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Abstract. The sports elimination problem asks whether a team par-
ticipating in a competition still has a chance to win, given the current
standings and the remaining matches to be played among the teams.
This problem can be viewed as a graph labelling problem, where arcs
receive labels that contribute to the score of both endpoints of the arc,
and the aim is to label the arcs in a way that each vertex obtains a
score not exceeding its capacity. We investigate the complexity of this
problem in detail, using a multivariate approach to examine how vari-
ous parameters of the input graph (such as the maximum degree, the
feedback vertex/edge number, and different width parameters) influence
the computational tractability. We obtain several efficient algorithms, as
well as certain hardness results.

Keywords: sports elimination problem; graph labelling; parameterized
complexity; multivariate complexity analysis.

1 Introduction

1.1 Motivation

Imagine we are in the middle of an ice-hockey3 season. Each participating team
has currently a certain score and still some matches to play. Can our favorite
team t0 become a winner of the season? More precisely, given the current scores
and the set of remaining matches, is it possible that these matches end in such
a way that our team will finish with the maximum score among all teams? If
the answer is not, our team is said to be eliminated. This is a question that
occupies not only players, coaches and managers of teams, but also many sports
fans. It has also attracted quite a lot of attention from mathematicians and
computer scientists. Papers [1] and [22] use integer linear programming to solve
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⋆⋆ Supported by the Hungarian Scientific Research Fund (OTKA grants no. 108383

and no. 108947).
3 The reader may substitute any game he or she likes.



this problem, but we shall concentrate more on combinatorial approaches, see
[4, 10–12,15, 16, 20, 23, 24].

1.2 Formulation of the problem

Let us suppose that the rules of the game define the set of outcomes of a match
as

S = {(α0, β0), (α1, β1), . . . , (αk, βk)}.

This formalism corresponds to situations where each match has a ‘home’ team
and an ‘away’ team, and it can end in any of the k+1 ways with the home team
getting αi points and the away team βi points. For example, S = {(0, 1), (1, 0)}
for baseball, as this game does not allow draws, and a winning team gets 1 point.
Basketball, where the winning team gets 2 points, and both teams in a match
that ends in a draw are awarded 1 point, has S = {(0, 2), (1, 1), (2, 0)}. Eu-
ropean football differs from basketball in that the winner gets 3 points, so
S = {(0, 3), (1, 1), (3, 0)} for European football. Examples of other games are
given by Kern and Paulusma [16].

A polynomial-time reduction 4 provided also by the same authors [16] showed
that we can restrict ourselves to the case where

α0 = 0, α1 = 1 < α2 < · · · < αk and β0 > β1 > · · · > βk−1 ≥ 1, βk = 0. (1)

The set of outcomes fulfilling (1) is called normalized. Throughout the paper we
will assume S to be normalized.

An instance of the Generalized Sports Elimination problem with the
set S of outcomes (gse(S) for short) can be described by a triple (T , w,M). We
let T = {t0, t1, . . . , tn} represent the set of teams participating in the competi-
tion. The function w : T → R defines current scores and M : T × T → N the
number of remaining matches between teams of T .

By a (t, t′)-match for some t, t′ ∈ T we mean a match played between t and
t′ such that t is the home team and t′ is the away team. The question is whether
it is possible that all the remaining matches end in such a way that team t0
will have the maximum score among all teams. More precisely, given the set of
outcomes S, the problem gse(S) is defined as follows.

Generalized Sports Elimination for S:

Instance: A triple (T , w,M) as described above.
Question: Can a final score vector s : T → R be reached such that
s(t0) ≥ s(ti) for each ti ∈ T ?

If the answer is yes, we say that team t0 is not eliminated, otherwise t0 is elimi-
nated. Observe that we can suppose that our team t0 has already played all its
matches, and in each one it obtained the maximum possible score, so its final

4 The reduction does not change the directed graph underlying the instance (formally
defined later on), except for possibly reversing all its arcs.
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standing is w(t0) points. (If in reality this is not the case, we can modify the
values of w accordingly).

An instance (T , w,M) of gse(S) can quite naturally be represented by a
directed multigraph G = (V,A) with vertex capacities c : V → R. The vertex
set V = {v1, . . . , vn} of G corresponds to the teams T \{t0}, and arcs (vi, vj) ∈ A

correspond to the remaining matches between teams ti and tj . More precisely,
the multiplicity of an arc (vi, vj) equals the number of remaining (ti, tj)-matches.
The capacity of a vertex vi ∈ V is equal to c(vi) = w(t0)−w(ti), and it represents
the number of points that team ti can still win so as not to overcome team t0.
It is easy to see that gse(S) is equivalent to the following problem that we call
Arc Labelling with Capacities for S, or alc(S) for short.

Arc Labelling with Capacities for S = {(α0, β0), . . . , (αk, βk)}:
Instance: A pair (G, c) where G = (V,A) is a directed multigraph and
c : V → R is a vertex capacity function.
Question: Does there exist an assignment p : A → {0, . . . , k} such that

scrp(v) :=
∑

a=(v,u)∈A

αp(a) +
∑

a=(u,v)∈A

βp(a) ≤ c(v) (2)

holds for each vertex v ∈ V ?

We say that p : A → {0, . . . , k} is a score assignment for G. If p(a) = q for
some arc a = (u, v) ∈ A, then we also say that p assigns the outcome (αq, βq)
to the arc a, and that u and v gain αq and βq (resulting) from the arc a,
respectively. To keep the notation simple, instead of p((u, v)) we shall simply
write p(uv). The score of some vertex v in p, denoted by scrp(v), is defined by
the left-hand side of Inequality (2); clearly, scrp(v) equals the total points that
v gains when all remaining matches yield the outcome as determined by p. We
say that a score assignment p for G is valid with respect to a capacity function
c, if scrp(v) ≤ c(v) for each vertex v ∈ V . Thus, the task in the alc(S) problem
is to decide whether a valid score assignment exists.

Problem alc(S) restricted to instances with graphs G having maximum
degree at most ∆ will be denoted by ∆-alc(S).

As the reader can see from the definitions of the problems gse(S) and
alc(S), we take the view that the game (in fact, the set of outcomes S) is
fixed, and a different S defines another variant of the elimination problem or of
the corresponding graph labelling problem. As a consequence of this assumption,
the size of the set S is a constant. However, to guarantee a greater insight into
the complexity of the algorithms proposed, we sometimes state running times
with their dependence on k made explicit; in all cases where the dependence on
k is not explicit, we assume k to be a fixed constant.

1.3 Previous work

If the rules of the game are such that the winner of a match gets 1 point, the loser
gets 0 points and there are no draws (like in baseball), that is, S = {(0, 1), (1, 0)},
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then the elimination problem can easily be solved by employing network flow
theory. Schwartz [23] was the first one to propose such a method; his network
has O(n2) vertices, where n is the number of teams. Another construction with a
network containing only O(n) vertices was proposed by Gusfield and Martel [10].

However, it soon turned out that some score allocation rules make the elim-
ination problem intractable. Bernholt et al. [4] proved that gse(S) is NP-
complete for the European football system where S = {(0, 3), (1, 1), (3, 0)}. They
also mentioned that this result could be generalized to the rules that award α

points to the winner and β points to both teams of a match ending in a draw, if
α > 2β. Kern and Paulusma [15, 16] extended this result by classifying all score
allocation rules S into polynomially solvable and NP-complete cases. Their re-
sults show that gse(S) is NP-complete for any possible (normalized) set S of
outcomes, except for the case when S = {(i, k − i) | 0 ≤ i ≤ k} for some k ∈ N,
which makes the problem polynomial-time solvable.

In their NP-completeness proofs, Kern and Paulusma [15, 16] gave reductions
from the 3-dimensional matching problem (3dm for brief). It is known that the
restriction of 3dm to instances where each element occurs in at most three triples
remains NP-complete (see [9], problem SP1). Applying the reduction given by
Kern and Paulusma [16] to such instances, one obtains that the following stronger
result holds as well:

Theorem 1 Except when the set of outcomes is of the form S = {(i, k− i) | 0 ≤
i ≤ k} for some k ∈ N, gse(S) is NP-complete even in the case when no team
has more than 3 remaining matches to play.

Considering Arc Labelling with Capacities, Theorem 1 immediately
yields the following assertion.

Corollary 1 3-alc(S) is NP-complete unless S = {(i, k − i) | 0 ≤ i ≤ k} for
some k ∈ N.

By contrast, Bernholt et al. [4] noticed that the European football elimi-
nation problem can be solved in polynomial time if there are at most two re-
maining matches for each team; this means that 2-alc({(0, 3), (1, 1), (3, 0)}) is
polynomial-time solvable.

We remark that although Arc Labelling with Capacities seems to be
a very natural variant within the broad class of graph labelling problems, the
authors are not aware of any prior work studying this problem explicitly, apart
from the research focusing on sports elimination which deals with it implicitly.

1.4 Our contribution

We investigate the computational aspects of the elimination problem by study-
ing the complexity of Arc Labelling with Capacities in detail. Instead of
focusing only on how the set S of outcomes determines the complexity of the
problem, we look more closely on how the structure of the input graph alters its
tractability.
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We first identify certain conditions that render our problem polynomially
solvable. Namely, we show tractability of the case when the undirected version
of the input graph is a forest, by proposing a simple linear-time dynamic pro-
gramming algorithm in Theorem 2. We also assert polynomial-time solvability of
the cases when the undirected version of the input graph is a cycle (Theorem 3)
or a graph with maximum degree 2 (Theorem 4). The latter theorem, stating
that 2-alc(S) is in P for every S, extends the result of Bernholt et al. [4] (deal-
ing with the European football elimination problem) and is in sharp contrast to
the fact that 3-alc(S) remains NP-complete.

After identifying easy cases of alc(S), we perform a thorough investigation
on how certain parameters of the input graph modify the tractability of the
problem. We apply the framework of parameterized complexity to study how
a small deviation from the tractable cases can be handled. To this end, we
consider various parameters of the input graph which aim to measure its distance
from a certain class of tractable instances. Namely, we focus on three types of
parameters of the input graph:

– degree parameters such as the number of vertices with degree more than two;
– feedback parameters, describing how many vertices or edges must be deleted

from the (undirected version of the) input graph in order to obtain a forest;
– width parameters such as treewidth and pathwidth, which measure the ‘tree-

likeness’ of the input graph in a more elaborate way.

In the case of degree parameters, we were able to provide efficient fixed-
parameter tractable algorithms (Theorems 5 and 6). Interestingly, the tractabil-
ity of alc(S) with respect to feedback parameters differs greatly depending on
whether we deal with the size of a minimum feedback edge set (in which case
Theorem 7 provides fixed-parameter tractability), or with the size of a minimum
feedback vertex set (which yields intractability by Theorem 8). Regarding width
parameters, in Theorem 9 we obtain that for each fixed integer w, alc(S) be-
comes polynomial-time solvable on graphs with treewidth at most w. However,
this result cannot be strengthened to achieve fixed-parameter tractability, since
Theorem 8 also implies W[1]-hardness with respect to the parameter w (using
that the treewidth of a graph is at most 1 plus the size of its minimum feedback
vertex set). Furthermore, alc(S) turns out to be W[1]-hard when parameterized
by the pathwidth of the underlying graph, as proven in Theorem 10. See Table 1
in Section 7 for a summary of the obtained results.

These results provide a detailed insight into the computational complexity
of the Arc Labelling with Capacities problem, using the tools of param-
eterized complexity. The performed analysis follows the methodology proposed
by Niedermeier [21], see also the papers [18, 5], investigating several different
parameters of the problem to obtain a refined, multidimensional view of its
complexity.

1.5 Organization of the paper

We introduce the necessary notation in Section 2. Polynomial-time algorithms
for alc(S) are presented in Section 3. Results in connection to degree, feedback
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and width parameters are contained in Sections 4, 5, and 6, respectively. Finally,
we summarize the paper and propose some open questions in Section 7.

2 Notation

2.1 Graph theory

Let us now define some standard notions for undirected graphs. If G is an undi-
rected graph, then V (G) and E(G) denote its set of vertices and edges, respec-
tively; E(G) may contain parallel edges as well as loops. We let N(v) denote
the set of neighbors of a vertex v, and for some set X of vertices, N(X) =
⋃

v∈X N(v))\X . The degree of v is |N(v)|. A path of length m in G is a sequence
(v0, v1, . . . , vm) of mutually distinct vertices such that {vi, vi+1} ∈ E(G) for each
i = 0, 1, . . . ,m − 1. If v0 and vm are also connected by an edge, then we call
(v0, v1, . . . , vm) a cycle of length m+ 1. We say that G is connected if any two
vertices u, v ∈ V (G) are joined by a path. The connected components of G are
its inclusion-wise maximal connected subgraphs.

We say that G is a forest if it contains no cycles. A connected forest is a tree.
The degree-1 vertices in a tree are called leaves. A star on n vertices is a tree
having a vertex v of degree n− 1 and n− 1 vertices of degree 1; the vertex v is
called the central vertex of the star.

If X is a set of vertices or edges in G, then G−X is the graph obtained by
deleting the elements of X from G. When deleting vertices, we also delete all
incident edges. We may write G − x instead of G − {x}. We also let G[X ] =
G − (V (G) \X) denote the subgraph induced by X . For a graph G, we let G1

denote the simple version of G, obtained by deleting loops and replacing each
set of parallel edges by a single edge in G.

A feedback vertex set of G is a set U ⊆ V (G) such that G − U is a forest.
Similarly, a feedback edge set of G is a set U ⊆ E(G) such that G − U is a
forest. The minimum size of a feedback vertex set of G is its feedback vertex
set number, denoted by fvs(G); the feedback edge set number fes(G) is defined
analogously.

Let us now turn to directed graphs. Given a directed graph G, we denote its
vertex set by V (G) and its multiset of arcs by A(G). The number of arcs leaving
a vertex v ∈ V is the out-degree of v, denoted by δ+(v), the number of arcs
entering v is its in-degree and is denoted by δ−(v). The degree of v is the sum
δ+(v) + δ−(v). Some vertex v is an in-neighbor of a vertex u if (v, u) ∈ A(G),
and v is an out-neighbor of u if (u, v) ∈ A(G). A directed path in G is a sequence
(v0, v1, . . . , vm) of mutually distinct vertices such that (vi, vi+1) is an arc of G
for each i = 0, 1, . . . ,m− 1.

We denote the undirected graph underlying G by Ḡ. We say that G is con-
nected if and only if Ḡ is connected; the connected components of G are again
its inclusion-wise maximal connected subgraphs. A directed graph G is called
an out-tree with root r ∈ V (G) if Ḡ is a tree, r has in-degree 0 and every other
vertex has in-degree 1 in G.
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Notations G −X , G[X ] and G1 for directed graphs are defined analogously
as in the undirected case.

A tree-decomposition of an undirected graph G is a pair T = (T, (Bt)t∈V (T ))
where T is a tree, and Bt ⊆ V (G) for each t ∈ V (T ) such that the following
conditions hold:

– for any v ∈ V (G), there exists some node t with v ∈ Bt,
– for any {u, v} ∈ E(G), there exists some node t with u, v ∈ Bt,
– for any v ∈ V (G), the nodes {t | v ∈ Bt} form a connected subtree of T .

The width of a tree-decomposition is the maximum of |Bt| − 1 taken over all
t ∈ V (T ). The treewidth of G is the minimum width of any possible tree-
decomposition of G.

A tree-decomposition is nice, if T is a rooted binary tree, and each node
t ∈ V (T ) is one of the following types:

– a leaf node: t is a leaf of T ;
– a node introducing a vertex v ∈ V (G): t has a unique child t′ in T , and

Bt = Bt′ ∪ {v};
– a node forgetting a vertex v ∈ V (G): t has a unique child t′ in T , and

Bt = Bt′ \ {v};
– a join node: t has exactly two children, t′ and t′′, in T , and Bt = Bt′ = Bt′′ .

2.2 Parameterized complexity

We want to investigate hard variants of the elimination problem in greater detail
using the ideas of parameterized complexity. In this framework, we associate an
integer ℓ called the parameter with each input I, and express the running time of
an algorithm as a function of both the input size |I| and the parameter ℓ, allowing
us to measure the complexity of the problem in a two-dimensional fashion.

The aim in the study of a parameterized problem is to show that it is fixed-
parameter tractable (or FPT for short), by giving an algorithm that runs in time
f(ℓ) · |I|O(1) for some computable function f . Notice that the dependence on |I|
in the running time is only a polynomial of constant degree; such an algorithm
is called a fixed-parameter tractable algorithm (FPT algorithm for short).

The basic class of parameterized intractability is W[1]; if a parameterized
problem is W[1]-hard, then this yields strong evidence that it does not admit
an FPT algorithm. One can prove W[1]-hardness by means of a parameterized
reduction (also called FPT reduction). For more details on parameterized com-
plexity, we refer the reader to the recent monograph by Downey and Fellows [8].

3 Polynomial-time solvable special cases

To obtain polynomial-time algorithms for alc(S) applicable on certain classes
of input instances, we shall first deal with trees.
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Theorem 2 alc(S) can be solved in O(kn) time on a graph G for which Ḡ is
a tree on n vertices.

Proof. Let I = (G, c) be our input instance. We perform a standard-style dy-
namic programming on trees, so we assume that T = Ḡ is a rooted tree with
root vroot. For any vertex v ∈ V (G), we let Cv ⊆ V (G) denote the set of children
of v, Tv the subtree of T rooted at v, and Gv = G[Tv].

We compute a non-negative value s(v) for each v ∈ V (G) defined as follows:
we let s(v) be the minimum score of v in any score assignment that is valid for
Gv with respect to c. If no such assignment exists, we set s(v) = +∞.

Clearly, s(v) = 0 for each leaf v of T . To compute s(v) for a non-leaf node,
we first compute for each x ∈ Cv the minimum gain of v from the arc (v, x) (or
(x, v)) in any score assignment for G[Tx∪{v}] that is valid on the vertices of Tx;
we denote this value by gv(x). It is easy to see that

gv(x) =

{

min{αq | q ∈ {0, . . . , k}, s(x) + βq ≤ c(x)} if (v, x) ∈ A(G),
min{βq | q ∈ {0, . . . , k}, s(x) + αq ≤ c(x)} if (x, v) ∈ A(G).

Notice that if the minimum is taken over an empty set in the above expression,
then by α0 = βk = 0 this means that no valid score assignment exists for Gx; in
such a case we let gv(x) = +∞.

Knowing gv(x) for each child x of v, one can compute s(v) as follows.

s(v) =

{∑

x∈Cv

gv(x) if
∑

x∈Cv

gv(x) ≤ c(v),
+∞ otherwise.

We compute s(v) in a bottom-up manner (e.g., by performing a DFS on T ),
so when computing s(v), we assume that s(x) is already known for each x ∈ Cv.
By definition, (G, c) is solvable exactly if we obtain s(vroot) ≤ c(vroot). The
correctness of the algorithm easily follows from the above arguments.

Computing gv(x) for some x ∈ Cv takes O(k) time, so calculating s(v) takes
O(k|Cv |) time. Altogether, the algorithm runs in O(k|A(G)|) = O(kn) time. ⊓⊔

Remark 1. Observe that the algorithm of Theorem 2 can find a valid score as-
signment minimizing the score of an arbitrary vertex of the input graph, by
considering it as the root.

Remark 2. Notice that an instance I = (G, c) of alc(S) is solvable if and only if
it is solvable for each connected component of G. Thus, Theorem 2 implies that
alc(S) can be solved in O(kn) time for any graph G for which Ḡ is a forest on
n vertices.

Let us also mention that Theorem 2 can be generalized to work for input
graphs G for which (Ḡ)1 is a forest. Such an algorithm is presented in Section 5,
see Corollary 2.

Theorem 3 alc(S) is solvable in O(k2n) time on a graph G for which Ḡ is a
cycle on n vertices.
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Proof. The algorithm chooses any arc (v1, v2) of the cycle Ḡ. For each outcome
(αi, βi) ∈ S, it tries to assign (αi, βi) to the arc (v1, v2), and checks if this leads
to a valid score assignment. To do so, it decreases the capacity of v1 and v2
by αi and βi, respectively, and then calls the algorithm of Theorem 2 for the
graph G − (v1, v2) with the obtained capacities. As Ḡ − (v1, v2) is a path, the
algorithm of Theorem 2 can indeed be used. Since there are k + 1 possibilities
of assigning an outcome to (v1, v2), Theorem 2 yields that the overall running
time is O(k2n). ⊓⊔

To close this section, we observe that Theorems 2 and 3 lead to an efficient
algorithm for 2-alc(S). Notice that a polynomial algorithm for 2-alc(S) with
S = {(0, 3), (1, 1), (3, 0)} (European Football scoring rules) has already been
given by Bernholt et al. [4].

Theorem 4 2-alc(S) is solvable in O(k2n) time on a graph with n vertices.

Proof. If I = (G, c) is an instance of 2-alc(S), then Ḡ is a collection of vertex
disjoint paths and cycles. Using Theorems 2 and 3 for each connected component
of G separately, we obtain an overall computational complexity of O(k2n). ⊓⊔

4 Complexity dependence on degree bounds

Considering instances of alc(S) where the input graph G = (V,A) has bounded
degree, Theorem 4 and Corollary 1 indicate a strict threshold separating tractabil-
ity from intractability: 2-alc(S) is polynomial-time solvable, while 3-alc(S) re-
mains NP-complete. This leads to the following natural question: can 3-alc(S)
be solved efficiently if there are only a few vertices in G having degree three?
We show the following assertion.

Theorem 5 3-alc(S) can be solved in time O((k + 1)d3+2n), where n is the
number of vertices in the input graph G, and d3 is the number of vertices in G

with degree three.

Proof. The basic idea of the algorithm is the following: for each vertex of degree
three, choose one incident arc, and assign to it an element from S. It is easy
to see that there are at most (k + 1)d3 such assignments. By deleting all the
chosen arcs and adjusting the capacities of the vertices appropriately, we obtain
an equivalent instance of 2-alc(S) that is solvable in O(k2n) time. So the total
running time of the algorithm is O((k + 1)d3+2n). ⊓⊔

A straightforward generalization of the above approach is to study the com-
plexity of alc(S) in the case when there are only a few vertices in the input
graph G that have degree more than two but, as opposed to the setting in The-
orem 5, these vertices may have arbitrary degree. In terms of parameterized
complexity, this motivates the investigation of the parameter d>2 denoting the
number of vertices in G with degree more than two. In the next theorem, we
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show an FPT algorithm for alc(S) with parameter d>2. Observe that while
Theorem 6 obtains fixed-parameter tractability for a more general problem than
the one considered in Theorem 5, the running time of the presented algorithm
is considerably worse than the one obtained in Theorem 5.

In the proof of Theorem 6, we will find it convenient to consider the fol-
lowing generalization of alc(S) where the set of allowed outcomes for each arc
is restricted by certain constraints; we call this variant of the problem Con-
strained Arc Labelling with Capacities for S or calc(S) for short. Let
ϕ : A → 2{0,...,k} be a function representing our constraints; we say that ϕ(a)
is the set of allowed outcomes for the arc a ∈ A. Score assignment p is said to
respect ϕ if p(a) ∈ ϕ(a) holds for each a ∈ A.

Constrained Arc Labelling with Capacities for S = {(α0, β0), . . . , (αk, βk)}:
Instance: A triple (G, c, ϕ) where G = (V,A) is a directed multigraph,
c : V → R is a vertex capacity function, and ϕ : A → 2{0,...,k} describes
arc constraints.
Question: Does there exist an assignment p : A → {0, . . . , k} respecting
ϕ for which scrp(v) ≤ c(v) for each vertex v ∈ V ?

Theorem 6 alc(S) is FPT with parameter d>2 denoting the number of vertices
in the input graph G with degree more than two.

Proof. Let (G, c) be the input given for alc(S), and let Z be the set of vertices
in G with degree more than two.

Components with maximum degree at most 2. To begin, we apply the
algorithm of Theorem 4 for 2-alc(S) on each connected component of G that
contains only vertices of degree at most two. After this preprocessing step, we
may assume that G has no such connected component.

Structural observations. Let H be the graph Ḡ−Z. Observe that H has
maximum degree at most 2, and thus must be a disjoint union of cycles and
paths. From our assumption on the connected components of Ḡ, we get that
each connected component of H must be adjacent to some vertex of Z in G.
However, as each vertex of H has degree at most two in G, we know that any
vertex of H adjacent to Z in G can have degree at most one in H . This means
that H is a disjoint union of a set P of paths, with each path P ∈ P having
at least one endpoint adjacent to Z. Clearly, the inner points of P cannot be
adjacent to Z. Let P1 (P2) denote those paths in P that have one endpoint (two
endpoints, respectively) adjacent to Z.

Paths with only one endpoint adjacent to Z. First, suppose that P is
a path in P1, with one of its endpoints adjacent to some vertex z of Z. Let Pz

denote the subgraph induced by P ∪ {z} in G; clearly, P̄z is a path. We proceed
by using the algorithm of Theorem 2 to find a valid score assignment for Pz

minimizing the score of z (see Remark 1). In case this algorithm returns a valid
score assignment on Pz with z having score sz ≤ c(z), then we can delete P

from G and decrease the capacity of z by sz; this operation does not change the
solvability of (G, c). In case no such assignment is found, then we know that there
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is no valid assignment for our instance (G, c), and we can stop. After dealing
this way with each path in P1, we can assume that P1 = ∅.

Reduction to calc. Our algorithm proceeds by constructing an equivalent
instance (G′, c′, ϕ) of calc(S′) for a broader set

S′ = {(γ, δ) | γ, δ ∈ ∪i=0,...,k{αi, βi}}

of outcomes. Note that |S′| ≤ 4(k + 1)2. We construct G′ and the constraints
ϕ as follows. We let V (G′) = Z and A(G′) = AZ ∪ AP . Here, AZ is the set of
all arcs in G[Z], and AP is a newly introduced arc set containing an arc aP for
each P ∈ P2. We set ϕ(a) = S for each arc a ∈ AZ ; that is, we allow the set S
of outcomes on the arcs of G[Z].

To define aP and the corresponding set of allowed outcomes ϕ(aP ), we need
some further definitions. Let us fix P ∈ P2. We denote by eP and fP the two
arcs connecting P and Z in G. Let xP and yP denote the vertices of Z incident
to eP and fP , respectively; note that xP = yP is possible. We let P ′ be the
subgraph of G obtained from G[V (P )] by appending the arcs eP and fP ; notice
that P̄ ′ is a path or a cycle. Supposing that s is a score assignment on P ′ that
assigns score sx to xP resulting from eP and score sy to yP resulting from fP ,
we let the shadow of s on P ′ be the pair (sx, sy). We let S(P ) be the set of
shadows of all valid score assignments on P ′. Note that S(P ) ⊆ S′, and S(P )
can easily be computed in O(k2|V (P )|) time with the algorithms of Theorems 2
and 3. We define aP as an arc leading from xP to yP , and we let ϕ(aP ) = S(P ).
This finishes the definition of G′ and ϕ; we set c′(z) = c(z) for each z ∈ Z.

We claim that (G, c) is a yes-instance of alc(S) if and only if (G′, c′, ϕ) is a
yes-instance of calc(S′).

First, suppose that s is a valid score assignment on G with respect to c. We
construct a score assignment s′ for G′ that is valid with respect to c′ and respects
ϕ. Namely, for each arc a in G[Z], we let s′(a) = s(a), and for each P ∈ P2, we
let s′(aP ) be the shadow of s on path P ′. By the validity of s and the definition
of a shadow, we have s′(aP ) ∈ ϕ(aP ), hence s′ respects ϕ. Note also that s′

assigns the same score as s to each vertex z ∈ Z, showing the validity of s′ for
(G′, c′, ϕ).

For the other direction, suppose s′ is a score assignment for G′ that is valid
with respect to c′ and respects ϕ; we define a valid score assignment s for (G, c)
as follows. Again, we let s(a) = s′(a) for each arc a in G[Z]. For each path
P ∈ P2, we let the restriction of s on P ′ be a valid score assignment on P ′ whose
shadow is s′(aP ); such an assignment exists by definition. Note that each arc of
G is either in G[Z] or in P ′ for some P ∈ P2, so now s is well-defined. It should
also be clear that s is valid as well, proving our claim.

Solving calc with an ILP. To finish our algorithm, it remains to solve the
instance (G′, c′, ϕ) of calc(S′). To this end, we define an ILP Icalc as follows. For
each u, v ∈ V (G′), R ⊆ S′, and (α, β) ∈ R, we introduce a non-negative variable
xu,v,R,(α,β) describing how many of the arcs leading from u to v with the set of
allowed outcomes being R should be assigned the outcome (α, β). Furthermore,
we compute the number of arcs in G′ leading from u to v for which the set of
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allowed outcomes given by ϕ is R; we denote this number by µu,v,R. The ILP
Icalc contains the following constraints.

∑

(α,β)∈R

xu,v,R,(α,β) = µ(u, v,R) ∀u, v ∈ V (G′), ∀R ⊆ S′ (3)

∑

u∈V (G′)

∑

R⊆S′

∑

(α,β)∈R

xv,u,R,(α,β)α+ xu,v,R,(α,β)β ≤ c′(v) ∀v ∈ V (G′) (4)

Equations (3) ensure that each arc is assigned an outcome, and Inequali-
ties (4) guarantee the validity of the obtained score assignment. By |V (G′)| =

|Z| = d>2, |S′| ≤ 4(k + 1)2, and
∑

R⊆S′ |R| = |S′|2|S
′|−1 ≤ (k + 1)224(k+1)2+1

we obtain that Icalc has at most (d>2)
2(k+1)224(k+1)2+1 variables. The number

of constraints in Icalc is (d>2)
224(k+1)2 + d>2. Altogether, we obtain that the

size of Icalc is a function depending only on d>2 and k. Hence, for each constant
value of k, we have that |Icalc| is upper bounded by f(d>2) for some computable
function f . Using, e.g., the algorithm of Lenstra [19], we can compute in f ′(d>2)
time whether Icalc is solvable, for some computable function f ′.

Running time analysis. Dealing with the connected components of G with
maximum degree at most two can be done in O(k2|V (G)|). The step which takes
care of paths in P1 needs time O(k|V (G)|). The calc(S′) instance (G′, c′, ϕ)
can be constructed in O(k2|V (G)|) +O(|(G, c)|) time where |(G, c)| denotes the
size of the alc(S) instance (G, c). Finally, solving the ILP Icalc takes f ′(d>2)
time. Altogether, the running time of our algorithm is f ′(d>2) + O(|(G, c)|)
for some computable function f ′, yielding a linear-time FPT algorithm with
parameter d>2. ⊓⊔

5 Complexity depending on feedback parameters

Since alc(S) is polynomial-time solvable on trees, as shown in Theorem 2, it is
interesting to examine how the complexity of the problem changes if we consider
instances which are “almost trees”. There are several graph classes which can
be viewed as a generalization of trees, yielding numerous ways to approach this
issue. One possibility is to consider graphs which admit a small feedback vertex
or edge set, that is, graphs which can be turned into trees by deleting a few
vertices or edges.

Using the terminology of parameterized complexity, we are interested in pa-
rameterizations where the parameter associated with an instance of alc(S) is
the feedback vertex set number or the feedback edge set number of the (undi-
rected version of the) input graph G, that is, fvs(Ḡ) or fes(Ḡ). It is worth men-
tioning that the feedback edge set number of a graph can be determined in linear
time (by computing a spanning tree for each connected component), while the
feedback vertex set number can be computed in FPT time (see the work by Cao
et al. [7] for the currently fastest deterministic algorithm) and 2-approximated
in polynomial time [2, 3]. Hence, obtaining fixed-parameter tractability for either
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of these parameters would yield an algorithm that could be used efficiently in
practice, if the parameter is small.

As it turns out, the complexity of these problems differs for the vertex and
the edge variants: as Theorem 8 shows, alc(S) is W[1]-hard when the parameter
is fvs(Ḡ), so under standard complexity-theoretic assumptions, we cannot expect
an FPT algorithm for it. By contrast, one can easily construct an FPT algorithm
for the parameter fes(Ḡ).

Theorem 7 alc(S) is FPT if the parameter is fes(Ḡ) for input graph G.

Proof. Let F be a set of arcs in G corresponding to a minimum feedback edge
set in Ḡ. Then the problem can be solved by an algorithm whose main steps are
as follows. First, we enumerate all possible score assignments on the arcs of F ,
and then, for each possibility, we check whether there is a score assignment on
the remaining arcs of G which, together with the assignment on F , yields a valid
score assignment for G.

There are at most (k+1)|F | possible score assignments on F , and the second
step for each case can be performed in O(k|V (G)|) time, using that G− F (or,
more precisely, its undirected version) is a forest. Thus, the algorithm runs in
time (k + 1)|F |+1O(|V (G)|), which is fixed-parameter tractable with parame-
ter |F |. ⊓⊔

Theorem 8 Except for the case where S is of the form {(i, k − i) | 0 ≤ i ≤ k}
for some k ∈ N, alc(S) is W[1]-hard if the parameter is fvs(Ḡ), where G is the
input graph.

Proof. We present a parameterized reduction from the unary bin packing
problem. In this problem, we are given n items having sizes s1, . . . , sn, where
each si is a positive integer encoded in unary, an integer bin capacity b, and
an integer parameter m. The task is to decide whether the given items can be
packed into m bins such that the total size of the items contained in any bin
does not exceed the bin capacity b. This problem is known to be W[1]-hard if
the parameter is the number m of bins [13].

Given an instance I = (s1, . . . , sn, b,m) of unary bin packing, we construct
an equivalent instance (G, c) of alc(S) in polynomial time such that the graph
Ḡ has a feedback vertex set of size at most m. We distinguish three cases,
depending on the set S of outcomes, but first we give some definitions useful for
each case.

We define an undirected graph H as follows. For each i = 1, . . . , n, we fix an
arbitrary rooted binary tree having exactly si leaves. We take m disjoint copies
of each of these n trees, and denote by T

j
i the j-th copy of the i-th tree. We

denote the root of T j
i by r

j
i , and we write L

j
i for the set of leaves in T

j
i .

Next, for each i = 1, . . . , n we introduce a star on m + 1 vertices, with
central vertex ai, and leaves a′

1
i , . . . , a

′m
i . For each j = 1, . . . ,m we connect a′

j
i

to the root rji . Similarly, for each j = 1, . . . ,m we introduce a star on 1+
∑n

i=1 si

vertices, with central vertex bj and leaves partitioned into sets L′
j
1, . . . , L

′j
n, with
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Fig. 1. Illustration of the graph G defined in Case A of Theorem 8. Vertices of X are
shown as white circles.

the condition |L′ji | = si. For each i and j, we connect vertices in L
j
i and in L′

j
i

by creating a perfect matching between them. This finishes the definition of H .

Intuitively, the vertex ai corresponds to the item with size si, and the score
assignment on T

j
i encodes whether we put this item into the j-th bin or not.

The vertex bj represents the j-th bin.

We use the notation A = {a1, . . . , an}, B = {b1, . . . , bm}, L = ∪n
i=1 ∪

m
j=1 L

i
j ,

T = ∪n
i=1 ∪

m
j=1 V (T i

j ), A
′ = N(A), and L′ = N(B). Also, for some ℓ ∈ L

j
i we

write ℓ′ to denote its unique neighbor in L′.

Case A: “large gap on the β-side”. First, let us deal with the case where
βq−1 > βq + 1 for some 1 ≤ q ≤ k.

We define a directed graph G obtained from H as follows; see Figure 1. First,
we orient the edges not contained in H [T ] such that the vertices of A and B

become sources, the vertices of L′ become sinks, and each vertex of A′ has in-
degree and out-degree exactly 1 (that is, a′

j
i receives an arc from ai and sends

an arc to r
j
i ). Second, for each edge {t1, t2} within some tree T

j
i , with t1 being

the parent of t2, we replace {t1, t2} by a directed path (t1, xt1,t2 , t2) of length
2. We denote by X the set of vertices of the type xt1,t2 introduced by such
replacements.

Let us observe that deleting the vertices of B from Ḡ yields a forest consisting
of n trees, so the size of a minimum feedback vertex set for Ḡ is at most m, as
promised. Moreover, the size of G is polynomial in the size of the instance I,
because each integer si is encoded in unary.
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To finish the reduction, it remains to define the capacity function c. We let

c(ai) = m− 1 for each ai ∈ A,
c(bj) = b for each bj ∈ B,
c(t) = max{βq−1, βq + 2} for each t ∈ T \ L,
c(ℓ) = βq−1 for each ℓ ∈ L,
c(v) = max{αq−1 + β0, αq + β1} for each v ∈ A′ ∪X , and
c(ℓ′) = β0 + β1 for each ℓ′ ∈ L′.

To prove the correctness of the reduction, we show that I is a yes-instance
of unary bin packing if and only if (G, c) is a yes-instance of alc(S).

“=⇒”: Let us first suppose that I is a yes-instance of unary bin packing,
i.e., there exists a mapping ϕ : {1, . . . , n} → {1, . . . ,m} representing the packing
of the items into the given bins such that

∑

i:ϕ(i)=j si ≤ b holds for each j =

1, . . . ,m. Then we can define a score assignment p : A(G) → {0, . . . , k} for G

that is valid with respect to c as follows. (Indices i and j take all possible values
meeting the specified conditions.)

p(aia
′j
i ) =

{

0, if j = ϕ(i),
1, otherwise.

p(vt) =

{

q − 1, if (v, t) ∈ A(G) and t ∈ T
j
i with j = ϕ(i),

q, if (v, t) ∈ A(G) and t ∈ T
j
i with j 6= ϕ(i).

p(tv) =

{

0, if (t, v) ∈ A(G) and t ∈ T
j
i with j = ϕ(i),

1, if (t, v) ∈ A(G) and t ∈ T
j
i with j 6= ϕ(i).

p(bjℓ
′) =

{

1, if ℓ′ ∈ L′
j
i with j = ϕ(i),

0, if ℓ′ ∈ L′
j
i with j 6= ϕ(i).

It is straightforward to check that p is indeed a valid score assignment for G
and c.

“⇐=”: For the reverse direction, let us assume that p is a valid score assign-
ment for G with respect to the given capacities. Let us fix some i ∈ {1, . . . , n}.
We define an index ϕ(i), depending on p, such that putting the item of size si
into the bin having number ϕ(i) for each i yields a solution for I.

By c(ai) = m− 1 we know that p must assign the outcome (0, β0) to at least

one arc leaving ai, as αj ≥ 1 for any j ≥ 1. So let (ai, a
′j
i ) be an arc which is

assigned the outcome (0, β0), that is, p(aia
′j
i ) = 0. We define ϕ(i) = j.

Observe that c(a′
j
i ) < αq + β0. As a

′j
i already gets β0 points resulting from

the arc (ai, a
′j
i ), we get that a′

j
i must gain less than αq scores resulting from

the arc (a′
j
i , r

j
i ), implying p(a′

j
i r

j
i ) ≤ q − 1. Hence, rji gains at least βq−1 points

because of this arc. Note that c(rji ) < βq−1 + 1 follows from our assumption

βq−1 > βq + 1, which leads to the consequence that rji gains exactly βq−1, and

both arcs leaving r
j
i must be assigned the outcome (0, β0) in p.

Applying these arguments repeatedly, we arrive to the following: p must
assign the outcome (0, β0) to each arc leaving a vertex of T j

i \L, and each t ∈ T
j
i
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obtains βq−1 points resulting from the unique arc entering t. In particular, each

leaf ℓ ∈ L
j
i must obtain exactly βq−1 points, meaning also that the arc (ℓ, ℓ′)

must be assigned the outcome (0, β0). Hence, each ℓ′ ∈ L′
j
i may gain at most β1

points resulting from the arc (bj , ℓ
′), yielding that bj gets at least 1 point from

each arc leading to some vertex of L′
j
i . By |L′ji | = si, this means that bj gains a

total of at least si points from such arcs.

Taking into account all indices i for which ϕ(i) = j, we get that bj gains
at least

∑

i:ϕ(i)=j si points in total. As each bj has capacity b, we get that
∑

i:ϕ(i)=j si ≤ b holds for each j = 1, . . . ,m, which means exactly that packing

the item of size si into the j-th bin for j = ϕ(i) is a solution for our instance I

of unary bin packing. This finishes the proof of correctness for our reduction
in Case A.

Case B: “small gap on the β-side”. Let us now deal with the case where
there is an index q, 1 ≤ q ≤ k for which βq−1 < βq + 1; if there are several such
indices, we let q be the smallest one. As we can also assume that the condition
of Case A does not hold, we have βj−1 = βj + 1 for each 1 ≤ j < q.

To define the constructed instance (G, c) for this case, we first create G from
H as follows; see Figure 2. First, we orient all edges not contained in H [T ] such
that vertices of A and B become sources, while vertices of A′ and L′ become
sinks. Second, for each edge {t1, t2} within some tree T j

i , with t1 being the parent
of t2, we replace {t1, t2} by newly introduced vertices xt1,t2 , yt1,t2 , and zt1,t2
together with the arcs (xt1,t2 , t1), (xt1,t2 , yt1,t2), (yt1,t2 , zt1,t2), and (t2, zt1,t2).
We write X , Y , and Z for the set of vertices of the type xt1,t2 , yt1,t2 , and zt1,t2 ,
respectively.

Notice that G can again be constructed in polynomial time, and Ḡ again has
a feedback vertex set of size m, namely B. To finish the construction, we define
vertex capacities as follows.

c(ai) = m− 1 for each ai ∈ A,
c(bj) = b for each bj ∈ B,
c(t) = max{2βq−1, 1 + 2βq} for each t ∈ T \ L,
c(ℓ) = 1 for each ℓ ∈ L,
c(x) = αq−1 + αq for each x ∈ X ,
c(y) = βq + 1 for each y ∈ Y , and
c(v) = β0 + β1 for each v ∈ A′ ∪ L′ ∪ Z.

Next we prove that I is a yes-instance of unary bin packing if and only if
(G, c) is a yes-instance of alc(S).

“=⇒”: First suppose that I is a yes-instance of unary bin packing, i.e.,
there exists a mapping ϕ : {1, . . . , n} → {1, . . . ,m} representing the packing
of the items into the given bins such that

∑

i:ϕ(i)=j si ≤ b holds for each j =

1, . . . ,m. We define a score assignment p : A(G) → {0, . . . , k} for G that is valid
with respect to c as follows.
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Fig. 2. Illustration of the graph G defined in Case B of Theorem 8. Vertices ofX∪Y ∪Z
are shown as white circles.

p(aia
′j
i ) =

{

0, if j = ϕ(i),
1, otherwise.

p(tv) =

{

1, if v ∈ A′ ∪ Z, (t, v) ∈ A(G), and t ∈ T
j
i with j = ϕ(i),

0, if v ∈ A′ ∪ Z, (t, v) ∈ A(G), and t ∈ T
j
i with j 6= ϕ(i).

p(xt) =

{

q, if x ∈ X , (x, t) ∈ A(G), and t ∈ T
j
i with j = ϕ(i),

q − 1, if x ∈ X , (x, t) ∈ A(G) and t ∈ T
j
i with j 6= ϕ(i).

p(xt,t′yt,t′) =

{

q − 1, if {t, t′} ∈ E(T j
i ) with j = ϕ(i),

q, if {t, t′} ∈ E(T j
i ) with j 6= ϕ(i).

p(yt,t′zt,t′) =

{

0, if {t, t′} ∈ E(T j
i ) with j = ϕ(i),

1, if {t, t′} ∈ E(T j
i ) with j 6= ϕ(i).

p(ℓℓ′) =

{

0, if ℓ ∈ L
j
i with j = ϕ(i),

1, if ℓ ∈ L
j
i with j 6= ϕ(i).

p(bjℓ
′) =

{

1, if ℓ′ ∈ L′
j
i with j = ϕ(i),

0, if ℓ′ ∈ L′
j
i with j 6= ϕ(i).
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Again, it is straightforward to verify the validity of p for G and c.

“⇐=”: Suppose now that p is a valid score assignment for G and c. First, let
us observe that by the choice of q, we have βq−2 = βq−1 + 1 > βq + 1 = c(y) for
each y ∈ Y . Therefore, we get that p(xy) ≥ q− 1 for each x ∈ X and y ∈ Y with
(x, y) ∈ A(G). Thus, x gains at least αq−1 scores resulting from the arc (x, y),
so by c(x) = αq+αq−1 we know that p(xt) ≤ q must hold for the other arc (x, t)
leaving x. This shows that each vertex t ∈ T \L gains at least βq points on both
of its incoming arcs.

Now, let us fix some i with 1 ≤ i ≤ n. Arguing the same way as for Case A,
we can define an index ϕ(i) = j such that p(aia

′j
i ) = 0. By c(a′

j
i ) = β0 + β1,

we get that p(rji a
′j
i ) ≥ 1 and therefore, rji gains at least 1 point resulting from

its outgoing arc. By the previous paragraph, it also gains at least 2βq points

resulting from its incoming arcs. Note also that c(rji ) < 1 + βq + βq−1 follows
from our assumption βq−1 < βq +1, yielding that p can only assign the outcome

(αq, βq) for both arcs entering r
j
i .

By slight abuse of the notation, let us write r = r
j
i now, and let xr,t be an

in-neighbor of rji (so t is a child of r = r
j
i in T

j
i ). Using that p(xr,tr) = q, the

capacity bounds now imply p(xr,tyr,t) = q − 1 and p(yr,tzr,t) = 0. By c(zr,t) =
β0+β1, it follows that p(tzr,t) ≥ 1. This means that t gains at least 1 point from
its outgoing arc. Arguing repeatedly the same way as before, we arrive to the fact
that each vertex of T j

i must gain at least 1 point resulting from its outgoing arc,

leading to a vertex of Z ∪A′. In particular, all leaves ℓ ∈ L
j
i must gain exactly 1

point this way, implying p(ℓℓ′) = 0, which in turn proves p(bjℓ
′) ≥ 1. Therefore,

bj gains at least 1 point resulting from each of its outgoing arcs leading to some

vertex of L′
j
i . By |L′ji | = si, this means that bj gains a total of si points from

such arcs.
Using this observation and arguing the same way as in Case A, one can

easily check that packing the item of size si into the j-th bin for j = ϕ(i) gives
a solution for our instance I of unary bin packing.

Case C: “non-uniform gap on the α-side.” Assume that Cases A and
B do not hold. In this case, we have βq = βq−1 + 1 for each 1 ≤ q ≤ k. Since
S is not of the form {(i, k − i) | 0 ≤ i ≤ k}, we know that αq − αq−1 is either
larger than 1 or smaller than 1 (but positive) for some q. Let us define the set
of reversed outcomes Sr = {(β, α) | (α, β) ∈ S}. By the above discussion, Sr

fulfills the conditions of Case A or B. Let fSr
denote the reduction proving the

W[1]-hardness of alc(Sr), described in the case applicable for Sr. Thus, for any
instance I of unary bin packing, fSr

(I) is an equivalent instance of alc(Sr).
Now, let g denote the function that reverses the graph underlying an instance

of alc(Sr), that is, g((G, c)) = (Gr, c) where Gr is obtained by reversing every
arc in G. Clearly, (G, c) is a yes-instance of alc(Sr) if and only if (Gr, c) is a
yes-instance of alc(S). To finish our proof, it suffices to observe that g ◦ f is a
reduction proving the W[1]-hardness of alc(S). ⊓⊔

An interesting question left open is whether taking the parameter to be
fes((Ḡ)1), that is, the minimum size of a feedback edge set of the undirected and
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simple version of the input graph, yields fixed-parameter tractability. Observe
that fes(Ḡ) can be arbitrarily large even if fes((Ḡ)1) is bounded by some constant,
as an edge of (Ḡ)1 may represent an arbitrary number of parallel edges in Ḡ.
Hence, the FPT result for the parameter fes(Ḡ), presented in Theorem 7, does
not yield fixed-parameter tractability for the parameter fes((Ḡ)1).

6 Complexity depending on pathwidth and treewidth

In this section we concentrate on classical width parameters that measure how
tree-like a graph is; we focus on the notions treewidth and pathwidth. Our aim is
to investigate whether we can solve alc(S) on graphs that have small treewidth
(or even small pathwidth). As alc(S) is polynomial-time solvable on forests by
Theorem 2, we can hope that such instances might be tractable.

In Theorem 9 below, we present an algorithm for alc(S) that runs in polyno-
mial time if the (undirected and simple version of the) input graph has treewidth
at most some fixed integer w. In the language of parameterized complexity, the
theorem asserts that the problem is in XP when parameterized by treewidth.
Note that degree of the polynomial in the running time claimed by Theorem 9
depends on our bound w on the treewidth. As we will see later, this dependence
is unavoidable.

Theorem 9 There exists an algorithm that, given an instance I = (G, c) of

alc(S) where Ḡ has treewidth at most w, solves I in wO(w)|I|O(w2) time.

Proof. Observe that loops in the input graph can be treated easily, because we
can assign to each loop the outcome (αh, βh) that minimizes αh + βh over all
h ∈ {0, . . . , k}. Therefore, w.l.o.g. we assume that G has no loops.

Our algorithm uses standard-style dynamic programming based on tree-
decomposition. First we compute a nice tree-decomposition of width at most
5w + 4 for Ḡ using the 5-approximation algorithm for treewidth by Bodlaender
et al. [6]; let w′ ≤ 5w + 4 be the width of the tree-decomposition obtained.
Next, we transform this tree-decomposition into a nice one without increasing
its width, using the algorithm described by Kloks [17]. Let T = (T, (Bt)t∈V (T ))
be the tree-decomposition obtained. Clearly, we may assume that T is rooted
at a node r for which |Br| = 1; we can achieve this by possibly adding at most
w′ new nodes “above” r, each forgetting a vertex in Br. For each t ∈ V (T ), we
define Vt =

⋃

{Bt′ | t′ is a descendant of t}, and we let Gt be the graph obtained
from G[Vt] by deleting all arcs connecting vertices of Bt.

Now, let us compute a set U ⊆ R which contains all possible score values
that a vertex in V can take under any score assignment. In particular, we let U
contain all numbers of the form p+0 α0 + · · · + p+k αk + p−0 β0 + · · ·+ p−k βk where
p+0 , . . . , p

+
k and p−0 , . . . , p

−
k are non-negative integers summing up to at most the

maximum degree ∆ in G. Notice that U has size at most ∆2(k+1) and can be
computed in O(∆2(k+1)) time.

For each node t ∈ V (T ) with Bt = {v1, . . . , vτ}, we compute a certain set
St. To define St, first let S∗t contain those score vectors (s1, . . . , sτ ) ∈ U τ for
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which there exists a valid5 score assignment for Gt with vi having score si, i =
1, . . . , τ . Now, we define St as the “minimal” score vectors in St, that is, we put
s = (s1, . . . , sτ ) ∈ S∗t into St exactly if there is no vector s′ = (s′1, . . . , s

′
τ ) ∈ S∗t

with s′ < s, that is, if s′i ≤ si for each i = 1, . . . , τ but s′ 6= s.
We compute St for each node t ∈ V (T ) in a bottom-up manner, using dy-

namic programming. Observe that since |Br| = 1 and G has no loops, we have
G = Gr, so there is a valid score assignment for G if and only if Sr 6= ∅. Let us
describe our computations in detail, depending on the type of t.

Leaf node. Suppose that t is a leaf in T . Then Gt is a graph having no arcs,
for which the “empty” score assignment is valid. Thus, St only contains the zero
vector of length |Bt|.

Introduce node. Suppose now that t is a node introducing vertex v, and let
t′ be the unique child of t in T . Let Bt = {v, v1, . . . , vτ} and Bt′ = {v1, . . . , vτ}.
Observe that Gt can be obtained from Gt′ by adding v as an isolated vertex.
Thus, any valid score assignment for Gt′ is a valid score assignment for Gt as
well, with v receiving score 0. Also, v receives score 0 in any score assignment
for Gt. This implies St = {(0, s1, . . . , sτ ) | (s1, . . . , sτ ) ∈ St′}.

Join node. Suppose now that t is a join node with children t′ and t′′. Note
that V (Gt′) ∩ V (Gt′′) = Bt, and observe that Gt can be obtained from Gt′ and
Gt′′ by identifying the two copies of each vertex in Bt. In particular, each arc
of Gt is an arc either in Gt′ or in Gt′′ , but not in both. Hence, any valid score
assignment p for Gt must be the union of a valid score assignment p′ for Gt′ and
a valid score assignment p′′ for Gt′′ in the sense that p coincides with p′ on the
arcs of Gt′ and coincides with p′′ on the arcs of Gt′′ . For the converse direction,
observe that valid score assignments p′ and p′′ for Gt′ and Gt′′ , respectively,
combined this way yield a valid score assignment for Gt if and only if for any
v ∈ Bt the total score of v will not exceed its capacity.

These arguments lead us to the following way to compute St. First, we take
all score vectors s which can be obtained as the sum of s′ and s′′ for some s′ ∈ St′

and s′′ ∈ St′′ . To obtain St we throw away all score vectors s from this set which
are either non-minimal (i.e., for which there exists some s′ < s in the set) or
which assign a score greater than c(v) to some vertex v ∈ Bt.

By definition, each of St, St′ , and St′′ has cardinality at most |U |w
′+1. There-

fore, the above computations take time at most O(|U |2(w
′+1)).

Forget node. Let t be a node forgetting some vertex v, and let t′ be the
unique child node of t. Let the vertices of Bt′ be v, v1, . . . , vτ ; we have Bt =
Bt′ \ {v} and τ ≤ w′. Observe that Gt can be obtained from Gt′ by adding all
arcs of the form (v, vi) or (vi, v) for each vi ∈ Bt that is present in G.

To compute St, we first compute the set S∗t , from which St can easily be
computed by getting rid of all non-minimal elements. For each possible score
vector s = (s1, . . . , sτ ) ∈ |U |τ we will solve several integer linear programs (ILPs)
to decide whether there is a valid score assignment for Gt where vi has score si,
for each i = 1, . . . , τ . Clearly, it suffices to consider s only if si ≤ c(vi) holds for

5 In this proof, we always consider validity with respect to the capacity function c,
sometimes restricted to a subset of the vertices.
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each i. For each such s, we check each score vector s′ = (s′0, . . . , s
′
τ ) ∈ St′ , and

examine if s can be obtained from s′ in some specific sense. Namely, we check
whether there exists a score assignment p for Gt yielding score vector s for the
vertices of Bt such that the restriction of p on Gt′ yields score vector s′ for the
vertices of Bt′ . Thus, let us now consider s and s′ as fixed, and define an ILP
Is,s′ that is satisfiable if and only if these conditions hold for s and s′.

First, for each vi ∈ Bt and for each h = 0, . . . , k, we introduce a non-negative
variable x→i,h to describe how many of the remaining (v, vi)-matches result in
the outcome (αh, βh). Similarly, we let a non-negative variable x←i,h describe the
number of remaining (vi, v)-matches resulting in the outcome (αh, βh). Hence,
our ILP Is,s′ has 2(k + 1)τ non-negative integer variables, and it consists of the
following constraints.

k
∑

h=0

x→i,h = µ(v, vi) for each i = 1, . . . , τ , (5)

k
∑

h=0

x←i,h = µ(vi, v) for each i = 1, . . . , τ , (6)

s′i +
k
∑

h=0

x→i,hβh +
k
∑

h=0

x←i,hαh ≤ si for each i = 1, . . . , τ , (7)

s′0 +

τ
∑

i=1

(

k
∑

h=0

x→i,hαh +

k
∑

h=0

x←i,hβh

)

≤ c(v). (8)

Here, µ(x, y) for some x, y ∈ V is the multiplicity of the arc (x, y) in G. It is
easy to see that Equations (5) and (6) ensure that all remaining (v, vi)-matches
and (v, vi)-matches receive an outcome. Inequalities (7) ensure that the scores
of the vertices in Bt are as required by s, while Inequality (8) guarantees that
the score of v does not exceed its capacity. It is straightforward to verify that
Is,s′ indeed checks the desired properties of s and s′ as promised, implying that
s ∈ S∗t holds exactly if Is,s′ is satisfiable for some s′ ∈ St′ .

Let us analyze the running time necessary for this step. Notice that Is,s′ has
at most 2(k + 1)w′ variables and at most 3w′ + 1 constraints, and has total
size O(|I|). By using Kannan’s improvement [14] on a result by Lenstra [19] for
solving ILPs with a constant number of variables, we know that Is,s′ can be

solved in (kw′)O(kw′)|Is,s′ | = w′O(w′)|I| time. Note also that there are at most

|St′ | · |U |τ ≤ |U |(w
′+1)w′

ILPs to solve, which yields an overall running time of
w′O(w′)|U |(w

′+1)w′

|I| for computing St.
Running time. Given a graph G of treewidth at most w, the algorithm

by Bodlaender et al. [6] finds a tree-decomposition for G with width at most
5w + 4 in 2O(w)|V (G)| time. This tree-decomposition can be turned into a nice
one in linear time using the algorithm described by Kloks [17]. The time needed
at some node of the tree-decomposition is dominated by the case of a forget
node. Therefore, using |U | ≤ ∆2k+2 ≤ |I|2k+2 and that k is a fixed constant
and w′ = O(w), we get that computing St for any node t ∈ V (T ) takes time
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wO(w)|I|O(w2). Since T has size linear in the size of G, this leads to a total

running time of wO(w)|I|O(w2). ⊓⊔

As forests have treewidth 1, we have the following corollary.

Corollary 2 alc(S) can be solved in polynomial time if the input graph G is
such that Ḡ1 is a forest.

Theorem 9 shows that alc(S) is polynomial-time solvable if the treewidth w

of the underlying graph is bounded by a fixed constant. However, the degree
of the polynomial describing the running time of the presented algorithm has a
quadratic dependence on the treewidth w. Hence, it is a natural question to ask
whether alc(S) can be solved by an algorithm running in time f(w)|I|O(1) for
some function f , or in other words, whether alc(S) is fixed-parameter tractable
with the parameter w.

The following theorem shows that this is unlikely, as the problem is W[1]-
hard even if parameterized by the pathwidth of the underlying graph. This result
implies W[1]-hardness for the parameter w as well, as stated in Corollary 3.

Theorem 10 Except for the case where S is of the form {(i, k− i) | 0 ≤ i ≤ k}
for some k ∈ N, alc(S) is W[1]-hard when parameterized by the pathwidth of
Ḡ where G is the input graph.

Proof. The proof is very similar to the proof of Theorem 8. Again, we present a
parameterized reduction from unary bin packing. Let I = (s1, . . . , sn, b,m) be
the given input instance of unary bin packing; recall that s1, . . . , sn are integer
item sizes (encoded in unary), b is the bin capacity, and m is the parameter,
representing the number of bins. We construct an equivalent instance (G′, c) of
alc(S) in polynomial time such that Ḡ′ has pathwidth at most m+ 3, yielding
a parameterized reduction.

We reuse some notation and definitions used in the proof of Theorem 8. In
particular, we distinguish between the same three cases. Also, we make use of
the graphs and vertex sets defined in the proof of Theorem 8.

Case A: “large gap on the β-side”. Suppose βq−1 > βq + 1 for some
1 ≤ q ≤ k.

Using the graph G defined in Case A of Theorem 8, we define a graph G′

obtained from G by replacing the subgraph of G induced by T ∪X in a certain
way. To this end, we first define a graph P

j
i for each i = 1, . . . , n and j = 1, . . . ,m

as follows. The vertex set of P j
i consists of vertices p

j
i (1), p

j
i (2), . . . , p

j
i (si − 1),

and there are exactly s parallel arcs leading from p
j
i (s − 1) to p

j
i (s), for each

s = 2, . . . , si − 1. Next, we replace each arc of P j
i similarly as in the proof of

Theorem 8: the r-th arc leading from p
j
i (s − 1) to p

j
i (s) is replaced by a vertex

x
j
i (r, s) together with arcs (pji (s − 1), xj

i (r, s)) and (xj
i (r, s), p

j
i (s)). We use X

to denote the set of vertices introduced by these subdivisions. We denote the
obtained directed graph by Q

j
i .

Now, we are ready to define G′, obtained from G − (T ∪X) as follows. For

each i and j, we take Qi
j , add an arc from a′

j
i to p

j
i (1) and add one arc from
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p
j
i (si − 1) to each ℓ′ ∈ L′

j
i , which means a total of si arcs leaving p

j
i (si − 1). It

remains to define our capacity function c.

c(ai) = m− 1 for each ai ∈ A,
c(bj) = b for each bj ∈ B,
c(v) = max{αq−1 + β0, αq + β1} for each v ∈ A′ ∪X ,
c(ℓ′) = β0 + β1 for each ℓ′ ∈ L′, and

c(pji (s)) = max{sβq−1, sβq + s+ 1} for each p
j
i (s) ∈ V (P j

i ).

It is easy to see that the graph Ḡ′ − B consists of n connected components,
each having pathwidth 3, so Ḡ′ − B itself has also pathwidth 3. By |B| = m,
we obtain that Ḡ′ indeed has pathwidth at most m + 3, as promised. Now, we
sketch the proof of correctness for our reduction showing that I is a yes-instance
of unary bin packing if and only if (G′, c) is a yes-instance of alc(S).

“=⇒”: Suppose first that I is a yes-instance of unary bin packing, i.e.,
there exists a mapping ϕ : {1, . . . , n} → {1, . . . ,m} representing the packing
of the items into the given bins such that

∑

i:ϕ(i)=j si ≤ b holds for each j =

1, . . . ,m. We define a score assignment p : A(G′) → {0, . . . , k} for G′ that is
valid with respect to c as follows.

p(aia
′j
i ) =

{

0, if j = ϕ(i),
1, otherwise.

p(vt) =

{

q − 1, if (v, t) ∈ A(G′) and t ∈ V (P j
i ) with j = ϕ(i),

q, if (v, t) ∈ A(G′) and t ∈ V (P j
i ) with j 6= ϕ(i).

p(tv) =

{

0, if (t, v) ∈ A(G′) and t ∈ V (P j
i ) with j = ϕ(i),

1, if (t, v) ∈ A(G′) and t ∈ V (P j
i ) with j 6= ϕ(i).

p(bjℓ
′) =

{

1, if ℓ′ ∈ L′
j
i with j = ϕ(i),

0, if ℓ′ ∈ L′
j
i with j 6= ϕ(i).

It is straightforward to check that p is a valid score assignment for G′ and c.
“⇐=”: For the reverse direction, let us assume that p is a valid score assign-

ment for G with respect to the given capacities. Let us fix some i ∈ {1, . . . , n}.
We define an index ϕ(i), depending on p, such that putting the item of size si
into the bin having number ϕ(i) for each i yields a solution for I.

Following the argumentation of the proof of Theorem 8, we can again define
ϕ(i) as an index j for which p(aia

′j
i ) = 0. By the capacity of a′

j
i that we also have

p(a′
j
ip

j
i (1)) ≤ q−1, so pji (1) gains at least βq−1 points resulting from its incoming

arc. By our assumption βq−1 > βq + 1 we get c(pji (1)) = max{βq−1, βq + 2} <

βq−1 + 1, meaning that both arcs leaving p
j
i (1) must be assigned the outcome

(0, β0), that is, p(p
j
i (1)x

j
i (r, 2)) = 0 for each of r = 1, 2. From this, the capacities

of vertices xj
i (1, 2) and x

j
i (2, 2) imply p(xj

i (r, 2)p
j
i (2)) ≤ q − 1 for both r = 1, 2.

In the general case, a similar argument shows that p(pji (s − 1)xj
i (r, s)) = 0

and p(xj
i (r, s)p

j
i (s)) ≤ q − 1 for each r = 1, . . . , s and s = 2, . . . , si − 1. The
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key fact used in the reasoning is c(pji (s)) < sβq−1 + 1, which follows from our

assumptions. Thus, for pji (si − 1) we obtain that all of its si outgoing arcs must
be assigned the outcome (0, β0), which in turn implies that p(bjℓ

′) ≥ 1 for each

ℓ′ ∈ L′
j
i . Hence, bj gains at least si points resulting from these arcs. From the

validity of p we know that
∑

i:ϕ(i)=j si ≤ c(bj) = b, which proves that putting

the item of size si into the bin ϕ(i) for each i = 1, . . . , n yields a solution for our
unary bin packing instance.

Case B, defined precisely as in the proof of Theorem 8, can be handled by
combining the ideas used in the previous case and in Case B of the proof of
Theorem 8. Instead of giving a formal description, we only give a sketch of the
reduction and leave all details to the readers. We start from the graph H − L′,
where H is defined as in the proof of Theorem 8. First, for each i and j, we
replace the subgraphs T

j
i with the graphs P

j
i , adding an arc from p

j
i (1) to a′

j
i

and connecting p
j
i (si−1) to bj with si parallel arcs. We orient the edges incident

to vertices of A such that they become sources. Finally, we replace each arc not
incident to A′ with three new vertices and four arcs exactly as we did in Case B
of Theorem 8. Defining capacities is straightforward, except for the vertices pji (s)
which need to receive the capacity value max{(s + 1)βq−1, s + (s + 1)βq}. The
argument showing the correctness of the reduction is again a straightforward
adaptation of the previously used reasoning.

Case C can be handled exactly as in the proof of Theorem 8. ⊓⊔

Theorem 10 and the fact that the treewidth of a graph is always at most its
pathwidth imply the following corollary.

Corollary 3 Except for the case where S is of the form {(i, k − i) | 0 ≤ i ≤ k}
for some k ∈ N, alc(S) is W[1]-hard when parameterized by the treewidth of Ḡ
where G is the input graph.

We remark that Corollary 3 also follows from Theorem 8, as a graph admit-
ting a feedback vertex set of size k has treewidth at most k + 1.

7 Conclusion

The purpose of this paper was to investigate the computational complexity of
the sports elimination problem in a detailed, multivariate fashion. To this end,
we reformulated the problem into a natural graph labelling problem that we
called Arc Labelling with Capacities, and examined it using the tools of
both classical and parameterized complexity. Instead of focusing on the set of
possible outcomes, we considered various properties of the input instance and
their impact on the tractability of the problem; see Table 1 for an overview of
the obtained results.

Finding further conditions that make the problem tractable could be the sub-
ject of future research. In particular, an intriguing question left open is whether
Arc Labelling with Capacities can be solved in FPT time, when the pa-
rameter is fes((Ḡ)1), the minimum size of a feedback edge set of the undirected
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Condition on G Parameter Complexity Reference

forest - P Thm. 2, Rem. 2
cycle - P Thm. 3
max degree 2 - P Thm. 4
max degree 3 # of vertices of degree 3 FPT Thm. 5
- # of vertices of degree ≥ 3 FPT Thm. 6
- feedback edge number of Ḡ FPT Thm. 7
- feedback vertex number of Ḡ W[1]-hard Thm. 8
- treewidth of Ḡ XP Thm. 9
- pathwidth of Ḡ W[1]-hard Thm. 10

Table 1. Overview of our results on the complexity of alc(S) for input graph G. The
W[1]-hardness results assume that S, after normalization, is not of the form {(i, k− i) |
i = 0, . . . , k} for any integer k.

and simple version of the input graph G. The case of bounded capacities might
also be worth studying.

Another possible direction for further research is to investigate the following
generalization of the sports elimination problem: given a set of n teams with
certain current scores and a set of remaining matches to be played between
them, is there a way to finish the remaining matches so that our favorite team
finishes not worse than at the r-th place? In other words, can our team beat at
least n− r teams?
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