈ NG[Mi] and Mi is untouched by s, x must also be adjacent to a vertex of Mi−1

or Mi+1. Thus, x has a neighbor in V (G − s) \ NG−s[Mi], proving the completeness of Mi.
As Mi is untouched for at least ` − 4 indices i ∈ [`], the statement follows.

In the case when H is a clique and K is an occurrence of H in G as a complete module,
we get that either K = R−1(`) for some leaf ` ∈ V (T ), or K is simple, i.e. K = Lq(a, b)
for some Q-node q ∈ V (T ) and some block [a, b]. In the latter case, Lemma 4.3.5 states a
useful observation about the block [a, b]. This lemma uses the following definition: we say
that a complete module K of G is h-short, if either K = R−1(`) for some leaf ` ∈ V (T ),
or K = Lq(a, b) for some Q-node q ∈ V (T ) and some block [a, b] with b − a ≤ h. The
sets {e1, e2} and {b1, b2} are 2-short complete modules of G in Figure 4.1.

Lemma 4.3.5. If K is a complete module in G such that G[K] is a clique but K is not h-
short, then |NG(K)| ≥ 2(h + 1).

Proof. By the conditions of the lemma, we know that K = Lq(a, b) for some Q-node q ∈ V (T )
with children x1, . . . , xm and some block [a, b] such that b − a ≥ h + 1. By the completeness
of K, we get that R−1(Txh

) = ∅ for any h contained in [a, b], so M+(h) and M−(h) cannot be
empty. Taking these sets for all h in [a, b], with the exception of the sets M+(a) and M−(b),
we get 2(b − a) ≥ 2(h + 1) nonempty sets that are pairwise disjoint, each containing some
vertex of NG(K). This implies the bound NG(K) ≥ 2(h + 1).

Observe that if two different h-short complete modules K1 and K2 in G are not indepen-
dent, then K1 = Lq(a, b) and K2 = Lq(c, d) must hold for some Q-node q in T and some
blocks [a, b] and [c, d] that properly intersect each other. Now, if b − a ≤ h, then there can
be at most 2h such blocks [c, d] for which these conditions hold. This implies that given
a h-short complete module K, there can be at most 2h different h-short complete modules
of G neighboring K (but not equal to K). It is also easy to see that the maximum number
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of pairwise neighboring h-short complete modules in a graph is at most h + 1. Making use
of these facts, Lemma 4.3.6 states some results about h-short complete modules of a graph
in a similar fashion as Lemma 4.3.4. As opposed to Lemma 4.3.4, here we do not require the
complete modules to be independent.

Lemma 4.3.6. Suppose that s ∈ V (G).
(1) If M1, . . . , M` are disjoint h-short complete modules in G − s, then Mi is a complete
module in G for at least ` − (3h + 5) indices i ∈ [`].
(2) If M1, . . . , M` are disjoint h-short complete modules in G, then Mi is a complete module
in G − s for at least ` − (4h + 3) indices i ∈ [`].

Proof. The proof relies on the observation that there can only be a few indices i such that
either sleft or sright lies within [M left

i , M right
i ].

To see (1), suppose that Mi is not a h-short complete module in G for some i. Clearly,
G[Mi] is connected. First, assume that Mi is not a module because there are some x, y ∈
Mi such that s is adjacent to x but not to y. In this case, either xleft < sright < yleft

or yright < sleft < xright. It is not hard to see that this implies that there can be at most
two such modules Mi. Now, assume that Mi is a module, but is not complete. This implies
that Mi ⊆ NG(s) ⊆ NG[Mi] is true. Note that if j 6= i then Mj ⊆ NG(s) ⊆ NG[Mj ] is only
possible if Mi and Mj are neighboring. Thus, there can be at most h + 1 such indices i.

Finally, if Mi is complete module in G but it is not h-short, then the number of max-
imal cliques containing the vertices of Mi must be more in G than in G − s, implying
that either M left

i < sleft ≤ M right
i or M left

i ≤ sright ≤ M right
i . As M left

i < sleft ≤ M right
i

and M left
j < sleft ≤ M right

j can only hold simultaneously if Mi and Mj are neighboring, and
such a statement is also true for the latter condition, we get that there can be at most 2(h+1)
indices i for which Mi is h-short in G − s but not in G. Summing up these facts, we obtain
that there can be at most 2 + (h + 1) + 2(h + 1) = 3h + 5 indices i for which Mi is not
a h-short complete module in G.

To prove (2), notice that each Mi remains a module in G − s as well. Observe also that
if s /∈ Mi, then Mi remains connected in G − s. By the disjointness of the sets M1, . . . , M`,
each of them is connected in G− s except for at most one. Suppose that Mi1 , Mi2 , and Mi3

are independent, and for each j ∈ {1, 2, 3}, Mij
is a connected module in G − s but it is

not complete. This means that there are vertices x1, x2, and x3 such that xj ∈ NG(Mij
),

but NG(xj) ⊆ NG[Mij
] for each j. By the completeness of these modules in G, this implies

that each of x1, x2, and x3 are adjacent to s, and s /∈ NG[Mij
] for any j. But this can only

hold if some xj is adjacent to each vertex of Mij′
for some j 6= j′, and since Mij

and Mij′
are

independent, this contradicts the assumption that NG(xj) ⊆ NG[Mij
]. Thus, there cannot

exist such indices i1, i2 and i3, implying that we can fix two indices j and j′ such that for
any Mi that is a connected module in G − s but not complete, Mi is neighboring either Mj

or Mj′ , implying that there can be at most 2(2h) + 2 such indices i. To finish, observe that
if Mi is a complete module in G − s, then it must be h-short, as the deletion of s cannot
increase the number of maximal cliques that contain Mi.

4.3.2 Reduction rules

In this section, we introduce some reduction rules, each of which can be applied in linear time,
and provides a necessary set, an independent subproblem, or a reduced input, as described
earlier. Our aim is to handle all cases except for the case when both G and G′ have a PQ-tree
with a Q-node root. We always apply the first possible reduction. From now on, we assume
that S is a solution for (G′, G) and φS is an isomorphism from G′ to G − S.

Rule 1. Isomorphic components. Lemma 4.3.7 yields a simple reduction: if G and G′

have isomorphic components, then algorithm A can output a reduced input of (G′, G).
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Note that partitioning a set of interval graphs into isomorphism equivalence classes can be
done in linear time [96] (see also [42, 135, 136]). Hence, this reduction can also be performed
in linear time.

Lemma 4.3.7. If K and K ′ are connected components of G and G′, respectively, and K is
isomorphic to K ′, then (G′ − K ′, G − K) is a reduced input of (G′, G).

Proof. Trivially, G′−K ′ has fewer vertices than G′, and any solution for (G′−K ′, G−K) is a
solution for (G′, G) as well, by the isomorphism of K ′ and K. Therefore, we only have to prove
that if (G′, G) is solvable then (G′−K ′, G−K) is also solvable. Clearly, if S∩V (K) = ∅, then
we can assume w.l.o.g. that φS(K ′) = K. In this case, S is a solution for (G′ − K ′, G − K).

Now, if S ∩ V (K) 6= ∅ then K and φS(K ′) are disjoint. Moreover, K and φS(K ′) are
disjoint isomorphic connected components of G − S0 where S0 = S \ V (K). Let κ be an
isomorphism from K to φS(K ′). Notice that the role of K and φS(K ′) can be interchanged,
and we can replace S ∩V (K) with κ(S ∩ V (K)) in the solution. Thus, S0 ∪κ(S ∩ V (K)) is a
solution for (G′, G) that is disjoint from K. Since this yields a solution for (G′ −K ′, G−K)
as well, this finishes the proof.

Rule 2. Many components in G′. This reduction is possible in the case when G′ has
at least 4k + 1 components. Since Rule 1 cannot be applied, none of the components of G is
isomorphic to a component of G′. Our aim is to locate φS(K ′) in G for one of the compo-
nents K ′ of G′. If we find φS(K ′) then we know that NG(φS(K ′)) must be contained in S, so
we can produce a necessary set of size 1 by outputting any of the vertices of NG(φS(K ′)).

Given a graph H , recall that M(H, G) denotes the occurrences of H in G as a complete
module. By Proposition 4.3.3, the elements of M(H, G) are disjoint subsets of V (G). We
can find M(H, G) in linear time, using the labeled PQ-tree of G and the characterization of
Lemma 4.3.2.

Relying on Lemmas 4.3.4 and 4.3.6, the algorithm performs the following reduction. Sup-
pose that K ′

1, K
′
2, . . . , K

′
k′ are the k′ = 4k + 1 largest connected components of G′, ordered

decreasingly by their size, and let S be a solution for (G′, G). As the vertex sets of the con-
nected components of G′ are complete modules of G′, the sets Ki = φS(V (K ′

i)) for i ∈ [k′]
are complete modules of G − S. By definition, these sets are also disjoint and independent.
As a consequence of (1) in Lemma 4.3.4, we get that for at least k′ − 4k = 1 indices i ∈ [k′]
the set Ki will be a complete module of G. We branch on the choice of i to find such a
set Ki, resulting in at most k′ possibilities. Observe that w.l.o.g. we can assume that the
subgraph G[Ki] is the first one (according to the given representation of G) among the
components of G − S isomorphic to K ′

i.
It remains to describe how we can find Ki in G. To begin, we suppose now that K ′

i is not
a clique. Let us discuss a simplified case first, where we assume that K ′

i is not contained as an
induced subgraph in any of the components K ′

j if j 6= i. Let M(K ′
i, G) = {A1, A2, . . . }, where

the sets in M(K ′
i, G) are ordered according to their order in the interval representation of G.

Let i∗ denote the index for which Ai∗ is the first element in M(K ′
i, G) that is a complete

module in G−S as well. Since K ′
i is not contained in a component of G′ having more vertices

than |V (K ′
i)|, G[Ai∗ ] must be a connected component of G − S. Also, G[Ai∗ ] is isomorphic

to K ′
i, and by the definition of Ai∗ , it must be the first such component of G − S. Thus,

we can conclude that Ai∗ equals Ki. By (2) of Lemma 4.3.4, there can be at most 4k sets
in M(K ′

i, G) that are not complete modules in G−S, so we get that i∗ ≤ 4k+1 = k′. Hence,
we can find Ki by guessing i∗ and branching into k′ directions.

Let us consider now the general case, where some of the components K ′
j can contain K ′

i

in G′. (We still suppose that Ki is not a clique.) For each j < i, we define an indicator
variable δ(j) which has value 1 if and only if Kj precedes Ki in G − S. We guess δ(j) for

each j ∈ [i − 1], which means at most 2k′−1 possibilities.
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A B C D K ′
i F

φS(A)φS(B) φS(C) φS(D) Ki φS(F )

G

G′

Figure 4.5: An illustration of Rule 2. In this example, the small rectangles denote elements
of M(K ′

i, G
′) and M(K ′

i, G). Rectangles with a skew pattern are elements of M(K ′
i, G) that

are not complete modules of G−S. Crossed rectangles with a dashed border indicate if some
set φS(X) is not a complete module of G for some X ∈ M(K ′

i, G
′). In this example, i = 5,

δ(1) = 0, δ(2) = δ(3) = δ(4) = 1, |M′| = 4 and i∗ = 6.

Again, let M(K ′
i, G) = {A1, A2, . . . }, where the sets Ah are ordered according to their

order in the interval representation of G. Let i∗ denote the index for which Ki = Ai∗ ,
and let M′ stand for

⋃
j<i,δ(j)=1 M(K ′

i, K
′
j), which is a collection of subsets of V (G′), each

inducing a subgraph of G′ isomorphic to K ′
i. As Ki is not a clique, the elements of M′ in G′

are disjoint and independent, so by (1) of Lemma 4.3.4 we get that for at least |M′| − 4k
sets A ∈ M′, the set φS(A) will be a complete module of G as well. As all these sets precede Ki

in G, we get that φS(A) ∈ {A1, . . . , Ai∗−1} holds for at least |M′| − 4k sets A ∈ M′. From
this, i∗ − 1 ≥ |M′| − 4k follows.

Clearly, for all those sets A ∈ {A1, . . . , Ai∗−1} which are complete modules in G − S as
well, φ−1

S (A) must be contained in a component of G′ which is larger than K ′
i. Here we used

again the assumption that G[Ki] is the first one among the components of G−S isomorphic
to Ki. Since such an A precedes Ki, we obtain φ−1

S (A) ∈ M′. By (2) of Lemma 4.3.4, there
can be at most 4k sets among A1, . . . , Ai∗−1 that are not complete modules in G − S, so we
get that φ−1

S (A) ∈ M′ for at least i∗−1−4k sets A in {A1, . . . , Ai∗−1}. This implies i∗−1 ≤
|M′|+4k. Altogether, we get the bounds |M′|− 4k +1 ≤ i∗ ≤ |M′|+4k +1. Since |M′| can
be determined in linear time, by branching on the at most 8k + 1 possibilities to choose i∗,
we can find the vertex set Ki.

Now, we suppose that K ′
i is a clique. As Ki is a component of G−S, |NG(Ki)| ≤ k, which

by Lemma 4.3.5 implies that Ki must be k/2-short. Using Lemma 4.3.6, we can find Ki in
a similar manner to the previous case. We denote by N (H, G) the occurrences of a graph H
in G as a k/2-short complete module. Analogously to the previous case, let N (K ′

i, G) =
{B1, B2, . . . }, where the sets in N (K ′

i, G) are ordered according to their order in the fixed
representation of G. We also let Ki = Bi∗ and N ′ =

⋃
j<i,δ(j)=1 N (K ′

i, K
′
j). Now, using

Lemma 4.3.6 just as in the reasoning above, we get the bounds |N ′|− k(3k/2+5) ≤ i∗− 1 ≤
|N ′| + k(2k + 3). Again, |N ′| can be determined in linear time, so by branching on the at
most k(7k/2 + 8) + 1 possibilities to choose i∗, we can find the vertex set Ki.

Since Rule 1 cannot be applied, none of the components of G can be isomorphic to a
component of G′, hence Si = NG(Ki) is not empty. Clearly Si ⊆ S, so we get that {s} is a
necessary set for any s ∈ Si. The total number of possible branches in this reduction is at
most (4k + 1)24k(k(7k/2 + 8) + 1) = 2O(k).

Rule 3. Disconnected G. Here we give a reduction for the case when G is not connected,
but the previous reductions cannot be performed. First, observe that each component of G
contains at least one vertex from S, as none of them is isomorphic to a component of G′.
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Thus, if G has more than k components then there cannot exist a solution of size k, so we can
reject. Otherwise, let us fix an arbitrary component K of G. We branch on the choice of those
components of G′ whose vertices are in φ−1

S (K −S), for some fixed solution S. Let the union
of these components be G′

K . Note that guessing G′
K yields at most 24k possibilities, since G′

has at most 4k components. By our assumptions, 1 ≤ k′ < k holds for the parameter k′ of
the instance (G′

K , K), so (G′
K , K) is clearly an independent subproblem of (G′, G).

Rule 4. Universal vertex in G. A vertex x is universal in G, if NG(x) = V (G − x).
Such vertices imply a simple reduction by Lemma 4.3.8 which allows A to output either a
necessary set of size 1 or a reduced input of (G′, G).

Lemma 4.3.8. Let x be universal in G. If there is no universal vertex in G′, then {x} is
a necessary set for (G′, G). If x′ is universal in G′, then (G′ − x′, G − x) is a reduced input
of (G′, G).

Proof. Clearly, if x is universal in G and x /∈ S for a solution S, then it remains universal
in G − S. Thus, if no vertex is universal in G′, then x ∈ S must hold.

Suppose x′ is universal in G′, and S is an arbitrary solution. Clearly, if x /∈ S, then x
and y = φS(x′) are both universal in G−S, so if x 6= y then we can swap the role of x and y
such that φS maps x′ to x. Now, if x ∈ S then S′ = S ∪ {y} \ {x} is a solution in which
the isomorphism from G′ to G − S′ can map x′ to x. This implies that (G′ − x′, G − x) is a
reduced input of (G′, G).

Rule 5. Disconnected G′. Suppose that none of the previous reductions can be applied,
and G′ is disconnected. Clearly, G must be connected, and G′ has at most 4k components.
Let S be a solution. For each component K ′ in G′, let I(K ′) be the union of the intervals repre-
senting φS(K ′) in the fixed representation of G, i.e. I(K ′) = [φS(V (K ′))left, φS(V (K ′))right].
Since the components of G′ are connected and independent, the intervals I(K ′

1) and I(K ′
2)

are disjoint for two different components K ′
1 and K ′

2 of G′.
Let Q be the component of G′ such that I(Q) is the first among the intervals {I(K ′) | K ′

is a component of G′}. Clearly, if xright ≤ φS(V (Q))right for some vertex x ∈ V (G), then
either x ∈ S or x ∈ φS(Q), thus the number sQ of such vertices is at least |V (Q)| but at
most |V (Q)| + k. Therefore, we first guess Q, and then we guess the value of sQ, which
yields at most 4k(k + 1) possibilities. Now, ordering the vertices of G such that x precedes y
if xright < yright and putting the first sQ vertices in this ordering into a set B, we get φS(Q) ⊆
B ⊆ φS(Q) ∪ S. Since G is connected, there must exist an edge e = xy running between B
and V (G) \ B. Clearly, at least one endpoint of e must be in S, thus we can output the
necessary set {x, y}.

Rule 6. Universal vertex in G′. Suppose that some vertex x′ is universal in G′. Let a
and b be vertices of G defined such that aright = min{xright | x ∈ V (G)} and bleft = max{xleft |
x ∈ V (G)}. As there is no universal vertex in G, we know that xleft > aright or xright < bleft

for each x ∈ V (G), i.e. no vertex in G is adjacent to both a and b. As φS(x′) is universal
in G − S for any fixed solution S, we get that {a, b} is a necessary set.

4.4 The Q-Q case

From now on, we assume that none of the reductions given in Section 4.3.2 can be applied.
Thus, G and G′ are connected, and none of them contains universal vertices, so in particular,
none of them can be a clique. This implies that if r and r′ is the root of T and T ′, respectively,
then both r and r′ are Q-nodes. Let m and m′ denote the number of the children of r and r′,
respectively. When indexing elements of [m] and [m′], we will try to use i and j, respectively,
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whenever it makes sense. Let xi and x′
j denote the i-th and j-th child of r and r′, respectively,

and let Xi = R−1(Txi
) and X ′

j = R−1(T ′
x′

j
), for all i ∈ [m] and j ∈ [m′].

Let us call a solution S local, if there is an i ∈ [m] such that S ⊇ V (G) \ NG[Xi], i.e. S
contains every vertex of G except for the closed neighborhood of some Xi. Suppose that S
is a solution that is not local, and φS is an isomorphism from G′ to G − S. The following
definitions try to give a bound on those indices i in [m] which somehow contribute to φS(X ′

j)
for some j ∈ [m′]. For an index j ∈ [m′], let:

αS(j) = min{Qleft
r (φS(v)) | v ∈ X ′

j ∪ M+
r′ (j)}

βS(j) = max{Qright
r (φS(v)) | v ∈ X ′

j ∪ M−
r′ (j)}.

Observe that by

min{Qleft
r (φS(v)) | v ∈ X ′

j ∪ M+
r′ (j)} ≤ min{Qleft

r (φS(v)) | v ∈ X ′
j}

≤ max{Qright
r (φS(v)) | v ∈ X ′

j} ≤ max{Qright
r (φS(v)) | v ∈ X ′

j ∪ M−
r′ (j)}

we obtain that αS(j) ≤ βS(j) holds for any j ∈ [m′]. We let IS(j) be the block [αS(j), βS(j)].
The following lemma summarizes some useful observations.

Lemma 4.4.1. Suppose that S is a solution for (G′, G) that is not local. Then either all of
the following statements hold, or all of them hold after reversing the children of r′:
(1) Qdir1

r′ (v) < Qdir2
r′ (w) for some v, w ∈ V (G′) and dir1, dir2 ∈ {left, right} implies that

Qdir1
r (φS(v)) < Qdir2

r (φS(w)) holds as well.
(2) For any j1 < j2 in [m′], the block IS(j1) precedes IS(j2).
(3) If m = m′, then IS(j) = [j, j] for each j ∈ [m′].
(4) If i ∈ [m] then Xi \ S is contained in φS(X ′

j) for some j ∈ [m′].

(5) φS(R−1(r′)) ⊆ R−1(r).

Proof. Let the sets A1, . . . , As be disjoint subsets of some set {ai|i ∈ [r]}. We say that the
series a1, . . . , ar, respects the series A1, . . . , As if for any p, the elements of Ap precede the
elements of Ap+1 in a1, . . . , ar.

For some j ∈ [m′], let C′
j be the set of maximal cliques of G′ contained in F (T ′

x′
j
). As T ′

represents G′ and its root is a Q-node, any consecutive ordering of the maximal cliques of G′

respects either C′
1, C

′
2, . . . , C

′
m′ or C′

m′ , C′
m′−1, . . . , C

′
1.

Let Cj be the set of maximal cliques of G that contain φS(K) for some K ∈ C′
j . Clearly,

the sets Cj (j ∈ [m′]) are disjoint by the maximality of the cliques in F (T ′). The interval
representation of G yields an interval representation of G − S and hence of G′, which im-
plies that any consecutive ordering of the cliques in F (T ) must respect either C1, . . . , Cm′

or Cm′ , . . . , C1. This implies that if j1 6= j2, then the deepest node in T whose frontier con-
tains every clique in Cj1 ∪Cj2 must be some unique Q-node q, the same for each pair (j1, j2).
Note also that if q is contained in Txi

for some i ∈ [m], then every vertex of φs(V (G′)) must
be contained in some element of F (Txi

). This yields that S ⊇ V (G) \ NG[Xi], contradicting
to the assumption that S is not local. Hence q = r. The definition of q shows that by pos-
sibly reversing the children of r in T , we can find disjoint blocks B1, B2, . . . , Bm′ following
each other in this order in [1,m] such that for each j ∈ [m′] every clique of Cj is contained
in
⋃

i∈Bj
F (Txi

).

This observation can be easily seen to imply claim (1), by simply recalling what Qdir1
r′ (v) <

Qdir2
r′ (w) means by definition for some v, w ∈ V (G′) and dir1, dir2 ∈ {left, right}, considering

the maximal cliques of G′.
Now, it is easy to prove (2), (3), (4), and (5), using the assumption that (1) holds (which

can indeed be achieved by possibly reversing the children of r′). To prove (2), observe that
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for any j ∈ [m′], we have that Qleft
r′ (v) = j for each v ∈ X ′

j ∪ M+
r′ (j) and Qright

r′ (v) = j for

each v ∈ X ′
j ∪M−

r′ (j). Thus, for any j1 < j2 in [m′], v ∈ X ′
j1 ∪M−

r′ (j1), and w ∈ X ′
j2 ∪M+

r′ (j2)

we obtain Qright
r′ (v) < Qleft

r′ (w), which immediately implies Qright
r (φS(v)) < Qleft

r (φS(w))
by using the assumption that (1) holds. By definition, this means βS(j1) < αS(j2), from
which (2) follows.

Note that (3) is directly implied by (2).
To see (4), consider an x ∈ Xi \ S and let x′ be the vertex in G′ for which x = φS(x′).

Since Qleft
r (x) = Qright

r (x) = i, by (1) we must have Qleft
r′ (x′) = Qright

r′ (x′) as well. Thus,
x′ ∈ X ′

j for some j ∈ [m′]. Now, assuming that φS(y′) is also in Xi but y′ /∈ X ′
j , we

obtain that either Qright
r′ (x′) < Qleft

r′ (y′) or Qright
r′ (y′) < Qleft

r′ (x′). But using (1), these both
contradict φS(y′) ∈ Xi.

Finally, (5) follows immediately from (4).

Using Lemma 4.4.1, we can handle an easy case when no branching is needed, and a
reduced input can be constructed. Let L(r) and L′(r′) denote the labels of r and r′ in T
and T ′, respectively.

Lemma 4.4.2. If m = m′, L(r) = L′(r′) and there is an i ∈ [m] such that G[Xj ] is
isomorphic to G′[X ′

j] for all j 6= i, then (G′[X ′
i], G[Xi]) is a reduced input of (G′, G).

Proof. First, we show that a solution S for (G′[X ′
i], G[Xi]) is a solution for (G′, G). Clearly,

the conditions of the lemma imply that there is an isomorphism from G′ − X ′
i to G − Xi

mapping NG′(X ′
i) to NG(Xi). This isomorphism can be extended to map X ′

i to Xi\S, since S
is a solution for (G′[X ′

i], G[Xi]). In the other direction, suppose that S is a solution for (G′, G).
Note that S need not be a solution for (G′[X ′

i], G[Xi]), as S may contain vertices not in Xi.
However, to prove the lemma it suffices to show that a solution exists for (G′[X ′

i], G[Xi]),
meaning that G′[X ′

i] is isomorphic to an induced subgraph of G[Xi].
Let us assume first that S is not local. Suppose S ∩ Xj 6= ∅ for some j 6= i. Since G[Xj ]

is isomorphic to G′[X ′
j ], we have |φS(X ′

j)| = |Xj| > |Xj \ S|. By Lemma 4.4.1, this implies
that IS(j) = [j, j] becomes true only after reversing the children of r′, meaning that IS(h) =
[m−h+1, m−h+1] for each h ∈ [m] (according to the PQ-tree T ′). In particular, this means
that φS(X ′

i) ⊆ Xm−i+1. Hence, G′[X ′
i] is isomorphic to an induced subgraph of G[Xm−i+1].

Since G[Xm−i+1] is isomorphic to G′[X ′
m−i+1], G′[X ′

i] is also isomorphic to an induced sub-
graph of G′[X ′

m−i+1]. From this, by φS(X ′
m−i+1) ⊆ Xi we get that G′[X ′

i] is isomorphic to
an induced subgraph of G[Xi].

Now, suppose that S is a local solution, and S ⊇ V (G) \NG[Xh] for some h ∈ [m]. Since
each vertex of R−1(r)\S must be adjacent to every vertex in NG[Xh], such vertices would be
universal in G−S. Thus, as G′ contains no universal vertices, S ⊇ R−1(r) follows. Hence, we
get φS(V (G′)) ⊆ Xh and thus |Xh| ≥ |V (G′)| > |X ′

h|, implying h = i. But φS(V (G′)) ⊆ Xi

clearly implies that G′ and therefore also G′[X ′
i] must be isomorphic to an induced subgraph

of G[Xi]. This finishes the proof.

Observe that it can be tested in linear time whether the conditions of Lemma 4.4.2 hold
after possibly reversing the children of r′. If this is the case, algorithm A proceeds with the
reduced input guaranteed by Lemma 4.4.2. Otherwise it branches into a few directions as
follows. In each of these branches, A will output either a necessary set of size at most 2k +1,
or an independent subproblem of (G′, G).

In the first branch, it assumes that the solution S is local. In this case, given any two
vertices a ∈ X1 and b ∈ Xm, a solution must include at least one of a and b. (Note that X1

and Xm cannot be empty.) Thus, A outputs the necessary set {a, b}. In all other branches,
we assume that S is not local. Algorithm A branches into two more directions, according
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to whether the children of r′ have to be reversed to achieve the properties of Lemma 4.4.1.
Thus, in the followings we may assume that these properties hold.

First, observe that Lemma 4.4.1 implies that m ≥ m′ must hold, so otherwise the
algorithm can reject. First, we examine the case m = m′, and then we deal with the
case m > m′ in Section 4.4.1. Observe that Lemma 4.4.1 also implies that φS must map
every Lr′(a, b) to a vertex in Lr(a, b), for any block [a, b] in [1, m]. So, if there is a block [a, b]
such that |Lr(a, b)| < |Lr′(a, b)|, then the algorithm has to reject. If the converse is true,
i.e. |Lr(a, b)| > |Lr′(a, b)| for some block [a, b], then some vertex v ∈ Lr(a, b) must be included
in S. Since each vertex in Lr(a, b) has the same neighborhood, the algorithm can choose v
arbitrarily from Lr(a, b) and output the necessary set {v}.

If none of these cases happen, then L(r) = L′(r′), so as the conditions of Lemma 4.4.2
do not hold, there must exist two indices i1 6= i2 ∈ [m], such that G[Xi1 ] and G[Xi2 ] is
not isomorphic to G′[X ′

i1
] and G′[X ′

i2
], respectively. As L(r) = L′(r′), by Lemma 4.4.1 we

get φS(R−1(r′)) = R−1(r) and φS(X ′
h) = Xh \ S for each h ∈ [m]. Thus, it is easy to see

that for each h ∈ [m], the set S ∩ Xh yields a solution for the instance (G′[X ′
h], G[Xh]), and

conversely, if (G′, G) is solvable then any solution for (G′[X ′
h], G[Xh]) can be extended to a

solution for (G′, G). Now, using Xi1 ∩ S 6= ∅ and Xi2 ∩ S 6= ∅, we know that the parameter
of the instance (G′[X ′

i1 ], G[Xi1 ]) must be at least 1 but at most k − 1. If this indeed holds,
then A outputs (G′[X ′

i1
], G[Xi1 ]) as an independent subproblem, otherwise it rejects the

instance.

4.4.1 Identifying fragments for the case m > m
′.

The rest of the paper deals with the case where S is not local, and m > m′. In this case,
we will try to determine IS(j) for each j ∈ [m′]. To do this, A will branch several times
on determining IS(j) for some j ∈ [m′]. Proposition 4.4.3 helps us to bound the number
of resulting branches. To state this proposition, we use the following notation: given some
block [i1, i2] in [1, m], let Wr(i1, i2) contain those vertices v for which Qr(v) is contained
in [i1, i2]. Let also wr(i1, i2) = |Wr(i1, i2)|. We define Wr′(j1, j2) and wr′(j1, j2) for some
block [j1, j2] in [1, m′] similarly. Using Lemma 4.4.1 and the definition of αS(j) and βS(j), it
is easy to prove the following:

Proposition 4.4.3. Suppose that S is a solution that is not local, and the properties of
Lemma 4.4.1 hold. This implies the followings.
(1) φS(Wr′(j1, j2)) = Wr(αS(j1), βS(j2)) \ S for every block [j1, j2] in [1, m′].
(2) wr′(1, j) ≤ wr(1, βS(j)) ≤ wr′(1, j) + k and wr′(j, m′) ≤ wr(αS(j), m) ≤ wr′(j, m′) + k
hold for every j ∈ [m′].

Note that wr(1, i) < wr(1, i + 1) for every i ∈ [m − 1], even if Xi+1 = ∅ (as in this
case M−

r (i + 1) 6= ∅), and similarly we get wr(i, m) > wr(i + 1, m) for every i ∈ [m − 1].
Therefore, the bounds of Proposition 4.4.3 yield at most (k + 1)2 possibilities for choos-
ing [αS(j), βS(j)], for some j ∈ [m′].

Since determining IS(j) for each j ∈ [m′] using Proposition 4.4.3 would result in too many
branches, we need some other tools. Hence, we introduce a structure called fragmentation
that can be used to “approximate” the sets IS(j) for each j ∈ [m′]. By iteratively refining the
fragmentation, we can get closer and closer to actually determine these sets. Given a set of
disjoint blocks {[a′

h, b′h] | h ∈ [f ]} in [1, m′] and a corresponding set of disjoint blocks {[ah, bh] |
h ∈ [f ]} in [1, m] with Fh denoting the pair ([a′

h, b′h], [ah, bh]), the set {Fh | h ∈ [f ]} is a
fragmentation for (T, T ′, S), if

• ah ≤ αS(a′
h) and βS(b′h) ≤ bh for each h ∈ [f ], and
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Figure 4.6: Illustration of a fragmentation containing four fragments. An arrow leading from j
to i indicates i ∈ IS(j). There are three non-trivial fragments: F1, F3, F4. The indices 1, 4, 5
are left-aligned, 2, 3, 4, 5, 7 are right-aligned, 6 is wide and 8, 9 are skew.

• a′
h+1 = b′h + 1 and ah+1 = bh + 1 for each h ∈ [f − 1].

We will call the element Fh for some h ∈ [f ] a fragment. We define σ(Fh) = (bh−ah)−(b′h−a′
h)

and δ(Fh) = ah − a′
h, which are both clearly non-negative integers. Note that δ(Fh+1) =

δ(Fh) + σ(Fh) holds for each h ∈ [f − 1]. We say that some j ∈ [m′] is contained in the
fragment Fh, if a′

h ≤ j ≤ b′h. In this case, we write δ(j) = δ(Fh) and σ(j) = σ(Fh). We will
say that a fragment F is trivial if σ(Fh) = 0, and non-trivial otherwise. We also call an index
in [m′] trivial (or non-trivial) in a fragmentation, if the fragment containing it is trivial (or
non-trivial, respectively). An annotated fragmentation for (T, T ′, S) is a pair (F , U) formed
by a fragmentation F for (T, T ′, S) and a set U ⊆ [m′] such that each j ∈ U is trivial in F .
We say that the trivial indices contained in U are important. See Figure 4.6 for an illustration.

Let us suppose that we are given a fragmentation F for (T, T ′, S), and some j ∈ [m′]
contained in a fragment F ∈ F . We will use the notation jleft = j + δ(F ) and jright =
j+δ(F )+σ(F ). Also, we will write B+

r (i) = M+
r (i)∪Xi and B+

r′(j) = M+
r′ (j)∪X ′

j . For some

block [i1, i2] in [1, m] let B+
r (i1, i2) =

⋃
h∈[i1,i2]

B+
r (h), and we define B+

r′(j1, j2) for some

block [j1, j2] in [1, m′] analogously. Proposition 4.4.4 is easy to prove, using Lemma 4.4.1.

Proposition 4.4.4. For each j ∈ [m′], the followings hold:
(i) jleft ≤ αS(j) ≤ βS(j) ≤ jright.
(ii) φS(M+

r′ (j)) ⊆
⋃

h∈IS(j) M+
r (h) and φS(M−

r′ (j)) ⊆
⋃

h∈IS(j) M−
r (h).

(iii) if IS(j) = [i, i], then M+
r (i) \ S = φS(M+

r′ (j)) and M−
r (i) \ S = φS(M−

r′ (j)).
(iv) if j < j′, αS(j) = i and βS(j′) = i′, then φS(B+

r′(j, j′)) = B+
r (i, i′) \ S.

We will classify the index j as follows:

• If |IS(j)| > 1, then j is wide.

• If IS(j) = [jleft, jleft], then j is left-aligned.

• If IS(j) = [jright, jright], then j is right-aligned.

• If IS(j) = [i, i] such that jleft < i < jright, then j is skew.

If F is trivial, then by Proposition 4.4.4, only αS(j) = βS(j) = jleft = jright is possible. Thus,
each trivial index must be both left- and right-aligned.

Lemma 4.4.5 shows that a solvable instance can only contain at most 2k non-trivial
fragments. Thus, if a given fragmentation contains more than 2k non-trivial fragments, then A
can correctly reject, as such a fragmentation does not correspond to any solution.
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Lemma 4.4.5. Any fragmentation F for (T, T ′, S) can have at most 2k non-trivial frag-
ments.

Proof. We will show that every non-trivial fragment of F contains an index j for which Xj ∪
M+

r (j)∪M−
r (j) contains a vertex of S. Since any s ∈ S can be contained in at most two sets

of this form, this proves that there can be at most 2k non-trivial fragments in F .
Observe that if F = ([a′, b′], [a, b]) is a non-trivial fragment in F , then either |IS(j)| > 1

must hold for some j in [a′, b′], or some i in [a, b] is not contained in any of the blocks {IS(h) |
a′ ≤ h ≤ b′}. In the latter case we have Xi ∪ M+

r (i) ∪ M−
r (i) ⊆ S. By Proposition 4.1.2,

Xi ∪ M+
r (i) ∪ M−

r (i) 6= ∅, so it indeed contains a vertex of S. Now, suppose that the former
case holds, and j is wide. Reversing the children of r between αS(j) and βS(j) cannot result
in a PQ-tree representing G, hence there must be a vertex z ∈ R−1(r) such that Qr(z)
properly intersects IS(j).

Let Qr(z) = [z1, z2]. We assume z1 < αS(j) ≤ z2 < βS(j), as the case αS(j) < z1 ≤
βS(j) < z2 can be handled analogously. First, if z ∈ S, then M−

r (z2) contains a vertex of S,
so we are done. Otherwise, z /∈ S implies that z must be contained in φS(M−

r′ (j)), from
which XβS(j)∪M+

r (βS(j)) ⊆ S follows. Again, XβS(j)∪M+
r (βS(j)) 6= ∅ by Proposition 4.1.2,

so in this case we obtain ∅ 6= XβS(j) ∪ M+
r (βS(j)) ⊆ S. This proves the lemma.

Before describing the remaining steps of the algorithm, we need some additional notation.
Let T rev and T ′rev denote the labeled PQ-trees obtained by reversing the children of r

and r′, respectively. We write jrev for the index m′ − j + 1 corresponding to j in T rev, and
we also let Xrev = {jrev | j ∈ X} for any set X ⊆ [m′]. For a fragment F = ([a′, b′], [a, b])
we let F rev = ([b′rev, a′rev], [brev, arev]), so a fragmentation F for (T, T ′, S) clearly yields a
fragmentation F rev = {F rev|F ∈ F} for (T rev, T ′rev, S). Note that if j is left-aligned (right-
aligned) in F , then the index jrev is right-aligned (left-aligned, resp.) in F rev.

Given some i ∈ [m], let us order the vertices v in M+
r (i) increasingly according to Qright

r (v).
Similarly, we order vertices v in M−

r (i) increasingly according to Qleft
r (v). In both cases, we

break ties arbitrarily. Also, we order vertices of M+
r′ (j) and M−

r′ (j) in T ′ the same way for
some j ∈ [m′]. Now, we construct the sets P+

left(j) and P−
left(j), both containing pairs of

vertices, in the following way. We put a pair (v, w) into P+
left(j), if v ∈ M+

r′ (j), w ∈ M+
r (jleft),

and v has the same rank (according to the above ordering) in M+
r′ (j) as the rank of w

in M+
r (jleft). Similarly, we put a pair (v, w) into P−

left(j), if v ∈ M−
r′ (j), w ∈ M−

r (jleft), and v
has the same rank in M−

r′ (j) as w in M−
r (jleft). In addition, we define the sets P+

right(j)

and P−
right(j) analogously, by substituting jright for jleft in the definitions. The key properties

of these sets are summarized in the following proposition.

Proposition 4.4.6. W.l.o.g. we can assume φS(v) = w in the following cases:
(1) If (v, w) ∈ P+

left(j) and |M+
r′ (j)| = |M+

r (jleft)| for some left-aligned j.
(2) If (v, w) ∈ P−

left(j) and |M−
r′ (j)| = |M−

r (jleft)| for some left-aligned j.
(3) If (v, w) ∈ P+

right(j) and |M+
r′ (j)| = |M+

r (jright)| for some right-aligned j.

(4) If (v, w) ∈ P−
right(j) and |M−

r′ (j)| = |M−
r (jright)| for some right-aligned j.

Proof. We only show (1), as all the other statements are analogous. To see (1), observe that
as j is left-aligned, |M+

r′ (j)| = |M+
r (jleft)| implies that φS must map M+

r′ (j) to M+
r (jleft)

bijectively.
By Lemma 4.4.1, if Qright(v) < Qright(v′), then Qright(φS(v)) < Qright(φS(v′)) holds as

well. Note also that the vertices of Lr(j, j
′) for some j′ ∈ [m′] are equivalent in the sense

that they have the same neighborhood. Thus, we can assume w.l.o.g. that if v precedes v′

in the above defined ordering of M+
r′ (j), then φS(v) precedes φS(v′) in the similar ordering

of M+
r (jleft). Thus, φS must indeed map v to w, by the definition of P+

left(j).
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Given two non-trivial fragments F and H of a fragmentation with F preceding H , we
define three disjoint subsets of vertices in R−1(r′) starting in F and ending in H . These
sets will be denoted by L(F, H), R(F, H), and X (F, H), and we construct them as follows.
Suppose that v ∈ Lr′(y, j) for some y and j contained in F and H , respectively. We put v in
exactly one of these three sets, if (v, w) ∈ P−

left(j) for some vertex w, and yleft ≤ Qleft
r (w) ≤

yright. Now, if Qleft
r (w) = yleft then we put v into L(F, H), if Qleft

r (w) = yright then we put v
into R(F, H), and if yleft < Qleft

r (w) < yright then we put v into X (F, H). Loosely speaking,
if each vertex in H is left-aligned, and some vertex of R(F, H) starts at y, then y should be
right-aligned. Similarly, if each vertex in H is left-aligned, and some vertex of X (F, H) starts
at y, then y should be either wide or skew. Since we would like to ensure each index to be
left-aligned, we will try to get rid of vertices of R(F, H) and X (F, H).

We say that two indices y1, y2 ∈ [m′] are conflicting for (F, H), if y1 ≤ y2, M+
r′ (y1) ∩

R(F, H) 6= ∅ and M+
r′ (y2) ∩ L(F, H) 6= ∅. In such a case, we say that any j ≥ max{j1, j2}

contained in H is conflict-inducing for (F, H) (and for the conflicting pair (y1, y2)), where j1
denotes the minimal index for which Lr′(y1, j1) ∩ R(F, H) 6= ∅, and j2 denotes the minimal
index for which Lr′(y2, j2) ∩ L(F, H) 6= ∅. Informally, if a conflict-inducing index in H is
left-aligned, then this shows that a right-aligned index should precede a left-aligned index
in F , which cannot happen. In addition, if L(F, H) 6= ∅, then let Lmax(F, H) denote the
largest index y in F for which M+

r′ (y) ∩ L(F, H) 6= ∅. Let the L-critical index for (F, H) be
the smallest index j contained in H for which Lr′(Lmax(F, H), j) ∩ L(F, H) 6= ∅. Similarly,
if R(F, H) 6= ∅, then let Rmin(F, H) denote the smallest index y in F for which M+

r′ (y) ∩
R(F, H) 6= ∅. Also, let the R-critical index for (F, H) be the smallest index j in H for
which Lr′(Rmin(F, H), j) ∩R(F, H) 6= ∅.

Now, an index j in H is LR-critical for (F, H), if either j is the R-critical index for (F, H)
and L(F, H) = ∅, or j = max{jL, jR} where jL is the L-critical and jR is the R-critical index
for (F, H). Note that both cases require R(F, H) 6= ∅. Moreover, H contains an LR-critical
index for (F, H), if and only if R(F, H) 6= ∅. Intuitively, if an LR-critical index in H is
left-aligned, then this implies that some index y in F is right-aligned.

Note that the definitions of the sets L(F, H),R(F, H), and X (F, H) together with the
definitions connected to them as described above depend on the given fragmentation, so when-
ever the fragmentation changes, these must be adjusted appropriately as well. (In particular,
vertices in L(F, H),R(F, H), and X (F, H) must start and end in two different non-trivial
fragments.)

Let (F , U) be an annotated fragmentation for (T, T ′, S). Our aim is to ensure that the
properties given below hold for each index j ∈ [m′]. Intuitively, these properties mirror the
expectation that every index should be left-aligned. Note that although we cannot decide
whether (F , U) is a correct fragmentation without knowing the solution S, we are able to
check whether these properties hold for some index j in (F , U).

Property 1: G′[X ′
j ] is isomorphic to G[Xjleft ].

Property 2: |M+
r′ (j)| ≤ |M+

r (jleft)| ≤ |M+
r′ (j)|+ k and |M−

r′ (j)| ≤ |M−
r (jleft)| ≤ |M−

r′ (j)|+
k.

Property 3: If j is non-trivial, then |M+
r′ (j)| = |M+

r (jleft)| and |M−
r′ (j)| = |M−

r (jleft)|.

Property 4: If j is non-trivial, then |Lr′(y, j)| = |Lr(yleft, jleft)| for any y < j contained in
the same fragment as j.

Property 5: If j is non-trivial, then for every (v, w) ∈ P+
left(j) where Qright

r′ (v) = y is
non-trivial, yleft ≤ Qright

r (w) ≤ yright holds. Also, for every (v, w) ∈ P−
left(j) such

that Qleft
r′ (v) = y is non-trivial, yleft ≤ Qleft

r (w) ≤ yright holds.
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Property 6: If j is non-trivial, then no vertex in X (F, H) (for some F and H) ends in j.

Property 7: j is not conflict-inducing for any (F, H).

Property 8: j is not LR-critical for any (F, H).

Property 9: If j is non-trivial, then for every (v, w) ∈ P+
left(j) where Qright

r′ (v) = y is non-
trivial, Qright

r (w) = yleft holds. Also, for every (v, w) ∈ P−
left(j) such that Qleft

r′ (v) = y is
non-trivial, Qleft

r (w) = yleft holds.

Property 10: If j is non-trivial, then for each important trivial index u ∈ U , |Lr′(j, u)| =
|Lr(jleft, uleft)| holds if u > j, and |Lr′(u, j)| = |Lr(uleft, jleft)| holds if u < j.

Observe that each of these properties depend on the fragmentation F , and Property 10 de-
pends on the set U as well. Also, if some property holds for an index j in (F , U), then this does
not imply that the property holds for jrev in (F rev, U rev), as most of these properties are not
symmetric. For example, jleft and jright both have a different meaning in the fragmentation F
and in F rev. We say that an index j ∈ [m′] violates Property ` (1 ≤ ` ≤ 10) in an annotated
fragmentation (F , U), if Property ` does not hold for j in (F , U). If the first nine properties
hold for each index of [m′] both in (F , U) and its reversed version (F rev, U rev), then we say
that (F , U) is 9-proper. We say that (F , U) is proper, if it is 9-proper, and Property 10 holds
hold for each index of [m′] in (F , U). Observe that (F , U) can be proper even if Property 10
does not hold in (F rev, U rev).

Let us describe our strategy. We start with an annotated fragmentation where U = ∅ and
the fragmentation contains only the unique fragment ([1, m′], [1, m]), implying that there are
no trivial indices. Given an annotated fragmentation (F , U), we do the following: if one of
Properties 1, 2, . . . , 10 does not hold for some index j in (F , U) for (T, T ′, S), or one of the first
nine properties does not hold for some j in the reversed annotated fragmentation (F rev, U rev)
for (T rev, T ′rev, S), then we either output a necessary set or an independent subproblem, or
we modify the given annotated fragmentation. To do this, we will branch on IS(j), and handle
each possible case according to the type of j. Note that we do not care whether Property 10
hold for the indices in the reversed instance. If the given annotated fragmentation is proper,
algorithm A will find a solution using Lemmas 4.4.10 and 4.4.11.

Observe that we can assume w.l.o.g. that there exists an ` (1 ≤ ` ≤ 10) such that
Properties 1, . . . , ` − 1 hold for each index both in the annotated fragmentation (F , U) and
in its reversed version (F rev, U rev), but Property ` is violated by an index in [m′] in (F , U).
Otherwise, we simply reverse the instance. Let us now remark that we only reverse the
instance if this condition is not true.

To begin, the algorithm takes the first index j that violates Property `, and branches
into (k + 1)2 directions to choose IS(j), using Proposition 4.4.3. Then, A handles each of
the cases in a different manner, according to whether j turns out to be left-aligned, right-
aligned, skew, or wide. We consider these cases in a general way that is essentially independent
from `, and mainly relies on the type of j. We suppose that j is contained in a fragment F =
([a′, b′], [a, b]), and we say that j is extremal, if j = a′.

Left-aligned index. We deal with the case when j is left-aligned in Section 4.4.3, whose
results are summarized by the following lemma.

Lemma 4.4.7. Suppose that Property ` (1 ≤ ` ≤ 10) does not hold for some j ∈ [m′]
in the annotated fragmentation (F , U), but all the previous properties hold for each index
both in (F , U) and in (F rev, U rev). If j is left-aligned, then algorithm A can do one of the
followings in linear time:

• produce a necessary set of size at most 2k + 1,
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• produce an independent subproblem,

• produce an index that is either wide or skew,

• reject correctly.

By Lemma 4.4.7, the only case when algorithm A does not reject or produce an output is
the case when it produces an index j′ that is wide or skew. If this happens, then A branches
on those choices of IS(j′) where j′ is indeed wide or skew, and handles them according to
the cases described below. Note that as a consequence, the maximum number of branches in
a step may increase from (k + 1)2 to 2(k + 1)2 − 1. (This means that we do not treat the
branchings on IS(j) and IS(j′) separately, and rather consider it as a single branching with
at most 2(k + 1)2 − 1 directions.)

Observe that if j is trivial, then it is both left- and right-aligned. We treat trivial indices
as left-aligned.

Wide index. Suppose that j is wide, i.e. |IS(j)| > 1. In this case, we can construct a
necessary set of size 2. Recall that, using the arguments of the proof of Lemma 4.4.5, we
can either find a vertex z ∈ R−1(r) such that if z /∈ S then ∅ 6= XβS(j) ∪ M+

r (βS(j)) ⊆ S,
or we can find a vertex w ∈ R−1(r) such that if w /∈ S then ∅ 6= XαS(j) ∪ M−

r (αS(j)) ⊆ S.
Clearly, A can output a necessary set of size 2 in both cases.

Extremal right-aligned or skew cases. Assume that j = a′ and j is skew or right-
aligned. In these cases, Xi∪M+

r (i)∪M−
r (i) must be contained in S for each i in [a, αS(a′)−1],

so in particular, Xa∪M+
r (a)∪M−

r (a) ⊆ S. As Xa∪M+
r (a)∪M−

r (a) 6= ∅ by Proposition 4.1.2,
we can construct a necessary set of size 1 by taking an arbitrary vertex from this set, and A
can stop by outputting it.

Non-extremal skew case. Suppose that j > a′ and j is skew, meaning that IS(j) = [i, i]
for some i with jleft < i < jright. In this case, we can divide the fragment F , or more precisely,
we can delete F from the fragmentation F and add the new fragments ([a′, j − 1], [a, i − 1])
and ([j, b′], [i, b]). Note that the newly introduced fragments are non-trivial by the bounds
on i. We also modify U by declaring every trivial index of the fragmentation to be important
(no matter whether it was important or not before).

Non-extremal right-aligned case. Suppose that j > a′ and j is right-aligned. In this
case, we replace F by new fragments F1 = ([a′, j−1], [a, jright−1]) and F2 = ([j, b′], [jright, b]).
This yields a fragmentation where F1 is non-trivial and F2 is trivial. We refer to this operation
as performing a right split at j. If this happens because j violated Property ` for some ` ≤ 9,
then we set every trivial index (including those contained in F2) to be important, by putting
them into U . In the case when ` = 10, we do not modify U , so the trivial indices of F2 will
not be important.

The above process either stops by producing an appropriate output, or it ends by providing
an annotated fragmentation that is proper. Thanks to the observations of Lemma 4.4.12,
stating that the properties ensured during some step in this process will not be violated later
on (except for a few cases), we will be able to bound the running time of this process in
Section 4.4.2, by proving that the height of the explored search tree is bounded by a function
of k. In the remaining steps of the algorithm, the set U will never be modified, and the only
possible modification of the actual fragmentation will be to perform a right split.

The following two lemmas capture some useful properties of an arbitrary annotated frag-
mentation (F , U) obtained by the algorithm after this point. Lemma 4.4.8 states facts about
an annotated fragmentation obtained from a 9-proper annotated fragmentation by applying
right splits to it. Lemma 4.4.9 gives sufficient conditions for the properties of an annotated
fragmentation to remain true after applying a right split to it.
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Lemma 4.4.8. Let (F , U) be a 9-proper annotated fragmentation whose trivial indices are
all important. Suppose that F ′ is obtained by applying an arbitrary number of right splits to
the fragmentation F . Then the followings hold for each j ∈ [m′] that is either non-trivial or
not important in (F ′, U):
(1) |M+

r′ (j)| = |M+
r (jright)| and |M−

r′ (j)| = |M−
r (jright)|.

(2) The following holds for every non-trivial or not important y 6= j and v ∈ Lr′(j, y).
If (v, w) ∈ P+

right(j) for some w ∈ M+
r (jright), then Qright

r (w) = yright. Similarly, if (v, w) ∈
P−

right(j) for some w ∈ M−
r (jright), then Qleft

r (w) = yright.

Proof. First, we show that the statements of the lemma hold for (F , U). To see this, recall
that each trivial index in (F , U) is important, therefore statements (1) and (2) for (F , U)
are equivalent to Properties 3 and 9 for (F rev, U rev), respectively. Since (F , U) is 9-proper,
these properties indeed hold for each index in (F rev, U rev).

To see that these statements remain true after applying a sequence of right splits to (F , U),
we need two simple observations. First, notice that the value of jright for an index j ∈ [m′]
does not change in a right split. Second, the set of non-trivial or not important trivial indices
does not change either, since the performed right splits do not modify the set U of important
trivial indices. Thus, statements (1) and (2) for some index j have exactly the same meaning
in (F ′, U) as in (F , U). This proves the lemma.

Given a fragmentationF for (T, T ′, S), a fragment F , and some ` (1 ≤ ` ≤ 9), let π(F , F, `)
be 1 if Property ` holds for each index j in F ∈ F , and 0 otherwise.

Lemma 4.4.9. Let F ′ be a fragmentation obtained from F by dividing a fragment F ∈ F
into fragments F1 and F2 with a right split (with F1 preceding F2). Let 1 ≤ ` ≤ 9.
(1) Suppose j is not contained in F2 and ` 6= 8. If Property ` holds for j in F (or in F rev),
then Property ` holds for j in F ′ (or in F ′rev) as well.
(2) Suppose π(F , H, `) = 1 for a fragment H. If H 6= F then π(F ′, H, `) = 1, and if H = F
then π(F ′, F1, `) = 1.
(3) Suppose π(F rev, Hrev, `) = 1 for a fragment H ∈ F . If H 6= F then π(F ′rev, Hrev, `) = 1,
and if H = F then π(F ′rev, F rev

1 , `) = 1.
(4) If π(F rev, F rev, `) = 1, then π(F ′rev, F rev

2 , `) = π(F ′, F2, `) = 1.
(5) If (F , U) is a proper annotated fragmentation, then so is (F ′, U).

Proof. To see (1), we need some basic observations. First, if j is not contained in F2, then jleft
is the same according to F ′ as it is in F , and this is also true for jright. Second, the set of
non-trivial indices in F ′ is a subset of the non-trivial indices in F . These conditions directly
imply (1) for each case where ` /∈ {6, 7, 8}, using only the definitions of these properties.

Now, observe that if a vertex in R−1(r′) is contained in L(H ′
1, H

′
2), for some H ′

1 and H ′
2

in the fragmentation F ′, then it is contained in L(H1, H2) for some H1 and H2 in F as well.
Clearly, the analogous fact holds also for the sets R(H ′

1, H
′
2) and X (H ′

1, H
′
2) for some H ′

1

and H ′
2. Thus, if j violates Property 6 or 7 in F ′, then it also violates it in F , proving (1).

Clearly, (2) and (3) follow directly from (1) in the cases where ` 6= 8. For the case ` =
8, observe that π(F , H, 8) = 1 implies R(H0, H) = ∅ for every H0 preceding H . Hence,
the requirements of statement (2) follow immediately. The analogous claim in the reversed
instance shows that (3) also holds for ` = 8.

To prove (4), let j be contained in F2. Note that Properties 3, 4, . . . , 9 vacuously hold
for j in F ′, because F2 is trivial. Using that jleft = jright and the definitions of Properties 1
and 2, we get that if one of these two properties holds for jrev in F rev, then it holds for j
in F ′ as well. Finally, observe that if Property ` holds for some trivial index j in F ′, then it
trivially holds for jrev in F ′rev, proving (4).
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∈ U

∈ U

/∈ U

/∈ U

/∈ Z

(i)

(ii) (iii)

(iv)
(v)trivial

trivial non-trivial

non-trivial

∈ Wa
b

Table 4.1: The cases of Lemma 4.4.10, where U denotes important indices, Z denotes the
last indices of non-trivial fragments, and W denotes right-constrained indices.

To prove (5), assume that (F , U) is proper. By (2), (3), and (4), we immediately obtain
that (F ′, U) is 9-proper, so we only have to verify that Property 10 holds. But since the
set U of important trivial indices is the same in both fragmentations, and jleft is the same
in (F ′, U) as in (F , U) for each non-trivial or important trivial index j of F ′, Property 10
also remains true for each index.

Given a proper annotated fragmentation (F , U), algorithm A makes use of Lemma 4.4.10
below.

To state Lemma 4.4.10, we need one more definition: we call an index j right-constrained,
if j is contained in a non-trivial fragment F , and there exists a vertex v ∈ M+

r′ (j) such
that φS(v) ∈ M+

r (jright). Note that this definition depends on the solution S. Algorithm A
maintains a set W to store indices which turn out to be right-constrained. We will show
that if j is right-constrained, then j + 1 must be right-aligned and thus a right split can
be performed, except for the case when j is the last index of the fragment. We will denote
by ZF the set of indices j for which j is the last index of some non-trivial fragment in F . If
no confusion arises, we will drop the subscript F .

Lemma 4.4.10 gives sufficient conditions for A to do some of the followings.

• Find out that some non-trivial index j is right-aligned. In this case, A performs a right
split at j in the actual fragmentation.

• Find out that some index j is right-constrained, and put it into W .

• Reject, or stop by outputting a necessary set of size 1.

The algorithm applies Lemma 4.4.10 repeatedly, until it either stops or it finds that none of
the conditions given in the lemma apply.

Lemma 4.4.10. Let (F , U) be a proper annotated fragmentation for (T, T ′, S) obtained by
algorithm A, and let a, b ∈ [m′] with a < b.
(i) If a is trivial but not important, b is non-trivial, b /∈ Z and Lr′(a, b) 6= ∅, then b + 1 is
right-aligned.
(ii) If a is non-trivial, b is trivial but not important, and Lr′(a, b) 6= ∅, then a is right-
constrained. Also, if a /∈ Z then a + 1 is right-aligned.
(iii) If a is non-trivial, b is right-constrained, and Lr′(a, b) 6= ∅, then a is right-constrained.
Also, if a /∈ Z then a + 1 is right-aligned.
(iv) If a ∈ U , b is right-constrained, and |Lr′(a, b)| 6= |Lr(aleft, bright)|, then algorithm A can
either reject or output a necessary set of size 1.
(v) If a and b are trivial and |Lr′(a, b)| 6= |Lr(aleft, bleft)|, then algorithm A can either reject

or output a necessary set of size 1.
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Proof. Let A and B be the fragments in F containing a and b, respectively. Recall that the
conditions of Lemma 4.4.8 are true for every proper annotated fragmentation for (T, T ′, S)
obtained by algorithm A, in particular for F .

First, suppose that the conditions of (i) hold. As a is a not important trivial index
in (F , U), claim (1) of Lemma 4.4.8 implies |M+

r′ (a)| = |M+
r (aright)|. Let v ∈ Lr′(a, b)

and (v, w) ∈ P+
right(a). As a is trivial, it is right-aligned as well, so we obtain φS(v) = w

by Proposition 4.4.6. Using claim (2) of Lemma 4.4.8 for a, we obtain Qright
r (w) = bright.

By φS(v) = w, this implies βS(b) ≥ bright. Thus, αS(b+1) ≥ bright +1 = (b + 1)right, showing
that b + 1 is indeed right-aligned.

The proof of (ii) is analogous with the proof of (i). By exchanging the roles of a and b,
we obtain Qr(φS(v)) = [aright, bright] for some v ∈ Lr′(a, b) in a straightforward way. Observe
that this proves a to be right-constrained. If a /∈ Z, then A contains a + 1 as well. Hence,
from βS(a) ≥ aright we get αS(a + 1) ≥ aright + 1 = (a + 1)right. Thus, a + 1 is right-aligned.

To see (iii) and (iv), suppose that b is right-constrained and u+ is a vertex in M+
r′ (b)

with φS(u+) ∈ M+
r (bright). Suppose u− ∈ M−

r′ (b) for some u−. Clearly, u−u+ is an edge
in G′, so φS(u−) and φS(u+) must be adjacent in G as well. By φS(u+) ∈ M+

r (bright) we
get Qright

r (φS(u−)) ≥ bright. By Proposition 4.4.4, this implies Qright
r (φS(u−)) = bright. Using

claim (1) of Lemma 4.4.8 for b, we get M−
r (bright) = φS(M−

r′ (b)). Letting v ∈ Lr′(a, b)
and (v, w) ∈ P−

right(b) we obtain φS(v) = w as in Proposition 4.4.6.
To prove (iii), assume also that a is non-trivial. By claim (2) of Lemma 4.4.8 for b, this

implies Qr(w) = [aright, bright]. This means that a is right-constrained. From a /∈ Z we again
obtain that a + 1 is right-aligned, using the arguments of the proof of (ii).

To see (iv), assume a ∈ U . Using Proposition 4.4.4, IS(a) = [aleft, aleft], and the above
mentioned arguments, we get that φS(Lr′(a, b)) = Lr(aleft, bright)\S. Therefore, if |Lr′(a, b)| >
|Lr(aleft, bright)| then A can reject, and if |Lr′(a, b)| < |Lr(aleft, bright)| then it can output a
necessary set of size 1 by outputting {s} for an arbitrary s ∈ Lr(aleft, bright).

Finally, assume that the conditions of (v) hold for a and b. As both of them are left-
aligned, Proposition 4.4.4 implies φS(Lr′(a, b)) = Lr(aleft, bleft) \ S. Hence, A can proceed
essentially the same way as in the previous case.

After applying Lemma 4.4.10 repeatedly, algorithm A either stops by outputting ’No’
or a necessary set of size 1, or it finds that none of the conditions (i)-(v) of Lemma 4.4.10
holds. Observe that each w ∈ W must be the last index of the fragment containing w, since
whenever A puts some index j /∈ Z into W , then it also sets j + 1 right-aligned, resulting in
a right split.

Let (F , U) be the final annotated fragmentation obtained. Note that the algorithm does
not modify the set U of important trivial indices when applying Lemma 4.4.10, and it can only
modify the actual fragmentation by performing a right split. Thus, statements (1) and (2)
of Lemma 4.4.8 remain true for (F , U). By claim (5) of Lemma 4.4.9, we obtain that (F , U)
remains proper as well. Making use of these lemmas, Lemma 4.4.11 yields that A can find a
solution in linear time. This finishes the description of algorithm A.

Lemma 4.4.11. Let (F , U) be a proper annotated fragmentation for (T, T ′, S) obtained by
algorithm A. If none of the conditions (i)-(v) of Lemma 4.4.10 holds, then A can produce a
solution in linear time.

Proof. We construct an isomorphism φ from G′ to an induced subgraph of G. Our basic
approach is to treat almost all indices as if they were left-aligned, except for the vertices of W .
Recall that Z denotes the set of indices that are the last index of some non-trivial fragment,
and W ⊆ Z is the set of right-constrained vertices that A has found using Lemma 4.4.10.
Let N contain those non-trivial indices in [m′] that are not in W . Also, let Y denote the set
of trivial indices in [m′] that are not important. Clearly, [m′] = N ∪ W ∪ U ∪ Y .
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As Property 1 holds both for F in (T, T ′, S) and for F rev in (T rev, T ′rev, S), we know that

there is an isomorphism φleft
j from G′[X ′

j ] to G[Xjleft ] and an isomorphism φright
j from G′[X ′

j]

to G[Xjright
] for each j ∈ [m′]. By [96], φleft

j and φright
j can be found in time linear in |X ′

j|.
We set φ(x) = φleft

j (x) for each x ∈ X ′
j where j ∈ N ∪U ∪ Y , and we set φ(x) = φright

j (x) for

each x ∈ X ′
j where j ∈ W . Our aim is to extend φ on vertices of R−1(r′) such that it remains

an isomorphism. To this end, we set a variable ∆(j) for each j ∈ [m′], by letting ∆(j) = jleft
if j ∈ N ∪ U ∪ Y , and ∆(j) = jright if j ∈ W . Clearly, ∆(j) = jleft = jright if j ∈ U ∪ Y .

The purpose of the notation ∆ is the following. Given some a < b, in almost every case
we will let φ map vertices of Lr′(a, b) bijectively to vertices of Lr(∆(a), ∆(b)). This can be
done if a and b match, meaning that |Lr′(a, b)| = |Lr(∆(a), ∆(b))|. However, there remain
cases where a and b do not match. Each such case will fulfill one of the following conditions:

(A) a ∈ W and |Lr′(a, b)| = |Lr(aleft, ∆(b))|.
In this case, we let φ map Lr′(a, b) bijectively to Lr(aleft, ∆(b)). The block [aleft, ∆(b)]
contains ∆(a) = aright. Thus, every vertex of φ(Lr′(a, b)) will be adjacent to the vertices
of Mr(∆(a))∪X∆(a). Since either a−1 ∈ N or a−1 is not in the same fragment as a, we
obtain ∆(a − 1) < aleft. Hence, vertices of φ(Lr′(a, b)) will not be adjacent to vertices
of M−

r (∆(a − 1)) ∪ X∆(a−1).

(B) b ∈ Z and |Lr′(a, b)| = |Lr(∆(a), bright)|.
In this case, we let φ map Lr′(a, b) bijectively to Lr(∆(a), bright). Again, [∆(a), bright]
contains ∆(b) = bleft, therefore the vertices of φ(Lr′(a, b)) will be adjacent to the vertices
of Mr(∆(b)) ∪ X∆(b). Also, by b ∈ Z we obtain ∆(b + 1) ≥ (b + 1)left > bright, so the
vertices of φ(Lr′(a, b)) will not be adjacent to vertices of M+

r (∆(b + 1)) ∪ X∆(b+1).

It is easy to see that the above construction ensures that the vertices of φ(Lr′(a1, b1))
and φ(Lr′(a2, b2)) are neighboring if and only if Lr′(a1, b1) and Lr′(a2, b2) are neighboring.
(In particular, it is not possible that some vertex of φ(M−

r′ (j)) ends in jleft but some vertex
of φ(M+

r′ (j)) starts in jright. )
It remains to show that if a, b ∈ [m′] and a < b, then they either match, or Lr′(a, b) = ∅,

or one of the conditions (A) or (B) hold. First, let us show those cases where a and b match.

(a) If a, b ∈ N , then |Lr′(a, b)| = |Lr(aleft, bleft)| = |Lr(∆(a), ∆(b))| because Properties 3
and 9 hold for b in (F , U).

(b) If a ∈ N and b ∈ U or vice versa, then |Lr′(a, b)| = |Lr(aleft, bleft)| = |Lr(∆(a), ∆(b))|,
since Property 10 holds for a and b in (F , U).

(c) If a, b ∈ W ∪Y then Lemma 4.4.8 for b guarantees |Lr′(a, b)| = |Lr(aright, bright)|. Using
that aright = ∆(a) and bright = ∆(b) hold if a, b ∈ W ∪ Y , this immediately shows
|Lr′(a, b)| = |Lr(∆(a), ∆(b))|.

(d) If a ∈ U and b ∈ W then |Lr′(a, b)| = |Lr(aleft, bright)|, since the conditions of (iv)
in Lemma 4.4.10 do not apply. By aleft = ∆(a) and bright = ∆(b), this again means
|Lr′(a, b)| = |Lr(∆(a), ∆(b))|.

(e) If a, b ∈ U ∪ Y then |Lr′(a, b)| = |Lr(aleft, bleft)| = |Lr(∆(a), ∆(b))|, as the conditions
of (v) in Lemma 4.4.10 do not apply.

Next, we show Lr′(a, b) = ∅ for some a and b with a < b. First, if a ∈ Y and b ∈ N \ Z,
then this holds because (i) of Lemma 4.4.10 is not applicable. Also, Lr′(a, b) = ∅ must be
true if a ∈ N and b ∈ Y , as otherwise (ii) of Lemma 4.4.10 would apply. Third, Lr′(a, b) = ∅
if a ∈ N and b ∈ W , since (iii) of Lemma 4.4.10 does not apply.

We complete the proof by showing (A) or (B) for all remaining cases.
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a

b

b

c

d
e

f g

h

a
b

N

Y

Y

W

W

U

U

− −

−

N︷ ︸︸ ︷
N \Z Z

Table 4.2: The cases of the proof for Lemma 4.4.11.

(f) If a ∈ W and b ∈ N , then (A) holds, because by Properties 3 and 9 for b in (F , U), we
obtain |Lr′(a, b)| = |Lr(aleft, bleft)|.

(g) If a ∈ W and b ∈ U , then we have |Lr′(a, b)| = |Lr(aleft, bleft)|, since Property 10 holds
for a in (F , U). Hence, this case also fulfills (A).

(h) If a ∈ Y and b ∈ Z, then |Lr′(a, b)| = |Lr(aright, bright)| by (1) and (2) of Lemma 4.4.8
for b. By aleft = aright, (B) holds.

Table 4.2 shows that we considered every case. Thus, φ is an isomorphism from G′ to an
induced subgraph of G, so A can output V (G) \ φ(V (G′)) as a solution. It is also clear that
this takes linear time.

4.4.2 Running time analysis for algorithm A
Let N(F) denote the set of non-trivial fragments in F . We define the measure µ(F) of a
given fragmentation F for (T, T ′, S) as follows:

µ(F) =
∑

F∈N(F)
1≤`≤9

π(F , F, `) +
∑

F∈N(Frev)
1≤`≤9

π(F rev, F, `).

Note that µ(F) = µ(F rev) is trivial, so reversing a fragmentation does not change its measure.
Recall that F rev is a fragmentation for (T rev, T ′rev, S).

Lemma 4.4.12. Let F1, . . . ,Ft,Ft+1 be a series a fragmentations such that for each i ∈ [t]
algorithm A obtains Fi+1 from Fi by applying a right split at an index ji violating Property `i

in Fi. Let Hi denote the fragment of Fi containing ji.
(1) µ(Fi+1) ≥ µ(Fi) for each i ∈ [t]. If `i 6= 8, then µ(Fi+1) > µ(Fi) also holds.
(2) If µ(F1) = µ(Ft), then `i = 8 for every i ∈ [t], and Hi contains every index in Hi+1 for
each i ∈ [t].
(3) If µ(F1) = µ(Ft), then t ≤ k.

Proof. To prove (1), observe that µ(Fi+1) ≥ µ(Fi) follows directly from claims (2) and (3)
of Lemma 4.4.9. Let H ′

i be the non-trivial fragment obtained from Hi after the right split
at ji. Now, by the choice of ji, Property `i is violated by ji in Fi, but is not violated by
any index j′ preceding ji in Fi. In all cases where `i 6= 8, claim (1) of Lemma 4.4.9 implies
that the indices preceding ji cannot violate Property `i in Fi+1, yielding π(Fi, Hi, `i) = 0
but π(Fi, H

′
i, `i) = 1. Considering claims (2) and (3) of Lemma 4.4.9 again, (1) follows.

Observe that if µ(F1) = µ(Ft), then `i = 8 for every i ∈ [t] follows directly from the above
discussion. Suppose that Hi is a counterexample for (2), meaning that Hi does not contain
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the indices of Hi+1. Since Fi+1 is obtained from Fi by a right split, this can only happen
if Hi+1 is a non-trivial fragment of Fi different from Hi. Recall that a fragment B contains
some index violating Property 8, if and only if R(A, B) 6= ∅ holds for some fragment A in
the fragmentation. Hence, π(Fi+1, Hi+1, 8) = 0 implies π(Fi, Hi+1, 8) = 0.

Since the algorithm always chooses the first index violating some property to branch on, ji

must be the smallest index that is LR-critical for some pair of fragments in Fi. Therefore, Hi

must precede Hi+1. But now, the choice of ji+1 indicates π(Fi+1, H
′
i, 8) = 1, where H ′

i is the
non-trivial fragment of Fi+1 obtained by splitting Hi at ji in Fi. Together with π(Fi, Hi, 8) =
0 and statements (2) and (3) of Lemma 4.4.9, this shows µ(Fi+1) > µ(Fi), a contradiction.

To prove (3), let H ∈ F1 contain every ji. Let P (H) denote the set of non-trivial fragments
in F1 preceding H . For some i ∈ [t] and some F ∈ P (H), let Fi denote the unique non-trivial
fragment of Fi that contains some of the indices contained in F . We denote by PRi(H)
those fragments F in P (H) for which R(Fi, Hi) 6= ∅ holds in Fi. Clearly, PRi(H) 6= ∅ for
any i ∈ [t] by claim (2), and note also PRi+1(H) ⊆ PRi(H). If F ∈ PRi(H), then we
define di(F ) as follows. If L(Fi, Hi) = ∅ in Fi, then let yL

i be the first index contained in Fi

minus one, otherwise let yL
i have the value of Lmax(Fi, Hi) in Fi. Also, let yR

i be the value
of Rmin(Fi, Hi) in Fi. We set di(F ) = yR

i − yL
i .

Let A ∈ PRi+1(H) denote a non-trivial fragment such that ji is LR-critical for (Ai, Hi).
We show di+1(A) > di(A). Clearly, ji is either L-critical or R-critical for (Ai, Hi). First, let
us assume that ji is L-critical for (Ai, Hi). Observe that the definition of L-critical indices
implies that for any vertex v starting at Lmax(Ai, Hi) and contained in L(Ai, Hi) in Fi, we

know Qright
r′ (v) ≥ ji. Since Fi+1 is obtained by performing the right split at ji in Fi, every

index of Hi+1 precedes ji, implying that such a v can not be contained in L(Ai+1, Hi+1)
in Fi+1. Thus, Lmax(Ai+1, Hi+1) 6= Lmax(Ai, Hi), from which yL

i+1 < yL
i follows. Therefore,

we have di+1(A) > di(A).

Second, let us assume that ji is R-critical for (Ai, Hi). Using the definition of R-criticality,
implies that for any vertex v starting at Rmin(Ai, Hi) and contained in R(Ai, Hi) in Fi, we

know Qright
r′ (v) ≥ ji. Again, we know that every index of Hi+1 precedes ji. From this, we

have that v can not be contained in R(Ai+1, Hi+1) in Fi+1, implying yR
i+1 > yR

i . Therefore,
we have di+1(A) > di(A) in this case as well.

Now, we claim that 1 ≤ di(A) ≤ σ(A) for any A ∈ PRi(H). First, it is clear that
for any ` < 8, Property ` holds for each index both in Fi and in the reversed fragmenta-
tion F rev

i , as otherwise the algorithm would branch on an index violating Property `. Thus,
Lmax(Ai, Hi) ≥ Rmin(Ai, Hi) can not happen, as this would mean that there is a conflict-
inducing index in Hi for (Ai, Hi), violating Property 7. This directly implies 1 ≤ di(A).

Second, assume di(A) = yR
i − yL

i > σ(A). This implies that h = yR
i − σ(A) is contained

in Ai, but no vertex of L(Ai, Hi)∪R(Ai, Hi) starts in h. However, by Properties 3 and 5 for yR
i ,

we know that some vertex in M+
r ((yR

i )left) = M+
r (hright) ends Hi. Using these properties

for hrev in the reversed instance, we obtain that some vertex v in M+
r′ (h) must also end

in Hi. By Property 5 for h, v must be contained in one of the sets L(Ai, Hi), R(Ai, Hi),
X (Ai, Hi). But yL

i < h < yR
i , so we obtain v ∈ X (Ai, Hi). Therefore, some index in Hi

violates Property 6, a contradiction.

Now, observe that for any i ∈ [t], ji is LR-critical for some (Ai, Hi) with A ∈ PRi(H).
If A ∈ PRi+1(H) as well, then di+1(A) > di(A). By our bounds on di(A), this yields that
there can be at most σ(A) indices i where ji is LR-critical for (Ai, Hi). (Here we also used
that di(A) can not decrease, by its definition.) This clearly implies t ≤ ∑

F∈P (H) σ(F ) =

δ(H).

To finish the proof, we show δ(H) ≤ k. Let b′ be the last index preceding the indices in H ,
and let b = b′ + δ(H). Recall that φS(B+

r′(1, b′)) = B+
r (1, b) \ S by Proposition 4.4.4. Using

that Properties 1 and 3 hold for every index in [m′] and that B+
r (i) 6= ∅ by Proposition 4.1.2
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for any i ∈ [m], we obtain

|B+
r′(1, b′)| + k ≥ |B+

r (1, b)| =

∣∣∣∣
⋃

1≤j≤b′

B+
r (jleft)

∣∣∣∣+
∣∣∣∣

⋃

1≤i≤b,
i/∈{jleft:1≤j≤b′}

B+
r (i)

∣∣∣∣

≥ |B+
r′(1, b′)| +

∑

F∈P (H)

σ(F ) = |B+
r′(1, b′)| + δ(H).

This shows k ≥ δ(H), proving the lemma.

Now, we can state the key properties of algorithm A, which prove Theorem 4.3.1.

Lemma 4.4.13. Given an input (G′, G) where |V (G′)| = n and |V (G)| = n+k, algorithm A
either produces a reduced input in O(n) time, or branches into at most kO(k3) such that in
each branch it either correctly refuses the instance, or outputs an independent subproblem or
a necessary set of size at most 2k + 1. Moreover, each branch takes O(n) time.

Proof. Let us overview the steps of algorithm A. First, it tries to apply the reduction rules
described in Section 4.3.2. In this phase, it either outputs a reduced input in linear time, or
it may branch into at most (4k + 1)24k(k(7k/2 + 8) + 1) = 2O(k) branches. In each branch
it either correctly outputs ’No’, outputs a necessary set of size at most 2, or outputs an
independent subproblem having parameter at most k − 1 but at least 1. These steps can be
done in linear time, as argued in Section 4.3.2.

If none of the reductions in Section 4.3.2 can be applied, then A first checks whether a
reduced input can be output by using Lemma 4.4.2. If not, then it branches into 3 directions,
according to whether S is local, and if not, whether the children of r′ should be reversed to
achieve the properties of Lemma 4.4.1. In the first branch, it outputs a necessary set of size
at most 2. In the other two branches, it checks whether the annotated fragmentation AF0

produced in the beginning is proper. While the annotated fragmentation is not proper, A
chooses the smallest ` and the smallest index j violating Property ` (maybe in the reversed
instance), and branches into at most 2(k+1)2−1 directions. In these branches, A either mod-
ifies the actual annotated fragmentation or stops by outputting an independent subproblem,
a necessary set of size at most 2k + 1, or rejecting.

Let us consider a sequence of t such branchings performed by A, and let AF0, AF1, . . . , AFt

be the sequence of annotated fragmentations produced in this process. (We interpret these
as annotated fragmentations for (T, T ′, S) and not for (T rev, T ′rev, S).) Let us call a con-
tinuous subsequence S of AF0, AF1, . . . , AFt a segment, if each annotated fragmentation
in S has the same number of non-trivial fragments, and S is maximal with respect to
this property. By Lemma 4.4.5, the algorithm can reject if there are more than 2k non-
trivial fragments in a fragmentation, so AF0, AF1, . . . , AFt can contain at most 2k segments.
Let S = AFt1 , AFt1+1, . . . , AFt2 be such a segment. Clearly, each AFh (t1 < h ≤ t2) is
obtained from AFh−1 by performing a right split either in the original or in the reversed
instance (the latter meaning that AF rev

h is obtained from AF rev
h−1 by a right split).

Let AFp be the first 9-proper annotated fragmentation in the segment. By Lemma 4.4.12,
each subsequence of AFt1 , . . . , AFp where the measure does not increase can have length at
most k. (The measure of an annotated fragmentation is the measure of its fragmentation.)
By (2) of Lemma 4.4.12, AFt1 has a non-trivial fragment containing each of those indices
for which the algorithm performed a branching (because of Property 8) in some AFh, t1 ≤
h ≤ p. Taking into account that the number of non-trivial fragments can not exceed 2k, but
branchings can also happen in the reversed instance, we obtain that there can be at most 4k
maximal subsequences in AFt1 , . . . , AFp of length at least 2 where the measure is constant.
Using Lemma 4.4.5, we get that µ(AFp) ≤ 36k, implying p ≤ t1 + 4k2 + 36k.
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Clearly, A obtains AFp+1, AFp+2, . . . , AFt2 while trying to ensure Property 10, by per-
forming right splits in the original instance. Observe that if A obtains AFh (p + 1 ≤ h ≤ t2)
by applying a right split at j, then by the choice of j, Property 10 holds for each in-
dex j′ ≤ j in any AFh′ where h′ ≥ h. This, together with Lemma 4.4.5 implies that A
can perform at most 2k such branchings, implying that t2 ≤ p + 2k ≤ t1 + 4k2 + 38k. Al-
together, this implies t ≤ 2k(4k2 + 38k), proving that the maximum length of a sequence of
branchings performed by A in order to obtain a proper annotated fragmentation can be at
most 8k3 + 76k2 = O(k3).

Essentially, this means that the search tree that A investigates has height at most O(k3).
Since one branching results in at most 2(k + 1)2 − 1 directions, we obtain that the to-
tal number of resulting branches in a run of algorithm A can be bounded by some func-
tions f(k) = kO(k3). In each of these branches, if A does not stop, then it has a proper
annotated fragmentation (F , U). After this, algorithm A does not perform any more branch-
ings. Instead, it applies Lemma 4.4.10 repeatedly. If the algorithm reaches a state where
Lemma 4.4.10 does not apply, then it outputs a solution in linear time using Lemma 4.4.11.

It is easy to verify that each branch can be performed in linear time. The only non-trivial
task is to show that the repeated application of Lemma 4.4.10 can be implemented in linear
time, but this easily follows from the fact that none of the conditions of Lemma 4.4.10 can
be applied twice for a block [a, b].

4.4.3 The proof of Lemma 4.4.7

In this section we prove Lemma 4.4.7. Suppose that Property ` (1 ≤ ` ≤ 10) does not hold
for some j ∈ [m′] in the annotated fragmentation (F , U), but all the previous properties
hold for each index both in (F , U) and in (F rev, U rev). Suppose also that j is left-aligned,
i.e. IS(j) = [jleft, jleft]. Below we describe the detailed steps of algorithm A depending on the
property that is violated by j.

Property 1: G′[X ′
j ] is isomorphic to G[Xjleft ].

If j violates Property 1, then G′[X ′
j ] is not isomorphic to G[Xjleft ], which implies S∩Xjleft 6= ∅.

From IS(j) = [jleft, jleft] we obtain that S ∩ Xjleft must be a solution for (G′[X ′
j ], G[Xjleft ]).

Conversely, if (G′, G) is solvable, then any solution for (G′[X ′
j ], G[Xjleft ]) can be extended to

a solution for (G′, G). By m > m′, G−Xjleft can not be isomorphic to G′ −X ′
j, so S ⊆ Xjleft

is not possible. Therefore, if the parameter of (G′[X ′
j ], G[Xjleft ]) is more than k − 1 (or less

than 1), then the algorithm can refuse the instance. Thus, A can either reject, or it can
output the independent subproblem (G′[X ′

j ], G[Xjleft ]).

Property 2: |M+
r′ (j)| ≤ |M+

r (jleft)| ≤ |M+
r′ (j)|+ k and |M−

r′ (j)| ≤ |M−
r (jleft)| ≤

|M−
r′ (j)| + k.

By IS(j) = [jleft, jleft] and Proposition 4.4.4, we can observe that M+
r (jleft)\S = φS(M+

r′ (j))
and M−

r (jleft) \ S = φS(M−
r′ (j)). If j violates Property 2, then this contradicts to |S| ≤ k,

and thus algorithm A can reject.

Lemma 4.4.14. If Properties 1 and 2 hold for each index both in (F , U) and in (F rev, U rev),
and there is an index h ∈ [m′] contained in a non-trivial fragment F such that |M+

r′ (h)| > k
or |M−

r′ (h)| > k, then there is no solution for (G′, G).

Proof. As Property 2 holds for each index in F = ([a′, b′], [a, b]), |M+
r′ (j)| ≤ |M+

r (jleft)| holds
for each j ∈ [m′]. Similarly, as Property 2 holds for each index in the reversed instance, we
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obtain that |M+
r′ (j)| ≤ |M+

r (jright)| must hold for each j ∈ [m′]. Supposing |M+
r′ (h)| > k, we

get ∑

a≤i≤b

|M+
r (i)| =

∑

a′≤j<h

|M+
r (jleft)| +

∑

0≤d<σ(F )

|M+
r (hleft + d)|

+
∑

h≤j≤b′

|M+
r (jright)| ≥ |M+

r′ (h)| +
∑

a′≤j≤b′

|M+
r′ (j)| > k +

∑

a′≤j≤b′

|M+
r′ (j)|.

Observe that we used σ(F ) > 0 in the first inequality.
Proposition 4.4.4 yields φS(B+

r′(a′, b′)) = B+
r (a, b)\S, implying |B+

r (a, b)| ≤ |B+
r′(a′, b′))|+

k. Using that Property 1 holds for each index, we also have |X ′
j | = |Xjleft | for each j ∈ [m′],

implying
∑

a≤i≤b |Xi| ≥
∑

a′≤j≤b′ |X ′
j|. Hence, we obtain

∑

a≤i≤b

|M+
r (i)| ≤

∑

a′≤j≤b′

|M+
r′ (j)| + k,

contradicting the above inequality. The case |M−
r′ (h)| > k can be handled in the same way.

Property 3: If j is non-trivial, then |M+
r′ (j)| = |M+

r (jleft)| and |M−
r′ (j)| =

|M−
r (jleft)|.

By IS(j) = [jleft, jleft] and Proposition 4.4.4, we obtain that M+
r (jleft) \ S = φS(M+

r′ (j)) and
M−

r (jleft) \S = φS(M−
r′ (j)). Clearly, if |M+

r (jleft)| < |M+
r′ (j)| or |M−

r (jleft)| < |M−
r′ (j)|, then

algorithm A can output ’No’. If this is not the case, then S must contain at least one vertex
from M+

r (jleft) or M−
r (jleft), because j violates Property 3. If |M+

r′ (j)| > k or |M−
r′ (j)| > k,

then A can output ’No’ as well, by Lemma 4.4.14. Thus, if A does not reject, then it
can output a necessary set of size at most k + 1 in both cases, by taking |M+

r′ (j)| + 1
or |M−

r′ (j)| + 1 arbitrary vertices from M+
r (jleft) or M−

r (jleft), respectively.

Property 4: If j is non-trivial, then |Lr′(y, j)| = |Lr(yleft, jleft)| for any y < j
contained in the same fragment as j.

Suppose that |Lr′(y, j)| 6= |Lr(yleft, jleft)| for some y < j contained in the same fragment that
contains j. Since j is left-aligned, we get that y must also be left-aligned as well by y < j,
i.e. IS(y) = [yleft, yleft]. By Proposition 4.4.4, this implies Lr(yleft, jleft) \ S = φS(Lr′(y, j)).
Thus, if |Lr′(y, j)| > |Lr(yleft, jleft)| Lr(yleft, jleft) contains at least one vertex from S. Since
each vertex in Lr(yleft, jleft) has the same neighborhood, A can output {s} as a necessary
set for some arbitrarily chosen s in Lr(yleft, jleft).

Property 5: If j is non-trivial, then for every (v, w) ∈ P+
left(j) where Qright

r′ (v) = y
is non-trivial, yleft ≤ Qright

r (w) ≤ yright holds. Also, for every (v, w) ∈ P−
left(j) such

that Qleft
r′ (v) = y is non-trivial, yleft ≤ Qleft

r (w) ≤ yright holds.

Suppose that j violates Property 5, because (v, w) ∈ P+
left(j) such that Qright

r′ (v) = y is non-
trivial, but yleft ≤ Qright

r (w) ≤ yright does not hold. We show that A can output ’No’ in this
case. As Property 3 holds for j, |M+

r′ (j)| = |M+
r (jleft)|. As j is left-aligned, φS(v) = w by

Proposition 4.4.6. But from this, Proposition 4.4.4 implies αS(y) ≤ Qright
r (w) ≤ βS(y). By

Proposition 4.4.4 we know yleft ≤ αS(y) ≤ βS(y) ≤ yright as well. Therefore, A can indeed
refuse the instance. Supposing that Property 5 does not hold because of the case where
some (v, w) ∈ P−

left(j) is considered leads to the same result, so it is straightforward to verify
that A can reject in both cases.

The observation below, used in the forthcoming three cases, is easy to see:
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Proposition 4.4.15. Suppose that the first five properties hold for a given (annotated) frag-
mentation. Let y and j be indices of [m′] contained in non-trivial fragments F and H, re-
spectively, and suppose that j is left-aligned. Then v ∈ Lr′(y, j) implies the followings.
(1) v ∈ L(F, H) ∪R(F, H) ∪ X (F, H).
(2) If v ∈ L(F, H), then αS(y) = yleft.
(3) If v ∈ R(F, H), then βS(y) = yright.
(4) If v ∈ X (F, H), then y is either wide or skew.

Property 6: If j is non-trivial, then no vertex in X (F, H) (for some F and H)
ends in j.

Suppose that Property 6 does not hold for j, so there is a vertex in Lr′(y, j) ∩ X (F, H) for
some y < j. As j is left-aligned, Proposition 4.4.15 implies that y is either wide or skew.

Property 7: j is not conflict-inducing for any (F, H).

Suppose that j violates Property 7 because it is conflict-inducing for some (F, H) and for
some conflicting pair of indices (y1, y2). Let j1 be the minimal index for which Lr′(y1, j1) ∩
R(F, H) 6= ∅, and let j2 be the minimal index for which Lr′(y2, j2) ∩ L(F, H) 6= ∅. Since j ≥
max{j1, j2}, and j is left-aligned, we know that both j1 and j2 are left-aligned as well. By
Proposition 4.4.15, this implies βS(y1) = y1right and αS(y2) = y2left. If y1 < y2, then this
yields a contradiction by Proposition 4.4.4, so A can reject. In the case where y1 = y2 = y,
we get IS(y) = [yleft, yright], and since y is non-trivial, algorithm A can output y as a wide
index.

For the case of Property 8, we need the following simple lemma:

Lemma 4.4.16. Suppose that a fragmentation for (T, T ′, S) contains a fragment F =
([a′, b′], [a, b]) with 0 < b′ − a′ ≤ σ(F ), and the first four properties hold for each index
contained in F both in the given fragmentation and its reversed version. Then A can produce
a necessary set of size at most 2k + 1.

Proof. Since Properties 1 and 3 hold for each index contained in F , we obtain |B+
r′(a′, b′)| =

|B+
r (a′

left, b
′
left)|. Using Proposition 4.4.4 we have B+

r (a, b) \ S = φS(B+
r′(a′, b′)). Proposi-

tion 4.1.2 yields B+
r′(j) 6= ∅ for any j, so we get |B+

r (a, b)| > |B+
r′(a′, b′)|. Hence, fixing an

arbitrary set N ⊆ B+
r (a, b) of size |B+

r′(a′, b′)| + 1, we get that N is a nonempty necessary
set. We claim |B+

r′(a′, b′)| ≤ 2k, which implies |N | ≤ 2k + 1. Thus, A can indeed output N ,
proving the lemma.

It remains to show |B+
r′(a′, b′)| ≤ 2k. Recall |B+

r′(a′, b′)| = |B+
r (a′

left, b
′
left)|. As Prop-

erties 1 and 3 hold for each index contained in F rev in the reversed fragmentation, we
get |B+

r′(a′, b′)| = |B+
r (a′

right, b
′
right)| as well. Using a′

right − b′left = a′ − b′ + σ(F ) ≥ 0,
we obtain that B+

r (a′
left, b

′
left) ∩ B+

r (a′
right, b

′
right) ⊆ B+

r (b′left). Moreover, if b′ − a′ < σ(F )
also holds, then actually B+

r (a′
left, b

′
left) ∩ B+

r (a′
right, b

′
right) = ∅.

By the above paragraph, b′ − a′ < σ(F ) implies |B+
r (a, b)| ≥ 2|B+

r′(a′, b′)|, therefore
we get |B+

r′(a′, b′)| ≤ k. However, b′ − a′ = σ(F ) yields |B+
r′(a′, b′)| + k ≥ |B+

r (a, b)| ≥
2|B+

r′(a′, b′)| − |B+
r (b′left)|, implying |B+

r′(a′, b′)| ≤ k + |B+
r (b′left)|. Taking into account that

|B+
r′(a′)| = |B+

r (b′left)| = |B+
r′(b′)| holds by Properties 1 and 3 for b′ and for a′rev, we also

have |B+
r′(a′, b′)| ≥ 2|B+

r (b′left)|. Summarizing all these, |B+
r′(a′, b′)| ≤ 2k follows.

Property 8: j is not LR-critical for any (F, H).

Suppose j violates Property 8, meaning that j is LR-critical for some (F, H). In this case,
Rmin(F, H) = yR is an index contained in F . Since j is left-aligned, the R-critical index
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for (F, H) is also left-aligned, hence Proposition 4.4.15 yields βS(yR) = yR
right. Let a′ be the

first index of [m′] contained in F .
First, if yR < a′ + σ(F ), then we apply Lemma 4.4.16 as follows. Clearly, by βS(yR) =

yR
right we can perform a right split at yR. The obtained fragmentation will contain the

fragment F ′ = ([a′, yR], [a′
left, y

R
right]), so yR−a′ < σ(F ) = σ(F ′) shows that A can produce

a necessary set of size at most 2k + 1 by using Lemma 4.4.16.
Now, suppose yR ≥ a′+σ(F ). In this case, there is an index t in F for which tright = yR

left.
By Properties 3 and 5 for yR, we know that there is a vertex in M+

r (yR
left) that ends in

the fragment H . Using Properties 3 and 5 again for trev in the reversed instance, we know
that there must be a vertex v in M+

r′ (t) that ends in the fragment H . By Proposition 4.4.15,
v ∈ L(F, H) ∪R(F, H) ∪ X (F, H). Observe that v /∈ X (F, H), as Property 6 holds for every
index in [m′]. Also, v /∈ R(F, H) by the definition of yR = Rmin(F, H). Thus, we know
that v ∈ L(F, H), implying yL = Lmax(F, H) ≥ t as well. As Property 7 holds for each index,
we also have yL < yR.

To finish the case, observe that since j is left-aligned and LR-critical for (F, H), Propo-
sition 4.4.15 yields αS(yL) = yL

left. Using βS(yR) = yR
right again, we can produce a frag-

mentation for (T, T ′, S) that contains the fragment F ′ = ([yL, yR], [yL
left, y

R
right]). (This can

be thought of as performing a right split at yR, and a right split at (yL)rev in the reversed
instance.) Hence, yR − yL ≤ yR − t = σ(F ) = σ(F ′) shows that A can produce a necessary
set of size at most 2k + 1 by using Lemma 4.4.16.

Property 9: If j is non-trivial, then for every (v, w) ∈ P+
left(j) where Qright

r′ (v) =
y is non-trivial, Qright

r (w) = yleft holds. Also, for every (v, w) ∈ P−
left(j) such

that Qleft
r′ (v) = y is non-trivial, Qleft

r (w) = yleft holds.

Observe that if Property 9 does not hold for an index j, then by Proposition 4.4.15, ei-
ther M+

r′ (j) or M−
r′ (j) contains a vertex in R(F, H) ∪ X (F, H) for some (F, H). But this

means that one of Properties 6 and 8 must be violated, which is a contradiction. Thus, A
can correctly reject.

Property 10: If j is non-trivial, then for each important trivial index u ∈ U ,
|Lr′(j, u)| = |Lr(jleft, uleft)| holds if u > j, and |Lr′(u, j)| = |Lr(uleft, jleft)| holds
if u < j.

Suppose that j violates Property 10, because |Lr′(j, u)| 6= |Lr(jleft, uleft)| for some u > j. (The
case when u < j can be handled in the same way.) Since u is contained in a trivial fragment,
IS(u) = [uleft, uleft]. Thus, by IS(j) = [jleft, jleft] and Proposition 4.4.4, we get Lr(jleft, uleft)\
S = φS(Lr′(j, u)). If |Lr′(j, u)| > |Lr(jleft, uleft)|, then A can reject the instance. Otherwise,
we can argue as before that {s} is a necessary set for any s ∈ Lr(jleft, uleft).



CHAPTER 5

Stable matching with ties

In this chapter, we consider numerous variants of the Stable Marriage with Ties and In-
complete Lists (or shortly, SMTI) problem. We investigate the parameterized complexity
of finding a maximum stable matching for an instance of SMTI with different parameter-
izations such as the number of ties, the maximum or the total length of ties present. We
also study the possibilities for giving a permissive local search algorithm for this problem.
In addition, we present strong FPT-inapproximability results for two optimization problems
related to SMTI.

The input of the SMTI problem is a triple (X, Y, L). Here X and Y are sets of women
and men, respectively. A p ∈ X ∪ Y is a person, and for each person a we define O(a) to be
the set containing the members of the opposite sex.

We describe the preferences of a person a with the preference list L(a). The precedence
list L(a) is an ordered list containing the acceptable partners for a. Since ties may be involved,
the ordering of these lists is not necessarily strict. We assume that acceptance is mutual, i.e.
either a and b are both acceptable for each other, forming an acceptable pair, or both of
them find each other unacceptable. The preference lists of an instance determine the ranking
function ρL : (X × Y ) ∪ (Y × X) → N ∪ {∞}, describing the ranking of the members of
the opposite sex for each person. For some b ∈ O(a), if b is not contained in L(a) then we
let ρL(a, b) = ∞, and if b is contained in L(a) then we define ρL(a, b) as the (possibly joint)
ranking of b in L(a) (i.e. one plus the number of persons strictly preceding b in L(a)). When
no confusion arises, we may leave the superscript L, and only write ρ for a given ranking
function. We say that a prefers b to c if ρ(a, b) < ρ(a, c).

Ties can be present, meaning that ρ(a, b) = ρ(a, c) is possible even if b 6= c. Formally, a tie
with respect to a is a set T ⊆ O(a) of maximum cardinality such that |T | ≥ 2 and ρ(a, t1) =
ρ(a, t2) 6= ∞ for every t1, t2 ∈ T . A person a is indifferent, if there exists a tie w.r.t. a, and
the length of a tie T is |T |.

For an instance I of SMTI, we will use the following parameterization functions:

• κ1(I) denotes the number of ties in I.

• κ2(I) denotes the maximum length of a tie in I.

• κ3(I) denotes the total length of the ties in I, which is the sum of the length of each
tie in the instance. Clearly, κ3(I) ≤ κ1(I)κ2(I).
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A matching for (X, Y, L) is a subset M of the acceptable pairs w.r.t. L, where |{q | pq ∈
M}| ≤ 1 for each person p. If xy ∈ M , then we say that x and y are covered by M , M
assigns y to x and vice versa, which will be denoted by M(x) = y and M(y) = x. We will use
the notation M(x) = � for the case when x is not covered by M , and we also extend r such
that ρ(p,�) = ∞ for each person p. The size of a matching M , denoted by |M |, is the number
of pairs contained in M . We say that a pair xy is a blocking pair for M if ρ(x, y) < ρ(x, M(x))
and ρ(y, x) < ρ(y, M(y)), i.e. both x and y strictly prefer each other to their partner in M
(if existent). A matching is stable if no blocking pair exists for it. The task of the SMTI
problem is to find a stable matching, if existing.

Although it is known that a stable matching can always be found for every instance of
SMTI by applying the Gale-Shapley algorithm [60, 72], there are several problems connected
to SMTI that are much harder. In the Maximum Stable Marriage with Ties and
Incomplete Lists problem (MaxSMTI), the task is to find a stable matching of maximum
size. In Section 5.1, we study the parameterized complexity of this problem, with respect to
the parameterization functions κ1, κ2, and κ3 defined above. In Section 5.2, we examine the
possibilities for giving a local search algorithm for MaxSMTI. We present results stating
that a local search algorithm for this problem cannot have FPT running time with certain
parameterizations, assuming FPT 6= W[1].

In Section 5.3, we investigate two problems where we aim to find stable matchings that
may not maximize the size of the matching, but minimize some cost function instead. Both
of these problems (namely, finding an egalitarian or a minimum regret stable matching)
are polynomial-time solvable if no ties are allowed, but are inapproximable by polynomial-
time algorithms in a strong sense otherwise. We examine the possibilities of giving an FPT
approximation algorithm [102] for these problems. Such algorithms provide an approximation
of the optimal solution within running time that is not polynomial but FPT, when considering
some natural parameters.

The results of this chapter were published in [105]. Section 5.4 contains a summary of
these results.

5.1 Parameterized complexity

If the preference lists are complete, meaning that each person finds every member of the
opposite gender acceptable, or if no tie can be contained in the preference lists, then every
stable matching must have the same size [72]. But if both ties and incomplete preference
lists may occur, then stable matchings of different sizes may exist for a given instance [98].
The following problem, called Maximum Stable Marriage with Ties and Incomplete
Lists (or shortly MaxSMTI), has been shown to be NP-hard [84]: given an instance I of
SMTI and an integer s, find a stable matching for I of size at least s.

Moreover, it has been proven in [98] that MaxSMTI is NP-complete even in the special
case when only women can be indifferent, each tie has length 2, and ties are only present
at the end of the preference lists (i.e. if t ∈ T for a tie T w.r.t. a, then ρ(a, x) > ρ(a, t)
implies ρ(a, x) = ∞). Thus, there is no hope to give an FPT algorithm for MaxSMTI with
parameterization κ2, since the problem is NP-hard even if the parameter has value 2.

However, if no ties are involved in an instance of MaxSMTI, then a stable matching
of maximum size can be found in linear time with an extension of the Gale-Shapley algo-
rithm [60, 72]. This can be used when the total length of ties (i.e. κ3(I)) is small for some
instance I, since we can apply a brute force algorithm that breaks ties in all possible ways
and finds a stable matching of maximum size for all the instances obtained.

Theorem 5.1.1. MaxSMTI is FPT with parameterization κ3.
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Proof. Let I = (X, Y, L) be the instance given. We use a method for breaking ties as follows.
Formally, let I contain the ties {Ti | i ∈ [κ1(I)]}, and let tji denote the j-th element of the tie Ti

(according to some fixed order). If πi is a bijection from Ti to [|Ti|] (i.e. a permutation of Ti) for
each i ∈ [κ1(I)], then the instance (X, Y, L′) can be obtained from I by breaking ties according
to (π1, . . . , πκ1(I)), if the ranking function ρL′

is defined such that ρL′

(a, b) < ρL′

(a, c) if and
only if either ρL(a, b) < ρL(a, c) or b and c are both in the tie Ti w.r.t. a and πi(b) < πi(c).

To produce a solution, we break ties in various ways. Let Pi = {πj
i | j ∈ [|Ti|]} where πj

i is

an arbitrary bijection from Ti to [|Ti|] for which πj
i (t

j
i ) = 1 holds, i.e. πj

i puts the j-th element
of Ti in the first place. Using this, we break ties according to each element of P1×· · ·×Pκ1(I),
apply the Gale-Shapley algorithm for each instance obtained, and then output the stable
matching having maximum size among the set M of stable matchings obtained.

We claim that all stable matchings for I can be obtained as a stable matching of an
instance obtained from I by breaking ties this way. It is easy to verify that any matching
in M ∈ M is a stable matching for I. Conversely, if M is a stable matching for I, then it is also
stable in the instance obtained by breaking ties according to (π1, . . . , πκ1(I)) where πi = πj

i

if Ti is a tie with respect to some a such that M(a) = tji , otherwise πi can be any permutation
from Pi. Thus, M is contained in M.

Clearly, as we have to break ties in at most

∏

i∈[κ1(I)]

|Ti| ≤
(∑

i∈[κ1(I)] |Ti|
κ1(I)

)κ1(I)

=

(
κ3(I)

κ1(I)

)κ1(I)

≤ κ3(I)
κ3(I)

many ways, this method yields a solution in O(κ3(I)
κ3(I) · |I|) time.

Theorem 5.1.1 immediately raises the question of whether MaxSMTI is FPT if the
parameter is the number of ties (κ1). As claimed by Theorem 5.1.2, this problem turns out
to be hard. The proof of this theorem can be found in Section 5.2. The reason for this is that
the proof of Theorems 5.1.2 relies on the same construction as the proof of Theorem 5.2.1,
so we will prove them simultaneously.

Theorem 5.1.2. The decision version of MaxSMTI is W[1]-hard with parameterization κ1,
even if only women can be indifferent.

5.2 Local search

In this section, we investigate the possibility of giving an efficient permissive local search algo-
rithm for MaxSMTI. Recall that the objective function to be maximized in the MaxSMTI
problem is the size of the stable matching. We define the distance of two stable matchings M1

and M2 for I as the number of persons p in I such that M1(p) 6= M2(p). We denote this value
by d(M1, M2). Accordingly, the task of a permissive local search algorithm for MaxSMTI, as
defined in Chapter 1.1, is the following: given an instance I of MaxSMTI, a stable match-
ing M0 for I, and an integer `, if there is a stable matching M for I with |M | > |M0|
and d(M0, M) ≤ `, then find any stable matching M ′ for I with |M ′| > |M |.

Theorem 5.2.1 shows that no permissive local search algorithm can run in FPT time
(assuming W[1] 6= FPT), even if we regard not only the number of ties but also ` as a
parameter for some input (I, S0, `).

Theorem 5.2.1. If W[1] 6= FPT, then there is no permissive local search algorithm for the
MaxSMTI problem that runs in FPT time with combined parameters (κ1(I), `), even if only
women can be indifferent.
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Proof of Theorems 5.1.2 and 5.2.1. Let G(V, E) be the input graph and k be the parame-
ter for the Clique problem. We are going to construct an SMTI instance I = (X, Y, L)
with κ1(I) =

(
k
2

)
+ k + 1 ties, each being in the preference list of a woman, together with a

stable matching M0 for I of size |X | − 1 such that the following statements are equivalent:

(1) I has a stable matching of size at least |M0| + 1, and

(2) there is a clique of size k in G.

This immediately yields an FPT-reduction from Clique to MaxSMTI with parameteriza-
tion κ1, proving Theorem 5.1.2. Moreover, we will also show that every stable matching of
size at least |M0| + 1 must be `-close to M0 for ` = 6

(
k
2

)
+ 4k + 4. Therefore, a permissive

local search algorithm for MaxSMTI can be used to detect whether I has a stable matching
of size at least |M0| + 1, i.e. whether G has a clique of size k. Therefore, this construction
also proves Theorem 5.2.1.

By the nature of the SMTI problem, the presented reduction is more complex than a
typical reduction that proves hardness for some graph theoretic problem, since we have to
describe the preference list for each person of the constructed instance. To ease the un-
derstanding, we illustrate the construction in Figure 5.1 by depicting the bipartite graph
underlying the instance, where persons are represented by nodes and we connect two nodes
if and only if the corresponding persons are acceptable for each other. Moreover, we use edge
weights to represent ranks, and we use bold edges to mark the edges of a given matching.

We write V (G) = {v1, v2, . . . , vn} and m = |E(G)|. To define I = (X, Y, L), we construct

a node-gadget Gi for each i ∈ [k], an edge-gadget Gi,j for each (i, j) ∈
(
[k]
2

)
, and a path-

gadget P . The node-gadget Gi consists of women X i ∪ {xi
0} with X i = {xi

u | u ∈ [n]}
and men Y i ∪ {yi

0} with Y i = {yi
u | u ∈ [n]}. Similarly, the edge-gadget Gi,j consists of

women X i,j∪{xi,j
0 } with X i,j = {xi,j

u,z | u < z, vuvz ∈ E(G)} and men Y i,j∪{yi,j
0 } with Y i,j =

{yi,j
u,z | u < z, vuvz ∈ E(G)}. The path-gadget contains women {pi | i ∈ [

(
k
2

)
+ 2]} and

men {qi | i ∈ [
(
k
2

)
+ 2]}. The set of all these women and men define X and Y , respectively.

Let M0 contain the pairs xi
uyi

u and xi,j
u,zy

i,j
u,z for all possible i, j, u and z, and also the

pairs phqh+1 for all h ∈ [
(
k
2

)
+1]. Note that |M0| = |X |−1, since p(k

2)+2 is the only unmatched

woman. Let ν be a bijection from [
(
k
2

)
] into the set

(
[k]
2

)
, and let C(i, u) = {xi,j

u,z | i < j ≤
k, u < z, vuvz ∈ E(G)} ∪ {xj,i

z,u | 1 ≤ j < i, z < u, vzvu ∈ E(G)} for all i ∈ [k], u ∈ [n].
We define the precedence list L(a) for each person a below. A tie T = {t1, . . . , ti} w.r.t. a
is denoted by (t1, . . . , ti) in L(a), and we use [s1, . . . , si] to denote an arbitrary ordering
of s1, . . . , si. (If it is not confusing, we will simply write (S) or [S] instead of listing the
elements of S in the brackets.) Observe that there are indeed

(
k
2

)
+ k + 1 indifferent women,

there is no indifferent man, and each indifferent woman has exactly one tie in her preference
list. The indices i, j, u, and z take all possible values in the lists, unless otherwise stated. For
brevity, we write k′ for

(
k
2

)
.

L(xi
u) : yi

u, yi
0 L(yi

u) : xi
0, [C(i, u)], xi

u

L(xi
0) : yi

0, (Y
i) L(yi

0) : [X i], xi
0

L(xi,j
u,z) : yi,j

u,z, [y
i
u, yj

z], y
i,j
0 L(yi,j

u,z) : xi,j
0 , xi,j

u,z

L(xi,j
0 ) : yi,j

0 , (Y i,j) L(yi,j
0 ) : [X i,j ], pν−1(i,j), x

i,j
0

L(ph) : qh+1, y
ν(h)
0 , qh if h ∈ [k′] L(qh) : ph, ph−1 if 2 ≤ h ≤ k′ + 1

L(pk′+1) : (qk′+1, qk′+2) L(q1) : p1

L(pk′+2) : qk′+2 L(qk′+2) : pk′+1, pk′+2.
Observe that M0 assigns each woman in X \ {pk′+2} to a man that she prefers the most,

so they cannot be in a blocking pair for M0. As pk′+2qk′+2 is also not a blocking pair, M0 is
indeed stable. By |X | = |Y | = O(

(
k
2

)
)+
(
k
2

)
O(m)+kO(n), the construction takes polynomial
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(a)

(b)
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q1

p2

p2

q2

q2

pν−1(i,j)

pν−1(i,j)

pk′

pk′

pk′+1

pk′+1

qk′+1

qk′+1

pk′+2

pk′+2

qk′+2

qk′+2

xi
0

xi
0

yi
0

yi
0xi

1

xi
1

yi
1

yi
1

xi
2

xi
2

yi
2

yi
2

xi
u

xi
u

yi
u

yi
u

xi
n

xi
n

yi
n

yi
n

xi,j
0

xi,j
0

yi,j
0

yi,j
0

xi,j
e1

xi,j
e1

yi,j
e1

yi,j
e1

xi,j
em

xi,j
em

yi,j
em

yi,j
em

xi,j
u,z

xi,j
u,z

yi,j
u,z

yi,j
u,z

1

1

1111

111

1

1

11

1

1

1 11 11111 111

1111

111

1

1

11

1

1

1 11 11111 111

2

2

2

22

2

22

2

2

2

222

2

2

22
22

2 2
2

22

2

22

2

2

222

2

2

22
22

2 2
2

33 3

33 3

4

4

4

4

4

4

δi(u)

δi(u)

δi(1)

δi(1)

δi(n)

δi(n)

n+1

n+1

m+1

m+1

m+2

m+2

Figure 5.1: Illustration for the SMTI instance I constructed in the proof of Theorem 5.2.1.
White circles represent men, black circles represent women, and double black circles represent
indifferent women. The bold edges in Figure (a) show M0, and the bold edges in (b) show a
possible stable matching M that is larger than M0. The small numbers on the edges represent
ranks. We write δi(u) for |C(i, u)| + 2, and also e1 and em for two pairs in {(a, b) | vavb ∈
E(G)}.

time in n and m (using also k ≤ n). Since κ1(I) ≤
(
k
2

)
+ k + 1 also holds, this yields an

FPT-reduction.

The basic idea of the above construction is the following. It is easy to see that we can
only get a matching M larger than M0 if we “swap” the matching M0 along the path-
gadget P . However, the given ranks ensure that this can only result in a stable matching if
we make a swap in each edge-gadget as well. (See Fig 5.1 (b). If the matching would include
the edge xi,j

0 yi,j
0 , then yi,j

0 pν−1(i,j) would be a blocking pair.) Such a swapping in the edge-

gadget Gi,j can be done in m ways, as we can swap M0 along the cycles formed by xi,j
0 ,

yi,j
0 , xi,j

u,z , and yi,j
u,z for each u < z where vuvz is an edge. But the connections between the

edge- and node-gadgets ensure that swapping M0 along the cycle in Gi,j corresponding to
some edge vuvz can only result in a stable matching if we also swap it along the cycles in
the node-gadgets Gi and Gj corresponding to the vertices vu and vz, respectively. As we can
only make one swap in each gadget (because of the existence of xi

0 and yi
0 in the case of

Figure 5.1), this ensures that the
(
k
2

)
edges of G that correspond to the swappings in the

edge-gadgets have altogether at most k endpoints, as these endpoints must correspond to the
swappings made in the k node-gadgets. Thus, we have a clique in G if and only if we can
improve M0.

Before going into the details, we remark that ties are unavoidable in the construction.
First, swapping a stable matching along an alternating path of the underlying graph can
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only result in a stable matching if at least one node of the path corresponds to a person who
is indifferent between its two possible partners on the path. Second, if there are two non-
disjoint cycles C1 and C2 in the underlying graph such that swapping some stable matching
along C1 and along C2 both result in a stable matching, then at least one person corresponding
to a node in C1 or C2 must be indifferent. Thus, we need ties both for constructing an
instance with a possibly improvable solution, and also for leaving enough space for the possible
improvements to map the different cliques of the graph to different solutions.

To detail the proof of the reduction, we first show that the following are equivalent for
any matching M for I:

• property (p1): p1q1 ∈ M and M is stable,

• property (p2): |M | = |M0| + 1 and M is stable, and

• property (p3): |M | = |M0| + 1, M is stable, and M is `-close to M0.

Property (p3) =⇒ (p2) is trivial, and (p2) =⇒ (p1) should also be clear. To prove (p1) =⇒
(p3), suppose that M is a stable matching with M(q1) = p1. First, to prevent p1q2 from
being a blocking pair, M must assign p2 to q2. Applying this argument iteratively, we obtain
that M(qh) = ph for each h ∈ [

(
k
2

)
+ 1]. Also, q(k

2)+2p(k
2)+2 must be contained in M , as

otherwise this would be a blocking pair. Since ρL(ph, y
ν(h)
0 ) > ρL(ph, qh) for each h ∈ [

(
k
2

)
],

we get that M can only be stable if y
ν(h)
0 has a partner in M whom he prefers to ph,

implying M(yi,j
0 ) ∈ X i,j for each (i, j) ∈

(
k
2

)
. We denote by σ(i, j) the pair (u, z) if M(yi,j

0 ) =
xi,j

u,z , and similarly we let σ(i) = u if M(yi
0) = xi

u.

As ρL(xi,j
u,z , y

i,j
u,z) = 1 for every possible (u, z), we get M(yi,j

σ(i,j)) = xi,j
0 , since other-

wise xi,j
σ(i,j)y

i,j
σ(i,j) would be a blocking pair. Also, we obtain M(xi,j

u,z) = yi,j
u,z for all (u, z) 6=

σ(i, j) for the same reason. Thus, each person in an edge-gadget Gi,j can only be assigned to
a person in Gi,j .

Suppose σ(i, j) = (u∗, z∗). As xi,j
σ(i,j) prefers yi

u∗ to yi,j
0 , and yi

u∗ prefers xi,j
σ(i,j) ∈ C(i, u∗)

to xi
u∗ , M(xi

u∗) = yi
u∗ is not possible, since then yi

u∗ and xi,j
σ(i,j) would form a blocking pair.

As C(i, u∗) is a subset of persons in Gi,j , we get M(yi
u∗) /∈ C(i, u∗) by the argument above.

This implies M(yi
u∗) = xi

0. Using again the stability of M , we also obtain M(yi
u) = xi

u

for every u 6= u∗, and M(xi
u∗) = yi

0. Note that this latter means σ(i) = u∗. Using the same
arguments again, we also obtain M(yj

z∗) = xj
0, M(yj

0) = xj
z∗ , and M(yj

z) = xj
z for each z 6= z∗.

This yields σ(j) = z∗, so we have σ(i, j) = (σ(i), σ(j)) for each (i, j) ∈
(
[k]
2

)
.

Observe also that M covers each person of the instance, meaning |M | = |M0| + 1. There
are exactly 4 persons a in each node-gadget and in each edge-gadget for which M(a) 6= M0(a)
holds. As M(a) 6= M0(a) holds for every person a in the path-gadget, we can conclude that M
is (6

(
k
2

)
+ 4k + 4) = `-close to M0. Thus, (p1) indeed implies (p3), so the properties (p1),

(p2) and (p3) are equivalent.
Now, by σ(i, j) = (σ(i), σ(j)), the definition of X i,j implies that vσ(i)vσ(j) is an edge in G

for each (i, j) ∈
(
[k]
2

)
. Hence, we can conclude that {vσ(i) | i ∈ [k]} is a clique of size k in G,

proving (1) =⇒ (2).
Finally, we prove (2) =⇒ (1). Suppose {vσ(i) | i ∈ [k]} is a clique in G. We construct a

stable matching M of size |M0| + 1 as follows (the indices take all the possible values):
M(xi

0) = yi
σ(i) M(yi

0) = xi
σ(i)

M(xi,j
0 ) = yi,j

σ(i),σ(j) M(yi,j
0 ) = xi,j

σ(i),σ(j)

M(qh) = ph.
By setting M(a) = M0(a) for every other person a, |M | = |M0|+1 is clear. It is straight-

forward to verify that M is stable, proving the theorem.
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Observe that there is no bound on the length of the ties in the SMTI instance constructed
in the proof of Theorem 5.2.1. Thus, we could hope that restricting κ2 to be small yields an
easier problem. But as already mentioned, NP-completeness has been shown [98] for the spe-
cial case of MaxSMTI when κ2(I) = 2 holds for every input I. Besides, κ3(I) ≤ κ1(I)κ2(I),
so Theorem 5.1.1 trivially implies that MaxSMTI is FPT with combined parameteriza-
tion (κ1, κ2).

This latter fact trivially gives us a permissive local search algorithm for MaxSMTI with
FPT running time, assuming the combined parameterization (κ1, κ2). Thus, it is natural to
ask whether we can also give an FPT permissive local search algorithm by parameterizing
the problem with only κ2. The following theorem shows that no such algorithm can be given
(supposing the standard assumption W[1] 6= FPT holds). Moreover, the problem remains
hard even if we restrict κ2 = 2, and regard ` as a parameter.

Theorem 5.2.2. If W[1] 6= FPT, then there is no permissive local search algorithm for
MaxSMTI that runs in FPT time with parameter `, even if κ2 = 2 and only women can be
indifferent.

Proof. The proof will be very similar to the proof of Theorem 5.2.1, so we will reuse some
of the definitions and arguments used there. Clearly, we have to eliminate long ties in the
constructed instance. Note that the instance constructed in the proof of Theorem 5.2.1 only
contains ties longer than two in the preference lists of xi

0 and xi,j
0 (where i ∈ [k] and (i, j) ∈(

[k]
2

)
, respectively). Therefore, we break the ties in these lists. However, we must not narrow

the number of possibilities for improving the initial matching. Thus, in order to avoid the
presence of blocking pairs for the swapped solutions, we have to place indifferent persons on
each of the alternating cycles that might take part in a possible swapping.

Let G(V, E) be the input graph and k be the parameter for the Clique problem. As
before, we are going to construct an SMTI instance I with κ2 = 2 together with a stable
matching M0 for I and the integer ` = 12

(
k
2

)
+8k+4 such that the following three statements

are equivalent:

(1) I has a stable matching of size at least |M0| + 1,

(2) I has a stable matching M of size at least |M0| + 1 that is `-close to M0, and

(3) there is a clique of size k in G.

Since the construction will take polynomial time, this clearly proves our theorem. Note that
(2) =⇒ (1) is trivial.

Figure 5.2 shows an illustration for the construction. Let V (G) = {vi | i ∈ [n]} and m =
|E(G)|. The instance I consists of node-gadgets Gi for each i ∈ [k], edge-gadgets Gi,j for

each (i, j) ∈
(
[k]
2

)
, and a path-gadget P . The node-gadget Gi consists of women Ai ∪ Ci ∪

{xi
0, x

i
1} and men Bi ∪ Di ∪ {yi

0, y
i
1}, where Ai = {ai

u | u ∈ [n]}, and Bi, Ci, Di are de-
fined analogously to Ai. The edge-gadget Gi,j consists of women Ai,j ∪Ci,j ∪ {xi,j

0 , xi,j
1 } and

men Bi,j ∪ Di,j ∪ {yi,j
0 , yi,j

1 }, where Ai,j = {ai,j
u,z | u < z, vuvz ∈ E(G)}, and Bi,j , Ci,j , Di,j

are defined similarly. The path-gadget P is defined in the same way as in the proof of The-
orem 5.2.1. Note that the number of men and women in I is O(

(
k
2

)
) +

(
k
2

)
O(m) + kO(n), so

the construction takes polynomial time in the size of G.
For each i ∈ [k] we let M0(a

i
u) = bi

u and M0(c
i
u) = di

u for each u ∈ [n], and M0(x
i
h) = yi

h

for h ∈ {0, 1}. Similarly, for each (i, j) ∈
(
[k]
2

)
we let M0(a

i,j
u,z) = bi,j

u,z and M0(c
i,j
u,z) = di,j

u,z

for each possible u and z, and M0(x
i,j
h ) = yi,j

h for h ∈ {0, 1}. We define the preference lists
for I by using the notation of the proof of Theorem 5.2.1. For each person p in P we let
both M0(p) and its preference list L(p) be defined as in the proof of Theorem 5.2.1. We also
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Figure 5.2: The modified gadgets of the SMTI instance I constructed in the proof of The-
orem 5.2.2. The bold edges in Figure (a) represent M0, and the bold edges in (b) show a
possible stable matching M that is larger than M0.

define C(i, u) = {ai,j
u,z | i < j ≤ k, u < z, vuvz ∈ E(G)} ∪ {aj,i

z,u | 1 ≤ j < i, z < u, vzvu ∈
E(G)} for all i ∈ [k], u ∈ [n].

L(ai
u) : bi

u, yi
0 L(bi

u) : ci
u, [C(i, u)], ai

u

L(ci
u) : (bi

u, di
u) L(di

u) : ci
u, xi

1

L(xi
0) : ({yi

0, y
i
1}) L(yi

0) : [Ai], xi
0

L(xi
1) : [Di], yi

1 L(yi
1) : xi

1, x
i
0

L(ai,j
u,z) : bi,j

u,z, [b
i
u, bj

z], y
i,j
0 L(bi,j

u,z) : ci,j
u,z, a

i,j
u,z

L(ci,j
u,z) : (bi,j

u,z, d
i,j
u,z) L(di,j

u,z) : ci,j
u,z, x

i,j
1

L(xi,j
0 ) : (yi,j

0 , yi,j
1 ) L(yi,j

0 ) : [Ai,j ], pν−1(i,j), x
i,j
0

L(xi,j
1 ) : [Di,j ], yi,j

1 L(yi,j
1 ) : xi,j

1 , xi,j
0 .

It is easy to see that M0 is indeed a stable matching for M , and covers every woman
except for p(k

2)+2. Observe that κ2(I) = 2 indeed holds, but κ1(I) is not bounded.

To prove (1) =⇒ (3), suppose that M is a stable matching that covers every man and
woman. Using the same arguments as in the proof of Theorem 5.2.1, we obtain M(qh) = ph

for each h ∈ [
(
k
2

)
+ 2] and M(yi,j

0 ) ∈ Ai,j for each (i, j) ∈
(
[k]
2

)
. Following that argument and

exploiting the stability of M , after defining σ(i, j) to be (u, z) if M(yi,j
0 ) = ai,j

u,z and σ(i) to

be u if M(yi
0) = ai

u, we can easily obtain σ(i, j) = (σ(i), σ(j)) proving that {vσ(i) | i ∈ [k]} is
a clique in G. This proves (1) =⇒ (3).

To prove (3) =⇒ (2), let {vσ(i) | i ∈ [k]} be a clique in G. We define a stable matching M
covering each person in I as follows.

M(yi
0) = ai

σ(i) M(yi,j
0 ) = ai,j

σ(i),σ(j)

M(bi
σ(i)) = ci

σ(i) M(bi,j
σ(i),σ(j)) = ci,j

σ(i),σ(j)

M(di
σ(i)) = xi

1 M(di,j
σ(i),σ(j)) = xi,j

1

M(yi
1) = xi

0 M(yi,j
1 ) = xi,j

0

M(qh) = ph.
For every other person p in I we let M(p) = M0(p). It is straightforward to check that M

is a stable matching for I that is `-close to M0.

5.3 Inapproximability results

Theorem 5.1.2 shows that a stable matching for an instance I of maximum size is hard to
find even if κ1(I) is small. By [98], we know that the case where κ2(I) = 2 is NP-hard.
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Theorems 5.2.1 and 5.2.2 prove that improving an initial stable matching also remains hard
in these cases, even if we can restrict our attention to solutions that are close to the initial
solution. However, we can still try to find stable matchings that may not be of maximum
size, but have some other useful properties.

If M is a stable matching for an SMTI instance I = (X, Y, L), then the cost for p w.r.t. M ,
denoted by cM (p), is defined to be ρL(p, M(p)) if M(p) 6= �, and 1 + ρL(p, q∗) otherwise,
where q∗ has maximum rank according to p among all acceptable partners for p. Now, the
weight of M is w(M) =

∑
p∈X∪Y cM (p), and the regret of M is r(M) = maxp∈X∪Y cM (p).

An egalitarian (minimum regret) stable matching for I is a stable matching for I that has
the minimum weight (regret, respectively) among all stable matchings for I. The task of the
Egalitarian Stable Marriage with Ties and Incomplete Lists (or EgalSMTI)
problem is to find an egalitarian stable matching for the given SMTI instance, and the Min-
imum Regret Stable Marriage with Ties and Incomplete Lists (or MinregSMTI)
problem is defined analogously.

If P 6= NP and ε > 0 then there is no polynomial-time approximation algorithm with
ratio N(I)1−ε for these problems, even if only women can be indifferent, each preference list
has at most one tie, and κ2(I) = 2 [98]. Here, N(I) is the number of men in I. Moreover, it
has also been shown by Halldórsson [75] that for some δ > 0 it is NP-hard to approximate
EgalSMTI and MinregSMTI within a ratio of δN(I). However, if there are no ties, then a
minimum regret or an egalitarian stable matching can be found in polynomial time [81, 71]. As
Theorem 5.3.1 shows, this can be exploited to give an FPT algorithm for both EgalSMTI
and MinregSMTI if we parameterize it by κ3, or equivalently, by (κ1, κ2). By contrast,
Theorems 5.3.2 and 5.3.3 present some bounds on the approximability of these problems
that hold even if we allow the approximation algorithm to run not in polynomial time but in
FPT time with parameterization κ1. Note that such an approximation algorithm would have
a tractable running time if κ1 is a small integer, even if the length of the ties is unbounded.

Theorem 5.3.1. EgalSMTI and MinregSMTI are FPT with parameterization κ3.

Proof. We will use the method described in the proof of Theorem 5.1.1 for breaking ties, and
we also adopt the notation Ti, Pi and πj

i for some i ∈ [κ1(I)] and j ∈ [|Ti|]. Denoting the
elements of P1 × · · · × Pκ1(I) by p1, . . . , pt, we write Ii for the instance obtained by breaking
ties according to pi. Note that the instances I1, . . . , It differ from I only by the ranks assigned
to the persons that are contained in a tie.

In order to find a minimum regret or an egalitarian matching, we have to define the
ranking functions of the instances I1, . . . , It in a special way, using the ranking function ρ
of I. More precisely, if Mi is an egalitarian (minimum regret) stable matching for Ii (i ∈
[t]), then we need the following to be true: the weight of an egalitarian (minimum regret)
stable matching for I equals mini∈[t]{w(Mi)} (mini∈[t]{r(Mi)}, respectively). To enforce this
property, which we will call weight conserving property, we define the ranking function ρi

of Ii for some pi = (π1, . . . , πκ1(I)) as follows (allowing b = � also):

ρi(a, b) =

{
ρ(a, b) + πk(b)−1

|Tk| if Tk is a tie w.r.t. a that contains b,

ρ(a, b) if no such tie exists.

First, suppose that M is an egalitarian matching for I. Let πi (i ∈ [κ1(I)]) be such
that πi(M(a)) = 1 if Ti is a tie w.r.t. a containing M(a), otherwise πi is chosen arbitrarily.
Observe that M is a stable matching of I(π1,...,πt), and the cost for any person w.r.t. M is the
same in I and in I(π1,...,πt), by the definition of ρi. Second, if Mi is a stable matching in Ii,
then it is also stable in I, and the cost for any person w.r.t. Mi in I is at most its cost in Ii.
Thus, we get that this tie breaking method indeed fulfills the weight conserving property.
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Note that the instances obtained have a strict ranking for each person, but the ranks may
be not only be integers but rational numbers as well. However, finding an egalitarian or a
minimum regret stable matching for such instances can be done in O(n4 log n) time by [81, 71]
for an instance of size n, so this does not cause any problems. Hence, breaking ties as above,
finding the egalitarian or minimum regret stable matching for the instances obtained, and
choosing a stable matching among them having minimum weight or regret yields an algorithm

for both problems with running time
∏

i∈[κ1(I)] |Ti|O(|I|4 log |I|) = O(κ3(I)
κ3(I)|I|4 log |I|).

We remark that if κ1(I) is a fixed constant, then both the egalitarian and the minimum
regret matching can be found in polynomial time, as the algorithm of Theorem 5.3.1 runs
in
∏

i∈[κ1(I)] |Ti|O(|I|4 log |I|) ≤ |I|κ1(I)O(|I|4 log |I|) = O(|I|κ1(I)+4 log |I|). Theorems 5.3.2
and 5.3.3 show that if κ1 is not a constant but a parameter, then we have strong lower bounds
on the ratio of any FPT approximation algorithm, for both of these problems.

Theorem 5.3.2. There is a δ > 0 such that if W[1] 6= FPT, then there is no FPT-
approximation with parameterization κ1 for EgalSMTI that has ratio δN(I), even if only
women can be indifferent.

Proof. We show that the theorem holds for δ = 1
14 . Suppose that an FPT-approximation

algorithm A with parameterization κ1 and ratio δN(I) exists for EgalSMTI. We will show
that this yields an FPT algorithm for the Clique problem.

We are going to construct an SMTI instance I ′ by adding some new persons to the
instance I constructed in the proof of Theorem 5.2.1. See Figure 5.3 for an illustration. The
basic idea is that we complement the path-gadget P in a way such that the weight of the
solution is mainly determined by the choices made for the persons in the path-gadget. Thus,
we can only decrease the weight of the initial solution by swapping it along the path-gadget,
which can be done exactly if there is a clique in the given graph (as we have already seen).
Moreover, we ensure that swapping the initial solution along the path-gadget results in a
decrease of the weight that is large enough, so that even an FPT-approximation algorithm
can detect whether this is possible.

Clearly, these ideas are also useful for considering the MinregSMTI problem. Therefore,
we describe the construction in a general way, by using some parameters in the classical sense
(J and K) that can be used to “tune” the weights that appear in the weight or in the regret
of the solutions.

Now, we describe the details of the proof. Let G(V, E) and k be the input graph and the
parameter for Clique, with V (G) = {vi | i ∈ [n]} and |E(G)| = m. Let X and Y denote the
set of women and men in the instance I. To construct I ′ from I, we add new women A ∪ S
and men B ∪ T , where A = {au | u ∈ {0} ∪ [J ]}, B = {bu | u ∈ [J ]}, S = {su | u ∈ [K]},
and T = {tu | u ∈ [K]}. The value of the integers J and K will be specified later. The
preference lists for the newly introduced person and for q1 are given below, and we define
the preference list L(p) for each remaining person p as in I.

L(au) : bu, bu+1 if u ∈ [J − 1] L(q1) : p1, [S], a0

L(a0) : q1, b1 L(su) : tu, [{q1} ∪ B]
L(aL) : bJ L(tu) : su

L(bu) : au−1, [S], au.

Note that N(I ′) = K + J + |Y |, where |Y | =
(
k
2

)
+ 2 + k(n + 1) +

(
k
2

)
(m + 1). Let MA

be the output of A on input I ′, and let ME be an egalitarian stable matching for I ′. First,
suppose there is a clique of size k in G. Let M be a stable matching containing p1q1 for the
instance I, such an M can be defined as in the last paragraph of the proof of Theorem 5.2.1.
By adding the pairs {sutu | u ∈ [K]} and {buau−1 | u ∈ [J ]} to M , we clearly obtain a stable
matching M ′ for I ′.
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p1q1 p2q2a0a1 b1aJ bJ

s1

t1

sK

tK

1

1

1

1

1

1 1 1 1 11 1122 2
22

33K+2K+2 K+2

Figure 5.3: The modified SMTI instance I ′ constructed in the proof of Theorem 5.3.2. Bold
edges represent M ′.

Observe that the regret of M in I is at most the maximum rank R in I, which is at
most max{m+2, n+1, (k− 1)∆(G)+2}, with ∆(G) denoting the highest degree in G. Thus
we get w(M) ≤ (|X |+ |Y |)R = 2|Y |R, implying w(M ′) = 2 + (2 + 1)J + (1 + 1)K + w(M) ≤
3J + 2K + 2R|Y | + 2. Since w(ME) ≤ w(M ′) and the ratio of A is δN(I ′), we obtain
that w(MA) ≤ δN(I ′)w(ME) ≤ δ(K + J + |Y |)(3J + 2K + 2R|Y | + 2) = : w1

A.
Now, if there is no clique of size k in G, then no stable matching for I ′ can contain p1q1. To

see this, observe that the restriction of such a matching on I would also be stable. Now, recall
that if p1q1 is contained in some stable matching for I, then G contains a clique of size k, by
the claims in the proof of Theorem 5.2.1. Thus, q1p1 /∈ MA. Observe also that every stable
matching must include the pairs {sutu | u ∈ [K]}, as su and tu prefer each other the most.
Using this, we get that q1a0 must be in M ′, as otherwise it would be a blocking pair. Applying
this argument repeatedly, we can easily see that aibi is in M ′ for i = 1, 2, . . . , J . These
observations together imply w(MA) ≥ (K + 2 + 1)(J + 1) + 2K = KJ + 3J + 3K + 3 =: w2

A.
Now, if w1

A < w2
A holds, then algorithm A can decide whether there is a clique of size k

in G, by outputting ’Yes’ if w(MA) ≤ w1
A and outputting ’No’ if w(MA) ≥ w2

A. Setting K =
2J and J = 2R|Y |+2 guarantees w1

A < w2
A, because w1

A < δ ·3.5J ·8J = 28δJ2 = 2J2 < w2
A.

Finally, observe that R = O(m+nk) and |Y | = O(k2m+nk) implies N(I ′) = K +J + |Y | =
3(2R|Y | + 2) + |Y | = O(k2(m2 + n2) + k3nm), hence the instance I ′ can be created in
polynomial time. So by κ1(I

′) =
(
k
2

)
+k+1, the presented algorithm for the Clique problem

indeed runs in FPT time.
We remark that the theorem also holds for any δ < 1

5+2
√

6
. This can be proven by an easy

calculation similar to the one above, by setting K = d
√

α2 + 5α + 3eJ and J = d(R|Y |+1)/αe
for some α that is close enough to 0.

Theorem 5.3.3. If W[1] 6= FPT and ε > 0, then there is no FPT-approximation with
parameterization κ1 for MinregSMTI that has ratio N(I)1−ε.

Proof. Again, as in the proof of Theorem 5.3.2, we suppose that there exists such an FPT-
approximation algorithm A, and we show that this can be used to give an FPT algorithm for
the Clique problem. Let G and k be the input graph and the parameter given for the Clique
problem. We will use the construction I ′, introduced in the proof of the Theorem 5.3.2,
with the restriction that we set J = 0 and K = max{|Y |, d(2R)1/εe}. Recall that N(I ′) =
K + J + |Y |, R = O(m + nk) and Y = O(k2m + nk). Since ε is a constant, I ′ can again be
constructed from G and k in polynomial time.

Let MA denote the output of A on input I ′. Suppose that G has a clique of size k. If we
define M ′ as in the proof of Theorem 5.3.2, then p1q1 ∈ M ′, and r(M ′) ≤ R is easy to see.
By the ratio of A, and using also K ≥ |Y | we get r(MA) ≤ N(I ′)1−εR = (K + |Y |)1−εR ≤
2K1−εR.

For the other direction, if there is no clique of size k in G, then p1q1 cannot be con-
tained MA, as we have already shown in the proof of Theorem 5.2.1 that this would imply
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Parameters

κ2 = 2 (and `) κ1 (and `) κ1, κ2

MaxSMTI NP-hard W[1]-hard FPT
([98]) (Theorem 5.1.2) (Theorem 5.1.1)

Local Search No FPT alg. No FPT alg. FPT
for MaxSMTI (Theorem 5.2.2) (Theorem 5.2.1) (Theorem 5.1.1)

Approximation No poly. alg. has ratio No FPT alg. has ratio FPT, exact
for EgalSMTI N1−ε if ε > 0 δN for some δ > 0 (Theorem 5.3.1)

([98]) (Theorem 5.3.2)

Approximation No poly. alg. has ratio No FPT alg. has ratio FPT, exact
for MinregSMTI N1−ε if ε > 0 N1−ε if ε > 0 (Theorem 5.3.1)

([98]) (Theorem 5.3.3)

Table 5.1: Summary of the results of Chapter 5 (assuming W[1] 6= FPT and P 6= NP). The
parameter ` is only defined in the local search problem for MaxSMTI, and N denotes the
number of men.

a clique of size k in G. Since su must be assigned to tu in any stable matching of I ′, we
get q1a0 ∈ MA, implying cMA

(q1) = K + 2. Thus, r(MA) ≥ K + 2 in this case.
It is easy to check that K + 2 > K ≥ K1−ε2R holds by the choice of K. Therefore, A

indeed can decide whether G has a clique of size k, and by κ1(I
′) =

(
k
2

)
+ k + 1, this yields

an FPT algorithm for Clique.

5.4 Summary

We have shown that MaxSMTI remains W[1]-hard if we parameterize the problem with the
number of ties, but becomes FPT if parameterized with the total length of ties. We have also
shown that if W[1] 6= FPT, then no local search algorithm with FPT running time can be
given for this problem when the radius of the neighborhood to be examined is considered as
parameter, even if each tie has length 2, or even if the number of ties is also considered as a
parameter.

We also proved that no FPT algorithm can approximate the EgalSMTI or the Min-
regSMTI problem, when the parameter is the number of ties, unless W[1] = FPT. In contrast
with this, both problems can be solved in FPT time if we parameterize them by the total
length of ties.

A summary of the results of Chapter 5 is shown in Table 5.1.



CHAPTER 6

Stable matching with couples

In this chapter, we investigate the Hospitals/Residents with Couples problem. After
discussing its parameterized complexity with the parameter being the number of couples,
we also investigate the parameterized complexity of the neighborhood search problem for
the maximization variant of HRC, considering different parameterization functions. We also
present results concerning the simplified variant of this problem where preferences are ignored,
and only an assignment of maximum size is sought for.

We will call an instance of the HRC problem a couples’ market with preference, or shortly
cmp. A cmp consists of a set S of singles, a set C of couples, a set H of hospitals together with
a capacity f(h) for each hospital h, and a preference list L(a) for each a ∈ S ∪ C ∪ H . Each
couple c is a pair (c(1), c(2)), and we call the elements of the set R =

⋃
c∈C{c(1), c(2)} ∪ S

residents. The set A = S ∪ C ∪ H is called the set of agents.
The preference lists can be incomplete, but cannot involve ties, so if s ∈ S then L(s) is a

strictly ordered set of hospitals, if c ∈ C then L(c) is a strictly ordered subset of H̃ , and if h ∈
H then L(h) is a strictly ordered set of residents. Here H̃ = (H ∪{�})× (H∪{�})\{(�,�)}
where � is a special symbol indicating that someone is unemployed. If f ≡ f0 for some f0 ∈ N,
then we say that the cmp is f0-uniform.

The set of elements appearing in the preference list L(a) is AL(a), and we say that x is
acceptable for a if x ∈ AL(a). Clearly, we may assume that acceptance is mutual, so h ∈
AL(s) holds if and only if s ∈ AL(h) for each s ∈ S and h ∈ H , and (h1, h2) ∈ AL(c)
implies c(i) ∈ AL(hi) or hi = u for both i ∈ {1, 2}, for each c ∈ C. For some person x, the
ranking function ρL determines the rank of x w.r.t. a, denoted by ρL(a, x). If x ∈ AL(a)
then ρL(a, x) is r ∈ N if x is the r-th element in L(a). If x /∈ AL(a), then we let ρL(a, x) = ∞
for all meaningful x. Sometimes we may leave the superscript L, if its clear from the context.

An assignment for a cmp (S, C, H, f, L) is a function M : R → H∪{�} such that M(s) ∈
AL(s) ∪ {�} for each s ∈ S, M(c) ∈ AL(c) ∪ {(�,�)} for each c ∈ C, and the num-
ber of residents assigned to a hospital h is at most its capacity f(h). Here, M(c) denotes
the pair (M(c(1)), M(c(2))), and the set of residents assigned to h in M is the set {r|r ∈
R, M(r) = h}, denoted by M(h). We say that an assignment M covers a resident r if M(r) 6=
�, and M covers a couple c, if it covers c(1) or c(2). We define the size of M , denoted by |M |,
to be the number of residents covered by M .

We say that x is beneficial for the agent a with respect to an assignment M if x ∈ AL(a)
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and one of the following cases holds: (1) a ∈ S ∪ C and either a is not covered by M
or ρ(a, x) < ρ(a, M(a)), (2) a ∈ H and either |M(a)| < f(a) or there exists a resident r′ ∈
M(h) such that ρ(a, x) < ρ(a, r′). A blocking pair for M can be of three types:

• it is either a pair formed by a single s and a hospital h such that both s and h are
beneficial for each other w.r.t. M ,

• or a pair formed by a couple c and a pair (h1, h2) with h1 6= h2 such that (h1, h2) is
beneficial for c w.r.t. M , and for both i ∈ {1, 2} it holds that if hi 6= � then either c(i)
is beneficial for hi w.r.t. M or c(i) ∈ M(hi),

• or a pair formed by a couple c and a hospital h such that (h, h) is beneficial for c
w.r.t. M , and the couple c is beneficial for h. If h prefers c(1) to c(2), this latter means
that either |M(h)| ≤ f(h) − 2, or |M(h)| ≤ f(h) − 1 and ρ(h, c(1)) < ρ(h, r) for
some r ∈ M(h), or ρ(h, c(1)) < ρ(h, r1) and ρ(h, c(2)) < ρ(h, r2) for some r1 6= r2

in M(h). 1

An assignment M for I is stable if there is no blocking pair for M .
The input of the Hospitals/Residents with Couples problem is a cmp I, and the

task is to determine a stable assignment for I, if such an assignment exists. If no couples are
involved, then a stable assignment can always be found in linear time with the Gale-Shapley
algorithm [60]. In the case when couples are present, a stable assignment may not exist, as
first proved by Roth [124]. Here we also give a simple example.

Let H = {h1, h2, h3}, S = ∅, C = {(a, b), (c, d)} and f ≡ 1. The preference lists are
defined below. It is straightforward to verify that no stable assignment exists for this cmp
which will be denoted by I0. For example, M(a) = h1, M(b) = h2 and M(c) = M(d) = � is
not stable, because (c, d) and (h1, h3) form a blocking pair.

L((a, b)) : (h1, h2), (h2, h3), (h3, h1) L(h1) = L(h2) = L(h3) : c, a, b, d
L((c, d)) : (h1, h3), (h2, h1), (h3, h2)

Ronn proved that it is NP-complete to decide whether a stable assignment exists for a
given cmp [123]. As the following example shows, an instance of the Hospitals/Residents
with Couples problem may admit stable assignments of different sizes. The example con-
tains a single s, a couple c = (c1, c2) and hospitals h1 and h2 with capacities f(h1) = 2
and f(h2) = 1. The preference lists are the following:

L(s) : h2, h1 L(h1) : s, c1, c2

L(c) : (h1, h1), (�, h2) L(h2) : c2, s
In this instance, assigning s to h1 and c to (�, h2) yields a stable assignment of size 2,

whilst assigning s to h2 and c to (h1, h1) results in a stable assignment of size 3. We denote by
Maximum Hospitals/Residents with Couples (or MaxHRC) the optimization problem
where the task is to determine a stable assignment of maximum size for a given cmp. Note that
this problem is trivially NP-hard, as it contains the Hospitals/Residents with Couples
problem.

When considering the HRC problem, the number of couples in an instance can be a
natural parameter. We deal with the parameterized complexity of this problem in Section 6.1,
where we prove the negative result of Theorem 6.1.1 stating that the decision version of HRC
is W[1]-hard.

In Section 6.3.2, we present results concerning the applicability of local search for the
Maximum Hospitals/Residents with Couples problem. In Theorem 6.2.2, we give a
strict local search algorithm for MaxHRC with FPT running time, where the parameters
are the number of couples and the radius ` of the neighborhood search. In contrast with this,

1We thank David Manlove for pointing out this case.
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Task: Existence Maximum Local search algorithm
problem problem with FPT running time

Parameter: |C| ` (|C|, `)
Without P randomized FPT No permissive alg. Permissive alg.
preferences (trivial) (Theorem 6.3.1) (Theorem 6.3.5) (Theorem 6.3.1)

With W[1]-hard W[1]-hard No permissive alg. Strict alg.
preferences (Theorem 6.1.1) (Theorem 6.1.1) (Theorem 6.2.1) (Theorem 6.2.2)

Table 6.1: Summary of the results of Chapter 6 (assuming W[1] 6= FPT).

if we only regard ` as a parameter, then Theorem 6.2.1 shows that no permissive local search
algorithm can have FPT running time, unless W[1] = FPT.

Most of the questions examined in his chapter are also worth studying in a model that does
not involve preferences. This simplification leads to a matching problem that we call Max-
imum Matching with Couples. We study this problem in Section 6.3. On the one hand,
letting |C| be the parameter, a randomized FPT algorithm is presented in Theorem 6.3.1
that finds a matching of maximum size, so this problem becomes easier without preferences.
On the other hand, the local search problem still remains hard to solve (Theorem 6.3.5). For
a summary of our results see Table 6.1.

The results of this chapter appear in [107].

6.1 Parameterized complexity

The main result of this section is Theorem 6.1.1, showing that the Hospitals/Residents
with Couples problem is W[1]-hard with parameter |C|, denoting the number of cou-
ples in the given instance. As a consequence, the optimization problem Maximum Hospi-
tals/Residents with Couples is also W[1]-hard with parameter |C|.

However, supposing that a stable assignment has already been determined by some
method, it is a valid question whether we can increase its size. We will denote this problem
Increase Hospitals/Residents with Couples. Formally, its input is a cmp I and a sta-
ble assignment M0 for I, and the task is to find a stable assignment with size at least |M0|+1.
If no couples are involved, then all stable assignments for the instance have the same size,
so this problem is trivially polynomial-time solvable. Theorem 6.1.1 shows that Increase
Hospitals/Residents with Couples is also W[1]-hard with parameter |C|.

Theorem 6.1.1. (1) The decision version of Hospitals/Residents with Couples is
W[1]-hard with parameter |C|, even in the 1-uniform case.
(2) The decision version of Increase Hospitals/Residents with Couples is W[1]-hard
with parameter |C|, even in the 1-uniform case.

Before proving Theorem 6.1.1, we introduce a special construction that will be very useful
in the proof. For a graph G and an integer k, we construct a cmp IG,k = (S, C, H, f, L) as
follows. See Figure 6.1 for an illustration.

Let V (G) = {vi | i ∈ [n]}, |E(G)| = m and let ν be a bijection from [m] into the
set {(x, y) | vxvy ∈ E(G), x < y}. First, we construct a node-gadget Gi for each i ∈ [k]

and an edge-gadget Gi,j for each pair (i, j) ∈
(
[k]
2

)
. The node-gadget Gi contains hospi-

tals Hi∪Gi∪{f i}, singles Si∪T i and a couple ai. Analogously, the edge-gadget Gi,j contains
hospitals Hi,j ∪Gi,j ∪{f i,j}, singles Si,j ∪T i,j and a couple ai,j . Here T i = {tij | j ∈ [n− 1]}
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Gi,jGi
GiHi T iSi

ai

f i

Gi,jHi,j T i,jSi,j

ai,j

f i,j
1

1

1

11

1

1

1

1

1

1

1

1
1

1

1

1

1
1

1

1 1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

3

3

3

3

4

4

4

n m

n+1 m+1

di
1

di
2

di
n

Figure 6.1: A node-gadget and an edge-gadget of IG,k. Hospitals are represented by rectangles,
singles by black circles, and members of couples by double circles. A hospital h is connected
to some resident r if r ∈ AL(h). The numbers on the edges represent ranks, bold edges

represent MG,k
0 from Lemma 6.1.2, and di

x is for |Qi
x| + 2.

and T i,j = {ti,je | e ∈ [m − 1]}, Hi = {hi
j | j ∈ [n]} and Hi,j = {hi,j

e | e ∈ [m]}, and we

define Gi, Si and Gi,j , Si,j similarly to Hi and Hi,j . Observe that |C| = k +
(
k
2

)
.

We let f ≡ 1, so IG,k is 1-uniform. The precedence lists for each agent in IG,k are defined
below. The notation [X ] for some set X in a preference list denotes an arbitrary ordering of
the elements of X . We write Qi

x for the set {si,j
e | i < j ≤ k, ∃y :ν(e) = (x, y)}∪{sj,i

e | 1 ≤ j <
i, ∃y :ν(e) = (y, x)} and Qi,j

e for {hi
x, hj

y} where ν(e) = (x, y). The indices in the precedence
lists take all possible values if not stated otherwise, and the symbol α can be any index in [k]

or a pair of indices in
(
[k]
2

)
. If α takes a value in [k] then N(α) = n, otherwise N(α) = m.

(This notation will be used again later on.)
L(gα

x ) : tαx−1, a
α(2), tαx if 1 < x < N(α) L(hi

x) : ai(1), [Qi
x], si

x

L(gα
1 ) : aα(2), tα1 L(hi,j

e ) : ai,j(1), si,j
e

L(gα
N(α)) : tαN(α)−1, a

α(2), aα(1) L(si
x) : hi

x, f i

L(tαx) : gα
x , gα

x+1 L(si,j
e ) : hi,j

e , [Qi,j
e ], f i,j

L(fα) : sα
1 , sα

2 , . . . , sα
N(α), a

α(2)

L(aα) : (gα
N(α), f

α), (hα
1 , gα

N(α)), (h
α
2 , gα

N(α)−1), . . . , (h
α
N(α), g

α
1 )

Lemma 6.1.2. For a graph G and k ∈ N, IG,k has a stable assignment MG,k
0 that covers

each resident. Moreover, statements (1), (2) and (3) are equivalent:

(1) There is a clique in G of size k.

(2) There is a stable assignment M for IG,k with the following property, which we will call

property π: M(f i,j) ⊆ Si,j for each (i, j) ∈
(
[k]
2

)
.

(3) There is a stable assignment for IG,k with property π covering each resident.

Proof. To see the first claim, we define an assignment M0 by letting M0(a
α) = (gα

N(α), f
α),

M0(t
α
x ) = gα

x , and M0(s
α
x) = hα

x for all possible values of α and x. As each single and couple
is assigned to his or their best choice, M0 is stable and covers each resident.

To prove (2) ⇒ (1), suppose that IG,k has a stable assignment M with property π. Let us

define σ(i, j) for each (i, j) ∈
(
[k]
2

)
such that M(f i,j) = {si,j

σ(i,j)}. Since si,j
σ(i,j) prefers hi,j

σ(i,j)

to f i,j , the stability of M implies M(hi,j
σ(i,j)) = {ai,j(1)}. From this, we get that M(si,j

e ) = hi,j
e

must hold for each e ∈ [m] \ {σ(i, j)} since otherwise si,j
e and hi,j

e would form a blocking
pair. Note that each single in Si,j is assigned to a hospital in Hi,j ∪ {f i,j}. As this holds for

each (i, j) ∈
(
[k]
2

)
, we get that M(hi

x) ⊆ Si ∪ {ai(1)} holds for each i ∈ [k], x ∈ [n].
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Let ν(σ(i, j)) = (x, y) for some (i, j) ∈
(
[k]
2

)
. Since si,j

σ(i,j) prefers the hospitals in Qi,j
σ(i,j) =

{hi
x, hj

y} to f i,j , M can only be stable if both hi
x and hj

y prefer their partner in M to si,j
σ(i,j).

This implies M(hi
x) = {ai(1)} and M(hj

y) = {aj(1)}. Thus, by defining σ(i) to be x

if M(ai) = (hi
x, gi

n+1−x) for each i ∈ [k], we obtain ν(σ(i, j)) = (σ(i), σ(j)). From the
definition of ν, this implies that vσ(i) and vσ(j) are adjacent in G. As this holds for ev-

ery (i, j) ∈
(
[k]
2

)
, we get that {vσ(i) | i ∈ [k]} is a clique in G.

Now, we prove (1) ⇒ (3). If vσ(1), vσ(2), . . . , vσ(k) form a clique in G, then define σ(i, j)
such that σ(i, j) = ν−1(σ(i), σ(j)). We define a stable assignment M fulfilling property π
and covering every resident as follows.

M(sα
σ(α)) = fα

M(sα
x) = hα

x if x ∈ [N(α)] \ {σ(α)}
M(aα) = (hα

σ(α), g
i
N(α)+1−σ(α))

M(tαx) = gα
x if 1 ≤ x < N(α) + 1 − σ(α)

M(tαx) = gα
x+1 if N(α) + 1 − σ(α) ≤ x < N(α)

It is not hard to verify the stability of M by simply checking all possibilities to find a
blocking pair. (We note that many of the agents are only contained in IG,k to assure that a
clique in G indeed implies a stable assignment with the required properties.) As (3) ⇒ (2) is
trivial, this finishes the proof.

Now, it is easy to prove Theorem 6.1.1.

Proof of Theorem 6.1.1. Let G be an arbitrary graph and k ∈ N. We construct two 1-uniform
cmps I1 and I2, together with a stable assignment M2 for I2 such that the following three
statements are equivalent:

(a) G has a clique of size k,

(b) I1 has a stable assignment,

(c) I2 has a stable assignment of size greater than |M2|.

Furthermore, the construction will take FPT time, and there will be k + 3
(
k
2

)
couples in I1,

and k +
(
k
2

)
+ 1 couples in I2. Thus, (a) ⇐⇒ (b) yields an FPT reduction from Clique

to Hospitals/Residents with Couples, and (a) ⇐⇒ (c) yields an FPT reduction from
Clique to Increase Hospitals/Residents with Couples.

To get I1, we simply combine the cmp I0 having no stable assignment with the cmp IG,k.
This is done by introducing new couples bi,j and ci,j , and new hospitals f̄ i,j

1 and f̄ i,j
2 for

each (i, j) ∈
(
[k]
2

)
, and adding these agents to IG,k. We preserve the preference lists of IG,k,

except for hospitals {f i,j | (i, j) ∈
(
[k]
2

)
}, and we give the missing preference lists below.

L(bi,j) : (f i,j , f̄ i,j
1 ), (f̄ i,j

1 , f̄ i,j
2 ), (f̄ i,j

2 , f i,j)

L(ci,j) : (f i,j , f̄ i,j
2 ), (f̄ i,j

1 , f i,j), (f̄ i,j
2 , f̄ i,j

1 )

L(f̄ i,j
1 ) = L(f̄ i,j

2 ) : ci,j(1), bi,j(1), bi,j(2), ci,j(2)

L(f i,j) : si,j
1 , si,j

2 , . . . , si,j
m , ci,j(1), bi,j(1), bi,j(2), ci,j(2)

Observe that if we restrict I1 to contain only the hospitals f i,j, f̄ i,j
1 and f̄ i,j

2 and the

couples bi,j and ci,j for some (i, j) ∈
(
[k]
2

)
, we obtain a cmp isomorphic to I0, having no

stable assignment. Therefore, any stable assignment M must assign a single in Si,j to f i,j,
for each (i, j) ∈

(
[k]
2

)
. The restriction of such an M on the agents of IG,k must also be

stable, because agents of IG,k cannot be assigned by M to agents outside IG,k. Thus, by
Lemma 6.1.2, G has a k-clique.

For the other direction, if there is a k-clique in G, then we can construct a stable assign-
ment M ′

1 for I1 by setting M ′
1(b

i,j) = (f̄ i,j
1 , f̄ i,j

2 ), M ′
1(c

i,j) = (�,�) for each (i, j) ∈
(
[k]
2

)
,
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Figure 6.2: The path-gadget P in I2. Bold edges represent M2.

and M ′
1(r) = MG,k

π (r) for the residents in IG,k, where Mπ(G, k) is the stable assignment
for IG,k with property π, guaranteed by Lemma 6.1.2. It is easy to see that M ′

1 is stable, by
using the stability of Mπ(G, k). This finishes the proof of the first claim.

To construct I2, we add a path-gadget P to IG,k that contains the newly introduced
hospitals {pi | i ∈ [

(
k
2

)
+ 2]}, singles {qi | i ∈ [

(
k
2

)
]} and a couple b. See Figure 6.2 for an

illustration. As before, we only modify the preferences of the hospitals {f i,j | (i, j) ∈
(
[k]
2

)
},

and we give the missing preference lists below. The notation ρ used there denotes a bijection
from [

(
k
2

)
] into

(
[k]
2

)
.

L(p1) : b(1), q1 L(pi) : qi−1, qi if 1 < i ≤
(
k
2

)

L(p(k
2)+1) : q(k

2)
, b(2) L(p(k

2)+2) : b(2)

L(qi) : pi, f
ρ(i), pi+1 L(f i,j) : si,j

1 , si,j
2 , . . . , si,j

m , qρ−1(i,j), a
i,j(2)

L(b) : (�, p(k

2)+1), (p1, p(k

2)+2)

We also let M2(qi) = pi for each i ∈ [
(
k
2

)
], M2(b) = (�, p(k

2)+1), and M2(r) = MG,k
0 (r) for

the residents in IG,k, where MG,k
0 is the stable assignment for IG,k, provided by Lemma 6.1.2.

Note that M2 is indeed stable.
Suppose, there is a stable assignment M for I2 with |M | > |M2|. Observe that M2 covers

each resident except for b(1), so M must cover every resident, implying M(b) = (p1, p(k
2)+2).

Also, since M(h) cannot be empty for any hospital h, we get M(pi) = {qi−1} for each i =(
k
2

)
+ 1,

(
k
2

)
, . . . , 2. Thus, fρ(i) is beneficial for qi for each i ∈ [

(
k
2

)
], so by the stability of M

we obtain M(f i,j) ⊆ Si,j for each (i, j) ∈
(
[k]
2

)
. Again, the restriction of M on the agents

of IG,k must be stable, and so Lemma 6.1.2 implies that G has a clique of size k.
Conversely, if there is a k-clique in G, then we can define a stable assignment M ′

2 for I2,
covering each resident, as follows. We let M ′

2(qi) = pi+1 for each i ∈ [
(
k
2

)
], M ′

2(b) =
(p1, p(k

2)+2), and M ′
2(r) = MG,k

π (r) for the residents in IG,k. Again M ′
2 is stable, and has

size greater than |M2|, proving the second claim.

6.2 Local search

Here we examine the applicability of the local search approach for the Maximum Hospi-
tals/Residents with Couples problem. Theorem 6.2.1 shows that no permissive local
search algorithm is likely to exist for this problem running in FPT time with parameter `.
However, if we regard the combined parameterization (`, |C|), then even a strict local search
algorithm with FPT running time can be given, as presented in Theorem 6.2.2.

Theorem 6.2.1. There is no permissive local search algorithm for the 1-uniform Maximum
Hospitals/Residents with Couples that runs in FPT time with parameter `, unless
W[1] = FPT.

Proof. Let G be a graph and k an integer. First, recall the cmp I2 defined in the proof of
Theorem 6.1.1, and observe that the assignment M2 and the assignment M ′

2, constructed
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1 ḡi
1

ui
1

1

11

11

1

1

1

1
1

1

1
1

2 2

2
2

2

2

2

2

2

2

2

2

2

n n+1

Figure 6.3: The modified node-gadget in the proof of Theorem 6.2.1. Bold edges represent M3.

when a k-clique is present in G, may not be close to each other. Thus, in order to present
an FPT-reduction here, we need to modify the node- and edge-gadgets of I2. We are going
to construct a cmp I3 together with a stable assignment M3 for it such that the following
statements are equivalent:

(a) G has a clique of size k.

(b) There is a stable assignment for I3 with size at least |M3| + 1.

(c) There is a stable assignment for I3 with size at least |M3| + 1 that is `-close to M3

where ` = 8
(
k
2

)
+ 7k + 2.

The construction will take FPT time, hence a permissive local search algorithm for Maximum
Hospitals/Residents with Couples that runs in FPT time with parameter ` can be used
to solve Clique in FPT time.

See Figure 6.3 for an illustration of the modifications applied to I2 in order to get I3. For
each node- or edge-gadget Gα, we take new singles {uα

x | x ∈ [N(α)]} and the single tαN(α),

new couples {cα
x | x ∈ [N(α)]}, and new hospitals

⋃
x∈[N(α)]{ḡα

x , eα
x , ēα

x} ∪ {f̄α}. For most of
the agents we preserve the preferences originally defined for I2. The modifications and the
preference lists of the newly defined agents are as follows.

L(gα
x ) : cα

x(1), aα(2) L(tαx) : ḡα
x , f̄α

L(eα
x) : uα

x , cα
x (1) L(uα

x) : ēα
x , eα

x

L(ēα
x) : cα

x(2), uα
x L(cα

x) = (eα
x , ḡα

x ), (gα
x , ēα

x)
L(ḡα

x ) : cα
x(2), tαx L(f̄α) : tα1 , tα2 , . . . , tαN(α), a

α(1)

L(aα) : (f̄α, fα), (hα
1 , gα

N(α)), (h
α
2 , gα

N(α)−1), . . . , (h
α
N(α), g

α
1 )

We also define M3(a
α) = (f̄α, fα), M3(c

α
x) = (gα

x , ēα
x), M3(u

α
x) = eα

x and M3(t
α
x) = ḡα

x

for all possible values of α and x, and for each remaining resident r let M3(r) = M2(r). It is
easy to observe that M3 is stable, and covers each resident except for b(1).

Supposing that there is a stable assignment M with size greater than |M3| and using
exactly the same arguments as in the proof of Theorem 6.1.1, we get M(b) = (p1, p(k

2)+2),

M(qi) = (pi+1) for each i ∈ [
(
k
2

)
], and M(f i,j) ⊆ Si,j for each (i, j) ∈

(
[k]
2

)
. By following the

argument proving (2) ⇒ (1) in Lemma 6.1.2, we again obtain that G must have a k-clique.
(The modifications of the gadgets in I3 to do not affect that reasoning.) This proves (b) ⇒ (a).

Clearly, (c) ⇒ (b) is trivial, so we only have to prove (a) ⇒ (c). Suppose that G has a
clique {vσ(i) | i ∈ [k]}. We again let σ(i, j) = ν−1(σ(i), σ(j)), and we write σ′(α) for N(α) +
1− σ(α). We define a stable assignment M ′

3 for I in a very similar fashion as in the previous
proofs:
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M ′
3(b) = (p1, p(k

2)+2) M ′
3(u

α
σ′(α)) = ēα

σ′(α)

M ′
3(qi) = pi+1 for each i ∈ [

(
k
2

)
] M ′

3(s
α
σ(α)) = fα

M ′
3(a

α) = (hα
σ(α), g

α
σ′(α)) M ′

3(t
α
σ′(α)) = f̄α

M ′
3(c

α
σ′(α)) = (eα

σ′(α), ḡ
α
σ′(α))

For each remaining resident r we let M ′
3(r) = M3(r). It is straightforward to verify

that M ′
3 is stable, and it is `-close to M0.

Before stating our last result, we describe the trick of “cloning” hospitals. For each hos-
pital h ∈ H in a given cmp, we take f(h) copies of h by replacing h with new hospi-
tals h1, . . . , hf(h), each having capacity 1. The preference lists of these hospitals agree with the
original preference list of h. For each single s containing h in its preference list, we replace h in
the list L(s) by the series h1, . . . , hf(h). For a couple c containing a pair (h, g) of two hospitals
in L(c), we replace (h, g) by a series formed by the elements of {(hi, gj) : i ∈ [f(h)], j ∈ [f(g)]}
such that (hi, gj) precedes (hi′ , gj′) if i < i′, or i = i′ and j < j′. (We assume that the
cases h = � and g = � are also clear.)

Now, if M is an assignment for the original cmp I, then it defines an assignment M c

for the cmp Ic obtained by the above cloning process, as follows. If M assigns r to h and
there are i − 1 residents in M(h) that h prefers to r, then let M c(r) = hi. If M(r) = � for
some r, then we let M c(r) = � as well. Observe that if M is stable then M c is also stable.
Conversely, it is not hard to see that a stable assignment for Ic can be transformed in the
straightforward way to a stable assignment for I.

Theorem 6.2.2. There is a strict local search algorithm for Maximum Hospitals/Resi-
dents with Couples running in FPT time with combined parameter (`, |C|).

Proof. Let I = (S, C, H, f, L) be given with the stable assignment M0 and the integer `.
W.l.o.g. we may assume that f ≡ 1, as otherwise we can apply the trick of cloning the
hospitals, as argued above. Thus, if M(r) = h for some resident r, then we will write M(h) = r
instead of M(h) = {r}.

Before describing the strict local search algorithm for Maximum Hospitals/Residents
with Couples, we introduce some notation to capture the structure of the solution. The
bipartite graph G underlying I has vertex set H ∪ R and edge set E = {hr | h ∈ H, r ∈
AL(h)}. Clearly, an assignment M for I determines a matching E(M) in G in the natural
way: hr ∈ E(M) if and only if M(r) = h for some resident r and hospital h. Suppose that M
is a closest solution, i.e. a stable assignment for I with |M | > |M0| and d(M, M0) ≤ ` that
is the closest to M0 among all such assignments. Let Aδ = {a ∈ R ∪ H | M(a) 6= M0(a)},
and Eδ be the symmetric difference of E(M0) and E(M). Note that Eδ covers exactly the
vertices of Aδ, and Gδ = (Aδ, Eδ) is the union of paths and cycles which contain edges
from M0 and M in an alternating manner. It is well-known that for a cmp not containing
couples, every stable assignment covers exactly the same agents [61]. Thus, it is easy to see
that the stability of M and M0 imply that if a component of Gδ does not contain any resident
from R \ S, then it must be a cycle. Let K0 denote the set of such cycles, and K1 the set of
the remaining components of Gδ. We write Cδ for (R \ S) ∩Aδ, and we define B(a) = {b | a
is beneficial for b w.r.t. M0} for every a ∈ S ∪ H . We also let S+ = {s ∈ S | M(s) is
beneficial for s w.r.t. M0}, and S− = {s ∈ S | M0(s) is beneficial for s w.r.t. M}. Note
that S+∪S− = S∩Aδ. We define H+ and H− analogously. We call agents in A+ = S+∪H+

winners and agents in A− = S− ∪ H− losers. For a simple illustration see Figure 6.4.
Now, we describe an algorithm that finds vertices of Aδ. The algorithm first branches on

guessing |Aδ| and a copy Ḡ of the graph Gδ. Let ϕ denote an isomorphism from Ḡ to Gδ.
The algorithm also guesses the vertex sets ϕ−1(Cδ), ϕ−1(H+), ϕ−1(H−), ϕ−1(S+), ϕ−1(S−),
and edge sets ĒM0

and ĒM denoting ϕ−1(E(M0) ∩ Eδ) and ϕ−1(E(M) ∩ Eδ), respectively.
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Since |Aδ| ≤ 2`, it can be achieved by careful implementation that the algorithm branches
into at most (2`)62` directions in this phase.

Next, we apply the technique of color-coding [8], in order to help the localization of Aδ.
To this end, the algorithm colors the vertices of G with |Aδ| ≤ 2` colors randomly with
uniform and independent distribution; γ(a) denotes the color of a. The coloring γ is nice,
if γ(ϕ(a)) = Γ(a) for each a ∈ V (Ḡ), where Γ is an arbitrary fixed ordering of V (Ḡ), i.e. a
bijection from V (Ḡ) to [|Aδ|]. From now on, we suppose that γ is nice, which clearly holds

with probability |Aδ|−|Aδ| ≥ (2`)−2`.

Given a coloring, the algorithm grows a subset X ⊆ V (Ḡ) on which ϕ is already known.
It applies the following extension rules repeatedly, until none of them is applicable. When
Extension Rule 1 is applied, the algorithm branches into at most 2|C| branches, but no other
branchings are involved. We write X̄ = V (Ḡ) \ X . See Figure 6.5 for an illustration.

Extension Rule 1 [guessing a member of a couple]: applicable if c ∈ X̄ ∩ϕ−1(Cδ).
In this case, we simply branch on the vertices of (R \ S) ∩ {a | γ(a) = Γ(c)} to choose ϕ(c).
Note that this means at most 2|C| branches.

Extension Rule 2 [finding pairs by M0]: applicable if x ∈ X, y ∈ X̄ and xy ∈ ĒM0

for some x and y. Clearly, we get ϕ(y) = M0(ϕ(x)), so we can extend ϕ by adding y to X .

Extension Rule 3 [finding pairs by M for losers]: applicable if x ∈ X ∩ ϕ−1(A−),
y ∈ X̄∩ϕ−1(A+) and xy ∈ ĒM for some x and y. Let y∗ be the first element in the preference
list L(ϕ(x)) contained in the set B(ϕ(x)) having color Γ(y). We claim y∗ = ϕ(y). Clearly,
ϕ(y) ∈ B(ϕ(x)) holds because ϕ(y) is a winner, and its color must be Γ(y) as γ is nice.
Now, suppose for contradiction that y∗ precedes ϕ(y) in L(ϕ(x)). Since the only vertex in Aδ

having color Γ(y) is ϕ(y), we get M(y∗) = M0(y
∗) implying that y∗ and ϕ(x) form a blocking

pair for M . Thus, ϕ(y) = y∗ can be found in linear time, so we can extend ϕ by adding y
to X .

Extension Rule 4 [finding pairs by M for couples with one winner hospital]:
applicable if c(i) ∈ Cδ ∩ ϕ(X), y ∈ ϕ−1(H+) ∩ X̄, ϕ−1(c(i))y ∈ ĒM , and M(c(i′)) is already
known for some c ∈ C, i 6= i′ and y. W.l.o.g. we assume i = 1. Let h be defined such
that (h, M(c(2))) is the first element in L(c) for which h ∈ B(c(1)) and h has color Γ(y). We
claim ϕ(y) = h. Observe that ϕ(y) ∈ B(c(1)) must hold because ϕ(y) is a winner. As γ is
nice, ϕ(y) indeed has color Γ(y). Thus, if h 6= ϕ(y) then (h, M(c(2))) precedes (ϕ(y), M(c(2)))
in L(c), but this implies that the couple c and (h, M(c(2))) form a blocking pair for M .
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Therefore we get ϕ(y) = h, and we can extend ϕ in linear time by adding y to X .
Extension Rule 5 [finding pairs by M for couples with two winner hospitals]:

applicable if c(i) ∈ Cδ ∩ ϕ(X), yi ∈ ϕ−1(H+) ∩ X̄, and ϕ−1(c(i))yi ∈ ĒM holds for both i ∈
{1, 2}, for some c ∈ C, y1 and y2. We let (h1, h2) be the first element in L(c) such that hi ∈
B(c(i)) and γ(hi) = Γ(yi) for both i ∈ {1, 2}. Using the same arguments as in the previous
case, we can argue that ϕ(y1) = h1 and ϕ(y2) = h2 hold. Thus, in this case we can extend ϕ
in linear time by adding both y1 and y2 to X .

Extension Rule 6 [dissolving a blocking pair]: applicable if M(a) ∈ ϕ(X) if and
only if a ∈ ϕ(X) for all a ∈ Aδ, and xy is a blocking pair for the actual assignment MX .
We define MX by setting MX(a) = M0(a) if a /∈ ϕ(X) and MX(a) = M(a) if a ∈ ϕ(X),
for each agent a. Note that by our first condition, MX is indeed an assignment. Now, as xy
cannot be a blocking pair for M or M0, either x ∈ ϕ(X) and y ∈ Aδ \ ϕ(X), or vice versa.
W.l.o.g. we suppose the former. By defining ȳ ∈ V (Ḡ) such that Γ(ȳ) = γ(y), it can be seen
that ϕ(ȳ) = y must hold because γ is nice. Thus, ϕ can be extended by adding ȳ to X .

Lemma 6.2.3. If none of the extension rules is applicable, then ϕ(X) = Aδ.

Proof. First, ϕ(X) ⊇ Cδ is trivial, as Extension Rule 1 is not applicable.
Claim 1: ϕ(X) ⊇ (H− ∪S+)∩V (K1). Suppose a ∈ (H− ∪S+)∩V (K1) \ϕ(X) is chosen

such that the distance dC(a) is minimal, where dC(a) is the minimum length of a path P
in Gδ from a to some c ∈ Cδ such that the first edge of P is in E(M0) if a ∈ H and it is
in E(M) if a ∈ S. If no such path exists then let dC(a) = ∞.

First, if a is a winner single, then M(a) 6= �, and since a and M(a) cannot be a blocking
pair for M0, M(a) must be a loser hospital. Now, if M(a) ∈ ϕ(X) then Extension Rule 3 is
applicable, a contradiction. Thus M(a) /∈ ϕ(X), but as M(a) is on the path defining dC(a), we
get dC(M(a)) < dC(a) contradicting to the choice of a. (Note that dC(a) 6= ∞ as a ∈ V (K1).)
Second, if a is a loser hospital, then M0(a) 6= �. Observe that if M0(a) ∈ ϕ(X) then
Extension Rule 2 is applicable, which cannot be the case, so M0(a) can only be a single
in S \ ϕ(X). If M0(a) were a loser, then a and M0(a) would form a blocking pair for M , so
we obtain M0(a) ∈ S+ \ ϕ(X). But this implies dC(M0(a)) < dC(a), a contradiction. Thus,
ϕ(X) indeed contains (H− ∪ S+) ∩ V (K1).

Claim 2: ϕ(X) ⊇ V (K1). By Claim 1, we only have to prove that (H+∪S−)∩V (K1)\ϕ(X)
is empty. Analogously as in Claim 1, we choose a ∈ (H+ ∪S−)∩V (K1) \ϕ(X) such that the
distance d′C(a) is minimal, where d′C(a) is the minimum length of a path P in Gδ from a to
some c ∈ Cδ such that the first edge of P is in E(M) if a ∈ H and it is in E(M0) if a ∈ S.
If no such path exists then let d′C(a) = ∞. Note that d′C 6= dC , as the requirements for the
first edge of the path P are different.

First, if a is a loser single, then M0(a) 6= �, and since a and M0(a) cannot be a blocking
pair for M , M0(a) must be a winner hospital. Now, if M0(a) ∈ ϕ(X) then Extension Rule 2 is
applicable, a contradiction. Thus M0(a) /∈ ϕ(X), but as M0(a) is on the path defining d′C(a),
we get d′C(M0(a)) < d′C(a) contradicting to the choice of a. Again, d′C(a) 6= ∞ as a ∈ V (K1).

Second, if a is a winner hospital, then M(a) 6= �. Observe that if M(a) is a member of
some couple c, then if M(c(i)) is not known for some i ∈ {1, 2}, then M(c(i)) can only be a
winner hospital by Claim 1, so Extension Rule 4 or 5 is applicable. If M(a) were a winner
single, then a and M(a) would form a blocking pair for M0, so we obtain M(a) ∈ S−. Now,
if M(a) ∈ S− ∩ ϕ(X) then Extension Rule 3 is applicable. Thus, only M(a) ∈ S− \ ϕ(X) is
possible. But this implies d′C(M(a)) < d′C(a), which is a contradiction proving Claim 2.

Claim 3: ϕ(X) ⊇ V (K0). As already mentioned, each component of K0 is a cycle, and it
easy to see that it must contain vertices from A+ and A− in an alternating manner. Thus,
if neither of Extension Rule 2 and 3 is applicable, then each component of K0 is totally
contained in either Aδ \ ϕ(X) or in ϕ(X). Therefore, the first condition of Extension Rule 6
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must hold. Now, if ϕ(X) 6= Aδ then clearly MX 6= M . As MX is closer to M0 than M ,
and M is a closest solution, MX cannot be stable. Thus Extension Rule 6 is applicable, a
contradiction.

Now, Claims 1, 2, and 3 together imply the lemma.

If no extension rule is applicable, then we easily obtain the solution M by Lemma 6.2.3.
Each step takes linear time, the number of steps is at most 2`, and the algorithm branches
into at most (2`)62`(2|C|)` branches in total, thus the overall running time is O(`(72|C|)`|I|).
The output is correct if the coloring γ is nice, which holds with probability at least (2`)−2`. To
derandomize the algorithm, we can use the standard method of k-perfect hash functions [8]
instead of randomly coloring V (G). This yields a running time of O(`O(`)|C|`|I| log |I|).

6.3 Maximum matching without preferences

In this section, we define a variant of the Hospitals/Residents problem that involve couples,
but do not deal with preferences, using only a notion of acceptability instead.

A couples’ market with acceptance, or shortly cma is a tuple (S, C, H, f, A). Here, the
sets S, C and H denote the set of singles, couples and hospitals, respectively, and f(h) denotes
the capacity of the hospital h for each h ∈ H . But instead of describing the preferences, we
only define a set A(s) ⊆ H for each single s ∈ S representing acceptable hospitals for s,

and a set A(c) ⊆ H̃ for each couple c ∈ C representing acceptable hospital pairs for c. Here,

H̃ and the symbol � are defined the same way as before. We also keep the definitions of
agents, resident, and f0-uniformity as given for a couples market with preference. To define
an assignment for a cma (S, C, H, f, A), we also refer to the corresponding definition for a
cmp. Note that this definition only relies on the concept of acceptability, and has no direct
reference to the preference lists.

The Maximum Matching with Couples problem is an optimization problem, where
given a cma I, the set of solutions is the set of assignments for I, and the task is to find
an assignment for I of maximum size. We investigate the parameterized complexity of this
problem in Section 6.3.1. We also examine the possibility of finding a local search algorithm
for it in Section 6.3.2.

6.3.1 Parameterized complexity

First, we investigate a slightly modified version of Maximum Matching with Couples.
We say that an assignment for a cma (S, C, H, f, A) is a (k, n)-assignment if it covers at
least k couples and at least n singles. We denote the following problem as (k, n)-Matching
with Couples: given a cma I and two integers k and n, find a (k, n)-assignment for I if
possible.

Clearly, if there are no couples in a given instance, then this problem is equivalent to
finding a maximum matching in a bipartite graph, and can be solved by standard techniques.
If couples are involved, the problem becomes hard. More precisely, the decision version of
this problem is NP-complete [66, 12], even in the following special case: each hospital has
capacity 2, and the acceptable hospital pairs for a couple are always of the form (h, h) for
some h ∈ H . However, if the number of couples is small, which is a reasonable assumption in
many practical applications, (k, n)-Matching with Couples becomes tractable, as shown
by Theorem 6.3.1.

Theorem 6.3.1. (k, n)-Matching with Couples can be solved in randomized FPT time
with parameter |C|.
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To prove Theorem 6.3.1, we need some results from [100] concerning matroids.
Although we only use basic concepts of matroid theory, here we give a brief outline of the

main definitions used. For some set U and collection I ⊆ 2U , the pair (U, I) is a matroid if
the followings hold: (1) ∅ ∈ I, (2) if X ∈ I and X ′ ⊆ X then X ′ ∈ I, and (3) if X, Y ∈ I
and |X | < |Y | then X∪{y} ∈ I for some y ∈ Y \X . The elements of I are called independent
sets. A matrix A over a field F is a linear representation of a matroid ({ui | i ∈ [n]}, I), if
for any set J of indices in [n], the set of columns in A corresponding to the indices J are
independent over F if and only if {uj | j ∈ J} ∈ I. A matroid is linear if it admits a linear
representation. A maximal independent set of a matroid is called a basis of the matroid. The
dual of a matroid (U, I) with basis set B is the matroid with ground set U whose basis set
is {U \B | B ∈ B}. The k-truncation of (U, I) is the matroid (U, I ′) where I ∈ I′ if and only
if I ∈ I and |I| ≤ k. Given a bipartite graph G(A, B; E), its transversal matroid has ground
set A, and X is defined to be independent if there is a matching in G covering X .

Theorem 6.3.2 ([100]). Let M(U, I) be a linear matroid where the ground set U is par-
titioned into blocks of size b. Given a linear representation A of M, it can be determined
in f(k, b) · ||A||O(1) randomized time whether there is an independent set that is the union
of k blocks. (||A|| denotes the length of A in the input.)

Corollary 6.3.3. Let M(U, I) be a linear matroid and let X = {X1, X2, . . . Xn} be a collec-
tion of subsets of U , each of size b. Given a linear representation A of M, it can be determined
in f(k, b) · ||A||O(1) randomized time whether there is an independent set that is the union
of k disjoint sets in X .

Proof. First, let us make n(u) copies for each u ∈ U , where n(u) is the number of sets
in X containing u, i.e. let U ′ = {ui | u ∈ U, n(u) > 0, i ∈ [n(u)]}. Let M′(U ′, I ′) be the
matroid where I ′ contains those sets which can be obtained from some set I ∈ I by replacing
each u ∈ I with an arbitrary element from {ui | i ∈ [n(u)]}. A representation A′ of M′ can be
obtained from A by putting n(u) copies of the column representing u into A′ for each u ∈ U .
For each i ∈ [n], let X ′

i ⊆ U ′ be obtained by replacing each element u in Xi with uj if Xi

is the j-th set in X containing u. Clearly, by letting X ′
i to be a block (having size b) for

each i ∈ [n], we get a partition of U ′.
The sets {Xij

| j ∈ [k]} satisfy the requirements (being disjoint and having an independent
union in M) if and only if the sets {X ′

ij
) | j ∈ [k]} are k blocks whose union is independent

in M′, and thus the algorithm of Theorem 6.3.2 provides the solution.

Lemma 6.3.4 ([100]). (1) Given a representation A over a field F of a matroid M, a
representation of the dual matroid M∗ over F can be found in polynomial time. (2) Given a
representation A over N of a matroid M and an integer k, a representation of the k-truncation
of Mk can be found in randomized polynomial time. (3) Given a bipartite graph G(A, B; E), a
representation of its transversal matroid over N can be constructed in randomized polynomial
time.

Now, we are ready to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. Let (S, C, H, f, A) be the cma for which we have to find a (k, n)-
assignment. W.l.o.g. we can assume that each hospital has capacity 1 as otherwise we can
“clone” the hospitals, i.e. for each h ∈ H we can substitute h with the newly introduced
hospitals h1, . . . , hf(h), also modifying A(p) for each p ∈ S ∪ C appropriately. (As f(h) ≤
|S| + 2|C| can be assumed, this increases the input size only polynomially.) Note that the
case k < |C| can be solved by finding a (k, n)-assignment for (S, C′, H, f, A′) for every C′ ⊆ C
where |C′| = k and A′ is the restriction of A on S∪C′. As this increases the running time only
with a factor of at most 2|C|, it is sufficient to give an FPT algorithm for the case |C| = k.
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Moreover, we can assume A(c) ⊆ H × H , since for each c ∈ C we can eliminate each pair
of the form (h,�) or (�, h) (h ∈ H) in the set A(c) by adding a new hospital uc to H with
capacity 1 and substituting the symbol � with uc in the pairs contained in A(c).

Now, let G(H, S; E) be the bipartite graph where a single s ∈ S is connected with a
hospital h ∈ H if and only if h ∈ A(s). We can assume w.l.o.g. that G has a matching of
size at least n as otherwise no solution may exist, and this case can be detected easily in
polynomial time. We define M(H, I) to be the matroid where a set X ⊆ H is independent
if and only if there is a matching in G that covers at least n singles but covers no hospitals
from X . Observe that M is exactly the dual of the n-truncation of the transversal matroid
of G, and thus it is indeed a matroid. By Lemma 6.3.4, we can find a linear representation A
of M in randomized polynomial time.

We define the matroid M′(U, I ′) with ground set U = H ∪ C such that X ⊆ U is
independent in M′ if X∩H is independent in M. A representation of M′ can be obtained by
taking the direct sum of the matrices A and Ek where Ek is the unit matrix of size k×k. Let X
be the collection of the sets that are of the form {c, h1, h2} where c ∈ C and (h1, h2) ∈ A(c).

Observe that if X1, X2, . . . , Xk are k disjoint sets in X whose union is independent in M′,
then we can construct a (k, n)-assignment as follows. For each {c, h1, h2} ∈ {X1, . . . , Xk} we
choose M(c) from {(h1, h2), (h2, h1)}∩A(c) arbitrarily. The disjointness of the sets X1, . . . , Xk

guarantees that this way we assign exactly one resident to each hospital in X =
⋃

i∈[k] Xi∩H .
Now, let N be a matching in G that covers at least n singles, but no hospitals from X . Such
a matching exists, as X is independent in M. Thus, letting M(s) to be N(s) if s is covered
by N and � otherwise for each s ∈ S yields that M is a (k, n)-assignment. Conversely, if M
is a (k, n)-assignment then the sets {c, h1, h2} for each c ∈ C and M(c) = (h1, h2) form
a collection of k disjoint sets in X whose union is independent in M′. By Corollary 6.3.3,
such a collection can be found in randomized FPT time when k is the parameter, yielding a
solution if existent.

Theorem 6.3.1 shows that (k, n)-Matching with Couples can be solved by a random-
ized FPT algorithm with parameter |C|. We remark that our method can also be applied
when there are groups of fixed size instead of couples in the given market, or when the task
is to maximize (or minimize) some arbitrary function f(k, n) where k and n are the number
of covered couples and singles, respectively, in the solution. This latter can be done by sim-
ply searching for a (k, n)-assignment for all possible and relevant values of k and n. Thus,
as a consequence we get that Maximum Matching with Couples can also be solved in
randomized FPT time with parameter |C|.

Theorem 6.3.1 also has a useful consequence in connection to the following scheduling
problem. We are given a set of parallel machines, a set of independent jobs, and a set of
job assignment restrictions describing for each job j the set of machines which j may be
assigned to. The task is to find a minimum makespan assignment of the jobs to the machines
respecting the given restrictions. Considering the remarks of the previous paragraph, we get
that Theorem 6.3.1 yields a randomized FPT algorithm for the special case of this problem,
where k jobs have processing time p ∈ N and all other jobs have processing time 1, and we
regard k as a parameter.

6.3.2 Local search

Here, we investigate the applicability of the local search approach to handle the intractability
of the Maximum Matching with Couples problem. We define the distance d(M, M ′) of
two assignments M and M ′ for some cma I as the number of residents r for which M(r) 6=
M ′(r). The following theorem shows that no permissive local search algorithm is likely to
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run in FPT time, if the parameter is the radius of the explored neighborhood and we restrict
the problem to the 2-uniform case.

Theorem 6.3.5. There is no permissive local search algorithm for the 2-uniform Maximum
Matching with Couples that runs in FPT time with parameter ` denoting the radius of
the explored neighborhood, unless W[1] = FPT.

Proof. Let G be the input graph for the Clique problem and k be the parameter given.
We denote the vertices of G by v1, v2, . . . , vn. We claim that if there is a permissive local
search algorithm A for Maximum Matching with Couples running in FPT time with
parameter `, then we can use A to solve Clique in FPT time. To prove this, we construct
an input Λ = (I, M0, `) of A with the following properties: every assignment for I with size
at least |M0| + 1 is `-close to M0, and there is such an assignment for I if and only if G has
a clique of size k. Thus, G has a clique of size k if and only if A outputs an assignment for I
with size at least |M0| + 1.

To construct Λ, we first define the cma I together with the assignment M0 for it. Let the
set H of hospitals be the union of D = B∪⋃{Hi,j | i, j ∈ [k]}, D′ = B′∪⋃{H ′i,j | i, j ∈ [k]}
and F = {fi | i ∈ [k]}, where B = {bi | i ∈ [2k − 1]}, Hi,i = {hi,i

j,j | j ∈ [n]} for each i ∈ [k],

Hi,j = {hi,j
x,y | vxvy ∈ E(G)} for each i 6= j, {i, j} ⊆ [k], and for each hospital h in B (Hi,j ,

respectively) we also define a hospital h′ to be in B′ (H ′i,j , respectively). For brevity, we will
use the notation Hi,j

h,• = {h | ∃y :h = hi,j
h,y ∈ Hi,j} and Hi,j

•,h = {h | ∃x :h = hi,j
x,h ∈ Hi,j}. The

capacity of each hospital is 2. For each hospital h ∈ D we define a couple denoted by c(h),
and for each h′ ∈ D′ we define two singles s1(h

′) and s2(h
′). Let C = {c(h) | h ∈ D} and

let S = {s0} ∪ {si(h
′) | h′ ∈ D′, i ∈ {1, 2}}.

Before defining A(p) for each p ∈ S ∪ C, we define the assignment M0 for I, as this will
not cause any confusion. Let M0(s0) = �, and let M0(p) = h where either h ∈ D and p is a
member of the couple c(h), or h ∈ D′ and p ∈ {s1(h), s2(h)}. Now, for each p ∈ S ∪ C, we
define the set of acceptable hospitals or pairs of hospitals A(p) to be the union of {M0(p)}
and the set A′(p) of hospitals, defined below, that can be assigned to p besides M0(p). We
define A′(p) for each p ∈ S ∪ C as follows.

A′(c(h)) = {(h′, h′)} for each h ∈ D
A′(s0) = {b1}
A′(s1(b

′
i)) = H1,i for each i ∈ [k]

A′(s2(b
′
i)) = {bi+1} for each i ∈ [k]

A′(s1(b
′
k+i)) = Hi,1 for each i ∈ [k − 1]

A′(s2(b
′
k+i)) = {bk+i+1} for each i ∈ [k − 2]

A′(s2(b
′
2k−1)) = Hk,1

A′(s1(h
′i,j
x,y)) = Hi,j+1

x,• for each i ∈ [k], j ∈ [k − 1] and every possible x and y
A′(s1(h

′i,k
x,y )) = {fi} for each i ∈ [k] and every possible x and y

A′(s2(h
′i,j
x,y)) = Hi+1,j

•,y for each i ∈ [k − 1], j ∈ [k] and every possible x and y
A′(s2(h

′k,i
x,y )) = {fi} for each i ∈ [k] and every possible x and y

This completes the definition of the cma I = (S, C, H, f, A). Observe that M0 indeed is an
assignment for I. Finally, setting ` = 4k2 + 8k − 3 finishes the definition of the instance Λ =
(I, M0, `). Figure 6.6 shows an illustration.

First, suppose that M is an assignment for I such that |M | > |M0|. We do not require M
to be (4k2 + 8k − 3)-close to M0, but we will actually prove that this is necessary. Observe
that M0 covers each resident except for s0, so M must cover all residents to satisfy |M | > |M0|.
As A(s0) = {b1}, M must assign b1 to s0. This implies M(c(b1)) = (b′1, b

′
1), and therefore we

also have M(s2(b
′
1)) = b2, implying M(c(b2)) = (b′2, b

′
2), and so on. Following this argument,

it can be seen that M(c(bi)) = (b′i, b
′
i) for every i ∈ [2k − 1], and M(s2(b

′
i)) = bi+1 for

every i ∈ [2k − 2].
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Figure 6.6: A block diagram showing the hospitals in the proof of Theorem 6.3.5. For two
sets H1, H2 of hospitals, (H1, H2) is an arc if A′(s) ⊆ H2 for some s ∈ S with M0(s) ∈ H1.

We say that a single s enters Hi,j if M(s) ∈ Hi,j but M0(s) /∈ Hi,j , and leaves H ′i,j

if M0(s) ∈ H ′i,j but M(s) /∈ H ′i,j . A couple c moves from a hospital h if M0(c) = (h, h) 6=
M(c), and we say that c moves from a set J ⊆ H of hospitals if it moves from a hospital in J .
Observe that if c moves from Hi,j , then two singles leave H ′i,j , one of them entering Hi+1,j

if i 6= k, and the other entering Hi,j+1 if j 6= k. If a single s leaves H ′i,j but does not en-
ter Hi+1,j or Hi,j+1, then M(s) ∈ F must hold, and therefore there can exist at most 2k such
single s. Moreover, if a set of m singles enter Hi,j then at least dm/2e couples have to move
from Hi,j. For each i ∈ [k], exactly one single from {s1(b

′
1), s1(b

′
2), . . . , s1(b

′
k)} enters H1,i,

and exactly one single from {s1(b
′
k+1), s1(b

′
k+2), . . . , s1(b

′
2k−1), s2(b

′
2k−1)} enters Hi,1. These

altogether imply that exactly one couple moves from Hi,j for each i, j ∈ [k], and that if s
and s′ enter Hi,j then M(s) = M(s′) must hold.

Suppose that c moves from the hospital hi,j
x,y. Observe that if j < k then a couple must

move from Hi,j+1
x,• , and similarly, if i < k then a couple must move from Hi+1,j

•,y . For each i ∈
[k], letting σh(i) to be x if for some j and y a couple moves from hi,j

x,y, and σv(i) to be y if

for some j and x a couple moves from hi,j
x,y, we obtain that σh(i) and σv(i) are well-defined.

Observe that by the definition of Hi,i we get σh(i) = σv(i) := σ(i), and from the definition
of Hi,j we get that if σ(i) = x and σ(j) = y for some i 6= j, then vxvy must be an edge in G.
Thus, the set {vσ(i) | i ∈ [k]} forms a clique of size k in G.

Remember that exactly one couple moves from Hi,j for each i, j ∈ [k], which (considering
also the size of F ) forces exactly two singles to leave H ′i,j for each i, j ∈ [k]. Taking into
account the couples c(bi) and the singles s1(b

′
i), s2(b

′
i) for each i ∈ [2k − 1] and the single s0,

we get that M is 4k2 + 4(2k − 1) + 1 = (4k2 + 8k − 3) = `-close to M0.

For the other direction, suppose vσ(1), vσ(2), . . . , vσ(k) form a clique in G. By defining M
as below, it is straightforward to verify that M is an assignment for (S, C, H, f, A) which
covers every resident, and is `-close to M0.
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M(c(bi)) = (b′i, b
′
i) for each i ∈ [2k − 1]

M(c(hi,j
σ(i),σ(j))) = (h′i,j

σ(i),σ(j), h
′i,j
σ(i),σ(j)) for each i, j ∈ [k]

M(s0) = b1

M(s1(b
′
i)) = h1,i

σ(1),σ(i) for each i ∈ [k]

M(s1(b
′
k+i)) = hi,1

σ(i),σ(1) for each i ∈ [k − 1]

M(s2(b
′
2k−1)) = hk,1

σ(k),σ(1)

M(s2(b
′
i)) = bi+1 for each i ∈ [2k − 2]

M(s1(h
′i,j
σ(i),σ(j))) = hi,j+1

σ(i),σ(j+1) for each i ∈ [k], j ∈ [k − 1]

M(s2(h
′i,j
σ(i),σ(j))) = hi+1,j

σ(i+1),σ(j) for each i ∈ [k − 1], j ∈ [k]

M(s1(h
′i,k
σ(i),σ(k))) = fi for each i ∈ [k]

M(s2(h
′k,i
σ(k),σ(i))) = fi for each i ∈ [k]

M(p) = M0(p) for every p ∈ S ∪ C where M(p) was not defined above.
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Conclusions

In this dissertation we considered the parameterized complexity of several graph modifica-
tion and stable assignment problems. In Chapter 2 we discussed the parameterized k-Apex
problem, where given a graph G and a parameter k, the task is to decide whether there
are k vertices in G whose removal yields a planar graph. Using treewidth-based techniques
including results by Robertson and Seymour from graph minor theory and a theorem by
Courcelle, we presented an FPT algorithm for this problem whose running time is quadratic
in the number of vertices of G for every fixed k.

In Chapters 3 and 4 we presented various results considering the parameterized complexity
of deciding whether two graphs can be made isomorphic by deleting a few vertices from the
larger one. To this end, we defined the Cleaning(H,G) problem: given a pair of graphs (H, G)
with H ∈ H and G ∈ G, find a set of vertices S in G such that G−S is isomorphic to H . We
investigated the complexity of this problem with a non-standard parameterization, where the
parameter of an input (H, G) is the difference of the number of vertices in G and H . This
parameterization has not been studied before in the literature for this problem.

In Section 3.1, we focused on the special case where both input graphs are planar and the
smaller one is 3-connected. After showing the NP-hardness of this problem, we presented a
quadratic time FPT algorithm for it. In Section 3.2, we dealt with the case where the smaller
input graph is a tree and the larger one can be arbitrary. This case was already known to be
NP-hard, and we settled the parameterized complexity of this problem by providing an FPT
algorithm for it, running in cubic time for each fixed value of the parameter.

Chapter 3 contains the study of the Cleaning(H,G) problem for the case where both
input graphs are interval graphs. We gave an FPT algorithm for this problem, when param-
eterized by the non-standard parameterization used also in Chapter 3. We also proved the
NP-hardness of this problem.

In Chapters 5 and 6, we turned our attention to stable assignment problems. None of
the problems discussed in these chapters have been studied from a parameterized viewpoint
before. In Chapter 5, we showed that finding a maximum stable matching in the Stable
Marriage with Ties and Incomplete Lists problem is W[1]-hard, when parameterized
by the number of ties. In contrast with this, we showed that the problem becomes FPT, when
parameterized by the total length of ties.

We also obtained results concerning the applicability of local search for this problem. We
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studied the problem of deciding for a given instance I of SMTI, a stable matching M for I,
and an integer `, whether I admits a stable matching M ′ larger than M such that the number
of persons having different partners in M and in M ′ is at most `. We showed that no algorithm
for this problem can run in FPT time (unless W[1] = FPT) if we regard ` as a parameter,
and besides, either the number of ties is a parameter as well, or the maximum length of
the ties is at most 2. In addition, we investigated two optimization problems, namely the
Egalitarian Stable Marriage with Ties and Incomplete Lists and the Minimum
Regret Stable Marriage with Ties and Incomplete Lists. On the one hand, we
gave an FPT algorithm for them with the parameterization where the parameter is the total
length of the ties. On the other hand, we showed strong FPT-inapproximability results for
both of these problems concerning the case when the parameter is only the number of ties.

In Chapter 6 we studied the parameterized complexity of the Hospitals/Residents
with Couples problem. We proved that finding a stable assignment is W[1]-hard, if the
parameter is the number of couples in the instance. We also proved that no permissive local
search algorithm for the problem of finding a stable assignment of maximum size can run
in FPT time (unless W[1] = FPT), if parameterized by only the radius of the explored
neighborhood. By contrast, we described a strict local search algorithm for this problem that
runs in FPT time, if both the radius of the neighborhood and the number of couples are
regarded as parameters.

Additionally, we also investigated a variant of the Hospitals/Residents with Couples
problem, called Maximum Matching with Couples, where no preferences are involved,
and the task is to find an acceptable assignment having maximum size. We described a
randomized FPT algorithm for this problem with the parameter being the number of couples,
by using FPT results from matroid theory. We also showed that no permissive local search
algorithm can run in FPT time for this problem (unless W[1] = FPT), if the parameter is
the radius of the explored neighborhood.

There are several possible directions for further research. First, considering applicability
in practice, it is a relevant question whether the running times of the presented algorithms
can be improved. In the case of the three algorithms proposed for the Cleaning problem,
we believe that an effective implementation would result in much better running times for
practical instances than the proven upper bounds suggest. Thus, an empirical study of these
algorithms would be interesting.

Regarding the Cleaning problem, another natural direction for future research is to in-
vestigate further graph classes. A possible candidate for such research could be the class of
permutation graphs, since the Graph Isomorphism problem is solvable for such graphs [34].
An important open question is whether the Cleaning problem on planar graphs can be
solved by an FPT algorithm. We conjecture that the answer is yes. Also, it would be inter-
esting to examine whether unit interval graphs are different from general interval graphs in
the context of Induced Subgraph Isomorphism.

Yet another possibility for future investigations is the generalization of the Cleaning
problem, where vertices can be deleted from both graphs. The resulting problem is the Max-
imum Common Induced Subgraph problem, where the task is to delete some vertices
from both input graphs in a way that the obtained graphs are isomorphic to each other.
Here, both the size of the desired common subgraph and the number of deletions could be
relevant parameters. Naturally, allowing also edge deletions raises interesting questions as
well.

Considering the area of stable matchings, a possible issue that could be studied in the
parameterized framework is whether “almost” stable matchings (of a certain size) are easier
to find than stable matchings. We can consider a matching almost stable if it admits only a
certain number of blocking pairs. This question has already been studied from the classical
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complexity perspective [4]. From the parameterized viewpoint, the number of blocking pairs
allowed is a natural parameter. Such questions may also be relevant in connection with the
Hospitals/Residents problem.

Finally, the most important and appealing research direction for future work is the area
of kernelization algorithms (see e.g. [70, 20]). None of the FPT algorithms proposed in the
dissertation provide a non-trivial kernel directly, though such kernelizations seem possible in
connection with the Cleaning problem. Hence, it is an interesting open question whether
polynomial-time kernels exist for the FPT problems discussed here. Using newly developed
techniques [21, 58], the non-existence of such kernels might also be proven. Altogether, this
area can be a fruitful direction for future research.
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[2] A. Abdulkadiroǧlu, P. A. Pathak, and A. E. Roth. The New York City high school
match. American Economic Review, 95(2):364–367, May 2005. (Pages 2 and 14.)
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[45] B. Dutta and J. Massó. Stability of matchings when individuals have preferences over
colleagues. J. Econom. Theory, 75(2):464–475, 1997. (Page 16.)

[46] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer-Verlag,
second edition, 1994. (Page 27.)

[47] F. Echenique and J. Oviedo. A theory of stability in many-to-many matching markets.
Theoretical Economics, 1(2):233–273, June 2006. (Page 14.)

[48] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Nat.
Bur. Standards, 69B:125–130, 1965. (Page 1.)

[49] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965. (Page 1.)

[50] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999. (Pages 17, 32, and 33.)

[51] M. Farber. Domination, independent domination, and duality in strongly chordal
graphs. Discrete Appl. Math., 7(2):115–130, 1984. (Page 45.)

[52] M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. A. Rosamond, S. Saurabh, and Y. Vil-
langer. Local Search: Is brute-force avoidable? In IJCAI 2009: Proceedings of the 21st
International Joint Conference on Artificial Intelligence, pages 486–491, 2009. (Page
12.)

[53] M. R. Fellows and M. A. Langston. On search, decision, and the efficiency of polynomial-
time algorithms. J. Comput. Syst. Sci., 49(3):769–779, 1994. (Page 18.)

[54] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. J.
of Global Optimization, 6:109–133, 1995. (Page 11.)

[55] I. S. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the iso-
morphism of graphs of fixed genus (working paper). In STOC 1980: Proceedings of the
12th Annual ACM Symposium on Theory of Computing, pages 236–243. ACM, 1980.
(Page 32.)

[56] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. J. ACM,
49(6):716–752, 2002. (Page 27.)

[57] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, New York, 2006. (Page 5.)

[58] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs
for NP. In STOC 2008: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, pages 133–142. ACM, 2008. (Page 107.)



Bibliography 113

[59] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In STOC 1983: Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, pages 448–456. ACM, 1983. (Page 41.)

[60] D. Gale and L. S. Shapley. College admissions and the stability of marriage. Amer.
Math. Monthly, 69(1):9–15, 1962. (Pages 2, 9, 12, 13, 78, and 90.)

[61] D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete
Appl. Math., 11(3):223–232, 1985. (Page 96.)

[62] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, 1979. A Series of Books in the
Mathematical Sciences. (Pages 1, 4, 31, and 33.)

[63] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods, 4:312–316, 1983. (Page 17.)

[64] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM J. Comput., 1:180–
187, 1972. (Page 45.)

[65] P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canad. J. Math., 16:539–548, 1964. (Page 46.)

[66] C. A. Glass and H. Kellerer. Parallel machine scheduling with job assignment restric-
tions. Naval Research Logistics, 54(3):250–257, 2007. (Page 99.)

[67] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
1997. (Page 11.)
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