
Obtaining a Proportional Allocation by Deleting
Items?

Britta Dorn1, Ronald de Haan2, and Ildikó Schlotter3

1 University of Tübingen, Germany, britta.dorn@uni-tuebingen.de
2 University of Amsterdam, the Netherlands, R.deHaan@uva.nl

3 Budapest University of Technology and Economics, Hungary, ildi@cs.bme.hu

Abstract. We consider the following control problem on fair allocation
of indivisible goods. Given a set I of items and a set of agents, each having
strict linear preference over the items, we ask for a minimum subset of the
items whose deletion guarantees the existence of a proportional allocation
in the remaining instance; we call this problem Proportionality by
Item Deletion (PID). Our main result is a polynomial-time algorithm
that solves PID for three agents. By contrast, we prove that PID is
computationally intractable when the number of agents is unbounded,
even if the number k of item deletions allowed is small, since the problem
turns out to be W[3]-hard with respect to the parameter k. Additionally,
we provide some tight lower and upper bounds on the complexity of PID
when regarded as a function of |I| and k.

1 Introduction

We consider a situation where a set I of indivisible items needs to be allocated
to a set N of agents in a way that is perceived as fair. Unfortunately, it may
happen that a fair allocation does not exist in a setting. In such situations,
we might be interested in the question how our instance can be modified in
order to achieve a fair outcome. Naturally, we seek for a modification that is as
small as possible. This can be thought of as a control action carried out by a
central agency whose task is to find a fair allocation. The computational study
of such control problems was first proposed by Bartholdi, III et al. [3] for voting
systems; our paper follows the work of Aziz et al. [2] who have recently initiated
the systematic study of control problems in the area of fair division.

The idea of fairness can be formalized in various different ways such as pro-
portionality, envy-freeness, or max-min fair share. Here we focus on proportion-
ality, a notion originally defined in a model where agents use utility functions
to represent their preferences over items. In that context, an allocation is called
proportional if each agent obtains a set of items whose utility is at least 1/|N |
of their total utility of all items. One way to adapt this notion to a model with
linear preferences (not using explicit utilities) is to look for an allocation that is

? This work was supported by COST Action IC1205 on Computational Social Choice.
Ildikó Schlotter was also supported by OTKA grants K108383 and K108947.

proportional with respect to any choice of utility functions for the agents that
is compatible with the given linear preferences (see Aziz et al. [1] for a survey of
other possible notions of proportionality and fairness under linear preferences).
Aziz et al. [1] referred to this property as “necessary proportionality”; for sim-
plicity, we use the shorter term “proportionality.”

We have two reasons for considering linear preferences. First, an important
advantage of this setting is the easier elicitation of agents’ preferences, which
enables for more practical applications. Second, this simpler model is more
tractable in a computational sense: under linear preferences, the existence of a
proportional allocation can be decided in polynomial time [1], whereas the same
question for cardinal utilities is NP-hard already for two agents [9]. Clearly, if
already the existence of a proportional allocation is computationally hard to de-
cide, then we have no hope to solve the corresponding control problem efficiently.

Control actions can take various forms. Aziz et al. [2] mention several possibil-
ities: control by adding/deleting/replacing agents or items in the given instance,
or by partitioning the set of agents or items. In this paper we concentrate only
on control by item deletion, where the task is to find a subset of the items, as
small as possible, whose removal from the instance guarantees the existence of
a proportional allocation. In other words, we ask for the maximum number of
items that can be allocated to the agents in a proportional way.

1.1 Related Work

We follow the research direction proposed by Aziz et al. [2] who initiated the
study of control problems in the area of fair division. As an example, Aziz et
al. [2] consider the complexity of obtaining envy-freeness by adding or deleting
items or agents, assuming linear preferences. They show that adding/deleting a
minimum number of items to ensure envy-freeness can be done in polynomial
time for two agents, while for three agents it is NP-hard even to decide if an
envy-free allocation exists. As a consequence, they obtain NP-hardness also for
the control problems where we want to ensure envy-freeness by adding/deleting
items in case there are more than two agents, or by adding/deleting agents.

The problem of deleting a minimum number of items to obtain envy-freeness
was first studied by Brams et al. [4] who gave a polynomial-time algorithm for
the case of two agents.4 In the context of cake cutting, Segal-Halevi et al. [13]
proposed the idea of distributing only a portion of the entire cake in order
to obtain an envy-free allocation efficiently. For the Hospitals/Residents with
Couples problem, Nguyen and Vohra [11] considered another type of control
action: they obtained stability by slightly perturbing the capacities of hospitals.

1.2 Our Contribution

We first consider the case where the number of agents is unbounded (see Sec-
tion 3). We show that the problem of deciding whether there exist at most k

4 For a complete proof of the correctness of their algorithm, see also [2].

2

items whose deletion allows for a proportional allocation is NP-complete, and
also W[3]-hard with parameter k (see Theorem 2). This latter result shows that
even if we allow only a few items to be deleted, we cannot expect an efficient
algorithm, since the problem is not fixed-parameter tractable with respect to the
parameter k (unless FPT = W[3]).

Additionally, we provide tight upper and lower bounds on the complexity of
the problem. In Theorem 3 we prove that the trivial |I|O(k) time algorithm—that,
in a brute force manner, checks for each subset of I of size at most k whether
it is a solution—is essentially optimal (under the assumption FPT 6= W[1]). We
provide another simple algorithm in Theorem 4 that has optimal running time,
assuming the Exponential Time Hypothesis.

In Section 4, we turn our attention to the case with only three agents. In
Theorem 5 we propose a polynomial-time algorithm for this case, which can be
viewed as our main result. This algorithm is based on dynamic programming,
but relies heavily on a non-trivial insight into the structure of solutions.

For lack of space, proofs marked by an asterix are deferred to a detailed
technical report [12].

2 Preliminaries

We assume the reader to be familiar with basic complexity theory, in particular
with parameterized complexity [6].

Preferences. Let N be a set of agents and I a set of indivisible items that we
wish to allocate to the agents in some way. We assume that each agent a ∈ N
has strict preferences over the items, expressed by a preference list La that is
a linear ordering of I, and set L = {Lx | x ∈ N}. We call the triple (N, I, L)
a (preference) profile. We denote by La[i : j] the subsequence of La containing
the items ranked by agent a between the positions i and j, inclusively, for any
1 ≤ i ≤ j ≤ |I|. Also, for a subset X ⊆ I of items we denote by LaX the restriction
of La to the items in X.

Proportionality. Interestingly, the concept of proportionality (as described in
Section 1) has an equivalent definition that is more direct and practical: we say
that an allocation π : I → N mapping items to agents is proportional if for any
integer i ∈ {1, . . . , |I|} and any agent a ∈ N , the number of items from La[1 : i]
allocated to a by π is at least i/|N |. Note that, in particular, this means that in
a proportional allocation, each agent needs to get his or her first choice. Another
important observation is that a proportional allocation can only exist if the
number of items is a multiple of |N |, since each agent needs to obtain at least
|I|/|N | items.

Control by deleting items. Given a profile P = (N, I, L) and a subset U of
items, we can define the preference profile P −U obtained by removing all items
in U from I and from all preference lists in L. Let us define the Proportion-
ality by Item Deletion (PID) problem as follows. Its input is a pair (P, k)
where P = (N, I, L) is a preference profile and k is an integer. We call a set

3

U ⊆ I of items a solution for P if its removal from I allows for proportionality,
that is, if there exists a proportional allocation π : I \ U → N for P − U . The
task in PID is to decide if there exists a solution of size at most k.

3 Unbounded Number of Agents

Since the existence of a proportional allocation can be decided in polynomial
time by standard techniques in matching theory [1], the Proportional Item
Deletion problem is solvable in |I|O(k) time by the brute force algorithm that
checks for each subset of I of size at most k whether it is a solution. In terms
of parameterized complexity, this means that PID is in XP when parameterized
by the solution size.

Clearly, such a brute force approach may only be feasible if the number k of
items we are allowed to delete is very small. Searching for a more efficient al-
gorithm, one might ask whether the problem becomes fixed-parameter tractable
with k as the parameter, i.e., whether there exists an algorithm for PID that,
for an instance (P, k) runs in time f(k)|P|O(1) for some computable function f .
Such an algorithm could be much faster in practice compared to the brute force
approach described above.

Unfortunately, the next theorem shows that finding such a fixed-parameter
tractable algorithm seems unlikely, as PID is W[2]-hard with parameter k. Hence,
deciding whether the deletion of k items can result in a profile admitting a
proportional allocation is computationally intractable even for small values of k.

Theorem 1. Proportionality by Item Deletion is NP-complete and W[2]-
hard when parameterized by the size k of the desired solution.

Proof. We are going to present an FPT-reduction from the W[2]-hard problem
k-Dominating Set, where we are given a graph G = (V,E) and an integer k
and the task is to decide if G contains a dominating set of size at most k; a
vertex set D ⊆ V is dominating in G if each vertex in V is either in D or has a
neighbor in D. We denote by N(v) the set of neighbors of some vertex v ∈ V ,
and we let N [v] = N(v)∪{v}. Thus, a vertex set D is dominating if N [v]∩D 6= ∅
holds for each v ∈ V .

Let us construct an instance IPID = (P, k) of PID with P = (N, I, L) as
follows. We let N contain 3n + 2m + 1 agents where n = |V | and m = |E|: we
create n+1 so-called selection agents s1, . . . , sn+1, and for each v ∈ V we create
a set Av = {ajv | 1 ≤ j ≤ |N [v]| + 1} of vertex agents. Next we let I contain
2|N | + k items: we create distinct first-choice items f(a) for each agent a ∈ N ,
a vertex item iv for each v ∈ V , a dummy item djv for each vertex agent ajv ∈ N ,
and k + 1 additional dummy items c1, . . . , ck+1.

Let F denote the set of all first-choice items, i.e., F = {f(a) | a ∈ N}. For
any set U ⊆ V of vertices in G, let IU = {iv | v ∈ U}; in particular, IV denotes
the set of all vertex items.

Before defining the preferences of agents, we need some additional notation.
We fix an arbitrary ordering ≺ over the items, and for any set X of items we

4

let [X] denote the ordering of X according to ≺. Also, for any a ∈ N , we define
the set F ai as the first i elements of F \ {f(a)}, for any i ∈ {1, . . . , |N | − 1}. We
end preference lists below with the symbol ‘. . . ’ meaning all remaining items not
listed explicitly, ordered according to ≺.

Now we are ready to define the preference list La for each agent a.

– If a is a selection agent a = si with 1 ≤ i ≤ n− k, then let

La : f(a), [F a|N |−n], [IV]︸ ︷︷ ︸
|N | items

, [F a|N |−n+k \ F
a
|N |−n]︸ ︷︷ ︸

k items

, . . .

– If a is a selection agent a = si with n− k < i ≤ n+ 1, then let

La : f(a), [F a|N |−n], [IV]︸ ︷︷ ︸
|N | items

, [F a|N |−n+k−1 \ F
a
|N |−n]︸ ︷︷ ︸

k − 1 items

, ci−(n−k), . . .

– If a is a vertex agent a = ajv with 1 ≤ j ≤ |N [v]|+ 1, then let

La : f(a), [F a|N |−|N [v]|], [IN [v]]︸ ︷︷ ︸
|N | items

, djv, . . .

This finishes the definition of our PID instance IPID.
Suppose that there exists a solution S of size at most k to IPID and a pro-

portional allocation π mapping the items of I \ S to the agents in N . Observe
that by |I| = 2|N |+ k, we know that S must contain exactly k items.

First, we show that S cannot contain any item from F . For contradiction,
assume that f(a) ∈ S for some agent a. Since the preference list of a starts with
more than k items from F (by N−n > k), the first item in LaI\S must be an item

f(b) for some b ∈ N , b 6= a. The first item in LbI\S is exactly f(b), and thus any

proportional allocation should allocate f(b) to both a and b, a contradiction.
Next, we prove that S ⊆ IV . For contradiction, assume that S contains less

than k items from IV . Then, after the removal of S, the top |N | + 1 items in
the preference list LsiI\S of any selection agent si are all contained in IV ∪ F .

Hence, π must allocate at least two items from IV ∪ F to si, by the definition
of proportionality. Recall that for any agent a, π allocates f(a) to a, meaning
that π would need to distribute the n items in IV among the n + 1 selection
agents, a contradiction. Hence, we have S ⊆ IV .

We claim that the k vertices D = {v | iv ∈ S} form a dominating set in S.
Let us fix a vertex v ∈ V . For sake of contradiction, assume that N [v] ∩D = ∅,
and consider any vertex agent a in Av. Then the top |N |+ 1 items in LaI\S are

the same as the top |N |+ 1 items in La = LaI (using that S ∩F = ∅), and these
items form a subset of IN [v] ∪ F for every a ∈ Av. But then arguing as above,
we get that π would need to allocate an item of IN [v] to each of the |N [v]| + 1
vertex agents in Av; again a contradiction. Hence, we get that N [v] ∩D 6= ∅ for
each v ∈ V , showing that D is indeed a dominating set of size k.

5

For the other direction, let D be a dominating set of size k in G, and let
S denote the set of k vertex items {iv | v ∈ D}. To prove that S is a solution
for IPID, we define a proportional allocation π in the instance obtained by re-
moving S. First, for each selection agent si with 1 ≤ i ≤ n− k, we let π allocate
f(si) and the ith item from IV \D to si . Second, for each selection agent sn−k+i
with 1 ≤ i ≤ k + 1, we let π allocate f(sn−k+i) and the dummy item ci to
sn−k+i. Third, π allocates the items f(ajv) and djv to each vertex agent ajv ∈ N .

It is straightforward to check that π is indeed proportional.
For proving NP-completeness, observe that the presented FPT-reduction is a

polynomial reduction as well, so the NP-hardness of Dominating Set implies
that PID is NP-hard as well; since for any subset of the items we can verify in
polynomial time whether it yields a solution, containment in NP follows. ut

In fact, we can strengthen the W[2]-hardness result of Theorem 1 and show
that PID is even W[3]-hard with respect to parameter k.5

Theorem 2 (?). Proportionality by Item Deletion is W[3]-hard when
parameterized by the size k of the desired solution.

Theorem 2 implies that we cannot expect an FPT-algorithm for PID with
respect to the parameter k, the number of item deletions allowed, unless FPT 6=
W[3]. Next we show that the brute force algorithm that runs in |I|O(k) time is
optimal, assuming the slightly stronger assumption FPT 6= W[1].

Theorem 3. There is no algorithm for PID that on an instance (P, k) with item
set I runs in f(k)|I|o(k)|P|O(1) time for some function f , unless FPT 6= W[1].6

Proof. Chen et al. [5] introduced the class of Wl[2]-hard problems based on
the notion of linear FPT-reductions. They proved that Dominating Set is
Wl[2]-hard, and that this implies a strong lower bound on its complexity: unless
FPT 6= W[1], Dominating Set cannot be solved in f(k)|V |o(k)(|V | + |E|)O(1)

time for any function f .
Observe that in the FPT-reduction presented in the proof of Theorem 1 the

new parameter has linear dependence on the original parameter (in fact they co-
incide). Therefore, this reduction is a linear FPT-reduction, and consequentially,
PID is Wl[2]-hard. Hence, as proved by Chen et al. [5], PID on an instance (P, k)
with item set I cannot be solved in time f(k)|I|o(k)|P|O(1) time for any function
f , unless FPT 6= W[1]. ut

If we want to optimize the running time not with respect to the number k
of allowed deletions but rather in terms of the total number of items, then
we can also give the following tight complexity result, under the Exponential
Time Hypothesis (ETH). This hypothesis, formulated in the seminal paper by
Impagliazzo, Paturi, and Zane [8] says that 3-Sat cannot be solved in 2o(n) time,
where n is the number of variables in the 3-CNF fomular given as input.

5 We present Theorem 1 so that we can re-use its proof for Theorems 3 and 4.
6 Here, we use an effective variant of “little o” (see, e.g. [7, Definition 3.22]).

6

Theorem 4. PID can be solved in O?(2|I|) time, but unless the ETH fails, it
cannot be solved in 2o(|I|) time, where I is the set of items in the input.

Proof. The so-called Sparsification Lemma proved by Impagliazzo et al. [8] im-
plies that assuming the ETH, 3-Sat cannot be solved in 2o(m) time, where m is
the number of clauses in the 3-CNF formula given as input. Since the standard
reduction from 3-Sat to Dominating Set transforms a 3-CNF formula with n
variables and m clauses into an instance (G,n) of Dominating Set such that
the graph G has O(m) vertices and maximum degree 3 (see, e.g., [14]), it follows
that Dominating Set on a graph (V,E) cannot be solved in 2o(|V |) time even
on graphs having maximum degree 3, unless the ETH fails.

Recall that the reduction presented in the proof of Theorem 1 computes from
each instance (G, k) of Dominating Set with G = (V,E) an instance (P, k)
of PID where the number of items is 3|V | + 2|E| + 1. Hence, assumming that
our input graph G has maximum degree 3, we obtain |I| = O(|V |) for the set I
of items in P. Therefore, an algorithm for PID running in 2o(|I|) time would
yield an algorithm for Dominating Set running in 2o(|V |) time on graphs of
maximum degree 3, contradicting the ETH. ut

4 Three Agents

It is known that PID for two agents is solvable in polynomial-time: the problem
of obtaining an envy-free allocation by item deletion is polynomial-time solvable
if there are only two agents [2, 4]; since for two agents an allocation is propor-
tional if and only it is envy-free [1], this proves tractability of PID for |N | = 2
immediately. In this section, we generalize this result by proving that PID is
polynomial-time solvable for three agents.

Let us define the underlying graph G of our profile P of PID as the following
bipartite graph. The vertex set of G consists of the set I of items on the one side,
and a set S on the other side, containing all pairs of the form (x, i) where x ∈ N
is an agent and i ∈ {1, . . . , d|I|/|N |e}. Such pairs are called slots. We can think
of the slot (x, i) as the place for the ith item that agent x receives in some
allocation. We say that an item is eligible for a slot (x, i), if it is contained in
Lx[1 : |N |(i−1)+1]. In the graph G, we connect each slot with the items that are
eligible for it. Observe that any proportional allocation corresponds to a perfect
matching in G; see Lemma 1 for a proof.

In what follows, we suppose that our profile P contains three agents, so
let N = {a, b, c}.

4.1 Basic Concepts: Prefixes and Minimum Obstructions

Since our approach to solve PID with three agents is to apply dynamic program-
ming, we need to handle partial instances of PID. Let us define now the basic
necessary concepts.

Prefixes. For any triple (ia, ib, ic) with 1 ≤ ia, ib, ic ≤ |I| we define a prefix
Q = P[ia, ib, ic] of P as the triple (La[1 : ia], Lb[1 : ib], L

c[1 : ic]), listing only

7

Profile P:

a: 1, 3, 2, 4, 6, 5, 7.
b: 3, 1, 5, 2, 7, 4, 6.
c: 2, 4, 5, 3, 6, 7, 1.

Min. obstruction Q:

a: 1, 3, 2, 4.
b: 3, 1, 5, 2.
c: 2, 4, 5, 3.

Graph G(Q):

(a, 1) (b, 1) (c, 1) (a, 2) (b, 2) (c, 2)

1 2 3 4 5Q− {2}:
a: 1, 3, 4.
b: 3, 1, 5.
c: 4, 5, 3.

P − {2}:
a: 1, 3, 4, 6, 5, 7.
b: 3, 1, 5, 7, 4, 6.
c: 4, 5, 3, 6, 7, 1.

Fig. 1. An example profile P with item set I = {1, 2, . . . , 7}, a minimal obstruction Q
of size (4, 4, 4) in P and its associated graph G(Q). Note that the partial solution {2}
for Q is a soluton for P as well. We depicted a proportional allocation for Q−{2} and
P − {2} by underlining in each agent’s preference list the items allocated to her.

the first ia, ib, ic items in the preference list of agents a, b, and c, respectively.
We call (ia, ib, ic) the size of Q and denote it by size(Q). We also define the
suffix P −Q as the triple (La[ia + 1 : |I|], Lb[ib + 1 : |I|], Lc[ic + 1 : |I|]), which
can be thought of as the remainder of P after deleting Q from it.

We say that a prefix Pi = P[ia, ib, ic] is contained in another prefix Pj =
P[ja, jb, jc] if jx ≤ ix for each x ∈ N ; the containment is strict if jx < ix for
some x ∈ N . We say that Pi and Pj are intersecting if none of them contains
the other; we call the unique largest prefix contained both in Pi and in Pj , i.e.,
the prefix P[min(ia, ja),min(ib, jb),min(ic, jc)], their intersection, and denote it
by Pi ∩ Pj .

For some prefixQ = P[ia, ib, ic], let I(Q) denote the set of all items appearing
in Q, and let S(Q) denote the set of all slots appearing in Q, i.e., S(Q) = {(x, i) |
1 ≤ i ≤ d(ix + 2)/3e, x ∈ N}. We also define the graph G(Q) underlying Q
as the subgraph of G induced by all slots and items appearing in Q, that is,
G(Q) = G[S(Q) ∪ I(Q)]. We say that a slot is complete in Q, if it is connected
to the same items in G(Q) as in G; clearly the only slots which may be incomplete
are the last slots in Q, that is, the slots (x, d(ix + 2)/3e), x ∈ N .

Solvability. We say that a prefix Q is solvable, if the underlying graph G(Q) has
a matching that covers all its complete slots. Hence, a prefix is solvable exactly
if there exists an allocation π from I(Q) to N that satisfies the condition of
proportionality restricted to all complete slots in Q: for any agent x ∈ N and
any index i ∈ {1, . . . , i′x}, the number of items from Lx[1 : ix] allocated by π
to x is at least ix/3; here i′x = 3(b(ix + 2)/3c)− 2 is the last position in Q that
is contained in a complete slot for agent x.

Minimal obstructions. We say that a prefix Q is a minimal obstruction, if it is
not solvable, but all prefixes strictly contained in Q are solvable. See Figure 1 for
an illustration. The next lemmas claim some useful observations about minimal
obstructions.

8

Lemma 1 (?). Profile P admits a proportional allocation if and only if the
underlying graph G contains a perfect matching. Also, in O(|I|3) time we can
find either a proportional allocation for P, or a minimal obstruction Q in P.

Lemma 2 (?). Let Q = P[ia, ib, ic] be a prefix of P that is a minimal obstruc-
tion. Then ia ≡ ib ≡ ic ≡ 1 mod 3, and either

(i) ia = ib = ic, or
(ii) ix = iy = iz+3 for some choice of agents x, y, and z with {x, y, z} = {a, b, c}.

Moreover, if (ii) holds, then Lx[1 : ix] and Ly[1 : iy] contain exactly the same
item set, namely I(Q).

Based on Lemma 2, we define the shape of a minimal obstruction Q as
either straight or slant, depending on whether Q fulfills the conditions (i) or
(ii), respectively. More generally, we also say that a prefix has straight or slant
shape if it fulfills the respective condition. Furthermore, we define the boundary
items of Q, denoted by δ(Q), as the set of all items that appear once or twice
(but not three times) in Q.

Lemma 3 (?). Let Q be a prefix of P that is a minimal obstruction. Then the
boundary of Q contains at most three items: |δ(Q)| ≤ 3.

4.2 Partial Solutions and Branching Sets

Partial solutions. For a prefix Q and a set U of items, we define Q−U in the
natural way: by deleting all items of U from the (partial) preference lists of the
profile (note that the total length of the preference lists constituting the profile
may decrease). We say that an item set Y ⊆ I(Q) is a partial solution for Q if
Q− Y is solvable. See again Figure 1 for an example.

Observe that for any item set Y we can check whether it is a partial solution
for Q by finding a maximum matching in the corresponding graph (containing all
items and complete slots that appear in Q−Y), which has at most 2|I| vertices.
Hence, using the algorithm by Mucha and Sankowski [10], we can check for any
Y ⊆ I(Q) whether it is a partial solution for Q in O(|I|ω) time where ω < 2.38
is the exponent of the best matrix multiplication algorithm.

Branching set. To solve PID we will repeatedly apply a branching step: when-
ever we encounter a minimal obstruction Q, we shall consider several possible
partial solutions for Q, and for each partial solution Y we try to find a solution
U that contains Y . To formalize this idea, we say that a family Y containing
partial solutions for a minimal obstruction Q is a branching set for Q, if there
exists a solution U of minimum size for the profile P such that U ∩ I(Q) ∈ Y.
Such a set is exactly what we need to build a search tree algorithm for PID.

Lemma 4 shows that we never need to delete more than two items from any
minimal obstruction. This will be highly useful for constructing a branching set.

Lemma 4 (?). Let Q be a minimal obstruction in a profile P, and let U denote
an inclusion-wise minimal solution for P. Then |U ∩ I(Q)| ≤ 2.

9

Lemma 4 implies that simply taking all partial solutions of I(Q) of size 1
or 2 yields a branching set for Q.

Corollary 1. For any minimal obstruction Q in a profile, a branching set Y for
Q of cardinality at most |I(Q)| +

(|I(Q)|
2

)
= O(|I|2) and with maxY ∈Y |Y | ≤ 2

can be constructed in polynomial time.

4.3 Domination: Obtaining a Smaller Branching Set

To exploit Lemma 4 in a more efficient manner, we will rely on an observation
about the equivalence of certain item deletions, which can be used to reduce the
number of possibilities that we have to explore when encountering a minimal
obstruction, i.e., the size of our branching set. To this end, we need some addi-
tional notation. Given a prefix Q = P[ia, ib, ic], we define its tail as the set T (Q)
of items as follows, depending on the shape of Q.

– If Q has straight shape, then T (Q) contains the last three items contained
in Q for each agent, that is, all items in La[ia − 2 : ia], Lb[ib − 2 : ib], and
Lc[ic − 2 : ic].

– If Q has slant shape with iz = ix− 3 = iy − 3 for some choice of agents x, y,
and z with {x, y, z} = {a, b, c}, then T (Q) contains the last six items in Q
listed by agents x and y, that is, all items in Lx[ix−5 : ix] and Ly[iy−5 : iy].

Let us state the main property of the tail which motivates its definition.

Lemma 5 (?). Suppose Q is a minimum obstruction in P, and R is a prefix of
P intersecting Q such that R−X is a minimum obstruction for some item set
X with |X ∩ I(Q)| ≤ 2. Then any item that occurs more times in Q than in R
must be contained in the tail of Q.

Next, we give a condition that guarantees that some partial solution for a
minimum obstruction Q is “not worse” than some other. Given two sets of items
Y, Y ′ ⊆ I(Q), we say that Y ′ dominates Y with respect to the prefix Q, if

(1) |Y | = |Y ′|,
(2) Y ′ only contains an item from the boundary or the tail ofQ if Y also contains

that item, i.e., Y ′ ∩ (δ(Q) ∪ T (Q)) ⊆ Y ∩ (δ(Q) ∪ T (Q)).

Lemma 6 (?). If U is an inclusion-wise minimal solution for the profile P, Q
is a minimal obstruction in P, Y = U ∩I(Q) and Y ′ ⊆ I(Q) is a partial solution
for Q that dominates Y , then U \ Y ∪ Y ′ is a solution for P.

Lemma 6 means that if a branching set Y contains two different partial
solutions Y and Y ′ for a minimum obstruction such that Y ′ dominates Y , then
removing Y from Y still results in a branching set. Using this idea, we can
construct a branching set of constant size.

Lemma 7. There is a polynomial-time algorithm that, given a minimal obstruc-
tion Q in the profile P, produces a branching set Y with maxY ∈Y |Y | ≤ 2 and
|Y| = O(1).

10

Proof. First observe that for any two item sets Y and Y ′ in Q, we can decide
whether Y dominates Y ′ in O(min(|Y |, |Y ′|)) time. Hence, we can simply start
from the branching set Y guaranteed by Corollary 1, and check for each Y ∈ Y
whether there exists some Y ′ ∈ Y that dominates Y ; if so, then we remove Y .
By Lemma 6, at the end of this process the set family Y obtained is a branching
set.

We claim that Y has constant size. To see this, observe that if Y1 and Y2
are both in Y and have the same size, then both Y1 \ Y2 and Y2 \ Y1 contain
an element from T (Q) ∪ δ(Q). Thus, we can bound |Y| using the pigeon-hole
principle: first, Y may contain at most |T (Q) ∪ δ(Q)| partial solutions of size

1, and second, it may contain at most
(|T (Q)∪δ(Q)|

2

)
partial solutions of size 2.

Recall that |T (Q)| ≤ 9 by definition, and we also have |δ(Q)| ≤ 3 by Lemma 3,
proving our claim. ut

4.4 Polynomial-Time Algorithm for PID for Three Agents

Let us now present our algorithm for solving PID on our profile P = (N, I, L).
We are going to build the desired solution step-by-step, iteratively extending

an already found partial solution. Namely, we propose an algorithm MinDel(T , U)
that, given a prefix T of P and a partial solution U for T , returns a solution S
for P for which S ∩ I(T) = U , and has minimum size among all such solutions.
We refer to the set S \ U as an extension for (T , U); note that an extension for
(T , U) only contains items from I \ I(T). We will refer to the set of items in
I(T) \ U as forbidden w.r.t. (T , U).

Branching set with forbidden items. To address the problem of finding an
extension for (T , U), we modify the notion of a branching set accordingly. Given
a minimal obstruction Q and a set F ⊆ I(Q) of items, we say that a family Y
of partial solutions for Q is a branching set for Q forbidding F , if the following
holds: either there exists a solution U for the profile P that is disjoint from F and
has minimum size among all such solutions, and moreover, fulfills U ∩ I(Q) ∈ Y,
or P does not admit any solution disjoint from F .

Lemma 8. There is a polynomial-time algorithm that, given a minimal obstru-
cion Q in a profile and a set F ⊆ I(Q) of forbidden items, produces a branching
set Y forbidding F with maxY ∈Y |Y | ≤ 2 and |Y| = O(1).

Proof. The algorithm given in Lemma 7 can be adapted in a straightforward
fashion to take forbidden items into account: it suffices to simply discard in the
first place any subset Y ⊆ I(Q) that is not disjoint from F . It is easy to verify
that this modification indeed yields an algorithm as desired. ut

Equivalent partial solutions. We will describe MinDel as a recursive algo-
rithm, but in order to ensure that it runs in polynomial time, we need to apply
dynamic programming. For this, we need a notion of equivalence: we say that
two partial solutions U1 and U2 for T are equivalent if (1) |U1| = |U2|, and
(2) (T , U1) and (T , U2) admit the same extensions.

11

Ideally, whenever we perform a call to MinDel with a given input (T , U), we
would like to first check whether an equivalent call has already been performed,
i.e., whether MinDel has been called with an input (T , U ′) for which U and U ′

are equivalent. However, the above definition of equivalence is computationally
hard to handle: there is no easy way to check whether two partial solutions admit
the same extensions or not. To overcome this difficulty, we will use a stronger
condition that implies equivalence.

Deficiency and strong equivalence. Consider a solvable prefix Q of P. We
let the deficiency of Q, denoted by def(Q), be the value |S(Q)| − |I(Q)|. Note
that due to possibly incomplete slots in Q, the deficiency of Q may be positive
even though Q is solvable. However, if Q contains only complete slots, then its
solvability implies def(Q) ≤ 0. We define the deficiency pattern of Q as the set
of all triples

(size(Q∩R),def(Q∩R), I(Q∩R) ∩ δ(Q))

where R can be any prefix with a straight or a slant shape that intersects Q.
Roughly speaking, the deficiency pattern captures all the information about Q
that is relevant for determining whether a given prefix intersectingQ is a minimal
obstruction or not.

Now, we call the partial solutions U1 and U2 for T strongly equivalent, if

1. |U1| = |U2|,
2. U1 ∩ δ(T) = U2 ∩ δ(T), and
3. T − U1 and T − U2 have the same deficiency pattern.

As the name suggests, strong equivalence is a sufficient condition for equivalence.

Lemma 9 (?). If U1 and U2 are strongly equivalent partial solutions for T , then
they are equivalent as well.

Now, we are ready to describe the MinDel algorithm in detail. Let (T , U)
be the input for MinDel. Throughout the run of the algorithm, we will store all
inputs with which MinDel has been computed in a table SolTable, keeping track
of the corresponding solutions for P as well. Initially, SolTable is empty.

Step 0: Check for strongly equivalent inputs. For each (T , U ′) in
SolTable, check whether U ′ and U are strongly equivalent, and if so, return
MinDel(T , U ′).

Step 1: Check for trivial solution. Check if P −U is solvable. If so, then
store the entry (T , U) together with the solution U in SolTable, and return U .

Step 2: Find a minimal obstruction. Find a minimal obstruction Q in
P − U ; recall that P − U is not solvable in this step. Let T ′ be the prefix of P
for which T ′ − U = Q.

Step 3: Compute a branching set. Using Lemma 8, determine a branch-
ing set Y for Q forbidding I(T) \ U . If Y = ∅, then stop and reject.

Step 4: Branch. For each Y ⊆ Y, compute SY := MinDel(T ′, U ∪ Y).
Step 5: Find a smallest solution. Compute a set SY ? for which |SY ? | =

minY ∈Y |SY |. Store the entry (T , U) together with the solution SY ? in SolTable,
and return SY ? .

12

Lemma 10 (?). Algorithm MinDel is correct, i.e., for any prefix T of P and
any partial solution U for T , MinDel(T , U) returns a solution S for P with
S ∩ I(T) = U , having minimum size among all such solutions (if existent).

Lemma 10 immediately gives us an algorithm to solve PID. Let T∅ denote the
empty prefix of our input profile P, i.e. P[0, 0, 0]; then MinDel(T∅, ∅) returns a
solution S for P of minimum size; we only have to compare |S| with the desired
solution size k.

The next lemma states that MinDel gets called polynomially many times.

Lemma 11. Throughout the run of algorithm MinDel initally called with input
(T∅, ∅), the table SolTable contains O(|I|7) entries.

Proof. Let us consider table SolTable at a given moment during the course of
algorithm MinDel, initially called with the input (T∅, ∅) (and having possibly
performed several recursive calls since then). Let us fix a prefix T . We are going to
give an upper bound on the maximum size of the family UT of partial solutions U
for T for which SolTable contains the entry (T , U).

By Step 0 of algorithm MinDel, no two sets in UT are strongly equivalent.
Recall that if U1 and U2, both in UT , are not strongly equivalent, then either
|U1| 6= |U2|, or δ(T) ∩ U1 6= δ(T) ∩ U2, or T − U1 and T − U2 have different
deficiency patterns. Let us partition the sets in UT into groups: we put U1 and
U2 in the same group, if |U1| = |U2| and δ(T) ∩ U1 = δ(T) ∩ U2.

Examining Steps 2–4 of algorithm MinDel, we can observe that if U 6= ∅,
then for some YU ⊆ U of size 1 or 2, the prefix T − (U \ YU) is a minimal
obstruction QU . Since removing items from a prefix cannot increase the size of
its boundary, Lemma 3 implies that the boundary of T − U contains at most 3
items. We get |δ(T) \ U | ≤ |δ(T − U)| ≤ 3, from which it follows that δ(T) ∩ U
is a subset of δ(T) of size at least |δ(T)| − 3. Therefore, the number of different
values that δ(T) ∩ U can take is O(|I|3). Since any U ∈ UT has size at most
|I|, we get that there are O(|I|4) groups in UT . Let us fix some group Ug of UT .
We are going to show that the number of different deficiency patterns for T −U
where U ∈ Ug is constant.

Recall that the deficiency pattern of T − U contains triples of the form
(size(R∩),def(R∩), I(R∩) ∩ δ(T − U)), where R∩ is the intersection of T − U
and some prefix R of P − U with a slant or a straight shape.

First observe that by the definition of a group, size(T − U1) = size(T − U2)
holds for any U1, U2 ∈ Ug. Let us fix an arbitrary U ∈ Ug. Since T − U can be
obtained by deleting 1 or 2 items from a minimal obstruction, Lemma 2 implies
that there can only be a constant number of prefixes R of P −U which intersect
T − U and have a slant or a straight shape; in fact, it is not hard to check that
the number of such prefixes R is at most 5 for any given T − U . Therefore,
the number of values taken by the first coordinate size(R∩) of any triple in the
deficiency pattern of T − U is constant. Since T − U has the same size for any
U ∈ Ug, we also get that these values coincide for any U ∈ Ug. Hence, we obtain
that (A) the total number of values the first coordinate of any triple in the
deficiency pattern of T − U for any U ∈ Ug can take is constant.

13

LetR∩ be the intersection of T −U and some prefix of straight or slant shape.
By definition, R∩ is contained in QU . By |YU | ≤ 2, there are only a constant
number of positions which are contained in QU but not in R∩. From this both
||I(R∩)| − |I(QU)|| = O(1) and ||S(R∩)| − |S(QU)|| = O(1) follow. As QU is
a minimal obstruction, we also have |I(QU)| = |S(QU)| − 1, implying that (B)
the deficiency def(R∩) = |S(R∩)| − |I(R∩)| can only take a constant number of
values too; note that we have an upper bound on |def(R∩)| that holds for any
U ∈ Ug. Considering that I(R∩) ∩ δ(T − U) is the subset of δ(T − U), and we
also know |δ(T −U)| ≤ 3, we obtain that (C) the set I(R∩)∩ δ(T −U) can take
at most 23 values (again, for all U ∈ Ug).

Putting together the observations (A), (B), and (C), it follows that the num-
ber of different deficiency patterns of T − U taken over all U ∈ Ug is constant.
This implies |UT | = O(|I|4). Since there are O(|I|3) prefixes T of P, we arrive at
the conclusion that the maximum number of entries in SolTable is O(|I|7). ut

Theorem 5. Proportional Item Deletions for three agents can be solved
in time O(|I|9+ω) where ω < 2.38 is the exponent of the best matrix multiplication
algorithm.

Proof. By Lemma 10, we know that algorithm MinDel(T∅, ∅) returns a solution
for P of minimum size, solving PID. We can use Lemma 11 to bound the running
time of MinDel(T∅, ∅): since SolTable contains O(|I|7) entries, we know that the
number of recursive calls to MinDel is also O(|I|7). It remains to give a bound
on the time necessary for the computations performed by MinDel, when not
counting the computations performed in recursive calls. Clearly, Step 0 takes
O(1) time. Steps 1 and 2 can be accomplished in O(|I|3) time, as described in
Lemma 1. Using Lemma 8, Step 3 can be performed in O(|I|2+ω) time. Since
the cardinality of the branching set found in Step 3 is constant, Steps 4 and 5
can be performed in linear time. This gives us an upper bound of O(|I|9+ω) on
the total running time. ut

We remark that in order to obtain Theorem 5, it is not crucial to compute a
branching set of constant size in Step 3: a polynomial running time would still
follow even if we used a branching set of quadratic size. Thus, for our purposes, it
would be sufficient to use an extension of Corollary 1 that takes forbidden items
into account (an analog of Lemma 8) in Step 3. Therefore, the ideas of Section 4.3
– the notion of domination between partial solutions, leading to Lemma 7 – can
be thought of as a speed-up that offers a more practical algorithm.

5 Conclusion

In Section 4 we have shown that Proportionality by Item Deletion is
polynomial-time solvable if there are only three agents. On the other hand, if
the number of agents is unbounded, then PID becomes NP-hard, and practically
intractable already when we want to delete only a small number of items, as
shown by the W[3]-hardness result of Theorem 2.

14

The complexity of PID remains open for the case when the number of agents
is a constant greater than 3. Is it true that for any constant n, there exists a
polynomial-time algorithm that solves PID in polynomial time for n agents? If
the answer is yes, then can we even find an FPT-algorithm with respect to the
parameter n? If the answer is no (that is, if PID turns out to be NP-hard for
some constant number of agents), then can we at least give an FPT-algorithm
with parameter k for a constant number of agents (or maybe with combined
parameter (k, n))?

Finally, there is ample space for future research if we consider different con-
trol actions (such as adding or replacing items), different notions of fairness, or
different models for agents’ preferences.

References

1. H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair assignment of indivisible
objects under ordinal preferences. Artificial Intelligence, 227:71–92, 2015.

2. H. Aziz, I. Schlotter, and T. Walsh. Control of fair division. In IJCAI 2016:
Proceedings of the 25th International Joint Conference on Artificial Intelligence,
pages 67–73, 2016.

3. J. J. Bartholdi, III, C. A. Tovey, and M. A. Trick. How hard is it to control an
election? Mathematical and Computer Modelling, 16(8–9):27–40, 1992.

4. S. J. Brams, D. M. Kilgour, and C. Klamler. Two-person fair division of indivisible
items: An efficient, envy-free algorithm. Notices of the AMS, 61(2):130–141, 2014.

5. J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–
1367, 2006.

6. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, London, 2013.

7. J. Flum and M. Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

8. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

9. R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair al-
locations of indivisible goods. In EC 2004: Proc. of the 5th ACM Conference on
Electronic Commerce, pages 125–131, 2004.

10. M. Mucha and P. Sankowski. Maximum matchings via gaussian elimination. In
FOCS 2014: Proc. of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 248–255, 2004.

11. T. Nguyen and R. Vohra. Near feasible stable matchings. In EC 2015: Proc. of the
Sixteenth ACM Conference on Economics and Computation, pages 41–42, 2015.

12. I. Schlotter, B. Dorn, and R. de Haan. Obtaining a proportional allocation by
deleting items. CoRR, abs/1705.11060, 2017.

13. E. Segal-Halevi, A. Hassidim, and Y. Aumann. Waste makes haste: Bounded
time protocols for envy-free cake cutting with free disposal. In AAMAS 2014: In
Proc. of the 14th International Conference on Autonomous Agents and Multi-Agent
Systems, pages 901–908, 2015.

14. K. Thulasiraman, S. Arumugam, A. Brandstädt, and T. Nishizeki. Handbook
of Graph Theory, Combinatorial Optimization, and Algorithms. Chapman &
Hall/CRC Computer and Information Science Series. CRC Press, 2015.

15

