
Obtaining a Proportional Allocation by Deleting
Items

Britta Dorn1, Ronald de Haan2?, and Ildikó Schlotter3??

1 University of Tübingen, Germany, britta.dorn@uni-tuebingen.de
2 ILLC, University of Amsterdam, the Netherlands, me@ronalddehaan.eu

3 Budapest University of Technology and Economics, and Centre for Economic and
Regional Studies, Institute of Economics, Hungary, ildi@cs.bme.hu

Abstract. We consider the following control problem on fair allocation
of indivisible goods. Given a set I of items and a set of agents, each having
strict linear preferences over the items, we ask for a minimum subset of
the items whose deletion guarantees the existence of a proportional allo-
cation in the remaining instance; we call this problem Proportionality
by Item Deletion (PID). Our main result is a polynomial-time algo-
rithm that solves PID for three agents. By contrast, we prove that PID
is computationally intractable when the number of agents is unbounded,
even if the number k of item deletions allowed is small—we show that
the problem is W[3]-hard with respect to the parameter k. Additionally,
we provide some tight lower and upper bounds on the complexity of PID
when regarded as a function of |I| and k. Considering the possibilities
for approximation, we prove a strong inapproximability result for PID.
Finally, we also study a variant of the problem where we are given an
allocation π in advance as part of the input, and our aim is to delete a
minimum number of items such that π is proportional in the remainder;
this variant turns out to be NP-hard for six agents, but polynomial-time
solvable for two agents, and we show that it is W[2]-hard when parame-
terized by the number k of deletions.

1 Introduction

We consider a situation where a set I of indivisible items needs to be allocated
to a set N of agents in a way that is perceived as fair. Unfortunately, it may
happen that a fair allocation does not exist in a setting. In such situations,
we might be interested in the question how our instance can be modified in
order to achieve a fair outcome. Naturally, we seek for a modification that is as
small as possible. This can be thought of as a control action carried out by a
central agency whose task is to find a fair allocation. The computational study
of such control problems was first proposed by Bartholdi, III et al. [5] for voting

? Supported by the Austrian Science Fund (FWF), project J4047.
?? Research supported by the Hungarian Academy of Sciences under its Momentum

Programme (LP2016-3/2018), and the Hungarian Scientific Research Fund (OTKA
grants K128611 and K124171).

systems; our paper follows the work of Aziz et al. [4] who have recently initiated
the systematic study of control problems in the area of fair division.

The idea of fairness can be formalized in various different ways such as pro-
portionality, envy-freeness, or max-min fair share (see the book chapter by Bou-
veret et al. [6] for an introduction). Here we focus on proportionality, a notion
originally defined in a model where agents use utility functions to represent
their preferences over items. In that context, an allocation is called proportional
if each agent obtains a set of items for which their utility is at least 1/|N | of
their total utility of all items. One way to adapt this notion to a model with
linear preferences (not using explicit utilities) is to look for an allocation that is
proportional with respect to any choice of utility functions for the agents that
is compatible with the given linear preferences. Aziz et al. [3] referred to this
property as “necessary proportionality”; for simplicity, we use the shorter term
“proportionality.” For a survey of other possible notions of proportionality and
fairness under linear preferences, we also refer to Aziz et al. [3].

We have several reasons for considering linear preferences. First, the most
important advantage of this setting is the easier elicitation of agents’ preferences.
In many practical applications, especially with a large number of items, it is
unrealistic to assume that agents are able to assign a meaningful cardinal value to
each of the items. This may be due to lack of information, e.g., when agents need
to declare preferences over items about which they have incomplete knowledge,
or an unwillingness to associate a determined value for each item: in scenarios
where the usefulness or virtue of an item cannot be simply measured by its
monetary value (e.g., students ranking assignments, shared owners of a holiday
home ranking time slots, heirs ranking family assets), people may find it much
more convenient to express their preferences in an ordinal way, thus reducing
their cognitive burden. Besides easier elicitation, it is important to note that
it is also easier to visualize ordinal preferences than cardinal ones, which may
have significance when we wish to elicit preferences from children or people with
impaired cognitive abilities. Hence, ordinal preferences may be more useful in
practical applications. From a technical point of view, this simpler model is
more tractable in a computational sense: under linear preferences, the existence
of a proportional allocation can be decided in polynomial time [3], whereas the
same question for cardinal utilities is NP-hard [20]. Since Lipton et al. [20]
show the NP-hardness of the problem already for two agents, we do not even
have hope for an FPT-algorithm with the number of agents as the parameter.
Clearly, if already the existence of a proportional allocation is computationally
hard to decide, then we have no hope to solve the corresponding control problem
efficiently.

Control actions can take various forms. Aziz et al. [4] mention several possibil-
ities: control by adding/deleting/replacing agents or items in the given instance,
or by partitioning the set of agents or items. In this paper we concentrate only
on control by item deletion, where the task is to find a subset of the items, as
small as possible, whose removal from the instance guarantees the existence of

2

a proportional allocation. In other words, we ask for the maximum number of
items that can be allocated to the agents in a proportional way.

1.1 Related Work

We follow the research direction proposed by Aziz et al. [4] who initiated the sys-
tematic study of control problems in the area of fair division. As an example, Aziz
et al. [4] consider the complexity of obtaining envy-freeness by adding or deleting
items or agents, assuming linear preferences. They show that adding/deleting a
minimum number of items to ensure envy-freeness can be done in polynomial
time for two agents, while for three agents it is NP-hard even to decide if an
envy-free allocation exists. As a consequence, they obtain NP-hardness also for
the control problems where we want to ensure envy-freeness by adding/deleting
items in case there are more than two agents, or by adding/deleting agents.

The problem of deleting a minimum number of items to obtain envy-freeness
was first studied by Brams et al. [7] who gave a polynomial-time algorithm for
the case of two agents.4

In a setting with cardinal utilities, Caragiannis et al. [8] propose a model
where items can be donated (i.e., deleted) before allocating the rest to agents;
they propose an algorithm that, after deleting a set of items, yields an allocation
for the remaining items that is envy-free up to any goods, and whose Nash
welfare value is at least half of the optimum. In the context of cake cutting,
Segal-Halevi et al. [24] proposed the idea of distributing only a portion of the
entire cake in order to obtain an envy-free allocation efficiently.

Looking at the topic in a broader sense, several papers have investigated pos-
sible ways to achieve fairness by certain types of control actions. A prominent
example is hiding information from agents in order to facilitate a fair allocation.
Chen and Shah [10] have found that if agents do not receive any information
about the items allocated to others, then the expected amount of envy expe-
rienced by the agents typically reduces. Aziz et al. [2] investigated a model
where the information that agents obtain on the allocation is based on a graph
representing social contacts. Hosseini et al. [18] have proposed an algorithm
that eliminates envy through withholding information about a set of few items.
Halpern and Shah [16] have also examined the possibilities for overcoming envy
by subsidies where agents receive monetary compensation.

For the Hospitals/Residents with Couples problem, Nguyen and Vohra [22]
considered yet another type of control action: they obtained stability by slightly
perturbing the capacities of hospitals.

1.2 Our Contribution

We first consider the case where the number of agents is unbounded (see Sec-
tion 3). We show that the problem of deciding whether there exist at most k

4 For a complete proof of the correctness of their algorithm, see also the work by Aziz
et al. [4].

3

items whose deletion allows for a proportional allocation is NP-complete, and
that this problem is W[3]-hard with parameter k (see Theorem 2). This latter
result shows that even if we allow only a few items to be deleted, we cannot
expect an efficient algorithm, since the problem is not fixed-parameter tractable
with respect to the parameter k (unless FPT = W[3], which is widely believed
not to be the case).

Additionally, we provide tight upper and lower bounds on the complexity of
the problem. In Theorem 3 we prove that the trivial |I|O(k) time algorithm—that,
in a brute force manner, checks for each subset of I of size at most k whether
it is a solution—is essentially optimal (under the widely accepted assumption
that FPT 6= W[1]). We provide another simple algorithm in Theorem 4 that has
optimal running time, assuming the Exponential Time Hypothesis.

Next, we look at the possibilities of approximation in Section 3.1. First we
focus on the approximation problem where the objective is to minimize the
number k of item deletions, and we provide a strong inapproximability result in
Theorem 5 by proving that not even an FPT-algorithm with parameter k can
yield a ratio of |I|1−ε for some constant ε > 0. Next, we examine the possibilities
for maximizing the number of items that agents obtain under a proportional
allocation. In Corollary 1, we observe that it is NP-hard to decide if there exists
a set of 2|N | items which can be allocated to our set N of agents in a proportional
way. Contrasting this result, we propose a simple polynomial-time algorithm in
Theorem 6 that allocates one item to each agent proportionally, whenever this
is possible.

In Section 4, we turn our attention to the case with only three agents. In
Theorem 7 we propose a polynomial-time algorithm for this case, which can
be viewed as our main result. The presented algorithm is based on dynamic
programming, but relies heavily on a non-trivial insight into the structure of
solutions.

Finally, in Section 5 we briefly look at the variant of our problem where we
are given a fixed allocation in advance, and the task is to decide whether we can
make the given allocation proportional by deleting certain items. We prove that
this problem is easy for two agents (Theorem 8), but becomes NP-hard for six
agents (Theorem 9). The computational intractability persists even if the number
of deletions is small, as evidenced by Theorem 10 that proves W[2]-hardness with
parameter k for this variant.

2 Preliminaries and Definitions

In this section, we revisit some technical concepts and notions that we use in
the remainder of the paper. We also give a formal definition of the problem of
Proportionality by Item Deletion (PID).

(Parameterized) complexity theory. We assume the reader to be familiar
with basic notions from the theory of computational complexity—in particular,
with the complexity classes P and NP, with the notion of polynomial-time algo-
rithms and polynomial-time (many-to-one) reductions, and with the notion of

4

NP-hardness and -completeness. For more details, we refer to textbooks on the
topic (see, e.g., the book by Arora and Barak [1]).

We review some basic notions from parameterized complexity theory—for
more details, see, e.g., the book by Downey and Fellows [13]. In parameterized
complexity theory, in addition to the size |x| of the input x of a problem, one con-
siders a problem parameter k. This parameter is intended to measure some type
of structure that is present in the input. The aim then is to obtain fixed-parameter
tractable algorithms (or FPT-algorithms), that have running time f(k) · |x|O(1),
for some computable function f . This is in contrast with the central notion of
tractable algorithms in classical complexity theory: polynomial-time algorithms,
i.e., algorithms running in time |x|O(1). The class of all parameterized problems
that admit an FPT-algorithm is denoted by FPT.

In addition to the class FPT, parameterized complexity theory features pa-
rameterized intractability classes. These are classes containing problems that are
considered to be unlikely to have fixed-parameter tractable algorithms. The most
prominent examples of such classes are the classes W[t] for t ∈ {1, 2, 3, . . . }. For
a formal definition of these classes, we refer to textbooks (e.g., [13] or [15]). It
holds that W[1] ⊆W[2] ⊆W[3], and it is widely believed that FPT 6= W[1].

To give evidence that a problem is not fixed-parameter tractable, one typi-
cally uses FPT-reductions to show that the problem is W[t]-hard for some t. If the
problem admitted an FPT-algorithm, then this would imply that FPT = W[t]—
in other words, under the assumption that FPT 6= W[t], the problem is not
fixed-parameter tractable. An FPT-reduction from a parameterized problem Q1

to a parameterized problem Q2 is a function R that takes an input (x, k) of Q1,
and produces an input (x′, k′) of Q2, such that: (i) (x, k) ∈ Q1 if and only
if (x′, k′) ∈ Q2; (ii) runs in time f(k) · |x|O(1), for some computable function f ;
and (iii) k′ ≤ g(k), for some fixed computable function g. A problem Q is W[t]-
hard for some t, if every problem in W[t] can be FPT-reduced to Q.

Preferences. Let N be a set of agents and I a set of indivisible items that we
wish to allocate to the agents in some way. We assume that each agent a ∈ N
has strict preferences over the items, expressed by a preference list La that is a
linear ordering of I, and we set L = {La | a ∈ N}. We call the triple (N, I, L)
a (preference) profile. We denote by La[i : j] the subsequence of La containing
the items ranked by agent a between the positions i and j, inclusively, for any
1 ≤ i ≤ j ≤ |I|. Also, for a subset X ⊆ I of items we denote by LaX the restriction
of La to the items in X.

Proportionality. Interestingly, Pruhs and Woeginger [23, Lemma 1] gave an
equivalent definition for the concept of proportionality (as described in Section 1)
that is more direct and practical: we say that an allocation π : I → N mapping
items to agents is proportional if for any integer i ∈ {1, . . . , |I|} and any agent
a ∈ N , the number of items from La[1 : i] allocated to a by π is at least i/|N |.
Note that, in particular, this means that in a proportional allocation, each agent
needs to get his or her first choice. Another important observation is that a
proportional allocation can only exist if the number of items is a multiple of |N |,
since each agent needs to obtain at least |I|/|N | items.

5

Control by deleting items. Given a profile P = (N, I, L) and a subset U
of items, we can define the preference profile P − U obtained by removing all
items in U from I and from all preference lists in L. Let us define the Propor-
tionality by Item Deletion (PID) problem as follows. The input of PID
is a pair (P, k) where P = (N, I, L) is a preference profile and k is an integer.
We call a set U ⊆ I of items a solution for P if its removal from I allows for
proportionality, that is, if there exists a proportional allocation π : I \ U → N
for P − U . The task in PID is to decide if there exists a solution for P of size
at most k. Note that the number of items remaining after the removal of the
solution must be a multiple of |N |.

3 Unbounded Number of Agents

The existence of a proportional allocation can be decided in polynomial time
by checking whether a certain bipartite graph corresponding to our instance
admits a perfect matching [23, Lemma 4]. Therefore the Proportional Item
Deletion problem is solvable in |I|O(k) time by the brute force algorithm that
checks for each subset of I of size at most k whether it is a solution. In terms of
parameterized complexity, this means that PID parameterized by the solution
size k is in XP, i.e., the class of parameterized problems that can be solved in
polynomial time for any constant value of the parameter.

Clearly, such a brute force approach may only be feasible if the number k of
items we are allowed to delete is very small. Searching for a more efficient al-
gorithm, one might ask whether the problem becomes fixed-parameter tractable
with k as the parameter, i.e., whether there exists an algorithm for PID that,
for an instance (P, k) runs in time f(k)|P|O(1) for some computable function f .
Such an algorithm could be much faster in practice compared to the brute force
approach described above.

Unfortunately, the next theorem shows that finding such a fixed-parameter
tractable algorithm seems unlikely, as PID is W[2]-hard with parameter k. Hence,
deciding whether the deletion of k items can result in a profile admitting a pro-
portional allocation is computationally intractable even for small values of k. (Af-
ter showing W[2]-hardness, we will show that this result can in fact be strength-
ened to W[3]-hardness. We present the W[2]-hardness result for two reasons:
(1) it is conceptually simpler than the W[3]-hardness proof; and (2) its proof
will be useful for showing other lower bounds—namely, Theorems 3 and 5.)

Theorem 1. Proportionality by Item Deletion is NP-complete and W[2]-
hard when parameterized by the size k of the desired solution.

Proof. We are going to present an FPT-reduction from the W[2]-hard problem
k-Dominating Set, where we are given a graph G = (V,E) and an integer k,
and the task is to decide if G contains a dominating set of size at most k; a
vertex set D ⊆ V is dominating in G if each vertex in V is either in D or has a
neighbor in D. We denote by N(v) the set of neighbors of some vertex v ∈ V ,

6

and we let N [v] = N(v)∪{v}. Thus, a vertex set D is dominating if N [v]∩D 6= ∅
holds for each v ∈ V .

Let us construct an instance IPID = (P, k) of PID with P = (N, I, L) as
follows. We let N contain 3n + 2m + 1 agents where n = |V | and m = |E|: we
create n+1 so-called selection agents s1, . . . , sn+1, and for each v ∈ V we create
a set Av = {ajv | 1 ≤ j ≤ |N [v]| + 1} of vertex agents. Next we let I contain
2|N | + k items: we create distinct first-choice items f(a) for each agent a ∈ N ,
a vertex item iv for each v ∈ V , a dummy item djv for each vertex agent ajv ∈ N ,
and k + 1 additional dummy items c1, . . . , ck+1.

Let F denote the set of all first-choice items, i.e., F = {f(a) | a ∈ N}. For
any set U ⊆ V of vertices in G, let IU = {iv | v ∈ U}; in particular, IV denotes
the set of all vertex items.

Before defining the preferences of agents, we need some additional notation.
We fix an arbitrary ordering ≺ over the items, and for any set X of items we let
[X] denote the ordering of X according to ≺. Also, for any a ∈ N , we define the
set F ai to contain the first i elements of [F \{f(a)}], for any i ∈ {1, . . . , |N |−1}.
We end preference lists below with the symbol ‘···’ meaning all remaining items
not listed explicitly, ordered according to ≺.

Now we are ready to define the preference list La for each agent a.

– If a is a selection agent a = si with 1 ≤ i ≤ n− k, then let

La : f(a), [F a|N |−n], [IV]︸ ︷︷ ︸
|N | items

, [F a|N |−n+k \ F
a
|N |−n]︸ ︷︷ ︸

k items

, ···

– If a is a selection agent a = si with n− k < i ≤ n+ 1, then let

La : f(a), [F a|N |−n], [IV]︸ ︷︷ ︸
|N | items

, [F a|N |−n+k−1 \ F
a
|N |−n]︸ ︷︷ ︸

k − 1 items

, ci−(n−k), ···

– If a is a vertex agent a = ajv for some v ∈ V with 1 ≤ j ≤ |N [v]| + 1, then
let

La : f(a), [F a|N |−|N [v]|], [IN [v]]︸ ︷︷ ︸
|N | items

, djv, ···

This finishes the definition of our PID instance IPID.
Suppose that there exists a solution S of size at most k to IPID and a pro-

portional allocation π mapping the items of I \ S to the agents in N . Observe
that by |I| = 2|N |+ k, we know that S must contain exactly k items.

First, we show that S cannot contain any item from F . For contradiction,
assume that f(a) ∈ S for some agent a. Since the preference list of a starts with
more than k items from F (by N−n > n > k), the first item in LaI\S must be an

item f(b) for some b ∈ N , b 6= a. The first item in LbI\S is exactly f(b), and thus

any proportional allocation should allocate f(b) to both a and b, a contradiction.
Next, we prove that S ⊆ IV . For contradiction, assume that S contains less

than k items from IV . Then, after the removal of S, the top |N | + 1 items in

7

the preference list LsiI\S of any selection agent si are all contained in IV ∪ F .

Hence, π must allocate at least two items from IV ∪ F to si, by the definition
of proportionality. Recall that for any agent a, π allocates f(a) to a, meaning
that π would need to distribute the n items in IV among the n + 1 selection
agents, a contradiction. Hence, we have S ⊆ IV .

We claim that the k vertices D = {v | iv ∈ S} form a dominating set in G.
Let us fix a vertex v ∈ V . For sake of contradiction, assume that N [v] ∩D = ∅,
and consider any vertex agent a in Av. Then the top |N |+ 1 items in LaI\S are

the same as the top |N |+ 1 items in La = LaI (using that S ∩F = ∅), and these
items form a subset of IN [v] ∪ F for every a ∈ Av. But then arguing as above,
we get that π would need to allocate an item of IN [v] to each of the |N [v]| + 1
vertex agents in Av; again a contradiction. Hence, we get that N [v] ∩D 6= ∅ for
each v ∈ V , showing that D is indeed a dominating set of size k.

For the other direction, let D be a dominating set of size k in G, and let
S denote the set of k vertex items {iv | v ∈ D}. To prove that S is a solution
for IPID, we define a proportional allocation π in the instance obtained by re-
moving S. First, for each selection agent si with 1 ≤ i ≤ n− k, we let π allocate
f(si) and the ith item from IV \D to si . Second, for each selection agent sn−k+i

with 1 ≤ i ≤ k + 1, we let π allocate f(sn−k+i) and the dummy item ci to
sn−k+i. Third, π allocates the items f(ajv) and djv to each vertex agent ajv ∈ N .

It is straightforward to check that π is indeed proportional.
For proving NP-completeness, observe that the presented FPT-reduction is

a polynomial-time reduction as well, so the NP-hardness of Dominating Set
implies that PID is NP-hard as well; since for any subset of the items we can
verify in polynomial time whether it yields a solution, containment in NP follows.

ut

As mentioned above, we can in fact strengthen the W[2]-hardness result of
Theorem 1 and show that PID is even W[3]-hard with respect to parameter k.

Theorem 2. Proportionality by Item Deletion is W[3]-hard when pa-
rameterized by the size k of the desired solution.

Proof. We are going to present an FPT-reduction from the W[3]-hard wcs−[3]
problem, which is the weighted satisfiability problem for formulas of the form
ϕ =

∧m1

i=1

∨m2,i

j=1

∧m3,i,j

`=1 li,j,`, where each li,j,` is a negative literal [14, Theorem
4.13] (see also [11, 15]). Let (ϕ, k) be an instance of the weighted satisfiability
problem, where ϕ is a formula of the form described above; the task in wcs−[3]
is to decide whether there is a truth assignment of weight k that satisfies ϕ. Let
X = {x1, . . . , xn} be the set of variables occurring in ϕ—that is, n denotes the
number of variables in ϕ. We will construct an instance IPID = (P, k) of PID
with P = (N, I, L) as follows. We let N contain n + 1 +

∑m1

i=1m2,i agents: we
create n+ 1 so-called selection agents s1, . . . , sn+1, and for each 1 ≤ i ≤ m1 we
create a set Ai = {aji | 1 ≤ j ≤ m2,i} of verification agents. Next we let I contain
2|N |+ k items: we create distinct first-choice items f(a) for each agent a ∈ N ,
a variable item wu for each 1 ≤ u ≤ n, m2,i verification items yi,1, . . . , yi,m2,i

for each 1 ≤ i ≤ m1, and k + 1 dummy items c1, . . . , ck+1.

8

Let F denote the set of all first-choice items, i.e., F = {f(a) | a ∈ N}. For
any subset X ′ ⊆ X of variables, let WX′ = {wu | xu ∈ X ′}; in particular, WX

denotes the set of all variable items.
Before defining the preferences of agents, we need the additional notation

used also in the proof of Theorem 1. We fix an arbitrary ordering ≺ over the
items, and for any set Z of items we let [Z] denote the ordering of Z according
to ≺. Also, for any a ∈ N , we define the set F ai to contain the first i elements of
[F \{f(a)}], for any i ∈ {1, . . . , |N |−1}. Moreover, for any 1 ≤ i ≤ m1 we define
the sets Yi = {yi,1, . . . , yi,m2,i} and Y ′i = {yi,1, . . . , yi,m2,i−1}. We end preference
lists below with the symbol ‘···’ meaning all remaining items not listed explicitly,
ordered according to ≺.

Now we are ready to define the preference list La for each agent a.

– If a is a selection agent a = si with 1 ≤ i ≤ n− k, then let

La : f(a), [F a|N |−n], [WX]︸ ︷︷ ︸
|N | items

, [F a|N |−n+k \ F
a
|N |−n]︸ ︷︷ ︸

k items

, ···

– If a is a selection agent a = si with n− k < i ≤ n+ 1, then let

La : f(a), [F a|N |−n], [WX]︸ ︷︷ ︸
|N | items

, [F a|N |−n+k−1 \ F
a
|N |−n]︸ ︷︷ ︸

k − 1 items

, ci−(n−k), ···

– If a is a verification agent a = aji for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2,i, then let

La : f(a), [F a|N |−|Ci,j |−|Y ′i |+k−1], [Y ′i], [WCi,j]︸ ︷︷ ︸
|N |+ k − 1 items

, yi,m2,i , ···

where Ci,j = X \ {x ∈ X | li,j,` = ¬x for some 1 ≤ ` ≤ m3,i,j} is the set of
variables that do not occur in any literal li,j,`, for 1 ≤ ` ≤ m3,i,j .

This finishes the definition of our PID instance IPID.
Suppose that there exists a solution S of size at most k to IPID and a pro-

portional allocation π mapping the items of I \ S to the agents in N . Observe
that by |I| = 2|N |+ k, we know that S must contain exactly k items.

First, we show that S cannot contain any item from F . To derive a con-
tradiction, assume that f(a) ∈ S for some agent a. We can safely assume that
|N | − n > k and that |N | − n > m2,i for each 1 ≤ i ≤ m1. As a result, the
preference list of a starts with more than k items from F . Therefore, the first
item in LaI\S must be an item f(b) for some b ∈ N , b 6= a. Clearly, the first item

in LbI\S is exactly f(b), which means that any proportional allocation should

allocate f(b) to both a and b, which is a contradiction.
Next, we prove that S ⊆ WX . To derive a contradiction, assume that S

contains less than k items from WX . Then, after the removal of S, the top |N |+1
items in the preference list LsiI\S of any selection agent si are all contained in

WX ∪ F . Hence, π must allocate at least two items from WX ∪ F to each si, by

9

the definition of proportionality. Recall that for any agent a, π allocates f(a)
to a, meaning that π would need to distribute the n items in WX among the
n + 1 selection agents, which is a contradiction. Hence, we have S ⊆ WX . We
also get that π must allocate all items in WX \S∪{c1, . . . , ck+1} to the selection
agents.

Consider the truth assignment α : X → {0, 1} defined by letting α(xu) = 1 if
and only if wu ∈ S, for each xu ∈ X. Since |S| = k, the truth assignment α has
weight k. We show that α satisfies ϕ. To do so, we need to show that for each
1 ≤ i ≤ m1 it holds that α satisfies ϕi =

∨m2,i

j=1

∧m3,i,j

`=1 li,j,`. Take an arbitrary
1 ≤ i ≤ m1. To derive a contradiction, assume that for each 1 ≤ j ≤ m2,i it holds
that there is some 1 ≤ ` ≤ m3,i,j such that li,j,` is made false by α. Then for
each such 1 ≤ j ≤ m2,i it holds that |WCi,j

∩ S| < k. Then for each verification

agent aji , for 1 ≤ j ≤ m2,i it holds that the top |N |+1 items in LaI\S (for a = aji)

form a subset of Y ′i ∪WX ∪F . Then arguing as above, we get that π would need

to allocate an item of Y ′i to each of the |Yi| = |Y ′i | + 1 agents aji , which is a
contradiction. Since i was arbitrary, we can conclude that α satisfies ϕ.

For the other direction, let α : X → {0, 1} be a truth assignment of weight k
that satisfies ϕ, and let S denote the set of k variable items {wu | xu ∈
X,α(xu) = 1}. To prove that S is a solution for IPID, we define a proportional
allocation π in the instance obtained by removing S. First, for each selection
agent si with 1 ≤ i ≤ n−k, we let π allocate f(si) and the ith item from WX \S
to si. Second, for each selection agent sn−k+i with 1 ≤ i ≤ k+1, we let π allocate
f(sn−k+i) and the dummy item ci to sn−k+i. Then, for each 1 ≤ i ≤ m1, let
1 ≤ ji ≤ m2,i be some number such that α makes

∧m3,i,ji

`=1 li,ji,` true—we know
that such a ji exists for each i because α satisfies ϕ. For each verification agent
aji we let π allocate f(aji) and one item from Yi to aji as follows. If j = ji, we

let π allocate yi,m2,i
to aji ; if j < ji, we let π allocate yi,j to aji ; and if j > ji,

we let π allocate yi,j−1 to aji . It is straightforward to check that π is indeed
proportional. ut

Theorem 2 implies that we cannot expect an FPT-algorithm for PID with
respect to the parameter k, the number of item deletions allowed, unless FPT 6=
W[3]. Next we show that the brute force algorithm that runs in |I|O(k) time is
optimal, assuming the slightly stronger assumption FPT 6= W[1].

Theorem 3. There is no algorithm for PID that on an instance (P, k) with item
set I runs in f(k)|I|o(k)|P|O(1) time for some function f , unless FPT 6= W[1].5

Proof. Chen et al. [9] introduced the class of Wl[2]-hard problems based on
the notion of linear FPT-reductions. They proved that Dominating Set is
Wl[2]-hard, and that this implies a strong lower bound on its complexity: unless
FPT 6= W[1], Dominating Set cannot be solved in f(k)|V |o(k)(|V | + |E|)O(1)

time for any function f , where (V,E) is the input graph and k is the size of the
desired dominating set.

5 Here, we use an effective variant of “little o” (see, e.g. Flum and Grohe [15, Defini-
tion 3.22]).

10

Observe that in the FPT-reduction presented in the proof of Theorem 1, the
new parameter has linear dependence on the original parameter (in fact they co-
incide). Therefore, this reduction is a linear FPT-reduction, and consequentially,
PID is Wl[2]-hard. Hence, as proved by Chen et al. [9], PID on an instance (P, k)
with item set I cannot be solved in time f(k)|I|o(k)|P|O(1) time for any func-
tion f , unless FPT 6= W[1]. ut

If we want to optimize the running time not with respect to the number k
of allowed deletions but rather in terms of the total number of items, then
we can also give the following tight complexity result, under the Exponential
Time Hypothesis (ETH). This hypothesis, formulated in the seminal paper by
Impagliazzo, Paturi, and Zane [19] says that 3-Sat cannot be solved in 2o(n)

time, where n is the number of variables in the 3-CNF formula given as input.

Theorem 4. PID can be solved in O(2|I|) · |I|O(1) time, but unless the ETH
fails, it cannot be solved in 2o(|I|) time, where I is the set of items in the input.

Proof. To show that PID can be solved in O(2|I|) · |I|O(1) time, it suffices to
consider the brute force algorithm that iterates over all possible subsets of items
to delete, and for each such subset computes whether deleting it enables a pro-
portional allocation (using polynomial-time matching techniques as described by
Pruhs and Woeginger [23]). This algorithm runs in time O(2|I|) · |I|O(1).

Next, we show that PID cannot be solved in 2o(|I|) time, unless the ETH fails.
The so-called Sparsification Lemma proved by Impagliazzo et al. [19] implies that
assuming the ETH, 3-Sat cannot be solved in 2o(m) time, where m is the number
of clauses in the 3-CNF formula given as input. Since the standard reduction
from 3-Sat to Dominating Set transforms a 3-CNF formula with n variables
and m clauses into an instance (G,n) of Dominating Set such that the graph
G has O(m) vertices and maximum degree 3 (see, e.g., [25]), it follows that
Dominating Set on a graph (V,E) cannot be solved in 2o(|V |) time even on
graphs having maximum degree 3, unless the ETH fails.

Recall that the reduction presented in the proof of Theorem 1 computes from
each instance (G, k) of Dominating Set with G = (V,E) an instance (P, k)
of PID where the number of items is 3|V | + 2|E| + 1. Hence, assumming that
our input graph G has maximum degree 3, we obtain |I| = O(|V |) for the set I
of items in P. Therefore, an algorithm for PID running in 2o(|I|) time would
yield an algorithm for Dominating Set running in 2o(|V |) time on graphs of
maximum degree 3, contradicting the ETH. ut

3.1 Approximating PID

In view of the intractability results we have encountered sofar, it is natural to ask
whether an efficient approximation might exist for PID. For some value c ≥ 1,
we say that an algorithm A is an approximation for PID with ratio c if, for any
instance (P, k) of PID, A either returns a solution for P containing at most c · k
items, or correctly concludes that there is no solution for P of size k.

11

Unfortunately, the proof of Theorem 1 implies that we cannot hope for an
efficient approximation algorithm. Even if we do not aim for a constant-factor
approximation, that is, for a ratio c for some constant c, but allow for a ratio
|I|1−ε for some fixed ε > 0, we cannot expect an efficient algorithm.

Theorem 5. Let ε > 0 be a constant. If FPT 6= W [2], then there is no algorithm
that, given an instance (P, k) of PID with item set I, yields an approximation
for PID with ratio |I|1−ε and runs in FPT time with parameter k.

Proof. Let us suppose that A is an algorithm as described in the statement of
the theorem. We are going to use A to give an FPT-algorithm for the W[2]-hard
Dominating Set problem, implying FPT = W [2].

Let (G, k) be our instance of Dominating Set, and let n and m denote the
number of vertices and edges in G, respectively. We first apply the reduction
given in the proof of Theorem 1; let (P, k) be the constructed instance of PID
with P = (N, I, L). Recall that |N | = 3n + 2m + 1 and |I| = 2|N | + k. We
distinguish between two cases, depending on the relationship between |N | and k;
recall that ε is a positive constant.

First, if |N | < 3
1−ε
ε · k 1

ε , then we apply the brute force algorithm for Dom-
inating Set that selects k vertices in every possible way and checks whether
they form a dominating set. By n < |N |, this approach takes(

n

k

)
O(n+m) ≤

(
3

1−ε
ε · k 1

ε

)k
O(n+m)

time, which is fixed-parameter tractable with parameter k.

Second, assume 3
1−ε
ε · k 1

ε ≤ |N |. In this case, we apply algorithm A, which
either correctly concludes that there does not exist a solution of size k for P, or
returns a solution S of size at most |I|1−εk. Observe that by |I| = 2|N |+ k we
have

|S| ≤ |I|1−εk ≤ (3|N |)1−εk = |N |1−ε · 31−εk ≤ |N |1−ε · |N |ε = |N |

where the last inequality follows from our assumption on |N |.
Recall that P − S must contain a number of items that is a multiple of |N |,

as otherwise no proportional allocation may exist for P − S. Hence, |S| ≡ k
mod |N |, and thus |S| ≤ |N | implies that S must be a solution of size k. Hence,
A either finds a solution of size k for P, or reports that no such solution exists. By
the correctness of our reduction, a solution of size k for P implies the existence
of a dominating set of size k for G (in the proof of Theorem 1 we actually
determined such a set). Since A is an FPT-algorithm with parameter k, the
presented algorithm for Dominating Set is also FPT with parameter k. ut

Inspecting the proof of Theorem 5, one can observe that the necessity of
finding a solution such that the number of remaining items is a multiple of
|N | seems to be a major impediment when considering approximation for PID.
This led us to ask a different question: instead of approximating the size of the

12

solution, is it perhaps possible to approximate the number of items that each
agent ends up with in a proportional allocation? More formally, our task is the
following: given a profile P and some integer c, determine a set U of items with
|U | = c|N | such that U can be proportionally allocated to the set N of agents
(i.e., such that P − (I \ U) admits a proportional allocation).

Looking into the proofs of Theorems 1 and 2, we can immediately observe
that the case c = 2, that is, finding 2|N | items (yielding two items for each agent)
for which a proportional allocation exists, is already computationally intractable.

Corollary 1. Given a profile P with a set N of agents and a set I of items,
it is NP-hard to decide whether there exists a set of 2|N | items which can be
proportionally allocated to the agents of N .

We remark that Corollary 1 directly implies that it is NP-hard to approximate
the number of items each agent obtains in a proportional allocation with a ratio
better than 1

2 .
By contrast, there is a simple algorithm to decide whether we can find one

item for each agent in a proportional way.

Theorem 6. There exists an algorithm that given a profile P = (N, I, L) de-
termines in polynomial time a set U of |N | items that can be proportionally
allocated to the agents of N , whenever such a set U exists.

Proof. Suppose that S is a set of |I|−|N | items such that P−S is solvable. Then,
clearly, there cannot be two agents whose first-choice items in P − S coincide.
This simple observation leads us to the following algorithm. Starting from P,
we repeatedly search for a pair of agents whose first-choice items coincide. If
there exist such agents, then we remove their common first-choice item from P
(as this item must be contained in S), and proceed with the remaining profile.
Whenever we reach a profile such that no two agents’ first-choice items coincide,
then we allocate to each agent its first-choice item (and we delete all remaining
items).

Since we only delete items from S (except for the deletion of superfluous items
performed after an appropriate allocation is found), this algorithm returns a set
|N | of items as promised, unless P admits no solution S of size at most |I|−|N |.
The running time is clearly polynomial in |P|. ut

4 Three Agents

It is known that PID for two agents is solvable in polynomial-time: if there
are only two agents, then an allocation is proportional if and only it is envy-
free [3]. Since the problem of obtaining an envy-free allocation by item deletion
is polynomial-time solvable (in case of two agents) [4, 7], this implies tractability
of PID for |N | = 2 immediately. In this section, we generalize this result by
proving that PID is polynomial-time solvable for three agents.

In what follows, we will assume that our profile P contains three agents,
so let N = {a, b, c}. In Section 4.1, we will define the necessary basic concepts

13

that we will need. Then, in Section 4.2 we present a high-level overview of our
algorithm. In Section 4.3, we will look at partial solutions and define the notion
of branching sets. Finally, in Section 4.4, when all necessary notions are in place,
we present our algorithm.

4.1 Basic Concepts: Prefixes and Minimal Obstructions

We begin by defining a graph representation of our profile P which can be used to
determine whether P admits a proportional allocation. The following construc-
tion is identical to the one proposed by Pruhs and Woeginger [23, Section 4] and
later generalized by Aziz et al. [3, Theorem 6].

Graph underlying a profile. Let us define the underlying graph G of our
profile P of PID as the following bipartite graph. The vertex set of G consists
of the set I of items on the one side, and a set S on the other side, containing
all pairs of the form (x, i) where x ∈ N is an agent and i ∈ {1, . . . , d|I|/|N |e}.
Such pairs are called slots. We can think of the slot (x, i) as the place for the
ith item that agent x receives in some allocation. We say that an item is eligible
for a slot (x, i), if it is contained in Lx[1 : |N |(i − 1) + 1]. In the graph G,
we connect each slot with the items that are eligible for it; see Figure 1 for an
illustration. Observe that any proportional allocation corresponds to a perfect
matching in G; for the sake of completeness, we will prove this in Lemma 1.

Since our approach to solve PID with three agents is to apply dynamic pro-
gramming, we need to handle partial instances of PID. Let us define now the
basic necessary concepts.

Prefixes. For any triple (ia, ib, ic) with 1 ≤ ia, ib, ic ≤ |I| we define a prefix
Q = P[ia, ib, ic] of P as the triple (La[1 : ia], Lb[1 : ib], L

c[1 : ic]), listing only the
first ia, ib, and ic items in the preference list of agents a, b, and c, respectively.
We call (ia, ib, ic) the size of Q and denote it by size(Q).

We say that a prefix Pi = P[ia, ib, ic] is contained in another prefix Pj =
P[ja, jb, jc] if jx ≤ ix for each x ∈ N ; the containment is strict if jx < ix for
some x ∈ N . We say that Pi and Pj are intersecting if none of them contains
the other; we call the unique largest prefix contained both in Pi and in Pj , i.e.,
the prefix P[min(ia, ja),min(ib, jb),min(ic, jc)], their intersection, and denote it
by Pi ∩ Pj . We may also compare prefixes of different profiles, deciding their
relationship (i.e., whether one contains the other, or they intersect) solely based
on their sizes.

For some prefixQ = P[ia, ib, ic], let I(Q) denote the set of all items appearing
in Q. We define the set of slots appearing in Q as S(Q) = {(x, i) | 1 ≤ i ≤ d(ix+
2)/3e, x ∈ N}. We also define the graph G(Q) underlying Q as the subgraph
of G where a slot (x, i) ∈ S(Q) is adjacent to an item u ∈ I(Q) if u appears
in Lx[1 : ix] and is eligible for (x, i) in G; see Figure 1 for an illustration. Note
that any slot (x, i) where 1 ≤ i ≤ b(ix + 2)/3c is connected to the same items in
G(Q) as in G; we say that such slots are complete in Q. By contrast, if ix 6≡ 1
mod 3, then the slot (x, d(ix + 2)/3e) is connected to fewer items in G(Q) than
in G. Hence, the only slots which may be incomplete are the last slots in Q, that
is, the slots (x, d(ix + 2)/3e), x ∈ N . See Figure 1 for an illustration.

14

Profile P:

a: 1, 3, 2, 4.
b: 3, 1, 4, 2.
c: 2, 4, 1, 3.

Prefix Q = P[2, 4, 3]:

a: 1, 3.
b: 3, 1, 4, 2.
c: 2, 4, 1.

Graph G(P): Graph G(Q):

(a, 1) (b, 1) (c, 1) (a, 2) (b, 2) (c, 2)

1 2 3 4

(a, 1) (b, 1) (c, 1) (a, 2) (b, 2) (c, 2)

1 2 3 4

Fig. 1. Illustration for the graph underlying a profile P and its prefix Q. Note that
slots (a, 2) and (c, 2) are incomplete in G(Q).

Solvability. We say that a prefix Q is solvable, if the underlying graph G(Q) has
a matching that covers all its complete slots. Hence, a prefix is solvable exactly
if there exists an allocation π from I(Q) to N that satisfies the condition of
proportionality restricted to each index in Q: for any agent x ∈ N and any
index i ∈ {1, . . . , ix}, the number of items from Lx[1 : i] allocated by π to x is
at least i/3.

Minimal obstructions. We say that a prefix Q is a minimal obstruction, if
it is not solvable, but all prefixes strictly contained in Q are solvable. Observe
that all slots in a minimal obstruction must be complete. Furthermore, Hall’s
Theorem tells us that a minimal obstruction must have exactly one item less
than the number of slots, so |I(Q)| = |S(Q)| − 1. We will call any prefix Q that
is not solvable an obstruction; note that any obstruction that does not strictly
contain another obstruction is, indeed, a minimal obstruction in the above sense.
See Figure 2 for an illustration. Lemma 1 shows that a minimal obstruction, if
existing, can be found efficiently; Lemma 2 states some useful observations about
minimal obstructions.

Lemma 1. Profile P admits a proportional allocation if and only if the under-
lying graph G contains a perfect matching. Also, in O(|I|3) time we can find
either a proportional allocation for P, or a minimal obstruction Q in P.

Proof. We prove this lemma for arbitrary |N |.
First, it is easy to see that any proportional allocation π immediately yields

a perfect matching M for G: for each x ∈ N and each i ∈ {1, . . . , |I|/|N |}
(note that |I|/|N | ∈ N since π is proportional), we simply put into M the edge
connecting slot (x, i) with the ith item p(x,i) received by x; naturally, we rank
items received by x according to x’s preferences. The proportionality of π implies
that p(x,i) is contained in the top (i− 1)|N |+ 1 items in Lx, and thus is indeed
eligible for the slot (x, i).

For the other direction, consider a perfect matching M in G. Then giving
each agent x all the items assigned to the slots {(x, i) | i ∈ {1, . . . , |I|/|N |}

15

by M we obtain a proportional allocation π: for each agent x and index j ∈
{1, . . . , |N |}, our allocation π assigns at least j/|N | items to x from Lx[1 : j],
namely the items matched by M to the slots {(x, i) | 1 ≤ i ≤ dj/|N |e}. Since
(dj/|N |e− 1)|N |+ 1 ≤ j, even the last item eligible for (x, dj/|N |e) is contained
in Lx[1 : j], ensuring that π is indeed proportional.

Therefore, we can check whether there exists a proportional allocation for P
by finding a maximum matching in the bipartite graph G. Using the Hopcroft–
Karp algorithm [17], this takes O(|I|5/2) time, since G has 2|I| vertices. If no
perfect matching exists in G, then we can find a minimal obstruction using
a variant of the classical augmenting path method that starts from an empty
matching, and increases its size by finding augmenting paths one by one. Namely,
at each iteration we pick an unmatched starting slot (x, i) for which all slots in
{(x′, j) | x′ ∈ N, 1 ≤ j < i} are already matched, and search for an augmenting
path that starts at (x, i).

Suppose that this algorithm stops at an iteration where the starting slot is
(x, i), and no augmenting path starts at (x, i) for the current matching M . Let
SH be the set of all slots reachable by an alternating path in G from (x, i),
and let IH be the set of all items eligible for any slot in SH . It is well known
that SH and IH violate Hall’s condition: |IH | < |SH |. Moreover, the slots in SH
“induce” a prefix in the sense that there exists a prefix Q with S(Q) = SH . To
prove this, it suffices to show that if (y, j) ∈ SH and j′ ∈ {1, . . . , j − 1}, then
(y, j′) ∈ SH . By our strategy for picking starting slots, we know j′ < j ≤ i,
implying that (y, j′) is matched by M . Let q be the item assigned to it by M ;
note that q is eligible for (y, j) as well. To obtain an alternating path from (x, i)
to (y, j′), we can take any alternating path from (x, i) to (y, j), and append the
two-edge path from (y, j) to (y, j′) through q. Hence, there indeed exists a prefix
Q with S(Q) = SH ; we pick such a Q containing only complete slots. Using
standard arguments from matching theory, it is straightforward to check that Q
is a minimal obstruction.

Each iteration can be performed in O(|I|2) time (e.g., with a BFS), and there
are at most |I| steps, so the algorithm runs in O(|I|3) time. ut

Lemma 2. Let Q = P[ia, ib, ic] be a prefix of P that is a minimal obstruction.
Then ia ≡ ib ≡ ic ≡ 1 mod 3, |I(Q)| = (ia + ib + ic)/3 + 1, and either

(i) ia = ib = ic, or

(ii) ix = iy = iz+3 for some choice of agents x, y, and z with {x, y, z} = {a, b, c}.

Moreover, if (ii) holds, then Lx[1 : ix] and Ly[1 : iy] contain exactly the same
item set, namely I(Q).

Proof. First, observe that if ia 6≡ 1 mod 3, then the set of complete slots is the
same in Q as in P[ia − 1, ib, ic], contradicting the minimality of Q. Thus, we
have ia ≡ 1 mod 3, and we get ib ≡ ic ≡ 1 mod 3 analogously.

Second, let us consider the graph G(Q) underlying our prefix. Since Hall’s
condition fails for the set S(Q) of (complete) slots but, by minimality, it holds

16

for any proper subset of these slots, we know that

|I(Q)| = |S(Q)|−1 =

⌈
ia + 2

3

⌉
+

⌈
ib + 2

3

⌉
+

⌈
ic + 2

3

⌉
−1 =

ia + ib + ic
3

+1 (1)

where the last equality follows from the first claim of the lemma. Let us assume
ia ≥ max{ib, ic}. Note that if neither (i) nor (ii) holds, then by the maximality
of ia and the first claim of the lemma we obtain ia+ ib+ ic ≤ 3ia−6, from which
(1) implies |I(Q)| ≤ ia − 1. However, La[1 : ia] contains only items from I(Q),
which would imply that some item appears twice in La[1 : ia], a contradiction.

To see the last claim of the lemma, suppose ia = ib = ic+3. Then (1) implies
|I(Q)| = ia = ib, and hence La[1 : ia] (and also Lb[1 : ib]) must contain each
item in I(Q) exactly once. ut

Based on Lemma 2, we define the shape of a minimal obstruction Q as
either straight or slant, depending on whether Q fulfills the conditions (i) or
(ii), respectively. More generally, we also say that a prefix has straight or slant
shape if it fulfills the respective condition. Furthermore, we define the boundary
items ofQ, denoted by δ(Q), as the set of all items that appear once or twice (but
not three times) in Q. Figure 2 depicts a minimal obstruction of straight shape,
while Figure 3 shows one of slant shape; both examples indicate the boundary
of the minimal obstruction as well.

Lemma 3. Let Q be a prefix of P that is a minimal obstruction. Then the
boundary of Q contains at most three items: |δ(Q)| ≤ 3.

Proof. We make use of Lemma 2. First, if Q has a straight shape, so Q = P[i, i, i]
for some index i, then |S(Q)| = i + 2. Since Q is a minimal obstruction, by
Lemma 2 we get |I(Q)| = i + 1. However, each agent’s list within Q contains
exactly i items, yielding that there is exactly one position outside Q in each
agent’s list where an item of I(Q) occurs. Hence, |δ(Q)| ≤ 3 follows in this case.

Second, assume thatQ has a slant shape, sayQ = P[i, i, i−3] for some index i
(the two remaining cases are analogous). Then Lemma 2 implies |I(Q)| = i and
that both La[1 : i] and Lb[1 : i] contain all the i items in I(Q), but Lc[1 : i− 3]
misses exactly three items from I(Q). Hence, there are exactly three occurrences
of items listed outside Q, each in the list of agent c, meaning |δ(Q)| = 3. ut

4.2 High-level overview of our algorithm

Having in place the most basic definitions, we are now able to give an intuition
about how our algorithm works. The main idea is to repeatedly find a minimal
obstruction, delete certain items from it to render it solvable (i.e., to ensure
that the remainder admits a proportional allocation), and then proceed with the
modified instance.

However, we are not able to immediately tell which items should be deleted
from the current minimal obstruction Q, as such a decision may have con-
sequences later, when we are dealing with subsequent minimal obstructions.

17

Profile P:

a: 1, 4, 5, 3, 2, 6, 7.
b: 2, 1, 3, 4, 6, 5, 7.
c: 3, 1, 2, 5, 7, 4, 6.

Graph G(P) with the minimal obstruction Q:

(a, 1) (b, 1) (c, 1) (a, 2) (b, 2) (c, 2) (a, 3) (b, 3) (c, 3)

1 2 3 4 5 6 7

Minimal obstruction Q:

a: 1, 4,5, 3.
b: 2, 1, 3,4.
c: 3, 1,2,5.

Q− {1}:
a: 4, 5, 3.
b: 2, 3, 4.
c: 3, 2, 5.

Q− {4}:
a: 1, 5, 3.
b: 2, 1, 3.
c: 3, 1, 2, 5.

Q− {5}:
a: 1, 4, 3.
b: 2, 1, 3, 4.
c: 3, 1, 2.

Q− {1, 4}:
a: 5, 3.
b: 2, 3.
c: 3, 2, 5.

Q− {1, 5}:
a: 4, 3.
b: 2, 3, 4.
c: 3, 2.

Q− {4, 5}:
a: 1, 3.
b: 2, 1, 3.
c: 3, 1, 2.

Fig. 2. Illustration depicting a profile P with the graph G(P) (edges incident to the
last slots are grey only to help visibility). The matching in G(P) shown in bold is the
one found by the algorithm of Lemma 1; observe that there is no augmenting path from
(c, 2). The slots reachable in G(P) by alternating paths from slot (c, 2) together with all
items eligible for them (as depicted in G(P) by the dashed trapezoid) yield the minimal
obstruction Q of straight shape. The boundary of Q is δ(Q) = {2, 4, 5} (emphasized
in bold). There are six partial solutions for Q of size at most 2, namely {1}, {4}, {5},
{1, 4}, {1, 5}, and {4, 5}. Each partial solution U is witnessed by an allocation πU

showing that Q−U is solvable; in each (partial) preference list for Q−U , we indicated
the items allocated by πU to the given agent by underlining them.

Therefore, instead of picking just one solution, we apply a bounded search tree
approach: at each minimal obstruction, we perform a branching, and pursue
several possible ways to delete a set of items to make Q solvable. To obtain a
polynomial-time algorithm, we must bound the size of our search tree; for this
we need several ideas.

Bounding the number of branches. In order to bound the number of branches
that we have to investigate in a branching, we use the important fact stated by
Lemma 4 that any minimal solution removes at most two items from a minimal
obstruction. This insight is of crucial importance in our algorithm, as it yields a
polynomial bound on the number of branches, namely O(|I|2).

Bounding the size of the search tree. Although our search tree algorithm
has a recursive structure, we apply a dynamic programming technique to limit
the number of recursive calls, i.e., the number of nodes in the search tree.

18

To this end, we define an equivalence relation between partial solutions, cor-
responding to nodes in the search tree. Intuitively, two partial solutions are
equivalent if they can be extended in the same way into a solution. It turns out
that we can determine sufficient conditions that guarantee equivalence. These
conditions are somewhat technical, but they essentially ensure that two deletions
have the same effect with respect to any possible minimal obstruction that may
arise later during the run of the algorithm.

These conditions allow us to classify partial solutions into equivalence classes
whose number is bounded by a polynomial; this results in a polynomial running
time for our algorithm.

4.3 Partial Solutions and Branching Sets

Partial solutions. For a prefix Q and a set U of items, we define Q − U in
the natural way: by deleting all items of U from the (partial) preference lists
of the prefix (note that the total length of the preference lists constituting the
prefix may decrease). We say that an item set Y ⊆ I(Q) is a partial solution
for Q if Q − Y is solvable. See again Figure 2 or 3 for an example. Observe
that for any item set Y we can check whether it is a partial solution for Q by
checking whether all complete slots can be covered by a matching in the graph
corresponding to Q− Y .

Branching set. To solve PID we will repeatedly apply a branching step: when-
ever we encounter a minimal obstruction Q, we shall consider several possible
partial solutions for Q, and for each partial solution Y we try to find a solu-
tion U for P such that U ∩ I(Q) = Y . To formalize this idea, we say that a
family Y containing partial solutions for a minimal obstruction Q is a branching
set for Q, if there exists a solution U of minimum size for the profile P such
that U ∩ I(Q) ∈ Y. Such a set is exactly what we need to build a search tree
algorithm for PID.

Lemma 4 shows that we never need to delete more than two items from any
minimal obstruction. This will be essential for constructing a branching set.

Lemma 4. Let Q be a minimal obstruction in a profile P, and let U denote an
inclusion-wise minimal solution for P. Then |U ∩ I(Q)| ≤ 2.

Proof. Let UQ := U ∩ I(Q), and let us assume |UQ| ≥ 3 for contradiction. We
are going to select a set Y of three items from UQ for which we can prove that
U \ Y is a solution for P, contradicting the minimality of U .

We rank the items of UQ according to the index of the first slot in which
they appear in P: we say that an item u appears at i, if i is the smallest index
such that u is eligible for a slot (x, i) for some x ∈ N . If there exist three items
y1, y2, and y3 in UQ appearing strictly earlier (i.e., at a smaller index) than all
other items in UQ, then we let Y = {y1, y2, y3}.

Otherwise, we apply the following procedure to choose Y . Let Y1 be the set
of items in UQ that appear at the earliest index, say i1. We select y1 from Y1 by
favoring items eligible for more than one slot from {(a, i1), (b, i1), (c, i1)}; if there

19

Profile P:

a: 1, 2, 3, 4, 7, 9, 8, x, 5, 6, y, z, v.
b: 2, 1, 3, 5, 8, 9, 4, 6, x, 7, z, y, v.
c: 3, 4, 5, 6, 8, 1, 9, 2, x, v, y, z, 7.

Minimal obstruction Q:

a: 1, 2, 3, 4, 7, 9, 8, x, 5, 6.
b: 2, 1, 3, 5, 8, 9, 4, 6,x,7.
c: 3, 4, 5, 6, 8, 1, 9.

Sets {3}, {4}, and {7} are solutions for P:

P − {3}:
a: 1, 2, 4, 7, 9, 8, x, 5, 6, y, z, v.

b: 2, 1, 5, 8, 9, 4, 6, x, 7, z, y, v.
c: 4, 5, 6, 8, 1, 9, 2, x, v, y, z, 7.

P − {4}:
a: 1, 2, 3, 7, 9, 8, x, 5, 6, y, z, v.

b: 2, 1, 3, 5, 8, 9, 6, x, 7, z, y, v.
c: 3, 5, 6, 8, 1, 9, 2, x, v, y, z, 7.

P − {7}:
a: 1, 2, 3, 4, 9, 8, x, 5, 6, y, z, v.

b: 2, 1, 3, 5, 8, 9, 4, 6, x, z, y, v.
c: 3, 4, 5, 6, 8, 1, 9, 2, x, v, y, z.

Set {5} is a partial solution for Q, but not a solution for P:

Q− {5}:
a: 1, 2, 3, 4, 7, 9, 8, x, 6.
b: 2, 1, 3, 8, 9, 4, 6, x, 7.
c: 3, 4, 6, 8, 1, 9.

P − {5}:
a: 1, 2, 3, 4, 7, 9, 8, x, 6, y, z, v.
b: 2, 1, 3, 8, 9, 4, 6, x, 7, z, y, v.
c: 3, 4, 6, 8, 1, 9, 2, x, v, y, z, 7.

Fig. 3. Illustration depicting a profile P containing a minimal obstruction Q of slant
shape. Proportional allocations, where existent, are indicated by underlining. We in-
vestigate four partial solutions, {3}, {4}, {5} and {7}, for Q. The boundary of Q is
δ(Q) = {2, 7, x} (emphasized in bold). Deleting either 3, 4, or 7 yields a solution for P,
but deleting item 5 does not; we have depicted a minimal obstruction in P − {5}.

are still several possibilities to choose y1, then we select it arbitrarily. Similarly,
let Y2 be the set of earliest appearing items in UQ\{y1}, appearing at some index
i2. We pick an item y2 from Y2 by favoring items eligible for more than one slot
from {(a, i2), (b, i2), (c, i2)}; again, if there are still several possibilities to choose
y2, then we select it arbitrarily. Note that we use the notion of eligibility based
on the original preference lists in P.

To choose an item y3 from the set Y3 of the earliest appearing items in
UQ \ {y1, y2}, we create the profile P3 = P − (U \ {y1, y2}). If there exists a
minimal obstruction in P3 strictly contained in Q, then we fix such a minimal
obstruction Q3, and we choose an item y3 ∈ Y3 eligible for a slot of S(Q3).
Otherwise we choose y3 from Y3 arbitrarily. Intuitively, we choose y3 so as to
overcome the possible obstructions obtained when putting y1 and y2 back into
our instance, and our strategy for this is simply to choose an item lying within
any such obstruction. Observe that if the minimal obstruction Q3 exists, then
(1) since there is no obstruction strictly contained in Q in the profile P − UQ,
there must exist some item in UQ\{y1, y2} that is eligible for some slot in S(Q3);

20

and (2) if u appears earliest in P among all such items, then u ∈ Y3. To see this,
let (x, i) be the first slot in S(Q3) for which u is eligible in P3. By the claim of
Lemma 2 on the shape of a minimal obstruction, all slots preceding (x, i) belong
to Q3 as well, that is, the prefix P<i3 = P3[3i − 5, 3i − 5, 3i − 5] “induced” by
these slots in P3 is contained in Q3. Thus, by our choice of u, we get that P<i3

is a prefix of P as well, implying that no item of UQ \ {y1, y2} appears earlier in
P than u. Hence, u ∈ Y3, showing that y3 is well-defined.

Setting Y = {y1, y2, y3}, we finish our proof by proving that U \ Y is a
solution for P. For contradiction, suppose that R is a minimal obstruction in
P ′ = P − (U \ Y).

First, suppose that R contains all items in Y . As U is a solution, the profile
R− Y is solvable, and hence contains at least as many items as complete slots.
Note that adding the items of Y into the profile R − Y means adding exactly
three new items and at most three new complete slots (since each agent’s list
contains at most three more items, resulting in at most one extra complete slot
per agent). Hence, R has at least as many items as slots, contradicting the
assumption that R is a minimal obstruction.

Hence we know that R does not contain all items in Y . By Lemma 2, R
is then strictly contained6 in Q, and by the minimality of Q we get that R
must contain an item from {y1, y2, y3}. We claim that if R contains yh for some
h ∈ {2, 3}, then it contains all items yj with 1 ≤ j < h. Since yj appears not
later than yh, the only possible way for R to contain yh but not yj would be the
following: yj and yh appear at the same slot number i, but R has a slant shape
and thus only contains two slots from Si := {(x, i) | x ∈ N}, missing exactly the
(unique) slot where yj appears. However, since R is a minimal obstruction, yh
must appear at both remaining slots from Si by the last statement of Lemma 2,
which contradicts our choice of yj .

This leaves us with the case when y3 is not contained in R (for y3 ∈ I(R)
would imply Y ⊆ I(R), which we already proved not to be the case). Then R is
not only a prefix of P ′ but also of P3. Assume w.l.o.g. that y3 appears at index
j in the slot (c, j). Since R is a minimal obstruction in P3 strictly contained
in Q, we know that a minimal obstruction Q3 was found when choosing y3,
but R 6= Q3. Thus, both R and Q3 are minimal obstructions of slant shape,
with R containing the slots (a, j) and (b, j) but not (c, j), and Q3 containing
the slot (c, j) and one of (a, j) and (b, j), say (b, j). This means that R =
P3[3j − 2, 3j − 2, 3j − 5] and Q3 = P3[3j − 5, 3j − 2, 3j − 2]. Note also that
by the last statement of Lemma 2, we know

LaI\(U\{y1,y2})[1 : 3j − 2] = LbI\(U\{y1,y2})[1 : 3j − 2] = LcI\(U\{y1,y2})[1 : 3j − 2].

This means that P3[3j − 2, 3j − 2, 3j − 2] contains exactly 3j − 2 items.
Observe that deleting {y1, y2} from profile P3[3j−2, 3j−2, 3j−2] results in a

prefix T of P3−{y1, y2} = P−U of size [3j−4, 3j−4, 3j−4] that contains exactly

6 Seemingly it may be incorrect to say that R is contained in Q because R is a prefix
of P ′ while Q is a prefix of P; however, recall that the definition of containment only
depends on the notion of size.

21

3j − 4 items. However, S(T) contains 3j − 3 complete slots (and 3 incomplete
ones). Therefore, P − U contains a prefix that is not solvable, a contradiction
finishing the proof. ut

Lemma 4 implies that simply taking all partial solutions of I(Q) of size 1
or 2 yields a branching set for Q. As an example, the minimal obstruction shown
in Figure 2 admits the branching set {{1}, {4}, {5}, {1, 4}, {1, 5}, {4, 5}}.

Corollary 2. For any minimal obstruction Q in a profile, a branching set Y for
Q of cardinality at most |I(Q)| +

(|I(Q)|
2

)
= O(|I|2) and with maxY ∈Y |Y | ≤ 2

can be constructed in O(|I|4) time.

Proof. By Lemma 4, in order to construct the branching set Y as required, it
suffices to check for each Y ⊆ I(Q) of size at most 2 whether Q− Y is solvable.
To do so, we first construct the graph G underlying the prefix Q and compute
a maximum matching M in G. This can be done in O(|I|5/2) time using the
Hopcroft–Karp algorithm, as explained in Lemma 1. Note that since Q is a
minimal obstruction, it matches all but one slots in G, so |M | = |S(Q)| − 1.

Now, for each Y ⊆ I(Q) with 1 ≤ |Y | ≤ 2 we compute the graph GY
underlying the prefix Q−Y . Observe that we can obtain GY from G by deleting
the items of Y , and adding the necessary edges so that every slot is connected
with all items eligible for it. Observe that M yields a matching MY of size at
least |M | − 2 in GY , which covers at least |M | − 5 = |S(Q)| − 6 complete slots
(because at most three slots may have become incomplete in Q − Y). Hence,
starting from MY we only need to find a constant number of augmenting paths
in order to check whether all complete slots of GY can be covered by a matching.
This takes O(|I|2) time, because GY has at most 2|I| vertices, yielding a running
time of O(|I|4) in total. ut

4.4 Polynomial-Time Algorithm for PID for Three Agents

Let us now present our algorithm for solving PID on our profile P = (N, I, L).
We are going to build the desired solution step-by-step, iteratively extending

an already found partial solution. For a prefix T of P and a partial solution U
for T , we call a set E ⊆ I an extension for (T , U) if E is disjoint from I(T) and
E∪U is a solution for P; we will refer to the set of items in I(T)\U as forbidden
w.r.t. (T , U). We propose an algorithm Extend(T , U) that, given a prefix T of
P and a partial solution U for T , returns an extension for (T , U) of minimum
size if one exists, otherwise returns ‘No’.

Branching set with forbidden items. To address the problem of finding an
extension for (T , U), we modify the notion of a branching set accordingly. Given
a minimal obstruction Q in some profile P ′ and a set F ⊆ I(Q) of items, we say
that a family Y of partial solutions for Q is a branching set for Q forbidding F ,
if the following holds: either there exists a solution U for the profile P ′ that is
disjoint from F and has minimum size among all such solutions, and moreover,
fulfills U ∩I(Q) ∈ Y, or P does not admit any solution disjoint from F (in which
case Y can be arbitrary).

22

Profile P with min. obstr. Q:

a: 1, 4,5, 3, 2, 6, 7.
b: 2, 1, 3,4, 6, 5, 7.
c: 3, 1, 2,5, 7, 4, 6.

Partial solution for Q : Extensions for (Q, U):

U = {1} ∅
U = {4} none exists
U = {5} none exists
U = {1, 4} {6, 7}
U = {1, 5} {6, 7}
U = {4, 5} {6, 7}

P − {1}:
a: 4, 5, 3, 2, 6, 7.
b: 2, 3, 4, 6, 5, 7.
c: 3, 2, 5, 7, 4, 6.

P − {4}:
a: 1, 5, 3, 2, 6, 7.
b: 2, 1, 3, 6, 5, 7.
c: 3, 1, 2, 5, 7, 6.

P − {5}:
a: 1, 4, 3, 2, 6, 7.
b: 2, 1, 3, 4, 6, 7.
c: 3, 1, 2, 7, 4, 6.

P − {1, 4}:
a: 5, 3, 2, 6, 7.
b: 2, 3, 6, 5, 7.
c: 3, 2, 5, 7, 6.

P − {1, 5}:
a: 4, 3, 2, 6, 7.
b: 2, 3, 4, 6, 7.
c: 3, 2, 7, 4, 6.

P − {4, 5}:
a: 1, 3, 2, 6, 7.
b: 2, 1, 3, 6, 7.
c: 3, 1, 2, 7, 6.

Fig. 4. An example showing how different partial solutions for minimal obstruction Q
can be extended into a solution for profile P. Among all partial solutions, only {1} is a
solution for P, deleting any other partial solution leads to a new minimal obstruction.
Note that both 4 and 5 are contained in the boundary, while 1 is not; hence, the size of
Q−{1} is different from that of Q−{4} or Q−{5} (as can be seen on Figure 2). This
implies that the prefixes (P − {4})[4, 1, 4] and (P − {5})[4, 4, 1] have less items than
the corresponding prefixes in P − {1} of the same size, ultimately leading to the fact
that {1} is a solution for P, while neither {4} nor {5} can be extended into a solution
for P (because there exists no partial solution for the minimal obstructions depicted
in P − {4} and P − {5} that is disjoint from I(Q)). The list of possible extensions
shows that {4} is equivalent with {5}, and all partial solutions of size 2 are equivalent
with each other. (We remark that, however, all partial solutions for Q have distinct
deficiency patterns, so no two of them are strongly equivalent.)

Lemma 5. There is an algorithm that, given a minimal obstruction Q in a
profile and a set F ⊆ I(Q) of forbidden items, produces a branching set Y
forbidding F with maxY ∈Y |Y | ≤ 2 and |Y| = O(|I|2), and runs in time O(|I|4).

Proof. The algorithm given in Corollary 2 can be adapted in a straightforward
fashion to take forbidden items into account: it suffices to simply discard in the
first place any subset Y ⊆ I(Q) that is not disjoint from F . It is easy to verify
that this modification indeed yields an algorithm as desired. ut

Equivalent partial solutions. We will describe Extend as a recursive algo-
rithm, but in order to ensure that it runs in polynomial time, we need to apply
dynamic programming. For this, we need a notion of equivalence: we say that
two partial solutions U1 and U2 for T are equivalent if

1. |U1| = |U2|, and

23

2. (T , U1) and (T , U2) admit the same extensions.

See Figure 4 for an illustration.
Ideally, whenever we perform a call to Extend with a given input (T , U), we

would like to first check whether an equivalent call has already been performed,
i.e., whether Extend has been called with an input (T , U ′) for which U and U ′

are equivalent. However, the above definition of equivalence is computationally
hard to handle: there is no easy way to check whether two partial solutions admit
the same extensions or not. To overcome this difficulty, we will use a stronger
condition that implies equivalence.

Deficiency patterns. Consider a solvable prefix Q of P. We let the deficiency
of Q, denoted by def(Q), be the value |S(Q)| − |I(Q)|. Note that due to pos-
sibly incomplete slots in Q, the deficiency of Q may be positive even if Q is
solvable. However, if Q contains only complete slots, then its solvability implies
def(Q) ≤ 0. We define the deficiency pattern of Q, denoted by defpat(Q), as the
set of all triples

(size(R),def(Q∩R), I(Q∩R) ∩ δ(Q))

where R can be any prefix with a straight or a slant shape that intersects Q.
Roughly speaking, the deficiency pattern captures all the information about
Q that is relevant for determining whether a given prefix intersecting Q is a
minimal obstruction or not. Note that any given value of size(R) can be present
in only one triple from the deficiency pattern of Q, because def(Q ∩ R) and
I(Q∩R) ∩ δ(Q) only depend on size(R) and Q. See Figure 5 for an example.

For an intuitive understanding of the role of deficiency patterns, consider a
prefix T and a partial solution U for T . In our algorithm, after we have decided
on deleting U , we will not delete any further items from I(T); hence, it should
not matter which items we have included in U , as long as its deletion leaves us
with the same kind of prefix. So suppose that T ′ is a prefix that may or may
not become a minimal obstruction after deleting U ; clearly we may suppose that
R = T ′ − U has a straight or a slant shape (otherwise it is certainly not a
minimal obstruction).

In case T ′ − U contains T − U , the only important properties of U are its
size and its intersection with the boundary of T : deleting any partial solution U ′

with |U | = |U ′| that contains the same items from δ(T) as U will leave us with
the same number of slots and the same number of items as the deletion of U .
(See also Figure 4 for an example showing why the boundary matters.)

In case T ′ − U = R does not contain T − U but intersects it, all further
information necessary to “classify” U is contained in defpat(T − U). Indeed, to
calculate the number of items in R, it suffices to know the number of items in the
intersection R∩ (T − U) and the number of items that are contained in I(R) \
I(T −U). The former can be calculated from the deficiency of R∩ (T −U). For
the latter we also need to know which items, among those occurring at positions
of R outside T −U , occur also in R∩ (T −U); since such items are necessarily
contained in the boundary of T , it suffices to know the set I(R∩(T −U))∩δ(T).

Strong equivalence. To formalize the above ideas, we call partial solutions U1

and U2 for T strongly equivalent, if

24

Minimal obstruction Q: a: 1, 2, 3, 4, 7, 9, 8, x, 5, 6. δ(Q) = {2, 7, x}
b: 2, 1, 3, 5, 8, 9, 4, 6, x, 7.
c: 3, 4, 5, 6, 8, 1, 9.

Partial solution: Prefix Q− U : Deficiency pattern of Q− U :

U = {3} a: 1, 2, 4, 7, 9, 8, x, 5, 6.
b: 2, 1, 5, 8, 9, 4, 6, x, 7.
c: 4, 5, 6, 8, 1, 9.

D1 = {((4, 7, 7), 0, {2, 7}),
((7, 4, 7), −1, {2, 7, x}),
((7, 7, 7), 0, {2, 7, x}),

((7, 10, 10), 2, {2, 7, x}),
((10, 7, 10), 2, {2, 7, x})}

U = {4} a: 1, 2, 3, 7, 9, 8, x, 5, 6.
b: 2, 1, 3, 5, 8, 9, 6, x, 7.
c: 3, 5, 6, 8, 1, 9.

D1

U = {5} a: 1, 2, 3, 4, 7, 9, 8, x, 6.
b: 2, 1, 3, 8, 9, 4, 6, x, 7.
c: 3, 4, 6, 8, 1, 9.

D2 = {((4, 7, 7), 1, {2}),
((7, 4, 7), 0, {2, 7}),
((7, 7, 7), 1, {2, 7}),

((7, 10, 10), 2, {2, 7, x}),
((10, 7, 10), 2, {2, 7, x})}

U = {7} a: 1, 2, 3, 4, 9, 8, x, 5, 6.
b: 2, 1, 3, 5, 8, 9, 4, 6, x.
c: 3, 4, 5, 6, 8, 1, 9.

D3 = ((7, 10, 10), 2, {2, x}),
((10, 7, 10), 2, {2, x})}

Fig. 5. Illustration of deficiency patterns. For the minimal obstruction Q contained in
profile P from Figure 3, we show four partial solutions and the corresponding deficiency
patterns. Since Q−{3} and Q−{4} have the same deficiency pattern D1, and neither 3,
nor 4 is contained in the boundary δ(Q), we get that {3} and {4} are strongly equivalent
partial solutions for Q; by Lemma 6 they are also equivalent. By D1 6= D2 sets {3} and
{5} are not strongly equivalent for Q. Since 7 ∈ δ(Q), set {7} is not strongly equivalent
with any other partial solution; nevertheless, {3} and {7} are in fact equivalent with
respect to Q: they are both solutions for P and thus admit the extension ∅ (recall
Figure 3).

1. |U1| = |U2|,
2. U1 ∩ δ(T) = U2 ∩ δ(T), and
3. defpat(T − U1) = defpat(T − U2).

As the name suggests, strong equivalence is a sufficient condition for equivalence.

Lemma 6. If U1 and U2 are strongly equivalent partial solutions for T , then
they are equivalent as well.

Proof. Suppose that W is an extension for (T , U1). We need to prove that it is
an extension for (T , U2) as well. Clearly, we have W ⊆ I \ I(T), so it suffices to
show that P − (U2 ∪W) is solvable.

Suppose for contradiction that Q2 is a minimal obstruction in P − (U2∪W).
Let us consider the prefix Q1 of P− (U1∪W) that has the same size as Q2; such

25

a prefix exists because |U1| = |U2|. In the remainder of the proof, we argue that
Q1 is not solvable in P − (U1 ∪W), contradicting the assumption that W is an
extension for (T , U1) and thus U1 ∪W is a solution for P. Note that Q1 and Q2

clearly have the same slots, all of them complete.
Recall that U2 is a partial solution for T , so T − U2 is solvable. Since W is

disjoint from I(T), we know that Q2 cannot be contained in T − U2.
First, let us assume that Q2 contains T − U2. In this case, |U1| = |U2| and

U1 ∩ δ(T) = U2 ∩ δ(T) together immediately imply that Q1 and Q2 contain the
same number of items: |I(Q1)| = |I(Q2)|. Hence, we get |I(Q1)| = |I(Q2)| <
|S(Q2)| = |S(Q1)|, proving our claim.

Second, let us assume now that Q2 and T − U2 are intersecting, and let
their intersection be T ∩2 . Similarly, let T ∩1 be the intersection of Q1 and T −U1.
Since Q2 is a minimal obstruction and thus has a straight or a slant shape, we
know that (size(Q2),def(T ∩2), I(T ∩2) ∩ δ(T − U2)) is contained in the deficiency
pattern of T − U2. By the third condition of equivalence, the same triple must
also be present in the deficiency pattern of T − U1. Hence, T ∩1 must have the
same deficiency as T ∩2 . By |U1| = |U2| and U1 ∩ δ(T) = U2 ∩ δ(T), we know that
T − U1 and T − U2 have the same size, and thus T ∩1 has the same size as T ∩2 .
This implies |I(T ∩1)| = |I(T ∩2)|.

Moreover, we also get I(T ∩2) ∩ δ(T − U2) = I(T ∩1) ∩ δ(T − U1). Recall that
U1∩δ(T) = U2∩δ(T) is guaranteed by the second condition of strong equivalence.
Hence, adding the items contained in Q2 but not in T increases the size of I(T ∩2)
exactly as adding the items contained in Q1 but not in T increases the size of
I(T ∩1). Therefore, we can conclude that |I(Q1)| = |I(Q2)|, which again implies
that Q1 is not solvable. ut

Before giving the details of algorithm Extend, we need one more lemma on the
relation of prefixes that we consider during the iterative approach of addressing
minimal obstructions one-by-one.

Lemma 7. Let Q0 be a minimal obstruction in P − U0 for a set U0 ⊆ I of
items, and let T be the largest7 prefix in P for which T − U0 = Q0. Let also
Y ⊆ I(T)\U0 with 1 ≤ |Y | ≤ 2 be a partial solution for T −U0; then U = U0∪Y
is a partial solution for T . Now, let Q be a minimal obstruction in P − U , and
let T ′ be the largest prefix of P such that T ′−U = Q. Then either I(T ′) ⊇ I(T),
or there does not exist an extension for (T , U).

Proof. First observe that T −U cannot contain T ′−U , because T −U is solvable,
but T ′ − U is a minimal obstruction. Assume now that I(T ′) 6⊇ I(T). Then
clearly, T ′ − U cannot contain T − U either. Hence, T − U must intersect with
the minimal obstruction Q = T ′ − U .

Consider agents’ preference lists in the profile P − U and the underlying
graph GP−U . We say that two (or three) positions in the preference lists belong

7 If T1 − U0 = T2 − U0 = Q, then (T1 ∪ T2)− U0 = Q also holds (where the union of
T1 and T2 is the unique smallest prefix containing both); hence, T is well defined.

26

Q0Q

T − U

Q0

Q

T − U

Q0

QT − U

Fig. 6. Illustration for the proof of Lemma 7. The shapes of prefixes Q0, Q, and
T −U = Q0−Y are depicted with solid, dashed, and dotted lines, respectively. Positions
contained in T − U but not in Q are marked by black diamonds, while positions
contained in Q but not in T − U are marked by white diamonds.

to the same slot in GP−U , if they are contained in LxI\U [i−2 : i] for some agent x
and index i ≡ 1 mod 3. We claim that either

(i) all positions contained in T −U but not inQ belong to the same slot inGP−U ,
or conversely,

(ii) all positions contained inQ but not in T −U belong to the same slot inGP−U .

This claim can be seen by the heavy use of Lemma 2, distinguishing between
cases depending on the shapes and positions of Q and Q0; see Figure 6.

Let us first assume that Q0 has a straight shape, so Q0 = (P − U0)[i, i, i]
for some index i ≡ 1 mod 3. Then by |Y | ≤ 2 we know that Q0 − Y = T − U
contains (P − U)[i − 3, i − 3, i − 3] and is contained in (P − U)[i, i, i]. Hence,
the only possible way for T − U to intersect Q is for Q to have size [i, i, i − 3],
[i, i − 3, i], or [i − 3, i, i]; w.l.o.g. we suppose Q = (P − U)[i, i, i − 3]. But then
(i) must hold, because any position contained in T − U but not in Q must be a
position in LcI\U [i− 2, i].

Let us now assume that Q0 has a slant shape; w.l.o.g. we may assume that
Q0 = (P −U0)[i, i, i− 3] for some index i ≡ 1 mod 3. Now, if Q is contained in
(P − U)[i− 3, i− 3, i− 3], then (ii) holds, because any position contained in Q
but not in Q0 − Y = T − U must be a position in LcI\U [i− 4, i− 3]. Otherwise,

using again |Y | ≤ 2, the only way for Q to intersect T −U is for Q to have size
[i− 3, i, i] or [i, i− 3, i], and in either case (i) holds. This proves our claim.

Suppose now (i). Let (x, j) be the slot to which all positions contained in
T − U but not in Q belong; let I? denote the set of items on these positions in
T − U . Then

I(T − U) \ I(Q) ⊆ I?. (2)

Since I? contains items of T −U = Q0−Y , we know that they occur on positions
belonging to the slot (x, j) in Q0 as well (note that Q0 is a prefix in P − (U \Y)
not in P−U). Thus (x, j) ∈ S(Q0), but observe that (x, j+1) /∈ S(Q0). However,

27

by the minimality of Q0, any item present in a last slot of Q0 occurs at least
once more in Q0 (since an item eligible only for (x, j) among all slots in S(Q0)
would imply that deleting the positions corresponding to (x, j) from Q0 would
yield a prefix with |S(Q0)| − 1 slots and at most |I(Q0)| − 1 items). Therefore,
any item of I? occurs at least once more in Q0. By I? ∩ Y = ∅, this implies
that any item of I? occurs at least once in a position of Q0 − Y = T − U
that does not belong to (x, j). However, any such position is contained in Q
as well, by our assumption (i). Thus I? ⊆ I(Q), which by Equality (2) implies
∅ = I(T − U) \ I(Q) = I(T − U) \ I(T ′ − U). This proves I(T) ⊆ I(T ′).

Supposing (ii), let (x, j) be the slot to which all positions contained in Q but
not in T −U belong; let I? denote the set of items on these positions in Q. Then
it is clear that (x, j) ∈ S(Q) but (x, j + 1) /∈ S(Q), hence arguing as above, we
get that I? ⊆ I(T − U). But then I(Q) ⊆ I(T − U) ∪ I? ⊆ I(T − U), implying
that the minimal obstruction Q in P −U contains only items that are forbidden
w.r.t. (T , U). Thus, there cannot exist an extension for (T , U). ut

Now, we are ready to describe algorithm Extend in detail. Let (T , U) be the
input for Extend. Throughout the run of the algorithm, we will store all inputs
with which Extend has been computed in a table SolTable, keeping track of the
corresponding extensions as well. Initially, we call Extend with input (T∅, ∅),
where T∅ denotes the empty prefix of our input profile P, i.e., P[0, 0, 0], and we
initialize SolTable as empty. For an example of running algorithm Extend on an
instance of PID, see Appendix A.

Algorithm Extend(T , U):

Step 0: Check for strongly equivalent inputs.
For each (T , U ′) in SolTable, check whether U ′ and U are strongly
equivalent with respect to T , and if so, return Extend(T , U ′).

Step 1: Check for trivial solution.
Check if P−U is solvable. If so, then return the empty extension ∅,
and store the entry (T , U) together with the value ∅ in SolTable.

Step 2: Find a minimal obstruction.
Find a minimal obstruction Q in P − U ; recall that P − U is not
solvable in this step.

Step 3: Compute the new prefix.
Let T ′ be the largest prefix of P for which T ′−U = Q. If I(T ′) 6⊇
I(T), then return ‘No’, and store the entry (T , U) together with
the value ‘No’ in SolTable.

Step 4: Compute a branching set.
Using Lemma 5, determine a branching set Y for Q forbidding
I(T) \ U . If Y = ∅, then return ‘No’, and store the entry (T , U)
together with the value ‘No’ in SolTable.

Step 5: Branch.
For each Y ⊆ Y, compute EY := Extend(T ′, U ∪ Y).

28

Step 6: Find a smallest extension.
Compute a set EY ? for which |Y ? ∪ EY ? | = minY ∈Y |Y ∪ EY |.
Return the set Y ? ∪ EY ? , and store the entry (T , U) together
with the extension Y ? ∪ EY ? in SolTable.

Lemma 8. When initially called with input (T∅, ∅), algorithm Extend is correct,
i.e., for any prefix T of P and any partial solution U for T , Extend(T , U) returns
a minimum-size extension for (T , U) (if existent).

Proof. Observe that it suffices to prove the claim for those cases when algorithm
Extend does not return a solution in Step 0: its correctness in the remaining
cases (so when a solution contained in SolTable for a strongly equivalent input
is found and returned in Step 0) follows from Lemma 6.

We are going to prove the lemma by induction on |I\U |. Clearly, if |I\U | = 0,
then P − U is an empty instance, and hence is trivially solvable. Assume now
that I \ U 6= ∅, and that Extend returns a correct output for any input (T0, U0)
with |I \ U0| < |I \ U |.

First, if the algorithm returns ∅ in Step 1, then this is clearly correct.

Second, if it returns ‘No’ in Step 3, then in this case T 6= T∅, so Extend(T , U)
is a recursive call, and hence was called when branching on a branching set. Thus,
there exists some Y ⊆ U with 1 ≤ |Y | ≤ 2 for which T − (U \ Y) is a minimal
obstruction Q0. Hence, Lemma 7 can be applied, which implies the correctness
of this step.

Third, if the algorithm returns ‘No’ in Step 4 because it finds that the branch-
ing set Y forbidding I(T) \U for the minimal obstruction Q is empty, then this,
by the definition of a branching set (forbidding I(T) \U) and by the soundness
of the algorithm of Lemma 5, means that there is no solution S for P−U disjoint
from I(T)\U . But then we also know that there is no solution S for P for which
S∩I(T) = U holds, so there is no extension for (T , U). Hence this step is correct
as well.

Therefore, we can assume that the algorithm’s output is Y ? ∪EY ? for some
Y ? ∈ Y, where EY ? = Extend(T ′, U ∪ Y ?) and T ′ is the largest profile in P for
which T ′ − U = Q. As |I \ (U ∪ Y)| < |I \ U | for any Y ∈ Y, the induction
hypothesis implies that Extend runs correctly on all inputs (T ′, U ∪ Y), Y ∈ Y.
Hence, EY ? is an extension for (T ′, U ∪ Y ?) and so U ∪ Y ? ∪ EY ? is a solution
for P. Moreover, since EY ? ∩ I(T ′) = ∅ and I(T ′) ⊇ I(T) by Step 3, we know
that EY ? is disjoint from I(T). Since Y ? is contained in a branching set for Q
in P − U forbidding I(T) \ U , we get that Y ? ∪ EY ? is disjoint from I(T) as
well. Thus, Y ? ∪ EY ? is an extension for (T , U).

It remains to argue that if E is an extension for (T , U), then |Y ?∪EY ? | ≤ |E|.
Clearly, E is a solution for P − U disjoint from I(T) \ U . By the definition of
a branching set forbidding I(T) \ U and the correctness of Lemma 5, we know
that there must exist a solution E′ for P −U disjoint from I(T) \U and having
size |E′| ≤ |E| for which E′ ∩ I(Q) ∈ Y. Define Y ′ = E′ ∩ I(Q). Observe that
E′ \ Y ′ an extension for (T ′, U ∪ Y ′).

29

Using again the induction hypothesis, we get that Extend(T ′, U ∪Y ′) returns
an extension EY ′ for (T ′, U ∪ Y ′) of minimum size, so in particular, |EY ′ | ≤
|E′ \ Y ′|, implying |Y ′ ∪ EY ′ | ≤ |E′| ≤ |E|. Thus, by our choice of Y ?, we get
that the output of Extend(T , U) (that is, Y ? ∪ EY ?) has size at most |E|. This
proves our claim. Therefore, we get that if Extend returns an output in Step 6,
then this output is correct. ut

Lemma 8 immediately gives us an algorithm to solve PID: Extend(T∅, ∅)
returns a solution S for P of minimum size; we only have to compare |S| with
the desired solution size k.

The next lemma states that Extend gets called polynomially many times.

Lemma 9. Throughout the run of algorithm Extend initially called with input
(T∅, ∅), the table SolTable contains O(|I|7) entries.

Proof. Let us consider table SolTable at a given moment during the course of
algorithm Extend, initially called with the input (T∅, ∅) (and having possibly
performed several recursive calls since then). Let us fix a prefix T . We are going
to give an upper bound on the maximum cardinality of the family UT of partial
solutions U for T for which SolTable contains the entry (T , U).

By Step 0 of algorithm Extend, no two sets in UT are strongly equivalent.
Recall that if U1 and U2, both in UT , are not strongly equivalent with respect
to T , then either |U1| 6= |U2|, or δ(T) ∩ U1 6= δ(T) ∩ U2, or defpat(T − U1) 6=
defpat(T − U2). Let us partition the sets in UT into groups: we put U1 and U2

in the same group, if |U1| = |U2| and δ(T) ∩ U1 = δ(T) ∩ U2.
Examining Steps 2–4 of algorithm Extend, we can observe that if U 6= ∅,

then for some YU ⊆ U of size 1 or 2, the prefix T − (U \ YU) is a minimal
obstruction QU . Since removing items from a prefix cannot increase the size of
its boundary, Lemma 3 implies that the boundary of T − U contains at most 3
items. We get |δ(T) \ U | = |δ(T − U)| ≤ 3, from which it follows that δ(T) ∩ U
is a subset of δ(T) of size at least |δ(T)| − 3. Therefore, the number of different
values that δ(T) ∩ U can take is O(|I|3). Since any U ∈ UT has size at most
|I|, we get that there are O(|I|4) groups in UT . Let us fix some group Ug of UT .
We are going to show that the number of different deficiency patterns for T −U
where U ∈ Ug is constant.

Recall that the deficiency pattern of T − U consists of triples of the form

(size(R),def(R∩), I(R∩) ∩ δ(T − U))

where R is some prefix of P −U with a slant or a straight shape, and R∩ is the
intersection of T − U and R.

First observe that by the definition of a group, size(T − U1) = size(T − U2)
holds for any U1, U2 ∈ Ug. Let us fix an arbitrary U ∈ Ug. Since T − U can be
obtained by deleting 1 or 2 items from a minimal obstruction, Lemma 2 implies
that there can only be a constant number of prefixes R of P −U which intersect
T − U and have a slant or a straight shape; in fact, it is not hard to check that
the number of such prefixes R is at most 5 for any given T − U . Therefore,

30

the number of values taken by the first coordinate size(R) of any triple in the
deficiency pattern of T − U is constant. Since T − U has the same size for any
U ∈ Ug, we also get that these values coincide for any U ∈ Ug. Hence, we obtain
that (A) the total number of values the first coordinate of any triple in the
deficiency pattern of T − U for any U ∈ Ug can take is constant.

LetR∩ be the intersection of T −U and some prefix of straight or slant shape.
By definition, R∩ is contained in QU . By |YU | ≤ 2, there are only a constant
number of positions which are contained in QU but not in R∩. From this both
||I(R∩)| − |I(QU)|| = O(1) and ||S(R∩)| − |S(QU)|| = O(1) follow. As QU is
a minimal obstruction, we also have |I(QU)| = |S(QU)| − 1, implying that (B)
the deficiency def(R∩) = |S(R∩)| − |I(R∩)| can only take a constant number of
values too; note that we have an upper bound on |def(R∩)| that holds for any
U ∈ Ug. Considering that I(R∩) ∩ δ(T − U) is the subset of δ(T − U), and we
also know |δ(T −U)| ≤ 3, we obtain that (C) the set I(R∩)∩ δ(T −U) can take
at most 23 values (again, for all U ∈ Ug).

Putting together observations (A), (B), and (C), it follows that the number
of different deficiency patterns of T −U taken over all U ∈ Ug is constant. This
implies |UT | = O(|I|4). Since there are O(|I|3) prefixes T of P, we arrive at the
conclusion that the maximum number of entries in SolTable is O(|I|7). ut

We are now able to formulate our main theorem, stating that PID is solvable
in polynomial time for three agents.

Theorem 7. Proportional Item Deletions for three agents can be solved
in time O(|I|11).

Proof. By Lemma 8, we know that algorithm Extend(T∅, ∅) returns a solution
for P of minimum size, solving PID.

To bound the running time of Extend(T∅, ∅), let us first give a bound on the
time necessary for the computations performed by Extend on some input (T , U)
when not counting the computations performed in recursive calls. Clearly, Step 0
takes O(|I|) time (assuming we can effectively search within the table SolTable).
Steps 1 and 2 can be accomplished in O(|I|3) time, as described in Lemma 1.
Step 3 can be accomplished in time O(|I|). Using Lemma 5, Step 4 can be
performed in O(|I|4) time. Since the cardinality of the branching set found in
Step 4 is O(|I|2), Steps 5 and 6 can be performed in O(|I|3) time. Hence, any call
to Extend can be performed in (|I|4) time (when not counting the computations
performed in the recursive calls).

Let us distinguish now between two types of recursive calls to Extend: a
call Extend(T , U) is regular, if Step 0 does not produce an output during its
execution; otherwise we refer to this call as a shadow call. We first give an
upper bound for the time spent on regular calls. Note that in each such call, an
entry is added to SolTable. By Lemma 9, SolTable contains O(|I|7) entries, and
therefore the number of regular calls to Extend is also O(|I|7). This gives us an
upper bound of O(|I|11) on the total time spent on regular calls to Extend.

To bound the time spent on shadow calls, observe that each regular call
may give rise to at most O(|I|2) shadow calls (and there are no recursive calls

31

performed within a shadow call). Hence, the number of shadow calls is O(|I|9).
Since Step 0 takes O(|I|) time, this yields a bound of O(|I|10) for the total
time spent on shadow calls. Hence the total running time of Extend(T∅, ∅) is as
claimed. ut

5 PID with fixed allocation

In this section we investigate a version of PID where an allocation is given in
advance, and we want to make this allocation proportional by item deletion.
The input of the problem, which we refer to as PID with Fixed Allocation,
consists of a preference profile P = (N, I, L), an allocation π : I → N , and an
integer k ∈ N. We call a set S ⊆ I of items a solution for (P, π), if the restriction
of π to I \ S is proportional for the profile P − S; the task is to find a solution
of size at most k for (P, π).

Since we are given a fixed allocation, the concept of minimal obstruction can
be simplified accordingly: we say that agent x becomes envious at index i for
some i ∈ {1, . . . , |I|}, if the number of items in Lx[1 : i] assigned to x by π is
less than i/|N |, but for any smaller index j < i the number of items in Lx[1 : j]
assigned to x by π is at least j/|N |. Clearly, if no agent becomes envious at any
index, then our allocation π is proportional.

Our first observation is that PID with Fixed Allocation can be solved
in polynomial time if there are only two agents. To show this, we propose an
algorithm that we call GreedyDel. Suppose that N contains only two agents. For
an agent x ∈ N , we denote by x̄ the other agent, i.e., x̄ ∈ N , x 6= x̄.

Algorithm GreedyDel(P, π, k):

Step 0: If k < 0, then return ‘No’.

Step 1: If π is proportional for P, then return ‘Yes’.

Step 2: Perform a greedy deletion:
Let x denote an agent and i an index such that x becomes en-
vious at i. Compute the item s that is the least preferred by
agent x̄ among all items of Lx[1 : i] assigned to x̄ by π, and
call GreedyDel(P − {s}, π|I\{s}, k − 1).

Theorem 8. If the number of agents is two, then PID with Fixed Alloca-
tion can be solved in polynomial time by algorithm GreedyDel.

Proof. It is easy to see that algorithm GreedyDel can be implemented in quadratic
running time. To prove its correctness, let us consider the steps of GreedyDel
on our input instance (P, π, k).

Note that Steps 0 and 1 are clearly correct. We claim that the deletion
performed in Step 2 is safe in the following sense: if S is a solution for (P, π)
and s is the item deleted by the algorithm in Step 2, then there exists a solution
S′ for (P, π) that contains s. Clearly, if this holds, then GreedyDel is correct.

32

Let x be the agent and i the index for which x becomes envious at i, as
found in Step 2. Let S[1:i] denote those items of S that are contained in Lx[1 : i].
Suppose that S does not contain the deleted item s. However, since S is a
solution, we know that S[1:i] must contain strictly more items assigned by π to
x̄ than to x, i.e.,

|S[1:i] ∩ π−1(x̄)| ≥ |S[1:i] ∩ π−1(x)|+ 1. (3)

Let s? be the item least preferred by x in S[1:i] ∩ π−1(x̄). We will show that
S′ = S \ {s?}∪{s} is a solution for (P, π), proving our claim that Step 2 is safe.

Note that by our choice of s, agent x̄ prefers s? to s, so x̄ cannot become
envious at any index in P−S′. If x prefers s to s?, then x cannot become envious
at any index in P−S′ either (because deleting an item assigned to x̄ that comes
before s? in Lx is always preferable for x than deleting s?), so in this case S′

is a solution for (P, π). Thus, for the sake of contradiction, assume that x also
prefers s? to s, and x becomes envious somewhere in P − S′. This means that
there exists an index j ∈ {1, . . . , |I|} such that

|Jx \ S′| < |Jx̄ \ S′|, (4)

where Jx and Jx̄ denote the set of items in Lx[1 : j] assigned to x and to x̄ by π,
respectively (note that Lx is the preference list of x in the original instance P).

First, if Jx̄ contains either both s and s? or neither of them, then |Jx̄ ∩ S| =
|Jx̄ ∩ S′|, so

|Jx \ S′| = |Jx \ S| ≥ |Jx̄ \ S| = |Jx̄ \ S′|,

where the first equality is implied by {s, s?}∩Jx = ∅, and the inequality follows
from the fact that S is a solution for (P, π). This contradicts (4).

Second, if |Jx̄ ∩ {s, s?}| = 1, then s? ∈ Jx̄ but s /∈ Jx̄, because x prefers s?

to s. In this case we know j < i. Using that s? is the least preferred by x among
all items of S[1:i] ∩ π−1(x̄) but it still falls within Lx[1 : j], we know that all
items of S[1:i] ∩ π−1(x̄) fall within Lx[1 : j] and are thus contained in Jx̄. From
this, we get that

|Jx̄∩S′| = |Jx̄∩S|−1 = |S[1:i]∩π−1(x̄)|−1 ≥ |S[1:i]∩π−1(x)| ≥ |Jx∩S| = |Jx∩S′|,

where the first inequality follows from (3). Recall that x only becomes envious
at i in P, and therefore |Jx| ≥ |Jx̄|, leading us to

|Jx \ S′| = |Jx| − |Jx ∩ S′| ≥ |Jx̄| − |Jx̄ ∩ S′| = |Jx̄ \ S′|,

which again contradicts (4). ut

Interestingly, PID with Fixed Allocation becomes NP-hard if the num-
ber of agents is 6. Hence, providing an allocation in advance does not seem to
make PID much easier; the intuitive argument behind this is that we may be
given an allocation that is quite unreasonable and may actually become a hin-
drance to proportionality instead of helping us. Our results leave open the com-
putational complexity of the problem when the number of agents is in {3, 4, 5}.

33

Theorem 9. If the number of agents is six, then PID with Fixed Alloca-
tion is NP-complete.

Proof. It is straightforward to see that the problem is in NP. To prove its NP-
completeness, we are going to present a reduction from the Cubic Monotone
1-in-3-SAT problem, whose input is a propositional formula ϕ in conjunctive
normal form where variables only occur as positive literals, and the underlying
graph G is a cubic graph (i.e., every vertex has degree 3). Formally, we define
G = (V ∪ C, E) as a bipartite graph whose two partitions are the set V of
variables and the set C of clauses, and a variable v ∈ V is adjacent to a clause
C ∈ C in G if and only if v appears in C. Since G is cubic, each variable occurs in
exactly three clauses, and conversely, each clause contains exactly three distinct
variables. The task in the Cubic Monotone 1-in-3-SAT problem is to decide
whether there exists a truth assignment for ϕ where exactly one out of three
variables is true in each clause; we will call such a truth assignment valid. Moore
and Robson [21] proved that this problem is NP-hard.

Given the input formula ϕ, we construct an instance (P, π, k) of PID with
Fixed Allocation such that ϕ is satisfiable if and only if (P, π) admits a solu-
tion of size at most k. Let ϕ contain variables v1, . . . , vn and clauses C1, . . . , Cn;
note that n ≡ 0 mod 3 must hold, as G is cubic. We define the set of agents
as N = {v, v′, w, w′, f, f ′}. The set I of items contains Vi = {ai, bi, ci} and

V̂i = {âi, b̂i, ĉi} for each variable vi ∈ V , as well as a set Ix containing some
newly introduced items for each agent x ∈ N ; we set |If | = 3n, |If ′ | = 2n, and
|Ix| = 4n for any other agent x ∈ N \ {f, f ′}. We let U = V1 ∪ · · · ∪ Vn and
Û = V̂1 ∪ · · · ∪ V̂n. Items in U and Û are assigned by π to f ′ and f , respectively,
while for any agent x ∈ N , items in Ix are assigned to x by π. We set k = 3n.

To finish the definition of profile P = (N, I, L), it remains to give the prefer-
ences of each agent, for which we need additional notation. The three items in
Vi will correspond to the three occurrences of variable vi, each a positive literal,
while the items in V̂i will correspond to their negated forms. Hence, for each
clause Ci ∈ C, we define Pi as the set of items that, for any j ∈ {1, . . . , n},
contains item aj , bj , or cj if and only if Ci contains the first, second, or third
occurrence, respectively, of variable vj in ϕ. We also define Ni as the set of

items containing âj , b̂j , or ĉj for some j if and only if Pi contains aj , bj , or cj ,
respectively.

To simplify our notation for the preference lists, we fix an arbitrary ordering
≺ over I so that we can omit listing all irrelevant items in the preference lists: the
symbol ‘···’ at the end of a preference list stands for the sequence of all remaining
items according to their order in ≺. Also, we write [X] for a set X of items to
denote their sequence according to ≺. In the preference list of some agent x ∈ N ,
it will be sufficient to distinguish between items of D = Iv∪Iv′ ∪Iw∪Iw′ only up
to the point of indicating whether they are assigned to x by π or not. Thus, we
will use ‘•’ symbols in Lx to denote items from Ix, and we will use ‘◦’ symbols
to denote items from D \ Ix (these will serve as dummy items). If the number
of ‘•’ (or ‘◦’) symbols in Lx is `, then they refer to the first ` items from Ix (or

34

from D \ Ix, respectively) according to ≺. Now, the preference lists are as shown
in Table 1.

Lv : •,
6︷ ︸︸ ︷

◦, ◦, ◦, ◦, a1, â1, •,

6︷ ︸︸ ︷
◦, ◦, ◦, ◦, b1, b̂1, •,

6︷ ︸︸ ︷
◦, ◦, ◦, ◦, c1, ĉ1,

•, ◦, ◦, ◦, ◦, a2, â2, •, ◦, ◦, ◦, ◦, b2, b̂2, •, ◦, ◦, ◦, ◦, c2, ĉ2,...
•, ◦, ◦, ◦, ◦, an, ân, •, ◦, ◦, ◦, ◦, bn, b̂n, •, ◦, ◦, ◦, ◦, cn, ĉn,

n︷ ︸︸ ︷
•, •, . . . , •, ···

Lv′ : •, ◦, ◦, ◦, ◦, cn, ĉn, •, ◦, ◦, ◦, ◦, bn, b̂n, •, ◦, ◦, ◦, ◦, an, ân,...•, ◦, ◦, ◦, ◦, c2, ĉ2, •, ◦, ◦, ◦, ◦, b2, b̂2, •, ◦, ◦, ◦, ◦, a2, â2,
•, ◦, ◦, ◦, ◦, c1, ĉ1, •, ◦, ◦, ◦, ◦, b1, b̂1, •, ◦, ◦, ◦, ◦, a1, â1,

n︷ ︸︸ ︷
•, •, . . . , •, ···

Lw : •, ◦, ◦, ◦, ◦, â1, b1, •, ◦, ◦, ◦, ◦, b̂1, c1, •, ◦, ◦, ◦, ◦, ĉ1, a1,
•, ◦, ◦, ◦, ◦, â2, b2, •, ◦, ◦, ◦, ◦, b̂2, c2, •, ◦, ◦, ◦, ◦, ĉ2, a2,...
•, ◦, ◦, ◦, ◦, ân, bn, •, ◦, ◦, ◦, ◦, b̂n, cn, •, ◦, ◦, ◦, ◦, ĉn, an,

n︷ ︸︸ ︷
•, •, . . . , •, ···

Lw′ : •, ◦, ◦, ◦, ◦, ĉn, an, •, ◦, ◦, ◦, ◦, b̂n, cn, •, ◦, ◦, ◦, ◦, ân, bn,...•, ◦, ◦, ◦, ◦, ĉ2, a2, •, ◦, ◦, ◦, ◦, b̂2, c2, •, ◦, ◦, ◦, ◦, â2, b2,
•, ◦, ◦, ◦, ◦, ĉ1, a1, •, ◦, ◦, ◦, ◦, b̂1, c1, •, ◦, ◦, ◦, ◦, â1, b1,

n︷ ︸︸ ︷
•, •, . . . , •, ···

Lf : •,
6︷ ︸︸ ︷

◦, ◦, ◦, [P1], •,
6︷ ︸︸ ︷

◦, ◦, ◦, [P2], . . . , •,
6︷ ︸︸ ︷

◦, ◦, ◦, [Pn],

2n︷ ︸︸ ︷
•, •, . . . , •, [Û], ···

Lf ′ : •,
7︷ ︸︸ ︷

◦, ◦, ◦, ◦, [N1], •,
7︷ ︸︸ ︷

◦, ◦, ◦, ◦, [N2], . . . , •,
7︷ ︸︸ ︷

◦, ◦, ◦, ◦, [Nn],

n︷ ︸︸ ︷
•, •, . . . , •, [U], ···

Table 1. Preferences in the instance of PID with Fixed Allocation constructed in
the proof of Theorem 9. Recall that in a preference list Lx, all ‘•’ symbols stand for
items in Ix (assigned by π to x), while ‘◦’ symbols stand for items in D \ Ix (assigned
by π to some other agent in {v, v′, w, w′} \ {x}). The numbers above braces indicate
the length of the given series of items.

Notice that we need to make sure that we do not “run out of” the necessary
items when using ‘◦’ symbols: for any agent x, the number of available dummy
items is |D \ Ix| ≥ 12n, while Lx contains at most 12n dummies. Hence, P is
indeed a profile.

The reduction presented can clearly be computed in polynomial time, so let
us prove its correctness. First assume that S is a solution for (P, π) of size at
most k. Note that π assigns exactly 4n items to each agent except for f and f ′,
while it assigns 6n and 5n items to f and f ′, respectively (recall that f receives
all 3n items in Û , while f ′ receives all 3n items in U). By k = 3n, we get that
S contains exactly 2n items of Û ∪ If and n items of U ∪ If ′ . In particular, S
does not contain any (dummy) item from D.

35

Fix some agent x ∈ N \ {f, f ′}, and consider the first 7j items in the prefer-
ence list of x for some j ∈ {1, . . . , 3n}. Observe that Lx[1 : 7j] contains only j
items assigned to x by π. However, π cannot be proportional as long as the set
consisting of the first 6j+ 1 items in x’s preference list contains at most j items
assigned to x by π. Hence we know that S must contain at least j items from
Lx[1 : 7j]. Let Qxj denote the set of items in Lx[7j − 6 : 7j] that are not in D

and hence may be included in the solution S; e.g., Qv1 = {a1, â1}, Qv2 = {b1, b̂1},
and so on. Then our observation for each x ∈ N \ {f, f ′} can be written as

|S ∩ (Qx1 ∪ · · · ∪Qxj)| ≥ j. (5)

However, notice that Qvj = Qv
′

3n+1−j and also Qwj = Qw
′

3n+1−j , which implies

|S ∩ (Qxj+1 ∪ · · · ∪Qx3n)| = |S ∩ (Qx
′

3n−j ∪ · · · ∪Qx
′

1)| ≥ 3n− j (6)

for any x ∈ N \ {f, f ′} where we abuse notation by setting v′′ = v and w′′ = w;
note that we used Inequality (5) for agent x′ and index 3n − j. Using that
|S| = 3n and that the sets Qxj , j ∈ {1, . . . , 3n}, are mutually disjoint, it is
straightforward to verify that Inequalities (5) and (6) can only hold for each
value of j ∈ {1, . . . , 3n} if

|S ∩Qxj | = 1 for every j ∈ {1, . . . , 3n}. (7)

For agents v and v′, (7) implies that u ∈ S if and only if û /∈ S for any item
u ∈ U . Taking into account the statement of (7) for agents w and w′, we obtain
that either Vi ⊆ S and V̂i∩S = ∅, or V̂i ⊆ S and Vi∩S = ∅ for each i ∈ {1, . . . , n}.

Let us define a truth assignment α by setting variable vi ∈ V in ϕ to true if
and only if Vi ⊆ S. We claim that α is valid for ϕ, i.e., each clause in C contains
exactly one variable vi for which Vi ⊆ S.

Considering the first 7j items from the preference list of f for some j ∈
{1, . . . , n} and arguing similarly as before, we obtain that

|S ∩ (P1 ∪ · · · ∪ Pj)| ≥ j. (8)

Analogously, from the first 8j items from the preference list of f ′ (among which
only j are assigned to f ′ by π), we get

|S ∩ (N1 ∪ · · · ∪Nj)| ≥ 2j. (9)

However, notice that |S ∩ (Pj ∪Nj)| = 3 for any j ∈ {1, . . . , n}. Hence, Inequal-
ities (8) and (9) imply |S ∩ Pj | = 1 and |S ∩ Nj | = 2 for every j ∈ {1, . . . , n}.
This means exactly that α is valid for ϕ.

For the other direction, assume that there exists a valid truth assignment α
for ϕ, and let Tα denote the set of true variables. First observe that |Tα| = n/3
must hold, because each variable appears in exactly three clauses, and there are
n clauses. We define a solution S for (P, π) by putting ai, bi, and ci into S for

each vi ∈ Tα, and putting âi, b̂i, and ĉi into S for each vi ∈ V \ Tα. Hence

36

|S ∩U | = n and |S ∩ Û | = 2n. Note that Inequality (5) holds for S for any agent
x ∈ N \ {f, f ′} and index j ∈ {1, . . . , 3n}. Inequalities (8) and (9) hold as well
for any j ∈ {1, . . . , n}, due to the validity of α. Based on these facts, it is easy
to check that S is indeed a solution for (P, π). ut

Our next theorem shows that PID with Fixed Allocation remains com-
putationally intractable even if the number of deletions allowed is small.

Theorem 10. PID with Fixed Allocation is W[2]-hard when parameterized
by the size k of the desired solution.

Proof. We are going to present an FPT-reduction from the Red-Blue Domi-
nating Set problem. The input of this problem is a bipartite graph G = (V,E)
and an integer k, with V partitioned into a set Vred = {r1, . . . , rs} of ‘red’ and a
set Vblue = {b1, . . . , bt} of ‘blue’ vertices. We denote by N(v) the set of neighbors
of some vertex v ∈ V . The task is to decide if G contains a set D ⊆ Vred of at
most k red vertices that dominates all blue vertices, i.e., such that N(bj)∩D 6= ∅
for each bj ∈ Vblue. Red-Blue Dominating Set is known to be NP-complete
and W[2]-complete when parameterized by k [12].

Let us construct an instance I = (P, π, k) of PID with Fixed Allocation.
We let P = (N, I, L), and we define the set of agents as N = {r̂} ∪ B̂ ∪ D̂
where B̂ = {b̂1, . . . , b̂t}, and D̂ = {d̂1, . . . , d̂∆} contains ∆ dummy agents for
the smallest integer ∆ such that ∆(s− k) ≥ |N | = ∆+ t+ 1. We define the set
of items as I = Vred ∪ B ∪ D where B = {bi1, . . . , bit | 1 ≤ i ≤ s − k} contains
s− k copies of each blue vertex, and D = {di1, . . . , di∆ | 1 ≤ i ≤ s− k} contains
s− k dummy items for each dummy agent. The allocation π assigns every item
of Vred to agent r̂, while each agent b̂j ∈ B̂ is assigned items b1j , . . . , b

s−k
j , and

each agent d̂j ∈ D̂ is assigned items d1
j , . . . , d

s−k
j .

To define the preferences of agents, we fix an arbitrary ordering ≺ over I so
that we can omit listing all irrelevant items in the preference lists: the symbol
‘···’ at the end of a preference list stands for the sequence of all remaining items
according to their order in ≺. Also, we write [X] for a set X of items to denote
their sequence according to ≺. Moreover, a series of ‘◦’ symbols of length `
denotes the sequence of the first ` dummy items from D according to ≺. Now,
the preference lists are as follows (allocation π is indicated by underlining the
items assigned to the given agent x in Lx).

Lr̂ : r1, r2, . . . , rs, ···

Lb̂j : b1j , ◦, ◦, ◦, . . . , ◦︸ ︷︷ ︸
|N | − |N(bj)| dummies

, [N(bj)], b
2
j , b

3
j , . . . , b

s−k
j , ··· for each b̂j ∈ B̂;

Ld̂j : d1
j , d

2
j , . . . , d

s−k
j , ··· for each d̂j ∈ D̂.

Note that the preference list of an agent b̂j ∈ B̂ contains at most |N | dummy
items, whose existence is ensured by our choice of ∆.

The presented reduction is clearly a polynomial-time reduction as well as a
parameterized one (with k being the parameter in both instances). To prove its

37

correctness, let us first assume that S is a solution of size at most k for (P, π).
Note that π assigns s−k items to each agent, except for agent r̂ who gets s items.
Hence, S ⊆ π−1(r̂) = Vred and |S| = k follows. We claim that S dominates all
blue vertices in G: indeed, if S ∩N(bj) = ∅ for some bj ∈ Vblue in G, then agent

b̂j becomes envious at index |N |+1 in P−S, since Lb̂j [1 : |N |+1] contains only

one item assigned to b̂j by π, a contradiction.
For the other direction, it is straightforward to verify that any set S of k red

vertices that dominates all blue vertices in G yields a solution to (P, π) as well,
because if no agent of B̂ becomes envious at index |N | + 1 in P − S, then π is
guaranteed to be proportional in P − S. ut

6 Conclusion and open questions

In Section 4 we have shown that Proportionality by Item Deletion is
polynomial-time solvable if there are only three agents. In comparison, the
problem of obtaining an envy-free allocation by item deletion was shown to
be polynomial-time solvable for two agents, but becomes NP-hard already for
three agents [4]. We have also proved that if the number of agents is unbounded,
then PID becomes NP-hard, and practically intractable already when we want
to delete only a small number of items, as shown by the W[3]-hardness result of
Theorem 2.

The complexity of PID remains open for the case when the number of agents
is a constant greater than 3. Is it true that for any constant n, there exists a
polynomial-time algorithm that solves PID in polynomial time for n agents? The
reason why our algorithm is not directly applicable for more than three agents is
that Lemma 4 relies heavily on the properties of minimal obstructions observed
in Lemma 2; these properties imply a very strict structure for two properly
intersecting minimal obstructions. For the case of more than three agents, there
are more possibilities how minimal obstructions may properly intersect, and
so we cannot obtain a variant of Lemma 4 for n ≥ 4: it is an open question
whether for n ≥ 4 it holds that any inclusion-wise minimal solution S contains
at most n− 1 items from a minimal obstruction Q. In fact, it is not even known
whether there is a bound f(n) on the number of items in S ∩ I(Q) for some
function f ; we believe that establishing such a bound would imply the existence
of a polynomial-time algorithm for PID for any constant n.

Supposing that there does exist a polynomial-time algorithm for PID for
any constant n, can we find an FPT-algorithm with respect to the parameter
n? If not—that is, if PID turns out to be NP-hard for some constant number
of agents—then can we at least give an FPT-algorithm with parameter k for a
constant number of agents (or maybe with combined parameter (k, n))?

Since approximation seems hopeless w.r.t. the number of deletions, it may be
interesting to see whether there might exist an approximation w.r.t. the number
of items obtained by each agent in a proportional way. Our results from Corol-
lary 1 and Theorem 1 show that we cannot get a polynomial-time approximation
with a ratio better than 2. Is this lower bound sharp?

38

Regarding PID with Fixed Allocation, we gave a polynomial-time algo-
rithm for n = 2, but proved the problem to be NP-complete for n = 6. This leaves
open the case when the number of agents is in {3, 4, 5}; it would be interesting
to close the gap.

Finally, there is ample space for future research if we consider different con-
trol actions (such as adding or replacing items), different notions of fairness, or
different models for agents’ preferences.

Acknowledgment

We would like to thank the anonymous reviewers of this paper for their valuable
advice and great questions.

References

1. S. Arora and B. Barak. Computational Complexity – A Modern Approach. Cam-
bridge University Press, Cambridge, 2009.

2. H. Aziz, S. Bouveret, I. Caragiannis, I. Giagkousi, and J. Lang. Knowledge, fair-
ness, and social constraints. In Proceedings of the 32nd AAAI Conference on Arti-
ficial Intelligence (AAAI 2018), pages 4638–4645, New Orleans, Louisiana, United
States, 2018.

3. H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair assignment of indivisible
objects under ordinal preferences. Artificial Intelligence, 227:71–92, 2015.

4. H. Aziz, I. Schlotter, and T. Walsh. Control of fair division. In Proceedings of the
25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pages
67–73, 2016.

5. J. J. Bartholdi, III, C. A. Tovey, and M. A. Trick. How hard is it to control an
election? Mathematical and Computer Modelling, 16(8–9):27–40, 1992.

6. S. Bouveret, Y. Chevaleyre, and N. Maudet. Fair allocation of indivisible goods.
In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors,
Handbook of Computational Social Choice, pages 284–310. Cambridge University
Press, 2016.

7. S. J. Brams, D. M. Kilgour, and C. Klamler. Two-person fair division of indivisible
items: An efficient, envy-free algorithm. Notices of the American Mathematical
Society, 61(2):130–141, 2014.

8. I. Caragiannis, N. Gravin, and X. Huang. Envy-freeness up to any item with
high nash welfare: The virtue of donating items. In Proceedings of the 2019 ACM
Conference on Economics and Computation (EC 2019), page 527545, New York,
NY, USA, 2019. ACM.

9. J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–
1367, 2006.

10. Y. Chen and N. Shah. Ignorance is often bliss: Envy with incomplete information,
2017. Working paper.

11. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness
I: Basic results. SIAM Journal on Computing, 24(4):873–921, 1995.

12. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, New York, 1999.

39

13. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, London, 2013.

14. J. Flum and M. Grohe. Model-checking problems as a basis for parameterized
intractability. Logical Methods in Computer Science, 1(1:2):1–36, 2005.

15. J. Flum and M. Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

16. D. Halpern and N. Shah. Fair division with subsidy. In D. Fotakis and E. Markakis,
editors, Proceedings of the 12th International Symposium on Algorithmic Game
Theory (SAGT 2019), volume 11801 of Lecture Notes in Computer Science, pages
374–389. Springer, 2019.

17. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

18. H. Hosseini, S. Sikdar, R. Vaish, H. Wang, and L. Xia. Fair division through
information withholding. In The 34th AAAI Conference on Artificial Intelligence
(AAAI 2020), pages 2014–2021. AAAI Press, 2020.

19. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

20. R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair al-
locations of indivisible goods. In EC 2004: Proc. of the 5th ACM Conference on
Electronic Commerce, pages 125–131, 2004.

21. C. Moore and J. M. Robson. Hard tiling problems with simple tiles. Discret.
Comput. Geom., 26(4):573–590, 2001.

22. T. Nguyen and R. Vohra. Near feasible stable matchings. In Proceedings of the
Sixteenth ACM Conference on Economics and Computation (EC 2015), pages 41–
42, 2015.

23. K. R. Pruhs and G. J. Woeginger. Divorcing made easy. In E. Kranakis, D. Krizanc,
and F. Luccio, editors, Proceedings of the 6th International conference on Fun with
Algorithms (FUN 2012), volume 7288 of LNCS, pages 305–314. Springer, 2012.

24. E. Segal-Halevi, A. Hassidim, and Y. Aumann. Waste makes haste: Bounded
time protocols for envy-free cake cutting with free disposal. In AAMAS 2014: In
Proc. of the 14th International Conference on Autonomous Agents and Multi-Agent
Systems, pages 901–908, 2015.

25. K. Thulasiraman, S. Arumugam, A. Brandstädt, and T. Nishizeki. Handbook
of Graph Theory, Combinatorial Optimization, and Algorithms. Chapman &
Hall/CRC Computer and Information Science Series. CRC Press, 2015.

40

Appendix A Example for running algorithm Extend

In this section we show how the algorithm runs on a profile P with agents a, b,
and c ranking the item set {1, 2, . . . , 9, x, y, z, v, u} as below:

Profile P : a: 1, 2, 3, 6, 4, 7, 8, 9, y, x, z, v, 5, u.
b: 2, 1, 5, 3, 4, 8, 6, x, 7, y, z, u, 9, v.
c: 3, 4, 6, 2, 5, 7, 1, x, 8, y, z, 9, v, u.

At each step, we will only indicate Step 0, Step 1, or Step 3 if it leads to
an output. If not, then we give the minimal obstruction Q and the branching
set Y computed in Steps 2 and 4. The numbering of the calls reflects how the
algorithm performs the recursive calls in Step 5; Figure 7 depicts the search tree
traversed by the algorithm. Table 2 shows the content of SolTable. Sometimes,
in order to omit details and avoid tedium, we will shorten the description of a
call.

T = P[7, 7, 7]
U = {7}

T = P[0, 0, 0]
U = ∅

T = P[7, 7, 7]
U = {3, 5}

T = P[7, 7, 7]
U = {3, 4}

T = P[7, 7, 7]
U = {7, 8}

T = P[7, 7, 7]
U = {8}

T = P[6, 9, 9]
U = {3, 4, x}

T = P[6, 10, 10]
U = {3, 4, x, y}

T = P[6, 11, 11]
U = {3, 4, x, y, z}

T = P[5, 9, 9]
U = {3, 5, x}

T = P[8, 6, 12]
U = {3, 5, x, y, z, 9}

T = P[12, 6, 13]
U = {3, 5, x, y, z, 9, v}

T = P[14, 12, 6]
U = {3, 5, x, y, z, 9, v, u}

T = P[11, 11, 11]
U = {7, y}

T = P[5, 10, 10]
U = {3, 5, x, y}

T = P[5, 11, 11]
U = {3, 5, x, y, z}

T = P[11, 11, 11]
U = {7, z}

T = P[11, 11, 11]
U = {7, 9, z}

T = P[11, 11, 11]
U = {7, y, z}

T = P[13, 7, 13]
U = {7, 9, z, v}

T = P[14, 12, 8]
U = {7, 9, z, v, u}

T = P[13, 7, 13]
U = {7, y, z, v}

T = P[14, 13, 8]
U = {7, y, z, v, u}

T = P[11, 11, 11]
U = {8, y}

T = P[11, 11, 11]
U = {8, z}

T = P[11, 11, 11]
U = {8, 9, z}

T = P[11, 11, 11]
U = {8, y, z}

T = P[4, 9, 9]
U = {7, 8, x}

T = P[4, 10, 10]
U = {7, 8, x, y}

T = P[4, 11, 11]
U = {7, 8, x, y, z}

T = P[7, 7, 7]
U = {4, 5}

Fig. 7. Illustration for the search tree traversed by algorithm Extend on the example of
Appendix A. Black arrows indicate a recursive call, while blue dashed arrows indicate
strong equivalence (pointing towards the earlier call).

41

Table 2: The contents of SolTable as a result of running
Extend(T∅, ∅) on the example of Appendix A. The entries appear
according to the order in which the algorithm stores them.

Prefix Partial solution Extension

P[6, 11, 11] {3, 4, x, y, z} ∅
P[6, 10, 10] {3, 4, x, y} {z}
P[6, 9, 9] {3, 4, x} {y, z}
P[7, 7, 7] {3, 4} {x, y, z}
P[14, 12, 6] {3, 5, x, y, z, 9, v, u} ∅
P[12, 6, 13] {3, 5, x, y, z, 9, v} {u}
P[8, 6, 12] {3, 5, x, y, z, 9} {v, u}
P[5, 11, 11] {3, 5, x, y, z} {9, v, u}
P[5, 10, 10] {3, 5, x, y} {z, 9, v, u}
P[5, 9, 9] {3, 5, x} {y, z, 9, v, u}
P[7, 7, 7] {3, 5} {x, y, z, 9, v, u}
P[11, 11, 11] {7, y} ∅
P[14, 12, 8] {7, 9, z, v, u} ∅
P[13, 7, 13] {7, 9, z, v} {u}
P[11, 11, 11] {7, 9, z} {v, u}
P[14, 13, 8] {7, y, z, v, u} ∅
P[13, 7, 13] {7, y, z, v} {u}
P[11, 11, 11] {7, y, z} {v, u}
P[7, 7, 7] {7} {y}
P[7, 7, 7] {8} {y}
P[4, 11, 11] {7, 8, x, y, z, } ∅
P[4, 10, 10] {7, 8, x, y} {z}
P[4, 9, 9] {7, 8, x} {y, z}
P[7, 7, 7] {7, 8} {x, y, z}
P[0, 0, 0] ∅ {7, y}

1. Extend(T = P[0, 0, 0], U = ∅):
Min. obstruction Q = P[7, 7, 7] : a: 1, 2, 3, 6, 4, 7, 8.

b: 2, 1, 5, 3, 4, 8, 6.
c: 3, 4, 6, 2, 5, 7, 1.

Branching set: Y = {{3, 4}, {3, 5}, {4, 5}, {7}, {8}, {7, 8}}.
// Forbidden items: ∅.

Return value (based on call 1.4): {7, y}.

1.1. Extend(T = P[7, 7, 7], U = {3, 4}):
Min. obstruction Q = (P − U)[4, 7, 7] : a: 1, 2, 6, 7.

b: 2, 1, 5, 8, 6, x, 7.
c: 6, 2, 5, 7, 1, x, 8.

Branching set: Y = {{x}}.

42

// Forbidden items: {1, 2, 5, 6, 7, 8}.
Return value (based on call 1.1.1): {x, y, z}.

1.1.1. Extend(T = P[6, 9, 9], U = {3, 4, x}):
Min. obstruction Q = (P − U)[4, 7, 7] : a: 1, 2, 6, 7.

b: 2, 1, 5, 8, 6, 7, y.
c: 6, 2, 5, 7, 1, 8, y.

Branching set: Y = {{y}}.
// Forbidden items: {1, 2, 5, 6, 7, 8}.

Return value (based on call 1.1.1.1): {y, z}.

1.1.1.1. Extend(T = P[6, 10, 10], U = {3, 4, x, y}):
Min. obstruction Q = (P − U)[4, 7, 7] : a: 1, 2, 6, 7.

b: 2, 1, 5, 8, 6, 7, z.
c: 6, 2, 5, 7, 1, 8, z.

Branching set: Y = {{z}}.
// Forbidden items: {1, 2, 5, 6, 7, 8}.

Return value (based on 1.1.1.1.1): {z}.

1.1.1.1.1. Extend(T = P[6, 11, 11], U = {3, 4, x, y, z}):
P − U is solvable: a: 1, 2, 6, 7, 8, 9, v, 5, u.

b: 2, 1, 5, 8, 6, 7, u, 9, v.
c: 6, 2, 5, 7, 1, 8, 9, v, u.

Return value: ∅.

1.2. Extend(T = P[7, 7, 7], U = {3, 5}):
// |U | = 2 and δ(T) ∩ U = {5, 7, 8} ∩ U = {5};
// T − U : a: 1, 2, 6, 4, 7, 8.

b: 2, 1, 4, 8, 6.
c: 4, 6, 2, 7, 1.

// defpat(T − U) = D1 = {((4, 7, 7), 2, {7, 8}),
((7, 4, 7), 2, {7, 8}),
((7, 7, 4), 2, {7, 8})}.

Min. obstruction Q = (P − U)[4, 7, 7] : a: 1, 2, 6, 4.
b: 2, 1, 4, 8, 6, x, 7.
c: 4, 6, 2, 7, 1, x, 8.

Branching set: Y = {{x}}.
// Forbidden items: {1, 2, 4, 6, 7, 8}.

Return value (based on call 1.2.1): {x, y, z, 9, v, u}.

1.2.1. Extend(T = P[5, 9, 9], U = {3, 5, x})

1.2.1.1. Extend(T = P[5, 10, 10], U = {3, 5, x, y})

1.2.1.1.1. Extend(T = P[5, 11, 11], U = {3, 5, x, y, z})
Min. obstruction Q = (P − U)[7, 4, 7] : a: 1, 2, 6, 4, 7, 8, 9.

b: 2, 1, 4, 8.
c: 4, 6, 2, 7, 1, 8, 9.

Branching set: Y = {{9}}.

43

// Forbidden items: {1, 2, 4, 6, 7, 8}.
Return value (based on call 1.2.1.1.1.1): {9, v, u}.

1.2.1.1.1.1. Extend(T = P[8, 6, 12], U = {3, 5, x, y, z, 9})

1.2.1.1.1.1.1. Extend(T = P[12, 6, 13], U = {3, 5, x, y, z, 9, v})

1.2.1.1.1.1.1.1. Extend(T = P[14, 12, 6], U = {3, 5, x, y, z, 9, v, u})
P − U is solvable: a: 1, 2, 6, 4, 7, 8.

b: 2, 1, 4, 8, 6, 7.
c: 4, 6, 2, 7, 1, 8.

Return value: ∅.

1.3. Extend(T = P[7, 7, 7], U = {4, 5}):
(T , U) is strongly equivalent with (T , {3, 5}), the input of call 1.2.

// |U | = 2 and δ(T) ∩ U = {5, 7, 8} ∩ U = {5};
// T − U : a: 1, 2, 3, 6, 7, 8.

b: 2, 1, 3, 8, 6.
c: 3, 6, 2, 7, 1.

// defpat(T − U) = D1.
Return value: {x, y, z, 9, v, u}.

1.4. Extend(T = P[7, 7, 7], U = {7}):
Min. obstruction Q = (P −U)[10, 10, 10] : a: 1, 2, 3, 6, 4, 8, 9, y, x, z.

b: 2, 1, 5, 3, 4, 8, 6, x, y, z.
c: 3, 4, 6, 2, 5, 1, x, 8, y, z.

Branching set: Y = {{y}, {z}, {9, z}, {y, z}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8}.

Return value (based on call 1.4.1): {y}.

1.4.1. Extend(T = P[11, 11, 11], U = {7, y}):
// |U | = 2 and δ(T) ∩ U = {5, 9} ∩ U = ∅;
// T − U : a: 1, 2, 3, 6, 4, 8, 9, x, z.

b: 2, 1, 5, 3, 4, 8, 6, x, z.
c: 3, 4, 6, 2, 5, 1, x, 8, z.

// defpat(T − U) = D2 = {((7, 10, 10), 1, {5, 9}),
((10, 7, 10), 1, {5, 9}),
((10, 10, 7), 1, {5, 9})}.

P − U is solvable: a: 1, 2, 3, 6, 4, 8, 9, x, z, v, 5, u.
b: 2, 1, 5, 3, 4, 8, 6, x, z, u, 9, v.
c: 3, 4, 6, 2, 5, 1, x, 8, z, 9, v, u.

Return value: ∅.
1.4.2. Extend(T = P[11, 11, 11], U = {7, z}):

(T , U) is strongly equivalent with (T , {7, y}), the input of call 1.4.1.
// |U | = 2 and δ(T) ∩ U = {5, 9} ∩ U = ∅;
// T − U : a: 1, 2, 3, 6, 4, 8, 9, y, x.

b: 2, 1, 5, 3, 4, 8, 6, x, y.
c: 3, 4, 6, 2, 5, 1, x, 8, y.

44

// defpat(T − U) = D2.
Return value: ∅.

1.4.3. Extend(T = P[11, 11, 11], U = {7, 9, z}):
// |U | = 3 and δ(T) ∩ U = {5, 9} ∩ U = {9};
// T − U : a: 1, 2, 3, 6, 4, 8, y, x.

b: 2, 1, 5, 3, 4, 8, 6, x, y.
c: 3, 4, 6, 2, 5, 1, x, 8, y.

// defpat(T − U) = D3 = {((7, 10, 10), 2, {5}),
((10, 7, 10), 2, {5}),
((10, 10, 7), 2, {5})}.

Min. obstructionQ = (P−U)[10, 7, 10] : a: 1, 2, 3, 6, 4, 8, y, x, v, 5.
b: 2, 1, 5, 3, 4, 8, 6.
c: 3, 4, 6, 2, 5, 1, x, 8, y, v.

Branching set: Y = {{v}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, x, y}.

Return value (based on call 1.4.3.1): {v, u}.

1.4.3.1. Extend(T = P[13, 7, 13], U = {7, 9, z, v}):
Min. obstructionQ = (P−U)[10, 10, 7] : a: 1, 2, 3, 6, 4, 8, y, x, 5, u.

b: 2, 1, 5, 3, 4, 8, 6, x, y, u.
c: 3, 4, 6, 2, 5, 1, x.

Branching set: Y = {{u}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, x, y}.

Return value (based on call 1.4.3.1.1): {u}.

1.4.3.1.1. Extend(T = P[14, 12, 8], U = {7, 9, z, v, u}):
P − U is solvable: a: 1, 2, 3, 6, 4, 8, y, x, 5.

b: 2, 1, 5, 3, 4, 8, 6, x, y.
c: 3, 4, 6, 2, 5, 1, x, 8, y.

Return value: ∅.

1.4.4. Extend(T = P[11, 11, 11], U = {7, y, z}):
// |U | = 3 and δ(T) ∩ U = {5, 9} ∩ U = ∅;
// T − U : a: 1, 2, 3, 6, 4, 8, 9, x.

b: 2, 1, 5, 3, 4, 8, 6, x.
c: 3, 4, 6, 2, 5, 1, x, 8.

// defpat(T − U) = D4 = {((7, 10, 10), 2, {5, 9}),
((10, 7, 10), 2, {5, 9}),
((10, 10, 7), 2, {5, 9})}.

Min. obstructionQ = (P−U)[10, 7, 10] : a: 1, 2, 3, 6, 4, 8, 9, x, v, 5.
b: 2, 1, 5, 3, 4, 8, 6.
c: 3, 4, 6, 2, 5, 1, x, 8, 9, v.

Branching set: Y = {{v}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, 9, x}.

Return value (based on call 1.4.4.1): {v, u}.

45

1.4.4.1. Extend(T = P[13, 7, 13], U = {7, y, z, v}):
Min. obstructionQ = (P−U)[10, 10, 7] : a: 1, 2, 3, 6, 4, 8, 9, x, 5, u.

b: 2, 1, 5, 3, 4, 8, 6, x, u, 9.
c: 3, 4, 6, 2, 5, 1, x.

Branching set: Y = {{u}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 8, 9, x}.

Return value (based on call 1.4.4.1.1): {u}.

1.4.4.1.1. Extend(T = P[14, 13, 8], U = {7, y, z, v, u}):
P − U is solvable: a: 1, 2, 3, 6, 4, 8, 9, x, 5.

b: 2, 1, 5, 3, 4, 8, 6, x, 9.
c: 3, 4, 6, 2, 5, 1, x, 8, 9.

Return value: ∅.

1.5. Extend(T = P[7, 7, 7], U = {8}):
Min. obstruction Q = (P −U)[10, 10, 10] : a: 1, 2, 3, 6, 4, 7, 9, y, x, z.

b: 2, 1, 5, 3, 4, 6, x, 7, y, z.
c: 3, 4, 6, 2, 5, 7, 1, x, y, z.

Branching set: Y = {{y}, {z}, {9, z}, {y, z}}.
// Forbidden items: {1, 2, 3, 4, 5, 6, 7}.

Return value (based on call 1.5.1): {y}.

1.5.1. Extend(T = P[11, 11, 11], U = {8, y}):
(T , U) is strongly equivalent with (T , {7, y}), the input of call 1.4.1.

// |U | = 2 and δ(T) ∩ U = {5, 9} ∩ U = ∅;
// T − U : a: 1, 2, 3, 6, 4, 7, 9, x, z.

b: 2, 1, 5, 3, 4, 6, x, 7, z.
c: 3, 4, 6, 2, 5, 7, 1, x, z.

// defpat(T − U) = D2.
Return value: ∅.

1.5.2. Extend(T = P[11, 11, 11], U = {8, z}):
(T , U) is strongly equivalent with (T , {7, y}), the input of call 1.4.1.

// |U | = 2 and δ(T) ∩ U = {5, 9} ∩ U = ∅;
// T − U : a: 1, 2, 3, 6, 4, 7, 9, y, x.

b: 2, 1, 5, 3, 4, 6, x, 7, y.
c: 3, 4, 6, 2, 5, 7, 1, x, y.

// defpat(T − U) = D2.
Return value: ∅.

1.5.3. Extend(T = P[11, 11, 11], U = {8, 9, z}):
(T , U) is strongly equivalent with (T , {7, 9, z}), the input of call 1.4.3.

// |U | = 3 and δ(T) ∩ U = {5, 9} ∩ U = {9};
// T − U : a: 1, 2, 3, 6, 4, 7, y, x.

b: 2, 1, 5, 3, 4, 6, x, 7, y.
c: 3, 4, 6, 2, 5, 7, 1, x, y.

// defpat(T − U) = D3.
Return value: {v, u}.

46

1.5.4. Extend(T = P[11, 11, 11], U = {8, y, z}):
(T , U) is strongly equivalent with (T , {7, y, z}), the input of call 1.4.4.

// |U | = 3 and δ(T) ∩ U = {5, 9} ∩ U = ∅;
// T − U : a: 1, 2, 3, 6, 4, 7, 9, x.

b: 2, 1, 5, 3, 4, 6, x, 7.
c: 3, 4, 6, 2, 5, 7, 1, x.

// defpat(T − U) = D4.
Return value: {v, u}.

1.6. Extend(T = P[7, 7, 7], U = {7, 8}):
Min. obstruction Q = (P − U)[4, 7, 7] : a: 1, 2, 3, 6.

b: 2, 1, 5, 3, 4, 6, x.
c: 3, 4, 6, 2, 5, 1, x.

Branching set: Y = {{x}}.
// Forbidden items: {1, 2, 3, 4, 5, 6}.

Return value (based on call 1.6.1): {x, y, z}.
1.6.1. Extend(T = P[4, 9, 9], U = {7, 8, x})

1.6.1.1. Extend(T = P[4, 10, 10], U = {7, 8, x, y})
1.6.1.1.1. Extend(T = P[4, 11, 11], U = {7, 8, x, y, z}):

P − U is solvable: a: 1, 2, 3, 6, 4, 9, v, 5, u.
b: 2, 1, 5, 3, 4, 6, u, 9, v.
c: 3, 4, 6, 2, 5, 1, 9, v, u.

Return value: ∅.

47

