
Parameterized Complexity of Spare Capacity Allocation

and the Multicost Steiner Subgraph Problem

Tibor Jordán1 and Ildikó Schlotter2

1 Department of Operations Research and the MTA-ELTE Egerváry Research Group on
Combinatorial Optimization
Eötvös Loránd University

1117 Budapest, Pázmány Péter sétány 1/C.
jordan@cs.elte.hu

2 Department of Computer Science and Information Theory
Budapest University of Technology and Economics

1117 Budapest, Magyar Tudósok körútja 2.
ildi@cs.bme.hu

Abstract. We study the computational complexity of the Spare Capacity Al-
location problem arising in optical networks that use a shared mesh restoration
scheme. In this problem we are given a network with edge capacities and point-to-
point demands, and the goal is to allocate two edge-disjoint paths for each demand (a
working path and a so-called restoration path, which is activated only if the working
path fails) so that the capacity constraints are satisfied and the total cost of the used
and reserved bandwidth is minimized. We focus on the setting where we deal with a
group of demands together, and select their restoration paths simultaneously in order
to minimize the total cost. We investigate how the computational complexity of this
problem is affected by certain parameters, such as the number of restoration paths
to be selected, or the treewidth of the network graph. To analyze the complexity of
the problem, we introduce a generalization of the Steiner Forest problem that we
call Multicost Steiner Subgraph. We study its parameterized complexity, and
identify computationally easy and hard cases by providing hardness proofs as well as
efficient (fixed-parameter tractable) algorithms.

1 Introduction

In this paper, we give efficient combinatorial algorithms as well as hardness results for
optimization problems arising in restoration planning strategies of optical networks. An
important aspect of Generalized Multi-Protocol Label Switching (GMPLS) networks, which
has been extensively studied in the last decade [1, 2], is fast restoration of service after
a network failure. We focus on restoration path selection in the design of a shared mesh
restoration scheme, which is a key component of such strategies, since it determines the
spare bandwith needed and hence also contributes to the required network resources and its
total cost.

A restorable connection (Label-Switched Path, or LSP) in a GMPLS network supporting
shared mesh restoration has a working path as well as a protection path. During normal
network operation, the connection is established along the working path, with resources
reserved along the protection path, which is activated when some link on the working path
fails. A subset of links in the network that share the risk of failure at the same time are said
to belong to a Shared Risk Link Group (SRLG): a failure of an SRLG means the failure
of all links in the group. SRLGs can be used to model several types of failures, including
single-link or single-node failures. For a connection to be restorable, the working path and

the protection path have to be SRLG-disjoint, i.e., no SRLG can contain links of both the
working path and the protection path of the connection.

To minimize the total bandwidth needed on the links of the network, shared restora-
tion schemes allocate the bandwidth necessary for protection paths in a shared manner:
a certain amount of bandwidth ensures protection for several demands at the same time.
However, the bandwidth reserved along the protection paths must be sufficient to recover
all affected restorable connections in the event of any single SRLG-failure. Hence, to realize
shared restoration, bandwidth is reserved along the protection paths in such a way that two
protection paths can be assigned the same bandwidth on a link only if the corresponding
working paths are SRLG-disjoint, that is, they are not expected to fail simultaneously.

Most path selection algorithms first select the working path as the shortest path be-
tween the endpoints of the demand, with respect to appropriately defined edge-costs, and
then select the protection path, trying to maximize bandwidth sharing and hence minimize
the additional bandwidth needed. Several protection path selection algorithms have been
developed for the situation when one protection path needs to be determined for a single
additional demand [23, 25]. These solutions provide different performance guarantees—some
of them may overestimate the bandwidth that needs to be reserved on some links.

The algorithm most relevant to our approach is the Full Information Restoration (FIR)
algorithm of Li, Wang, Kalmanek, and Doverspike [23]. Their algorithm is able to find an
optimal solution for the single demand situation, where all working paths have been fixed.
It can also be used to improve an existing solution (i.e. a complete list of path pairs for all
demands) in a local search type algorithm, which replaces protection paths by better ones,
one by one, whenever possible.

Our goal is to analyze the more general scenario, when we need to select protection paths
for k new demands simultaneously, given that all the working paths as well as the protection
paths of the existing demands are fixed. This approach has the following advantages:

– First, this simultaneous allocation problem can be thought of as a local search task: given
a complete realization of the network (that is, a working and a protection path for each
demand), is it possible to change the protection paths for a subset of the demands in a
way that the total cost decreases? As modifying the working paths is usually infeasible,
re-allocating some of the protection paths is probably the most natural approach in this
setting. By repeating this procedure and re-allocating the protection paths for groups
of demands iteratively, we can expect a significant decrease in the total cost of the
network.
Solving a hard optimization problem step-by-step through a sequence of such local
improvements is the central idea of local search, a heuristic that is extremely useful
in many real-world routing problems. In particular, it has been successfully applied in
different capacity allocation problems [12, 29]. To reduce costs using this method in our
model as well, as a subtask we have to solve the above problem repeatedly.

– Second, this simultaneous allocation problem can also be considered as the core task
of a spare capacity allocation procedure in networks where demands appear in an on-
line fashion and, after fixing the new working paths, we may deal with the protection
paths in groups of k without violating time constraints. Allocating spare capacity for
the protection paths in larger groups may lead to solutions which are better than what
we can achieve by doing it one by one.

– Third, this problem also arises in the case when some SRLG fails. In such a situation,
the demands whose working paths failed activate their protection paths. Thus, these
paths become unprotected, and we have to find new protection paths for them. Further-
more, the failure might effect some protection paths directly as well, leading again to
simultaneous re-allocation.

2

We shall explore the complexity status of several versions of this simultaneous allocation
problem from the fixed-parameter tractability point of view, focusing on the cases where the
number k of new demands and/or the treewidth of the graph is considered to be constant. We
provide hardness results wherever the problem remains intractable even if some parameter
is fixed, and develop efficient algorithms in the remaining cases. For example, we give a
linear-time algorithm in the case when k and the treewidth are both small.

To analyze the simultaneous allocation problem, we also introduce the Multicost
Steiner Subgraph problem. This problem is an extension of the well-known Steiner
Forest problem, and may be of independent interest. Its input is an undirected graph with
a set of terminal pairs, and different edge costs defined for each terminal pair. The task is to
connect each terminal pair by a path, minimizing the total cost under the following assump-
tion: if an edge e is used by several paths connecting different terminal pairs, each having
a different cost on the edge e, then the cost of e is defined as the maximum among these
values. We show how this problem is related to the aforementioned local search variant of
the Spare Capacity Allocation problem we investigate. We examine its computational
complexity and give positive as well as negative results for it.

The organization of the paper is the following. Section 2 describes the notation and
provides the necessary definitions. Section 3 deals with the simultaneous allocation problem
and its connection to the Multicost Steiner Subgraph problem. Sections 4.1 and 4.2
contain our contribution regarding Multicost Steiner Subgraph; in Section 4.1 we
present two FPT-algorithms, while Section 4.2 discusses some hardness results. We finish
with some concluding remarks and some ideas for future research in Section 5.

2 Preliminaries and problem definitions

2.1 Basic notation

In this paper, graphs are undirected and simple. We denote by V (G) and E(G) the vertex
and edge set of a graph G, respectively. For a set X of vertices (or edges), we let G − X
denote the graph obtained by removing the vertices (or edges, respectively) of X from G.
For a set X ⊆ V (G), the subgraph of G induced by X is G[X] := G − (V (G) \X). For a
set F ⊆ E(G), we let G[F] be the subgraph of G consisting of the edges in F and their
endpoints. For a path P in G and an edge e ∈ E(G), we will write e ∈ P to denote that e
is an edge of P .

Given a set H , a partition of H is a tuple (H1, . . . , Hn) such that H1, . . . , Hn are pairwise
disjoint subsets of H whose union is H . We call each Hi a block of the partition.

2.2 Parameterized complexity

A parameterized problem contains pairs of the form (I, k) where I is the input instance
and k is the parameter, usually an integer or a tuple of integers. In case the parameter is
a pair (k1, k2), we will usually simplify the terminology by saying that both k1 and k2 are
parameters.

An algorithm is fixed-parameter tractable or FPT, if its running time on an instance
(I, k) is at most f(k)|I|O(1) for some computable function f ; note that the degree of the
polynomial |I|O(1) does not depend on the parameter k. A parameterized problem is FPT,
if there is an FPT algorithm that decides it.

We say that a parameterized problem is contained in the class XP, if for each fixed
value of the parameter it admits a polynomial-time algorithm. Note that the degree of this
polynomial may depend on the value of the parameter, for instance the running time can

3

be |I|k; such an algorithm is not fixed-parameter tractable, but it still proves that the given
problem is in XP. Observe also that FPT ⊆ XP is trivial.

Analogously to classical complexity theory, the theory of W[1]-hardness can be used to
prove that some problem is not FPT, unless the widely believed FPT ⊂ W[1] conjecture
fails. Given two parameterized problems Q and Q′, a parameterized reduction from Q to
Q′ maps each instance (I, k) to an instance (I ′, k′) in at most f(k)|I|O(1) time such that
(I, k) ∈ Q if and only if (I ′, k′) ∈ Q′, and k′ ≤ g(k) for some computable function g of k. In
this paper, we will prove W[1]-hardness of a problem Q by giving a parameterized reduction
from the W[1]-hard parameterized problem Clique to Q. In Clique, we are given a graph
G and a parameter k ∈ N, and the task is to decide whether there is a clique (that is, a
complete subgraph) of size k in G.

For further details on parameterized complexity, we refer the reader to [14, 17, 27].

2.3 Tree-decomposition and treewidth

Treewidth is a common notion to measure how “tree-like” a graph is. Given a graph G, a
tree-decomposition T for G consists of a tree T and a bag Bt ⊆ V (G) for each t ∈ V (T) such
that the following three conditions hold:

– for each vertex v ∈ V (G) there is a bag that contains v,
– for each edge uv ∈ E(G) there is a bag that contains both v and u, and
– for each v ∈ V (G), the node set {t ∈ V (T) : v ∈ Bt} induces a connected subtree of T .

The size of the tree-decomposition T is the number of vertices in T . The width of T is the
maximum cardinality of any bag minus one. The treewidth of G is the minimum width of
any tree-decomposition for G. Graphs having treewidth at most 1 are forests, and graphs
having treewidth at most 2 are generalized series-parallel graphs.

When performing dynamic programming on a tree-decomposition T for G, we will con-
sider T to be rooted at a root r. Furthermore, we will use nice tree-decompositions [8, 20],
where each bag Bt is one of the following types:

– a leaf bag: t is a leaf of T and |Bt| = 1;
– a bag introducing a vertex v ∈ V (G): t has one child x, v /∈ Bx, and Bt = Bx ∪ {v};
– a bag forgetting a vertex v ∈ V (G): t has one child x, v ∈ Bx, and Bt = Bx \ {v};
– a join bag: t has two children x and y, and Bt = Bx = By.

It is known that computing the treewidth of a graph is NP-complete [4]. However, for any
constant w there is a linear-time algorithm by Bodlaender [6] that decides whether a graphG
has treewidth at most w, and if so, constructs a tree-decomposition of width at most w.
Furthermore, it is well-known that a linear-size tree-decomposition can be transformed into
a nice tree-decomposition in linear time without changing its width [20]. For an introduction
into treewidth see, e.g., [7].

2.4 Multiple demand networks

An SRLG-network is described by a quadruple N = (G, g, c,R) where G = (V,E) is an
undirected graph with vertex set V and edge set E, the functions g : E → R

+
0 and c :

E → R
+
0 represent non-negative edge capacities and edge costs, respectively, and the set

R = {R1, . . . , Rt} contains so-called SRLGs, each being a subset ofE. Each SRLG represents
a set of edges that can fail simultaneously in the network.

A demand d in an SRLG-network is described by a triple (s, t, b) where s, t ∈ V (G)
and b ∈ R

+
0 . Here, s is the source, t is the target, and b is the required bandwidth of the

4

demand. Two paths P1 and P2 are said to be SRLG-disjoint, if they are edge-disjoint and
no SRLG contains edges both from P1 and P2. A realization of a demand (s, t, b) consists
of two SRLG-disjoint paths from s to t in G; one of them is called the working path (or
service path), and the other one is the protection path (or restoration path). See Figure 1.
An SRLG-network with demands is a pair (N,D), where N is an SRLG-network and D is a
set of demands in N . A realization of an SRLG-network with demands (N,D), is the union
of the realizations for all demands in D. We denote by P (d) and Q(d) the working and the
protection paths assigned to some demand d ∈ D. We say that a demand d is affected by
an SRLG Ri, if the working path P (d) contains some edge of Ri.

a

b c

ts

SRLGs: R1 = {at, bt}

R2 = {sb, bt, bc}

R3 = {bc, ct}

Fig. 1. The figure illustrates the concept of SRLG-disjoint paths in a simple network. Let P =
(s, a, t) be the working path (shown in bold) for the terminal pair (s, t). Notice that both (s, b, t)
and (s, b, c, t) are edge-disjoint paths from P . However, since R1 = {at, bt} is an SRLG in the
network, path (s, b, t) is not SRLG-disjoint from P . By contrast, path (s, b, c, t) is SRLG-disjoint
from P , yielding the only possible protection path for P .

For each edge e ∈ E, we associate certain values with a given realization as follows.
The service bandwidth of e, denoted by p(e) is the value obtained by summing up the
bandwidth values over those demands whose working path contains e. This value describes
the bandwidth actively used by the demands routed through the edge e. To determine the
additional bandwidth needed for the protection paths of the demands, we define the spare
bandwidth qi(e) of an edge e with respect to some SRLG Ri as the sum of bandwidths over
those demands that (i) are affected by Ri and (ii) have their protection path routed through
e. This value describes the additional capacity necessary at edge e for the restoration of the
network in case the i-th SRLG Ri fails.

We let the spare bandwidth vector of e be the vector q(e) of length t, whose i-th component
is qi(e). Now, the total spare bandwidth of an edge in the given realization, denoted by
qmax(e), is the maximal component of the vector q(e). Thus, the total spare bandwidth of
e describes the maximal bandwidth needed (in addition to the service bandwidth) in case
any of the SRLGs fails. We define the total bandwidth b(e) used by e as p(e) + qmax(e).

Now, we are ready to define the feasibility and the cost of a realization Γ of an SRLG-
network with demands. We say that the realization is feasible, if b(e) ≤ g(e) for each
edge e ∈ E, that is, each edge can accommodate the working paths routed through it
and has additional bandwidth sufficient for the restoration of the network in case any of the
SRLGs fails. The cost of a feasible realization Γ is c(Γ) =

∑

e∈E c(e)b(e). The cost of any
non-feasible realization is defined to be +∞.

2.5 Problem definitions

First, let us formally describe the Spare Capacity Allocation (SCA) problem. The
input of this optimization problem is an SRLG-network with demands, (N,D), where N =
(G, g, c,R) and D = {di | 1 ≤ i ≤ ℓ}, together with paths P1, . . . , Pℓ in G, where for each
di = (si, ti, bi) ∈ D, the path Pi leads from si to ti. The task of the SCA problem is to find

5

a minimum-cost realization for (N,D) in which the working path for the demand di ∈ D is
Pi, for each 1 ≤ i ≤ ℓ.

Motivated by the NP-hardness of the SCA problem (see e.g. [24]), we consider the
following variant of SCA that we call k-Improve SCA. We are given an SRLG-network
with demands and its partial realization where each demand has a fixed working path, but
the protection paths are only given for a subset of the demands. We call the demands
for which the protection paths are given protected, and we refer to the remaining ones as
unprotected. The number of unprotected demands, denoted by k, is assumed to be small
compared to the total number of demands. The task is to find protection paths for the
unprotected demands that yield a feasible realization while minimizing the cost.

Formally, the input of the k-Improve-SCA problem consists of an SRLG-network N =
(G, g, c,R) with demand set D = {di | 1 ≤ i ≤ k} ∪ Df , paths P1, . . . , Pk in G, and a
realization for each demand in Df . We refer to the demands in Df as fixed demands, and
to the demands in Du := D \Df as unprotected demands. The task of k-Improve-SCA is
to find a minimum-cost realization for (N,D) that uses the realizations given for the fixed
demands in Df , and for each unprotected demand di ∈ Du uses the path Pi as the working
path. If Γ is such a realization, then we say that the protection paths Q(di) for the demands
di ∈ Du induce Γ .

An instance I of this problem is illustrated in Figures 2 and 3. In this example, there
are two unprotected demands, d1 and d2, and there are six fixed demands. There are three
SRLGs: R1 = {ax, cx}, R2 = {by, dy}, and R3 = {aw, bz}. Note that d1 is only affected by
R1, and d2 is only affected by R2. We define edge costs to be uniform. Furthermore, we set
the capacities of the edges in such a way that only the edges ab, bd, cd, and ac can be used
by the protection paths of demands d1 and d2. Thus, both of these paths (that is, Q(d1)
and Q(d2)) can only be routed in two different ways: either using the direct link, or using
the remaining three edges (e.g., either (a, b) or (a, c, d, b) for Q(d1)).

Figure 3(b) shows the solution we obtain for I by first minimizing the cost for d1 and
subsequently for d2, or vice versa. In this case, Q(d1) = (a, b) and Q(d2) = (c, d); the ad-
ditional cost of allocating capacity for these paths is 10. Figure 3(c) shows the optimum
solution for the instance. Here, Q(d1) = (a, c, d, b) and Q(d2) = (c, a, b, d), and the addi-
tional cost of allocating the capacities for these paths is 8. Hence, this example shows that
finding protection paths one by one can be suboptimal and thus leads to inefficient capacity
allocation.

a b

c d

x yw z

1

1

1

1

10

10

10

10

2

22

2

+∞+∞

+∞

+∞ working protection affecting
demand path path SRLGs

d1 = (a, b, 5) (a, x, b) ? R1

d2 = (c, d, 5) (c, y, d) ? R2

(a, x, 5) (a, x) (a, b, x) R1

(b, y, 1) (b, y) (b, a, y) R2

(c, x, 1) (c, x) (c, d, x) R1

(d, y, 5) (d, y) (d, c, y) R2

(a, c, 2) (a,w, c) (a, c) R3

(b, d, 2) (b, z, d) (b, d) R3

Fig. 2. Illustrating the instance I of 2-Improve-SCA. The labels indicate capacities. The edges
through which the protection paths of d1 and d2 can be routed are shown in bold.

6

a b

c d

(5,1,0)

(1,5,0)

(0,0,2)(0,0,2)

(a)

a b

c d

(10,1,0)

(1,10,0)

(0,0,2) (0,0,2)

(b)

a b

c d

(5,6,0)

(6,5,0)

(5,5,2) (5,5,2)

(c)

Fig. 3. (a) shows the relevant edges of the instance I , together with their spare bandwidth vector
before finding the protection paths for d1 and d2. The spare capacity allocated in total for these
edges is 14. (b) depicts the solution found by minimizing the cost separately for d1 and for d2; the
spare bandwidth allocated here is 24 in total. (c) shows the optimal solution; the spare bandwidth
allocated here is 22 in total.

We shall consider an important special case of k-Improve-SCA, in which the working
paths P1, . . . , Pk of the unprotected demands are pairwise SRLG-disjoint. In the next sec-
tion we shall see that this special case turns out to be equivalent to another optimization
problem that we call Multicost Steiner Subgraph and define as follows. The input
of this problem is an undirected graph G = (V,E) and k triples {(si, ti, ci) | 1 ≤ i ≤ k}
where si and ti are vertices in G, and ci : E → R

+
0 ∪ {+∞} is a non-negative cost function

on the edges for each i. We call si and ti terminals, and we refer to ci as the cost function
corresponding to the terminal pair (si, ti). The task of the Multicost Steiner Subgraph
problem is to find a path Qi from si to ti for each 1 ≤ i ≤ k such that

∑

e∈E maxi:e∈Qi
ci(e)

is minimized. In other words, the cost of an edge e is defined by the cost function having
maximum value on e among those cost functions ci that correspond to terminal pairs (si, ti)
whose path Qi contains e; our aim is to minimize the total cost of the edges. Figure 4 depicts
a simple example. We will sometimes refer to edges e having ci(e) = +∞ as forbidden edges
for the i-th terminal pair (si, ti); note that including such an edge in Qi yields a solution
with cost +∞.

5; 1

3; 33; 3

1; 5

1

1

3333

a aab bb

c ccd dd

(a) (b) (c)

Fig. 4. (a) depicts an instance of Multicost Steiner Subgraph. Let the given terminal pairs be
(a, b) and (c, d). The values of the corresponding cost functions are written on the edges, e.g., the
cost of the edge ab is 5 w.r.t. to the terminal pair (a, b) and 1 w.r.t. the terminal pair (c, d). An
optimal solution has total cost 8; the corresponding paths are indicated in bold in (b) and (c). Note
that the union of the solution paths forms a 4-cycle.

3 The k-Improve-SCA problem

Let us consider an instance of the k-Improve-SCA problem, where we are given an SRLG-
network (G, g, c,R) and demand set D = {di | 1 ≤ i ≤ k} ∪ Df , together with paths

7

P1, . . . , Pk in G and a realization for each demand in Df . It is not hard to observe that this
problem is NP-hard in general, even in a very restricted case.

Theorem 1. The decision version of the k-Improve-SCA problem is NP-complete even
in the special case when k = 2, Df = ∅, R = {R1}, the cost function is arbitrarily fixed and

(a) either R1 = {r1, r2} for some r1, r2 ∈ E, and each edge has capacity 1,
(b) or R1 = {r} for some r ∈ E having capacity 2, and each edge in E \ {r} has capacity 1.

Proof. Containment in NP is obvious. We shall show a polynomial-time reduction from the
undirected version of the 2-Commodity Flow problem with unit capacities, which is NP-
hard [16]. The input of the 2-Commodity Flow problem consists of an undirected graph
G and two pairs (s1, t1) and (s2, t2) of vertices of G. The task in this problem is to find two
edge-disjoint paths, one leading from s1 to t1 and the other one from s2 to t2.

Given an instance of 2-Commodity Flow as above, we construct two instances Ia
and Ib of 2-Improve-SCA as follows. In both inputs, we fix an arbitrary cost function
and we define the demand set to contain the two unprotected demands d1 = (s1, t1, 1) and
d2 = (s2, t2, 1) (with Df = ∅).

The graph Ga of Ia is obtained from G by adding newly introduced edges r1 = s1t1 and
r2 = s2t2, and we let R1 = {r1, r2}. Furthermore, we set each capacity in Ga to 1. We set
the working paths P1 and P2 of d1 and d2 to be the paths consisting only of the edges r1 and
r2, respectively. The graph Gb of Ib is obtained from G by adding two new vertices x, y and
five new edges s1x, s2x, r = xy, yt1, yt2 to the graph G. We let R1 = {r}, we set g(r) = 2,
and we set each remaining capacity in Gb to 1. We let P1 be the path s1, x, y, t1 and P2 be
the path s2, x, y, t2. We set R = {R1} both for Ia and Ib. This completes the definitions of
instances Ia and Ib.

It is easy to see that in both instances the protection paths Q(d1) and Q(d2) give rise to
two edge-disjoint paths in the original graph G, one from s1 to t1 and one from s2 to t2, and
vice versa. Hence, deciding whether the minimum cost of a solution for Ia (Ib, respectively)
is +∞ or less is equivalent with solving the given instance of the 2-Commodity Flow
problem. This proves the theorem. ⊓⊔

As the general k-Improve-SCA problem is intractable even in a very restricted case, we
pose an additional requirement on the input: we assume that the working paths given for the
k unprotected demands are pairwise SRLG-disjoint. We show that in this case the problem
becomes equivalent with the Multicost Steiner Subgraph problem with k terminal
pairs.

Theorem 2. The restriction of the k-Improve-SCA problem where the working paths given
for the k unprotected demands are pairwise SRLG-disjoint is polynomially equivalent with
the Multicost Steiner Subgraph problem with k terminal pairs.

Proof. “k-SCA ≺ k-MCSS”: For the first direction, let ISCA be an input of the k-Improve-
SCA problem with the claimed property. Let (G = (V,E), g, c,R) be the SRLG-network,
and let Df and Du = {d1, . . . , dk} be the set of fixed demands and the set of unprotected
demands in ISCA. Let P (d) denote the given working path for each demand d ∈ Df ∪Du,
and let Q(d) be the given protection path for each fixed demand d ∈ Df . Let pf (e) and

qf (e) = (qf1 (e), . . . , q
f
|R|(e)) be the service bandwidth and the spare bandwidth vector on

some edge e, respectively, corresponding to the realization of the fixed demands. We will also
use qf,max(e) = maxRi∈R qfi (e) to denote the total spare bandwidth on e. In addition, let
pu(e) be the service bandwidth on e corresponding to the working paths of the unprotected
demands.

8

We construct an instance IMCSS of Multicost Steiner Subgraph consisting of the
graph G and a triple (si, ti, ci) defined for each unprotected demand di = (si, ti, bi) as
follows. Let us fix an i between 1 and k. Let R(i) ⊆ R denote the set of those SRLG-groups
that affect the unprotected demand di. Furthermore, we define the value

b∆i (e) = max(0, bi − qf,max(e) + max
j∈R(i)

{qfj (e)})

for each edge e. Informally speaking, b∆i (e) describes the additional capacity needed at edge
e if we route the protection path of di through e.

Next, we define a set Fi of forbidden edges. To this end, let FSRLG
i be the set of edges

that are contained by an SRLG-group that affects di, and let F cap
i be the set of those edges

e for which pu(e) + pf (e) + qf,max(e) + b∆i (e) > g(e) holds. We set Fi to be the union of
FSRLG
i and F cap

i , and define the cost ci(e) = +∞ for each forbidden edge e ∈ Fi. Finally, we
let ci(e) = c(e)b∆i (e) for each remaining edge e ∈ E \ Fi, finishing the definition of IMCSS .

Suppose that we have k pathsQ1, . . . , Qk, withQi leading from si to ti for each 1 ≤ i ≤ k.
We claim that these paths form a minimum-cost solution for ISCA if and only if they form
a minimum-cost solution for IMCSS as well.

First, we argue that these paths induce a feasible realization of all the demands in ISCA

if and only if Qi avoids all edges in Fi, for each 1 ≤ i ≤ k. Recall that Qi yields a realization
for di (together with the working path P (di)) if and only if Qi and P (di) are SRLG-disjoint.
By the definition of FSRLG

i , this means exactly that Qi avoids all edges of FSRLG
i . Thus,

we may assume that this holds, and the paths Q1, . . . , Qk induce a realization Γ for all the
demands in ISCA (with the realization of the fixed demands as given in the input ISCA).

It remains to show that Γ is feasible if and only if Qi avoids F
cap
i as well. Let us fix an

edge e. Let qΓ (e) be the spare bandwidth vector on e in Γ , with its j-th component denoted
by qΓj (e). Since the working paths of the unprotected demands are pairwise SRLG-disjoint,
for each SRLG-group Rj there is at most one unprotected demand affected by Rj . Now,

if di is a demand affected by Rj and Qi goes through e, then qΓj (e) = qfj (e) + bi, i.e., the
j-th component of the spare bandwidth vector increases by bi; otherwise (if no such demand

exists) qΓj (e) = qfj (e). Therefore, the total spare bandwidth on e with respect to Γ is

max
1≤j≤|R|

qΓj (e) = max(qf,max(e), max
i,j:e∈Qi,j∈R(i)

{qfj (e) + bi}) = qf,max(e) + max
i:e∈Qi

b∆i (e).

This shows that Γ is feasible if and only if pu(e)+ pf(e)+ qf,max(e)+ b∆i (e) ≤ g(e) for each
edge e and each i with 1 ≤ i ≤ k. This is exactly the condition that Qi avoids all edges from
F cap
i for any i, proving our claim on the feasibility of Γ .
Next, we show that a feasible realization Γ induced by paths Q1, . . . , Qk has minimum

cost in ISCA if and only if these paths form a minimum-cost solution in the instance IMCSS .
Clearly, the cost of Γ is

c(Γ) =
∑

e∈E

c(e)(pu(e)+pf (e)+ max
1≤j≤|R|

qΓj (e)) =
∑

e∈E

c(e)(pu(e)+pf (e)+qf,max(e)+ max
i:e∈Qi

b∆i (e)).

As pu(e) + pf (e) + qf,max(e) does not depend on Q1, . . . , Qk, such a cost is minimal if and
only if

∑

e∈E maxi:e∈Qi
c(e)b∆i (e) =

∑

e∈E maxi:e∈Qi
ci(e) is minimal, which is exactly the

cost of the solution Q1, . . . , Qk in IMCSS . This proves our claim.
“k-MCSS ≺ k-SCA”: For the other direction of the theorem, assume that we are given

an instance IMCSS of Multicost Steiner Subgraph with its input consisting of the
graph G = (V,E) and k triples {(si, ti, ci) | 1 ≤ i ≤ k}. We are going to construct an
equivalent instance ISCA of k-Improve-SCA, with the working paths for the unprotected
demands being pairwise SRLG-disjoint. To begin, we define a graph G′ = (V,E′) which is

9

obtained as follows. To the graph G we first add k + 1 additional copies of the edge set E
by introducing copies e1, . . . , ek+1 for each edge e ∈ E (connecting the same vertices as e,
also present in G′), and then we add k more edges r1 = s1t1, . . . , rk = sktk. (In case we
want to avoid parallel edges, we can introduce paths of length 2 instead of these edges; for
simplicity we do not care about this issue.) For each 1 ≤ i ≤ k+1, we write Ei for the edge
set {ei | e ∈ E}. In addition, for each 1 ≤ i ≤ k we define a set Fi that contains those edges
e ∈ E for which ci(e) = +∞, and we let bi = maxe∈E\Fi

ci(e). That is, bi is the maximum
value of ci on any edge where ci is finite.

Now, for each edge e = xy ∈ E we introduce k + 1 demands as follows. First, we
define demands d(e, i) = (x, y,M + ci(e) − bi) for each 1 ≤ i ≤ k, for which ci(e) is
finite; here M is a large enough integer such that each of these demands has non-negative
bandwidth. We put d(e, i) = (x, y,M), for 1 ≤ i ≤ k, in case ci(e) = +∞. Second, we
define the demand d(e, k + 1) = (x, y,M). These demands define the set of fixed demands
Df = {d(e, i) | e ∈ E, 1 ≤ i ≤ k + 1}. For each fixed demand d(e, i) ∈ Df , 1 ≤ i ≤ k + 1,
we set ei and e as the working and protection path (of length 1), respectively. Next, we
define the set of unprotected demands as Du = {(si, ti, bi) | 1 ≤ i ≤ k}, and we let the
working path of the demand di := (si, ti, bi) be ri. We define the SRLG-network of ISCA

to be (G′, g, c ≡ 1,R = {R1, . . . , Rk+1}) where the capacity function g is defined to be bi
on the edges of ri for each i, M on each edge ek+1 ∈ Ek+1, M + ci(e) − bi on each edge
ei ∈ Ei, 1 ≤ i ≤ k, for which ci(e) is finite, M on the edges ei with ci(e) = +∞, and +∞
on all the remaining edges (i.e. on the edges in E). Finally, the i-th SRLG-group is defined
as Ri = ri ∪ Fi ∪ Ei if i ≤ k, and we let Rk+1 = Ek+1.

By definition, paths Q1, . . . , Qk with Qi leading from si to ti induce a feasible realization
with finite cost for the demands D = Df ∪ Du in ISCA if and only if each Qi is SRLG-
disjoint from ri and does not exceed the given capacities. As the working paths defined for
the demands in D already use up the total capacities on the edges in E′ \ E, this latter
condition means that all paths must only use edges from E. Note that the definition of the
SRLG groups implies that in a finite cost solution a protection path Qi must avoid all edges
e with ci(e) = +∞. Hence, the given paths induce a feasible realization with finite cost if
and only if, for each i, the path Qi only contains edges from E \Fi, meaning that Q1, . . . , Qk

is a solution for IMCSS having finite cost.
So let us consider paths Q1, . . . , Qk such that each edge in Qi is from E \Fi. The cost of

these paths as a solution of the instance IMCSS is
∑

e∈E maxi:1≤i≤k,e∈Qi
ci(e). Let us now

consider the cost of the realization induced by the paths Q1, . . . , Qk. First, as the working
paths are fixed, this cost is minimal if and only if

∑

e∈E′ qmax(e) is minimal, where qmax(e)
is the total spare bandwidth on some edge e ∈ E′. Note that qmax(e) = 0 for each edge
e ∈ E′ \E. For an edge e ∈ E and some 1 ≤ i ≤ k+1, the i-th component qi(e) of the spare
bandwidth vector can be calculated as follows:

qi(e) =







M if i = k + 1, or ci(e) = +∞
M + ci(e)− bi if 1 ≤ i ≤ k, ci(e) is finite, and Qi does not go through e
M + ci(e) if 1 ≤ i ≤ k and Qi goes through e

Note also that for all e ∈ E \ Fi we have M + ci(e)− bi ≤ M by the definition of bi. Hence,
we obtain that the cost of the realization induced by the paths Q1, . . . , Qk is minimal if the
following expression is minimal:

∑

e∈E

qmax(e) =
∑

e∈E

max(M, max
i:1≤i≤k,e∈Qi

{M + ci(e)}) = |E| ·M +
∑

e∈E

max
i:e∈Qi

ci(e).

Hence, the realization induced by the paths Q1, . . . , Qk has minimum cost if and only if
these paths form a minimum-cost solution for the IMCSS instance. This finishes the proof
of the theorem. ⊓⊔

10

Let us now remark that from the proof of Theorem 2 it follows that the restriction of k-
Improve-SCA where the unprotected demands have pairwise SRLG-disjoint working paths
can be reduced to an instance of Multicost Steiner Subgraph with the same under-
lying graph as in the SRLG-network given for k-Improve-SCA. Moreover, the presented
reduction only changes the cost of a solution by an additive constant term.

4 The Multicost Steiner Subgraph problem

In this section we investigate the complexity of the Multicost Steiner Subgraph prob-
lem. Although various similar problems appear in the literature (see e.g. [3, 26, 28, 30]),
the version relevant to us has not been studied before. To begin, we examine its strong
connections to an important problem in combinatorial optimization, the Steiner Forest
problem.

The input of Steiner Forest is an undirected graph G, possibly with positive edge
costs, and a set of k demands (s1, t1), . . . , (sk, tk) where each demand is a pair of vertices
(called terminals) of G. The task is to obtain a minimum-cost subgraph of G which contains
a path from si to ti for each i ∈ {1, . . . , k} and has minimum cost (or, in the unweighted
case, minimum size). The optimal solution is always a forest, a so-called Steiner forest of
the terminal pairs. Observe that Steiner Forest is exactly the special case of Multicost
Steiner Subgraph where the cost functions belonging to the terminal pairs are the same.

If all demands contain a common terminal, then Steiner Forest becomes the classical
Steiner Tree problem. Garey and Johnson [18] proved that unweighted Steiner Tree
is NP-complete even for planar graphs. This implies that Multicost Steiner Subgraph
is NP-complete even if ci ≡ 1 for all i ∈ {1, . . . , k}, and the input graph is planar.

The Steiner Forest problem turns out to be considerably harder than the Steiner
Tree problem when considering its complexity on bounded-treewidth graphs. Namely, while
Steiner Tree can be solved in linear time on bounded-treewidth graphs [10, 21], Steiner
Forest remains NP-hard [19] even on graphs with treewidth 3.

Let us summarize the consequences of these facts in Proposition 1.

Proposition 1. The Multicost Steiner Subgraph problem is NP-complete, even in
the following cases:
(a) the input graph is planar, and each cost function is the unit cost function;
(b) the input graph has treewidth 3.

Motivated by this intractability, we use the parameterized complexity approach to in-
vestigate the effect of several properties of the input on the computational complexity of
Multicost Steiner Subgraph. Let G = (V,E) and {(si, ti, ci) | 1 ≤ i ≤ k} be our input
instance. We will focus on the interplay between the following parameters:

– k, the number of terminal pairs;
– w, the treewidth of the input graph G;
– es, the number of so-called irregular edges: an edge e ∈ E is irregular, if there are

indices 1 ≤ i < j ≤ k such that ci(e) 6= cj(e). In some sense, this parameter measures
the pairwise distance of the given cost functions.

The parameter k, describing the number of terminal pairs, is probably the most natural
parameterization of the problem. However, in Theorem 5 we are going to show that Multi-
cost Steiner Subgraph is already NP-hard if k = 2. From the parameterized viewpoint,
this means that Multicost Steiner Subgraph is not in XP when parameterized by k
(unless P=NP). In fact, Theorem 5 contains a W[1]-hardness result for the k = 2 case, where

11

the parameter is the cost of the solution that we aim for. This means that the problem re-
mains intractable even if there are only two terminal pairs, and we are looking for paths
with small cost, and hence, of small length. Hence, Theorem 5 sharply contrasts the result
that Steiner Forest is polynomial-time solvable for two (in fact, for any fixed number k
of) terminal pairs; see e.g. [22].

Regarding the treewidth of the input graph, in Theorem 6 we prove that Multicost
Steiner Subgraph is NP-hard on series-parallel graphs, that is, on graphs with treewidth
2. In some sense, this generalizes the result in [19], saying that Steiner Forest is NP-hard
for graphs of treewidth 3. Our theorem yields a strict distinction between easy and hard
cases when the treewidth w of the input graph is considered, since Multicost Steiner
Subgraph is trivially linear-time solvable on forests, that is, on graphs with treewidth 1.

On the positive side, in Theorem 4 we propose an FPT algorithm for the case where
both k and the treewidth w are regarded as parameters.

Looking into the hardness proofs in Theorems 5 and 6, we can observe that the hardness
of the problem strongly relies on the fact that different terminal pairs have different cost
functions. Therefore, it is interesting to examine how the difference of the cost functions
influences the tractability of Multicost Steiner Subgraph. This motivates the study
of our third possible parameter, the number es of irregular edges. In contrast to the in-
tractability results mentioned above, in Theorem 3 we present a fixed-parameter tractable
algorithm for the case where we regard both k and es as parameters.

Note that these results are strongest possible in the sense that the parameterization
where only es, k, or w is considered as a parameter yields a parameterized problem that is
not even in XP (unless P=NP), by the facts summarized in Proposition 1 and Theorem 5.

4.1 Fixed-parameter tractable algorithms for Multicost Steiner Subgraph

In this section, we give fixed-parameter tractable algorithms for solving the Multicost
Steiner Subgraph problem. First, in Theorem 3 we propose an FPT algorithm for the
case where the parameters are the number k of terminal pairs and the number es of irregular
edges. Second, Theorem 4 provides an FPT algorithm for the problem when parameterized
by k and the treewidth w of the input graph.

In the rest of this subsection, let I be our input instance of Multicost Steiner Sub-
graph, consisting of a graph G = (V,E) and k triples {(si, ti, ci) | 1 ≤ i ≤ k}. We write
n = |V | and m = |E|. As before, es denotes the number of irregular edges in G, and w
denotes the treewidth of G.

Theorem 3. Multicost Steiner Subgraph can be solved in time

Õ(32k+2esn+ 22k+2esn2 + nm) + 2O(kes+k log k+es log es).

Proof. Let Es denote the set of irregular edges in our input, letX denote the set of terminals,
and W the union of X and the end-vertices of all irregular edges. Note that a non-irregular
edge can be assumed to have finite cost with respect to each cost function, as we can safely
remove edges whose cost is infinite with respect to all cost functions.

Suppose that paths Q1, . . . , Qk form a minimum-cost solution. Let Q be the k-tuple
(Q1, . . . , Qk), and let GQ be the subgraph of G defined as the union of these paths. The
main idea of the algorithm relies on the observation that after removing the irregular edges
from G, the remainder of the solution, that is, GQ − Es can be thought of as a collection
of Steiner trees that connect vertices of W . Of course, we do not know which vertices of W
belong to the same component in GQ −Es, neither do we know which of the irregular edges
should be used by which paths; the algorithm tries all possibilities.

12

To capture the main structure of the solution Q, we introduce the following notation.
For an irregular edge e let c∗Q(e) be the cost of e in Q, i.e., the maximum cost ci(e) taken
over all indices i for which Qi is routed through e. Also, we define the partition πQ of W
determined by the connected components of the graph GQ − Es. We call the pair (c∗Q, πQ)
the structure of the solution Q.

From a high-level perspective, our strategy is the following. First, for each non-empty
subset Y ⊆ W , we compute the cheapest Steiner tree in G−Es that connects the vertices of
Y . Note that all cost functions coincide on the edges of G−Es, so this is a well-defined task.
Second, for each possible structure (c∗Q, πQ) of the solution, we check if a solution Q can be
obtained by taking the union of the minimum-cost Steiner trees connecting the vertices of
each block in the partition πQ in G − Es, and connecting them with irregular edges in a
way that each irregular edge e can only be used by a path Qi if ci(e) ≤ c∗Q(e). Finally, we
take the solution having minimum cost.

Let us now describe the algorithm in detail.

Computing the Steiner trees. For a non-empty subset Y ⊆ W , let T (Y) denote a
minimum-cost Steiner tree (a tree containing each vertex in Y) in G − Es, where the cost
c(e) of an edge e ∈ E \Es is c(e) = c1(e) = · · · = ck(e). Let c(Y) be the cost of such a tree.

Using the well-known Dreyfus–Wagner algorithm [15], T (Y) and c(Y) can be computed
for each Y ⊆ W in Õ(3|W |n + 2|W |n2 + nm) time. Here, n is the number of vertices,
m = |E \ Es|; the notation Õ suppresses polylogarithmic factors. (We remark that if the
edge costs are from the set {1, 2, . . . ,K} for some integer K, this task can be done even in
Õ(2|W |n2 + nm) time applying recently developed techniques by Björklund et al. [5].)

Trying every possible structure. Next, the algorithm tries every possible structure
(c∗, π) in order to find a solution Q where c∗Q = c∗ and πQ = π; such a solution is said to
be compatible with (c∗, π). There are exactly kes possible functions for choosing c∗, as we
can choose the cost c∗(e) in k different ways for each irregular edge e. There are at most
|W ||W | different partitions for choosing π. Assuming that we are given the structure (c∗, π),
we check whether there exists a solution Q compatible with (c∗, π), and if so, we find such
a solution with minimum cost.

Checking the validity of a structure. To find out if there exists a solution compatible
with (c∗, π), the algorithm proceeds as follows. For each i with 1 ≤ i ≤ k, it computes a

graph H
(c∗,π)
i . The blocks of the partition π form the vertex set of H

(c∗,π)
i ; an edge connects

two blocks A and B of π if and only if there are vertices a ∈ A and b ∈ B such that
e = ab is an irregular edge with ci(e) ≤ c∗(e). It should be clear that if Q is a solution

compatible with (c∗, π), then for each i, there must exist a path in H
(c∗,π)
i connecting the

vertices corresponding to the two blocks of the partition π that contain si and ti. If this
condition holds for each i, then we say that (c∗, π) is valid. Note that the validity of a
solution structure can be checked in O(k(|W |+ |Es|)) time.

Finding a minimum-cost solution. Using the concept of validity, we claim that the
cost cOPT of a minimum-cost solution can be computed using the following formula:

cOPT = min
(π,c∗) is valid

{

∑

P∈π

c(E(P)) +
∑

e∈Es

c∗(e)

}

.

Running time analysis. With the above formula, the algorithm can compute the cost
of an optimal solution in at most kes |W ||W |O(k(|W |+ |Es|)) time, once the Steiner trees are
already computed. By |W | ≤ 2k+2es, this can be upper-bounded by 2O((k+es)(log k+log es)).
Thus, the total running time of the algorithm is

Õ(32k+2esn+ 22k+2esn2 + nm) + 2O((k+es)(log k+log es)).

13

It is straightforward to verify that the algorithm can also compute a minimum-cost solution
itself in such a running time.

Note that the running time of our algorithm can be seen as the time used by the algorithm
of [5] (for computing a minimum-cost Steiner tree), plus an additive term that is independent
of the input size, and depends only on the parameters k and es.

Correctness of the formula. It remains to prove the correctness of the above formula.
To do so, let us first observe that if Q is a minimum-cost solution, then (c∗Q, πQ) is valid. Also,
the cost of Q is the cost of the irregular edges, that is, exactly

∑

e∈Es
maxi:e∈Qi

{ci(e)} =
∑

e∈Es
c∗Q(e), plus the cost of the remaining edges. The latter is the sum of the costs c(e)

for each edge e in GQ − Es. As the connected components of GQ − Es form a collection
of Steiner trees, each connecting the vertices of a block in the partition π, the total cost of
these trees is at most the total cost of the corresponding minimum-cost Steiner trees, i.e.
∑

P∈π c(E(P)). This shows that cOPT is at most the value defined by the right-hand side
of the formula above.

As for the other direction, it suffices to observe that if (c∗, π) is valid, then we can
construct a path Qi in G from si to ti that lies within the subgraph consisting of the
union of the Steiner trees plus those irregular edges e for which ci(e) ≤ c∗(e). This directly
follows from our definition of validity and the definition of Steiner trees. Hence, the union of
these paths forms a solutionQ for theMulticost Steiner Subgraph instance given in the
input; also, it is not hard to see that its cost is indeed at most

∑

P∈π c(E(P))+
∑

e∈Es
c∗(e).

Hence, cOPT is at most the right-hand side of the formula, proving the correctness of our
algorithm. ⊓⊔

Theorem 4 shows that Multicost Steiner Subgraph becomes FPT, if we regard
both the number k of terminal pairs and the treewidth w of the input graph as parameters.

Theorem 4. There is an algorithm that solves Multicost Steiner Subgraph in lin-
ear FPT time, where the parameters are w and k. If a tree-decomposition for G is given
together with the input, then the algorithms runs in (Iw+3)

2kO(n) time. Here, Iw+3 =

O((w + 3)(w+3)/2e
√
w+3) is the number of matchings on w + 3 vertices.

Proof. We are going to present an algorithm using the standard dynamic programming
approach on bounded treewidth graphs (see e.g. [9]).

To begin, our algorithm obtains a nice tree-decomposition T for the input graph G, such
that T has width at most w and size O(n). First, if there is no tree-decomposition for G
given a priori, then we use the algorithm by Bodlaender [6] that decides whether a given
graph has treewidth at most w, and if so, produces a tree-decomposition of width at most w.
For any fixed w, this algorithm runs in linear time. Second, we can transform the obtained
tree-decomposition into a nice tree-decomposition in O(n) time without increasing its width
[20].

To define partial solutions that we are looking for during the dynamic programming, we
first need some additional notation. For some node t ∈ V (T), we define Vt = {v | v ∈ Bx

for some descendant x of t in T }, and we associate the subgraph Gt = G[Vt] with t. Given
a set P of vertex-disjoint paths in a graph, their shadow is a matching which for each path
P ∈ P contains an edge connecting the endpoints of P . Given two edge sets in a graph,
they are compatible with each other, if they are disjoint, and their union induces a set of
vertex-disjoint paths. By joining two compatible edge sets F and F ′, we mean taking the
shadow of the paths induced by their union; the resulting matching is denoted by F ⊕ F ′.

Partial solutions and shadow patterns.We define a partial solution for t as a k-tuple
(P1, . . . , Pk) where each Pi is a collection of vertex-disjoint paths in Gt such that

– each path P ∈ Pi has its endpoints in B+i
t := Bt ∪ ({si, ti} ∩ Vt);

14

– if v ∈ {si, ti} ∩ (Vt \Bt), then there is a path P ∈ Pi which has v as an endpoint;

– if both si and ti lie on some path P ∈ Pi, then they are the endpoints of P and Pi = {P}.

Note that if Qi is a path connecting si with ti in G, then Gt[Qi] fulfills the above conditions.

The cost of a partial solution (P1, . . . , Pk) is defined as
∑k

i=1

∑

e∈E(Pi)
ci(e) where E(Pi) is

the set of those edges in E which are contained in some path of Pi.

The shadow pattern of a partial solution (P1, . . . , Pk) is now defined as the k-tuple
(M1, . . . ,Mk), where Mi is the shadow of the paths in Pi. Thus, for each i ∈ {1, . . . , k} by
definition we have that

(A) Mi is a matching on the vertices of B+i
t ;

(B) if v ∈ {si, ti} ∩ (Vt \Bt), then Mi must contain an edge incident to v;

(C) siti ∈ Mi implies Mi = {siti}.

We let St be the set of all possible shadow patterns at t, i.e., the set of all k-tuples
(M1, . . . ,Mk) where each Mi satisfies the properties (A)–(C). The cost of a shadow pat-
tern S ∈ St is the minimum cost of a partial solution for t whose shadow pattern is S;
we denote this value by ft(S). Clearly, the minimum cost of a solution for I is exactly
fr({s1t1}, . . . , {sktk}) where r is the root of T .

Now we are ready to describe the details of our algorithm. For each node t, we are going
to compute a set Ŝt of shadow patterns and a value f̂t(S) for each S ∈ Ŝt. Later we will

show Ŝt = St and f̂t ≡ ft. We compute Ŝt and f̂t in a bottom-up manner, starting from
the leaves of T , and ending at the root r. When creating a shadow pattern S with cost c at
some node t, we mean adding it to Ŝt and setting f̂t(S) := min(f̂t(S), c); initially, f̂t(S) has
value +∞.

Let us describe our computation at some node t ∈ V (T) depending on the type of t.

Leaf node. If t is a leaf, then Ŝt only contains the “empty” shadow pattern (∅, . . . , ∅)
having cost zero.

The correctness of this step is trivial, so Ŝt = St, and f̂t ≡ ft hold for each leaf node
t ∈ V (T). We are going to prove these facts for each node of T by induction. Hence, in the
following we assume that they hold for the descendants of t.

Introduce node. If t is a node introducing some vertex v, then we perform the following
operation for each shadow pattern S′ = (M ′

1, . . . ,M
′
k) ∈ Sx, where x is the unique child

of t in T . For each i ∈ {1, . . . , k}, we iterate over all possible choices for choosing a set
Ai containing at most two edges from the set {vu | u ∈ Bt, vu ∈ E(Gt)}. Suppose we are
processing the case when we pick the sets A1, . . . , Ak. For each i ∈ {1, . . . , k}, we first check
whether M ′

i is compatible with Ai, and if so, then we compute the shadow Mi = M ′
i ⊕ Ai

and check if property (C) holds for it. If these steps are performed successfully for each i,
then we create the shadow pattern S = (M1, . . . ,Mk). We define cA =

∑

e∈A maxi:e∈Ai
ci(e)

where A =
⋃k

i=1 Ai, and we set the cost of S as f̂x(S
′) + cA.

To prove correctness, first observe that Mi trivially satisfies property (A), and by induc-
tion we get (B) as well. Property (C) is ensured by the algorithm. This proves that S ∈ St,
and consequently, Ŝt ⊆ St. Also, it is easy to see that given a minimum-cost partial solution
P ′ = (P ′

1, . . . , P
′
k) for x whose shadow is S′, we can construct a partial solution P for t with

shadow S by adding the edges in Ai to P ′
i for each i ∈ {1, . . . , k}.3 Observe that the cost

of P is exactly cA+ fx(S
′). This implies that for each S ∈ Ŝt there is a partial solution with

shadow S whose cost is f̂t(S), proving f̂t(S) ≥ ft(S).

It remains to show Ŝt ⊇ St and f̂t ≤ ft.

3 To be precise, P ′

i contains the maximal paths of the subgraph of G obtained by taking the union
of all paths in Pi together with the edges in Ai.

15

Suppose that S = (M1, . . . ,Mk) ∈ St and P = (P1, . . . , Pk) is a minimum-cost partial
solution for t whose shadow is S. For each i ∈ {1, . . . , k}, let Ai be the set containing those
edges incident to v which lie on some path in Pi. Note that 0 ≤ |Ai| ≤ 2. Furthermore, let
P ′
i be the set of paths obtained by deleting all edges in Ai from the paths in Pi; observe that

(P ′
1, . . . , P

′
k) is a partial solution for x. Let M ′

i be the shadow of P ′
i for each i ∈ {1, . . . , k};

then M ′
i ⊕ Ai = Mi by the definitions. Hence, when the algorithm examines the shadow

pattern S′ = (M ′
1, . . . ,M

′
k) ∈ Sx and the choice of the sets A1, . . . , Ak as described above,

then it will indeed create the shadow pattern S. This proves Ŝt ⊇ St, implying Ŝt = St.
The cost of the edges in the partial solution P can be obtained as the cost of the edges

in A, which is cA by definition, plus the cost cP ′ of the remaining edges. As cP ′ is exactly the
cost of the partial solution (P ′

1, . . . , P
′
k) for x, by induction we know cP ′ ≥ fx(S

′) = f̂x(S
′).

Hence, ft(S) = cA + cP ′ ≥ cA + f̂x(S
′) ≥ f̂t(S). This implies ft ≡ f̂t.

Forget node. If t is a node forgetting some vertex v, then we proceed as follows. Let x
be the unique child of t. For each S ∈ Ŝx, we either put S into Ŝt with f̂t(S) = f̂x(S), or
ignore it. We keep some S = (M1, . . . ,Mk) ∈ Ŝx, if the following condition holds for each
i ∈ {1, . . . , k}:

(⋆) v ∈ {si, ti} if and only if Mi contains an edge incident to v.

In this case, it should be clear that St ⊆ Sx and ft(S) = fx(S) for each S ∈ St. Thus,
to prove the correctness of this step it suffices to show that we put a shadow pattern
(M1, . . . ,Mk) ∈ Ŝx into Ŝt exactly if Mi satisfies properties (A)–(C) with respect to the
node t for each i ∈ {1, . . . , k}. Property (C) holds by induction. Property (A) can only be
violated if Mi contains an edge incident to v and v /∈ {si, ti}, and property (B) is violated
only if v ∈ {si, ti} but no edge in Mi is incident to v. Therefore, the filtering condition (⋆)
used by the algorithm indeed ensures Ŝt = St, proving the correctness for this case.

Join node. If t is a join node, then let x and y be its two children. For each Sx =
(Mx

1 , . . . ,M
x
k) ∈ Ŝx and Sy = (My

1 , . . . ,M
y
k) ∈ Ŝy we proceed by first checking if Mx

i

is compatible with My
i for each i ∈ {1, . . . , k}, and if so, we create the shadow pattern

S = (M1, . . . ,Mk) where Mi = Mx
i ⊕My

i for each i. If Mi violates property (C) for some

i ∈ {1, . . . , k}, then we ignore S. Otherwise, we put S into Ŝt with cost f̂x(Sx)+ f̂y(Sy). See
Figure 5 for an illustration of this case.

It is straightforward to prove Ŝt ⊆ St and f̂t ≥ ft along the same lines as for introduce
nodes: a minimum-cost partial solution for x and for y with shadow Sx and Sy, respectively,
can be joined in order to obtain a partial solution for t with shadow S, having cost at most
fx(Sx) + fy(Sy); note that properties (A) and (B) hold for each Mi, and the algorithm
ensures (C) as well.

So let us prove Ŝt ⊇ St and f̂t ≤ ft now. Let S ∈ St be a shadow pattern and let
(P1, . . . , Pk) be a partial solution for t having shadow S and cost ft(S). For each i ∈
{1, . . . , k} we construct two sets of paths, P x

i and P y
i , as follows. We partition each path

P ∈ Pi as follows: we put the subpaths of P induced by Vx into P x
i , and we put the remaining

subpaths of P into P y
i . Note that each path in P y

i runs in Gy but avoids edges with both
endpoints in Bt. In particular, no path in P x

i shares an edge with a path in P y
i .

It should be clear that P x = (P x
1 , . . . , P

x
k) is a partial solution for x, and similarly,

P y = (P y
1 , . . . , P

y
k) is a partial solution for y. Furthermore, by joining the shadow Mx

i of
P x
i and the shadow My

i of P y
i we obtain the shadow of Pi. Therefore, when the algorithm

considers the shadow patterns Sx = (Mx
1 , . . . ,M

x
k) ∈ Sx and Sy = (My

1 , . . . ,M
y
k) ∈ Sy,

then it will produce our shadow pattern S. Hence we have Ŝt ⊇ St, and consequently,
Ŝt = St. Note that ft(S) equals the cost of P x plus the cost of P y, which is at least

fx(Sx) + fy(Sy) ≥ f̂t(S). This proves ft(S) ≥ f̂t(S), implying ft ≡ f̂t as well. This finishes
the proof of correctness for our algorithm.

16

a

b c

d

Vx Vy

Bt

s1

t1

(a)

a

b c

d

Vx Vy

Bt

s2

(b)

a

b c

d

Vx Vy

Bt

s1
s2

t1

(c)

a

b c

d

Vx Vy

Bt

s2

(d)

Fig. 5. Illustration of the case when t is a join node and k = 2. The example shows how the
algorithm combines shadow patterns (Mx

1 ,M
x
2) = ({s1a, bd}, {ab, cd}) ∈ Sx and (My

1 ,M
y
2) =

({ab, dt1}, {cs2}) ∈ Sy into a shadow pattern ({s1t1}, {ab, ds2}). Panel (a) shows the combination
of Mx

1 and M
y
1 , while panel (b) depicts Mx

2 and M
y
2 . Panels (c) and (d) illustrate the corresponding

partial solutions. Solid (dashed) lines indicate the partial solution for x (for y, respectively) and
the corresponding shadow pattern.

Running time. Obtaining the tree-decomposition for G takes linear FPT time, trans-
forming it into a nice tree-decomposition is performed in O(n) time.

To analyze the time spent at some node of the tree T , let Iℓ denote the number of
matchings in the complete graph on ℓ vertices, or equivalently, the number of involutions,
that is, self-inverse permutations on ℓ elements; the asymptotic value of Iℓ is described

by Iℓ ≃ c
(

ℓ
e

)ℓ/2
e
√
ℓ where c =

√
2e−1/4, see e.g. [11]. As a shadow pattern is a k-tuple of

matchings, where each matching is defined on at most w+3 elements, we get |St| ≤ (Iw+3)
k.

The time spent at node t is at most O(|St|2) = O((Iw+3)
2k). Thus the running time of our

algorithm (after obtaining the tree-decomposition) is

(Iw+3)
2kO(n) = O((w + 3)(w+3)ke2

√
w+3kn),

as there are O(n) nodes in the tree T . ⊓⊔

4.2 Hardness of Multicost Steiner Subgraph

In this section, we prove our hardness results for Multicost Steiner Subgraph.

Theorem 5. The decision version of Multicost Steiner Subgraph where there are
two terminal pairs and each cost is in {1,+∞} is
(a) NP-complete, and
(b) W[1]-hard, if the parameter is the cost of an optimum solution.

Proof. To prove claim (b), we present a parameterized reduction from the W[1]-hardClique
problem to the special case of Multicost Steiner Subgraph with two terminal pairs as
required by the theorem. Since the given reduction will be computable in polynomial time,
this will also prove the NP-completeness result stated in (a).

Let G = (V,E) be the input graph and k the parameter given as an instance of the
parameterized Clique problem; we assume that G is simple. We construct an instance of

17

Multicost Steiner Subgraph as follows. The two terminal pairs are (s1, t1) and (s2, t2),
and we denote the cost functions corresponding to the two terminal pairs by c1 and c2,
respectively. To define the graph H underlying the instance, we construct k2 gadgets ; see
Figure 6 for an illustration.

Each gadget is a subgraph Gi,j of H for some 1 ≤ i, j ≤ k. There will be only two types
of gadgets: all gadgets Gi,j with i 6= j will be pairwise isomorphic and called incidency-
gadgets, and similarly, all gadgets Gi,j with i = j will be pairwise isomorphic and called
identity-gadgets. The vertex set and the edge set of these gadgets are as shown below.

V (Gi,j) = {ai,jx , bi,jx , ci,jx , di,jx | x ∈ V } ∪ {ei,jx,y, f i,j
x,y | xy ∈ E}, if i 6= j,

E(Gi,j) = {ei,jx,yf i,j
x,y, a

i,j
x ei,jx,y, f

i,j
x,yb

i,j
x , ci,jy ei,jx,y, f

i,j
x,yd

i,j
y | xy ∈ E}, if i 6= j,

V (Gi,i) = {ai,ix , bi,ix , ci,ix , di,ix , ei,ix,x, f
i,i
x,x | x ∈ V },

E(Gi,i) = {ei,ix,xf i,i
x,x, a

i,i
x ei,ix,x, f

i,i
x,xb

i,i
x , ci,ix ei,ix,x, f

i,i
x,xd

i,i
x | x ∈ V }.

ax bx

cy

dy

ex,y

fx,y

(a)

G1,1 G1,2 G1,k

G2,1 G2,2 G2,k

Gk,1 Gk,2 Gk,k

s1

s2

t1

t2

(b)

Fig. 6. An illustration of the graph H . Panel (a) depicts an incidency-gadget Gi,j for some i 6= j.
We assume xy ∈ E, and for simplicity, superscripts are omitted. Panel (b) shows how the k2 gadgets
are connected to each other and the four terminal vertices s1, s2, t1, and t2.

We arrange these gadgets into a k × k grid, with Gi,j being placed at the intersection
of the i-th row and the j-th column. We will call the following ordering of the gadgets
their horizontal ordering: G1,1, G1,2, . . . , G1,k, G2,1, G2,2, . . . , G2,k, . . . , Gk,1, Gk,2, . . . , Gk,k.
Similarly, we define their vertical ordering to be G1,1, G2,1, . . . , Gk,1, G1,2, G2,2, . . . , Gk,2,
. . . , G1,k, G2,k, . . . , Gk,k.

The vertex set of the graph H consists of the vertices of the k2 gadgets as defined above,
plus the terminal vertices s1, t1, s2, t2. The edge set of H consists of the edges of the k2

gadgets, together with the following three set of edges, defined below. The set Est = E1
st∪E2

st

connects the source vertices with the gadget G1,1 and the target vertices with the gadget
Gk,k. The sets Eh and Ev connect the gadgets one by one, according to their horizontal and
vertical ordering, respectively. The precise definition of these edge sets is the following.

18

E1
st = {s1a1,1x , bk,kx t1 | x ∈ V }

E2
st = {s2c1,1x , dk,kx t2 | x ∈ V }

Eh = {bi,jx ai,j+1
x | x ∈ V, 1 ≤ i ≤ k, 1 ≤ j < k} ∪ {bi,kx ai+1,1

y | x, y ∈ V, 1 ≤ i < k}
Ev = {di,jx ci+1,j

x | x ∈ V, 1 ≤ i < k, 1 ≤ j ≤ k} ∪ {dk,jx c1,j+1
y | x, y ∈ V, 1 ≤ j < k}

It remains to define the cost functions c1 and c2 for each edge inH . First, we set c1(e) = 1
and c2(e) = +∞ for each e ∈ Eh ∪ E1

st and conversely, we set c1(e) = +∞ and c2(e) = 1
for each e ∈ Ev ∪ E2

st. For each edge e inside some gadget, we set c1(e) = c2(e) = 1. This
completes the definition of our instance of Multicost Steiner Subgraph which we call
IMCSS .

Before going into details, let us give some intuition about the reduction. Our construction
will ensure that any solution for IMCSS consists of two paths with the following properties.
First, each gadget is used by both paths, but one of them traverses the gadgets in their
horizontal ordering, while the other path follows the vertical ordering. Second, in order to
fit into a certain budget, these two paths have to use a common edge in each of the gadgets.
The way how the “horizontal path” enters the k gadgets in the i-th row corresponds to
picking the i-th vertex of the clique. Analogously, the way how the “vertical path” enters
the k gadgets in the j-th column, encodes the j-th vertex of the clique. The identity gadget
Gi,i ensures that the i-th vertex encoded both by the horizontal and the vertical path is
well-defined. Finally, the incidency-gadget Gi,j checks that the i-th and j-th vertices of the
desired clique are indeed adjacent.

To proceed more formally, observe first that the instance IMCSS indeed does not contain
any forbidden edges, and each cost is an integer. Moreover, it can clearly be constructed
in polynomial time. Thus, to show that the reduction is correct, it suffices to show the
following.

Claim. The instance IMCSS has a solution with cost at most 7k2 + 2 if and only if the
graph G has a clique of size k.

Suppose first that a solution exists for IMCSS with cost at most 7k2 +2. Let Q1 and Q2

denote the two paths in the solution connecting the given terminal pairs. By the definition
of the cost functions and our budget, we immediately have that Q1 cannot contain edges
from Ev ∪ E2

st, and Q2 cannot contain edges from Eh ∪E1
st. Thus, looking at the structure

of the graph H − (Ev ∪E2
st), we can see that in order to reach t1 starting from s1, the path

Q1 must go through each gadget one by one, traversing all the gadgets according to their
horizontal ordering. Similarly, path Q2 lies entirely in H−(Eh∪E1

st), and so it must traverse
all the gadgets according to their vertical ordering. Thus, each of the paths Q1 and Q2 must
contain at least k2 +1 edges from Eh ∪Ev ∪Est, and we get that the cost of those edges of
the solution that are contained inside some gadget can be at most 7k2+2−2(k2+1) = 5k2.

However, it is not hard to see that Q1 and Q2 must each contain at least three edges
from any gadget, and morerover, they cannot share their first and last edges in the gadget.
This follows from the definition of the gadget, and the fact that in Gi,j , the path Q1 must
connect some vertex ai,jx with some vertex bi,jy , while the path Q2 must connect some vertex

ci,jv with some vertex di,jz . As this requires at least five edges in any gadget, this means
that any solution with total cost at most 7k2 +2 must contain exactly five edges from each
gadget. This immediately implies that given a gadget Gi,j , the subpath of Q1 in Gi,j must
be ai,jx , ei,jx,y, f

i,j
x,y, b

i,j
x and the subpath of Q2 in Gi,j must be ci,jy , ei,jx,y, f

i,j
x,y, d

i,j
y for some x

and y. Let us define σ(i, j) to be the pair (x, y) for this x and y.
Observe that by the definition of Eh, we get that σ(i, j) = (x, y) implies σ(i, j + 1) =

(x, y′) for some y′ if j < k; similarly, the edges in Ev show that σ(i, j) = (x, y) also implies

19

σ(i+ 1, j) = (x′, y) for some x′ if i < k. Hence, we can define σh(i) to be the unique vertex
x if each of σ(i, 1), σ(i, 2), . . . , σ(i, k) has x as the first component, and similarly, we can
define σv(j) to be the unique vertex y if each of σ(1, j), σ(2, j), . . . , σ(k, j) has y as the
second component. This way we get σ(i, j) = (σh(i), σv(j)).

Now, by the definition of the gadgets, in case of an incidency-gadget (when i 6= j) we
know that σh(i) and σv(j) must be adjacent vertices in the graph G (the simplicity of G
implying also that they cannot coincide), and in case of an identity-gadget (when i = j) we
must have σh(i) = σv(j). This means that σh(1) = σv(1), σh(2) = σv(2), . . . , σh(k) = σv(k),
and these k vertices must form a clique in G.

For the other direction, suppose that v1, v2, . . . , vk form a clique inG. It is straightforward
to verify that taking Q1 to be the path induced by the edges

{s1a1,1v1 , b
k,k
vk

t1} ∪ {ai,jvi ei,jvivj , ei,jvivjf i,j
vivj , f

i,j
vivjb

i,j
vi | 1 ≤ i, j ≤ k}

∪{bi,jvi ai,j+1
vi | 1 ≤ i ≤ k, 1 ≤ j < k} ∪ {bi,kvi ai+1,1

vi+1
| 1 ≤ i < k},

and taking Q2 to be the path induced by the edges

{s2c1,1v1 , d
k,k
vk

t2} ∪ {ci,jvj ei,jvivj , ei,jvivjf i,j
vivj , f

i,j
vivjd

i,j
vj | 1 ≤ i, j ≤ k}

∪{di,jvj ci+1,j
vj | 1 ≤ i < k, 1 ≤ j ≤ k} ∪ {dk,jvj c1,j+1

vj+1
| 1 ≤ j < k},

we obtain a solution for IMCSS with cost exactly 7k2 + 2. ⊓⊔

Theorem 6. The decision version of Multicost Steiner Subgraph is NP-complete if
the underlying graph is a series-parallel graph, i.e., it has treewidth 2. In fact, NP-hardness
holds even for the case where the input graph is the subdivision of four parallel edges.

Proof. We present a polynomial-time reduction from the Multiway Cut problem with
three terminals and unit costs. In this problem, we are given an undirected graph G = (V,E)
with three terminal vertices v1, v2, v3, and an integer b; the task is to delete at most b edges
from G to separate each of the terminals from the other two. This problem is NP-complete
[13].

Given the input IMC of Multiway Cut as above, let V = {v1, . . . , vn} and |E| = m. We
construct an instance IMCSS of Multicost Steiner Subgraph with k = n+m terminal
pairs as follows. The graph H underlying IMCSS is the series-parallel graph obtained by
taking two vertices s and t, and connecting them with four innerly disjoint paths. Three of
these paths, P 1, P 2, and P 3 have length n; the fourth one, denoted by R, has length m.
We refer to the i-th edge on P j as eji for any i ∈ {1, . . . , n} and j ∈ {1, 2, 3}. Also, for each
vhvj ∈ E we assign a unique edge rh,j on R; the order of these edges on R does not matter.

The instance IMCSS will consist of the graph H together with n+m triples: each vertex
vi of V defines a triple (s, t, ci), and each edge vhvj of E defines a triple (s, t, ch,j). We define
the cost function to be

ci(e) =







b+ 1, if e = eii,
0, if e ∈ P i \ {eii},
+∞, otherwise,

for a terminal vi, i ∈ {1, 2, 3};

cj(e) =







b+ 1, if e = eij for some i ∈ {1, 2, 3},
+∞, if e ∈ R,
0, otherwise,

for a non-terminal vertex vj ;

ch,j(e) =







1, if e = rh,j ,
b+ 1, if e ∈ {eih, eij} for some i ∈ {1, 2, 3},
0, otherwise,

for an edge vhvj ∈ E.

20

Finally, we set our budget to B = n(b + 1) + b. This finishes the construction of IMCSS .
Clearly, the reduction is polynomial-time computable, it remains to argue that it is correct.

For the first direction, let Q be a solution for IMCSS having cost at most B. Notice that
for each of the n triples in IMCSS corresponding to a vertex in V , the solution Q has to pick
a path connecting s with t via one of the paths P 1, P 2, or P 3. Thus, Q naturally partitions
the vertices of G into three groups: for j ∈ {1, 2, 3}, we denote by V j the set of vertices
in G whose corresponding triple is assigned the path P j . Clearly, (V 1, V 2, V 3) indeed is a
partition of V . Moreover, we must have v1 ∈ V 1, v2 ∈ V 2, and v3 ∈ V 3 by the definition of
the cost functions c1, c2, and c3.

We claim that the edges running between different blocks of the partition (V 1, V 2, V 3)
yields a solution for the Multiway Cut instance IMC . To show this, first observe that
no matter how the solution Q routes the i-th triple (s, t, ci), its path assigned by Q must
indicate a cost of b + 1 at exactly one of the edges {e1i , e2i , e3i }. Thus, routing all triples
corresponding to vertices of G already implies a cost of n(b+ 1).

Now, let us consider a triple (s, t, ch,j) corresponding to the edge vhvj of G. Notice that
if the path assigned by Q to this triple is P i for some i ∈ {1, 2, 3}, then the edges eih and
eij will have cost b + 1 in Q. As (n + 1)(b + 1) > B, these edges must already be used
by the paths assigned to the triples (s, t, ch) and (s, t, cj), since otherwise Q would exceed
the budget because of using an additional edge with cost b + 1. Therefore, in this case we
know that {vh, vj} ∈ V i. That is, if a triple corresponding to an edge vhvj is not routed
through R, then we know that its two endpoints must be in the same block of the partition
(V 1, V 2, V 3). Since routing a triple (s, t, ch,j) through R raises a cost of 1 on the edge rh,j ,
there can be at most b such triples routed through R. Hence, there are at most b edges of G
whose endpoints are not in the same block of the partition (V 1, V 2, V 3), yielding a solution
of cost at most b for IMC .

For the other direction of the proof, let F be a subset of at most b edges in G whose
removal separates each terminal from the others. We can define a partition (V 1, V 2, V 3) of
V such that vi ∈ V i for each i ∈ {1, 2, 3}, and each connected component of G−F is entirely
contained in some block of the partition. To finish the proof of the theorem, it suffices to
check that the following solution for IMMC has cost at most B.

• For each vertex vj , we route the path assigned to the triple (s, t, cj) through P i, where
V i is the block containing vj . These n paths have a total cost of n(b+ 1).

• For each vhvj /∈ F such that {vh, vj} ⊆ V i, we route the path assigned to the triple
(s, t, ch,j) through P i. These paths do not induce any additional cost (when the paths
routed in the previous step had already been considered).

• For each vhvj ∈ F , we route the path assigned to the triple (s, t, ch,j) through R. These
|F | paths imply an additional cost of |F | ≤ b.

It is easy to see that this solution for IMCSS has total cost at most B, as required. ⊓⊔

5 Concluding remarks

We examined the computational complexity of a variant of the Spare Capacity Alloca-
tion problem where we want to find protection paths for a group of demands simultaneously,
minimizing the total cost of these paths. We investigated its close relation to a natural gen-
eralization of the classical Steiner Forest problem which we called Multicost Steiner
Subgraph, and applied the framework of fixed-parameter tractability to deal with the com-
putational intractability of this problem. We proved strong hardness results, and proposed
efficient FPT algorithms for the remaining cases. In particular, we gave a linear-time algo-
rithm for the case where both the number of protection paths to be found and the treewidth
of the network graph is a fixed constant.

21

There are several possibilities for future research. An interesting question is whether
one can find further parameters in the Spare Capacity Allocation problem that have
small values in real-world instances, but yield fixed-parameter tractability. Identifying such
parameters would lead to efficient algorithms in practice.

Another possible direction is to examine the Multicost Steiner Subgraph from a
different angle, and develop approximation algorithms, or exact exponential-time algorithms
for it.

Acknowledgements

We thank the anonymous referees for carefully reading our manuscript and for several useful
suggestions. This work was supported by the Hungarian Scientific Research Fund grants nos.
K81472, K109240, K108383, and K108947.

References

1. Generalized multi-protocol label switching (GMPLS) signalling functional description, 2003.
IETF RFC 3471.

2. Generalized multi-protocol label switching (GMPLS) architecture, October 2004. IETF RFC
3945.

3. A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem on networks. SIAM Journal on Computing, 24(3):440–456, 1995.

4. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree.
SIAM J. Alg. Disc. Meth., 8(2):277–284, 1987.

5. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier meets Möbius: Fast subset
convolution. In STOC 2007: Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, pages 67–74. ACM, 2007.

6. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

7. H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In MFCS 1997, volume 1295
of LNCS, pages 19–36. Springer, 1997.

8. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. J. Algorithms, 21:358–402, 1996.

9. H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008.

10. M. Chimani, P. Mutzel, and B. Zey. Improved Steiner tree algorithms for bounded treewidth.
In IWOCA 2011, pages 374–386. Springer, 2011.

11. S. Chowla, I. N. Herstein, and W. K. Moore. On recursions connected with symmetric groups
I. Canad. J. Math., 3:328–334, 1951.

12. O. Crochat and J.-Y. Le Boudec. Design protection for WDM optical networks. IEEE Journal
on Selected Areas in Communications, 16(7):1158–1165, 2006.

13. E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.

14. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer Science.
Springer-Verlag, New York, 1999.

15. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195–207, 1971.
16. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow

problems. SIAM Journal on Computing, 5(4):691–703, 1976.
17. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer

Science. An EATCS Series. Springer-Verlag, New York, 2006.
18. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM

J. Appl. Math., 32:826–834, 1977.
19. E. Gassner. The Steiner Forest Problem revisited. Journal of Discrete Algorithms, 8(2):154–

163, 2010.

22

20. T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Com-
puter Science. Springer, 1994.

21. E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner tree in graphs with
bounded treewidth. Technical Report 632, Israel Institute of Technology, 1990.

22. K. J. Lai, C. P. Gomes, M. K. Schwartz, K. S. McKelvey, D. E. Calkin, and C. A. Montgomery.
The Steiner multigraph problem: Wildlife corridor design for multiple species. In AAAI 2011,
pages 1357–1364. AAAI Press, 2011.

23. G. Li, D. Wang, C. Kalmanek, and R. Doverspike. Efficient distributed restoration path selec-
tion for shared mesh restoration. IEEE/ACM Transactions on Networking, 11:761–771, 2003.

24. Y. Liu. Spare Capacity Allocation: Model, Analysis and Algorithm. PhD thesis, Sch. Information
Sciences, Univ. Pittsburgh, PA, 2001.

25. Y. Liu, D. Tipper, and P. Siripongwutikorn. Approximating optimal spare capacity allocation
by successive survivable routing. IEEE/ACM Transactions on Networking, 13:198–211, 2001.

26. I. Murthy and S.-S. Her. Solving min-max shortest-path problems on a network. Naval Research
Logistics (NRL), 39(5):669–683, 1992.

27. R. Niedermeier. Invitation to Fixed-Parameter Algorithms, volume 31 of Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

28. M. B. Richey and R. G. Parker. On multiple Steiner subgraph problems. Networks, 16(4):423–
438, 1986.

29. C.-C. Shyur, T.-C. Lu, and U.-P. Wen. Applying tabu search to spare capacity planning for
network restoration. Computers & Operations Research, 26(12):1175 – 1194, 1999.

30. P. Winter. Steiner problem in networks: A survey. Networks, 17(2):129–167, 1987.

23

