
Arborescences, Colorful Forests, and Popularity∗

Telikepalli Kavitha † Kazuhisa Makino ‡ Ildikó Schlotter § Yu Yokoi ¶

Abstract
Our input is a directed, rooted graph G = (V ∪{r}, E) where each vertex in V has a partial order preference

over its incoming edges. The preferences of a vertex extend naturally to preferences over arborescences rooted
at r. We seek a popular arborescence in G, i.e., one for which there is no “more popular” arborescence.
Popular arborescences have applications in liquid democracy or collective decision making; however, they need
not exist in every input instance. The popular arborescence problem is to decide if a given input instance admits
a popular arborescence or not. We show a polynomial-time algorithm for this problem, whose computational
complexity was not known previously.

Our algorithm is combinatorial, and can be regarded as a primal-dual algorithm. It searches for an
arborescence along with its dual certificate, a chain of subsets of E, witnessing its popularity. In fact, our
algorithm solves the more general popular common base problem in the intersection of two matroids, where
one matroid is the partition matroid defined by any partition E =

⋃· v∈V δ(v) and the other is an arbitrary
matroid M = (E, I) of rank |V |, with each v ∈ V having a partial order over elements in δ(v). We extend our
algorithm to the case with forced or forbidden edges.

We also study the related popular colorful forest (or more generally, the popular common independent set)
problem where edges are partitioned into color classes, and the task is to find a colorful forest that is popular
within the set of all colorful forests. For the case with weak rankings, we formulate the popular colorful forest
polytope, and thus show that a minimum-cost popular colorful forest can be computed efficiently. By contrast,
we prove that it is NP-hard to compute a minimum-cost popular arborescence, even when rankings are strict.

1 Introduction

Let G = (V ∪ {r}, E) be a directed graph where the vertex r (called the root) has no incoming edge. Every
vertex v ∈ V has a partial ordering ≻v (i.e., a preference relation that is irreflexive, antisymmetric and
transitive) over its incoming edges, as in this example from [19] where preference orders are strict rankings.
Here V = {a, b, c, d} and the preference orders of these four vertices on their incoming edges are as follows:

(b, a) ≻a (c, a) ≻a (r, a)

(a, b) ≻b (d, b) ≻b (r, b)

(d, c) ≻c (a, c) ≻c (r, c)

(c, d) ≻d (b, d) ≻d (r, d).

r

a b

c d

first rank

second rank

third rank

We are interested in computing an optimal arborescence rooted at r, where an arborescence is an acyclic
subgraph of G in which each vertex v ∈ V has a unique incoming edge. Our notion of optimality is a function of
the preferences (≻v)v∈V of vertices for their incoming edges.

Given any pair of arborescences A and A′ in G, we say that v ∈ V prefers A to A′ if v prefers its incoming
edge in A to its incoming edge in A′, i.e., v prefers A to A′ if A(v) ≻v A′(v) where A(v) (resp., A′(v)) is v’s
incoming edge in A (resp., A′). Let ϕ(A,A′) be the number of vertices that prefer A to A′. We say that A is
more popular than A′ if ϕ(A,A′) > ϕ(A′, A).

∗The full version of the paper can be accessed at https://arxiv.org/abs/2310.19455
†Tata Institute of Fundamental Research, Mumbai, India; kavitha@tifr.res.in
‡Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan; makino@kurims.kyoto-u.ac.jp
§Centre for Economic and Regional Studies, Budapest, Hungary; also at Budapest University of Technology and Economics,

Budapest, Hungary; schlotter.ildiko@krtk.hun-ren.hu
¶Tokyo Institute of Technology, Tokyo, Japan; yokoi@c.titech.ac.jp

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/2310.19455

Definition 1.1. An arborescence A is popular if ϕ(A,A′) ≥ ϕ(A′, A) for all arborescences A′.

Our notion of optimality is popularity, in other words, we seek a popular arborescence A in G. So there is
no arborescence more popular than A, thus A is maximal under the “more popular than” relation. The “more
popular than” relation is not transitive and popular arborescences need not always exist.

Consider the example from [19] illustrated above. The arborescence A = {(r, a), (a, b), (a, c), (c, d)} is not
popular, since the arborescence A′ = {(r, d), (d, c), (c, a), (a, b)} is more popular. This is because a and c prefer A′

to A, while d prefers A to A′, and b is indifferent between A and A′. We can similarly obtain an arborescence
A′′ = {(r, b), (b, a), (b, d), (d, c)} more popular than A′. It is easy to check that for any arborescence here, there is
a more popular arborescence. Therefore this instance has no popular arborescence.

Consider the above instance without the edge (r, d). Vertex preferences are the same as in the earlier instance,
except that vertex d has no third-choice edge. It can be shown that this instance has two popular arborescences:
A = {(r, a), (a, b), (a, c), (c, d)} and A′′′ = {(r, b), (b, a), (a, c), (c, d)} (Appendix A has more details).

The popular arborescence problem. Given a directed graph G as described above, the popular
arborescence problem is to determine if G admits a popular arborescence or not, and to find one, if so. The
computational complexity of the popular arborescence problem was posed as an open problem at the Emléktábla
workshop [22] in 2019 and the problem has remained open till now. Thus it is an intriguing open problem—aside
from its mathematical interest and curiosity, it has applications in liquid democracy, which is a voting scheme
that allows a voter to delegate its vote to another voter.1

Popular branchings. A special case of the popular arborescence problem is the popular branching problem.
A branching is a directed forest in a digraph G = (V,E) where each vertex has at most one incoming edge. Any
branching in G can be viewed as an arborescence in an auxiliary graph obtained by augmenting G with a new
vertex r as the root and adding the edge (r, v) for each v ∈ V as the least-preferred incoming edge of v. So
the problem of deciding whether the given instance G admits a popular branching or not reduces to the problem
of deciding whether this auxiliary instance admits a popular arborescence or not. An efficient algorithm for this
special case of the popular arborescence problem (where the root r is an in-neighbor of every v ∈ V) was given
in [19].

The applications of popular branchings in liquid democracy were discussed in [19]—as mentioned above, each
voter can delegate its vote to another voter; however delegation cycles are forbidden. A popular branching B
represents a cycle-free delegation process that is stable, and every root in B casts a weighted vote on behalf of all
its descendants. As mentioned in [19], liquid democracy has been used for internal decision making at Google [16]
and political parties such as the German Pirate Party or the Swedish party Demoex. We refer to [28] for more
details.

However, in many real-world applications, not all agents would be willing to be representatives, i.e., to be
roots in a branching. Thus it cannot be assumed that every vertex is an out-neighbor of r, so it is only agents
who are willing to be representatives that are out-neighbors of r in our instance. Thus the popular arborescence
problem has to be solved in a general digraph G = (V ∪ {r}, E) rather than in one where every vertex is an
out-neighbor of r. As mentioned earlier, the computational complexity of the popular arborescence problem was
open till now. We show the following result.

Theorem 1.1. Let G = (V ∪ {r}, E) be a directed graph where each v ∈ V has a partial order over its incoming
edges. There is a polynomial-time algorithm to solve the popular arborescence problem in G.

Popular matchings and assignments. The notion of popularity has been extensively studied in the domain
of bipartite matchings where vertices on one side of the graph have weak rankings (i.e., linear preference order
with possible ties) over their neighbors. The popular matching problem is to decide if such a bipartite graph
admits a popular matching, i.e., a matching M such that there is no matching more popular than M .

An efficient algorithm for the popular matching problem was given almost 20 years ago [1]. Very recently (in
2022), the popular assignment problem was considered [18]. What is sought in this problem is a perfect matching
that is popular within the set of perfect matchings—so the cardinality of the matching is more important than

1A vertex v delegating its vote to u should be represented as the edge (v, u); however as said in [19], it will be more convenient to
denote this delegation by (u, v) so as to be consistent with downward edges in an arborescence.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

popularity here. It is easy to see that the popular assignment problem is a generalization of the popular matching
problem (a simple reduction from the popular matching problem to the popular assignment problem can be shown
by adding some dummy vertices). An efficient algorithm for the popular assignment problem was given in [18].

Popular common base problem. Observe that the popular arborescence and popular assignment problems
are special cases of the popular common base problem in the intersection of two matroids, where one matroid is
the partition matroid defined by any partition E =

⋃· v∈V δ(v) and the other is an arbitrary matroid M = (E, I)
of rank |V |, and each v ∈ V has a partial order ≻v over elements in δ(v).

• For any pair of common bases (i.e., common maximal independent sets) I and I ′ in the matroid intersection,
we say that v ∈ V prefers I to I ′ if v prefers the element in I ∩ δ(v) to the element in I ′ ∩ δ(v), i.e., e ≻v f
where I ∩ δ(v) = {e} and I ′ ∩ δ(v) = {f}. Let ϕ(I, I ′) be the number of vertices in V that prefer I to I ′.
The set I is popular within the set of common bases if ϕ(I, I ′) ≥ ϕ(I ′, I) for all common bases I ′.

Arborescences are the common bases in the intersection of a partition matroid with a graphic matroid (for any
edge set I ⊆ E, I ∈ I if and only if I has no cycle in the underlying undirected graph) while assignments are
common bases in the intersection of two partition matroids. In fact, our algorithm and the proof of correctness
for Theorem 1.1 work for the general popular common base problem.

Theorem 1.2. A popular common base in the intersection of a partition matroid on E =
⋃· v∈V δ(v) with any

matroid M = (E, I) of rank |V | can be computed in polynomial time.

Interestingly, the popular common independent set problem which asks for a common independent set that
is popular in the set of all common independent sets (of all sizes) in the matroid intersection can be reduced
to the popular common base problem (see Section 4). Therefore, the following fact is obtained as a corollary to
Theorem 1.2.

Corollary 1.1. A popular common independent set in the intersection of a partition matroid on E =
⋃· v∈V δ(v)

with any matroid M = (E, I) can be computed in polynomial time.

All of the following problems fall in the framework of a popular common base (or common independent set)
in the intersection of a partition matroid with another matroid:

1. Popular matchings [1].

2. Popular assignments [18].

3. Popular branchings [19].

4. Popular matchings with matroid constraints2 [17].

Since Corollary 1.1 holds for partial order preferences, it generalizes the tractability result in [17] which assumes
that preferences are weak rankings (note that the results in [17] are based on the paper [1], which in turn strongly
relies on weak rankings). There are other interesting problems, e.g., the popular colorful forest problem and the
popular colorful spanning tree problem, that fall in our framework. The popular colorful forest problem and popular
colorful spanning tree problem are new problems introduced in our paper and they are natural generalizations of
the popular branching problem and popular arborescence problem, respectively.

Popular colorful forests and popular colorful spanning trees. The input here is an undirected graph G
where each edge has a color in {1, . . . , n}. A forest F is colorful if each edge in F has a distinct color. Colorful
forests are the common independent sets of the partition matroid defined by color classes and the graphic matroid
of G. For each i ∈ {1, . . . , n}, we assume there is an agent i with a partial order ≻i over color i edges. Agent i
prefers forest F to forest F ′ if either (i) F contains an edge colored i while F ′ has no edge colored i or (ii) both
F and F ′ contain color i edges and i prefers the color i edge in F to the color i edge in F ′.

A colorful forest F is popular if ϕ(F, F ′) ≥ ϕ(F ′, F) for all colorful forests F ′, where ϕ(F, F ′) is the number
of agents that prefer F to F ′. The popular colorful forest problem is to decide if a given graph G admits a popular

2This problem asks for a popular many-to-one matching in a bipartite graph G = (A ∪ B,E) where vertices in A have weak
rankings and the vertices that get matched to each b ∈ B must form an independent set in a matroid Mb.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

colorful forest or not, and to find one, if so. The motivation here is to find an optimal independent network (cycles
are forbidden) with diversity, i.e., there is at most one edge from each color class—as before, our definition of
optimality is popularity. The popular branching problem is a special case of the popular colorful forest problem
where all edges entering vertex i are colored i.

A colorful spanning tree is a colorful forest with exactly one component. In the popular colorful spanning
tree problem, connectivity is more important than popularity, and we seek popularity within the set of colorful
spanning trees rather than popularity within the set of all colorful forests.

Implications of Theorem 1.2. Along with the popular arborescence problem, our algorithm also solves
the problems considered in [1, 17–19]; furthermore, it also solves the popular colorful forest and popular colorful
spanning tree problems. The algorithms given in [17–19] for solving their respective problems are quite different
from each other. Thus our algorithm provides a unified framework for all these problems and shows that there is
one polynomial-time algorithm that solves all of them.

In general, the matroid intersection need not admit common bases, and in such a case, an alternative is a
largest common independent set that is popular among all largest common independent sets. This problem can be
easily reduced to the popular common base problem (see the full version). Furthermore, along with some simple
reductions, we can use our popular common base algorithm to find a popular solution under certain constraints.

For example, we can find a common independent set that is popular subject to a size constraint (if a solution
exists). We can further solve the problem under a category-wise size constraint: consider a setting where the
set V of voters is partitioned into categories, and for each category, there are lower and upper bounds on the
number of voters who (roughly speaking) have an element in the chosen independent set belonging to them (see
the full version). In the liquid democracy application mentioned earlier, this translates to setting lower and upper
bounds on the number of representatives taken from each category so as to ensure that there is diversity among
representatives.

Popular common independent set polytope. If preferences are weak rankings, then we also give a
formulation of an extension of the popular common independent set polytope, i.e., the convex hull of incidence
vectors of popular common independent sets in our matroid intersection.

Theorem 1.3. If preferences are weak rankings, the popular common independent set polytope is a projection of
a face of the matroid intersection polytope.

There are an exponential number of constraints in this formulation, however it admits an efficient separation
oracle. As a consequence, when there is a function cost : E → R, a min-cost popular common independent set can
be computed in polynomial time by optimizing over this polytope, assuming that preferences are weak rankings.
Unfortunately, such a result does not hold for the min-cost popular arborescence problem.

Theorem 1.4. Given an instance G = (V ∪ {r}, E) of the popular arborescence problem where each vertex has
a strict ranking over its incoming edges along with a function cost : E → {0, 1,∞}, it is NP-hard to compute a
min-cost popular arborescence in G.

Nevertheless, finding a popular arborescence with forced/forbidden edges in an input instance with partial order
preferences is polynomial-time solvable. This result allows us to recognize in polynomial time all those edges that
are present in every popular arborescence and all those edges that are present in no popular arborescence.

Theorem 1.5. For any instance G = (V ∪ {r}, E) of the popular arborescence problem with a set E+ ⊆ E of
forced edges and a set E− ⊆ E of forbidden edges, there is a polynomial-time algorithm to decide if there is a
popular arborescence A with E+ ⊆ A and E− ∩A = ∅ and to find one, if so.

In instances where a popular arborescence does not exist, we could relax popularity to near-popularity or “low
unpopularity”. A standard measure of unpopularity is the unpopularity margin [24], defined for any arborescenceA
as µ(A) = maxA′ ϕ(A′, A)− ϕ(A,A′) where the maximum is taken over all arborescences A′. An arborescence A
is popular if and only if µ(A) = 0. Unfortunately, finding an arborescence with minimum unpopularity margin is
NP-hard.

Theorem 1.6. Given an instance G = (V ∪ {r}, E) of the popular arborescence problem where each vertex has a
strict ranking over its incoming edges, together with an integer k, it is NP-complete to decide whether G contains
an arborescence with unpopularity margin at most k.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

1.1 Background. The notion of popularity was introduced by Gärdenfors [14] in 1975 in bipartite graphs with
two-sided strict preferences. In this model every stable matching [13] is popular, thus popular matchings always
exist in this setting. When preferences are one-sided, popular matchings need not always exist. This is not very
surprising given that popular solutions correspond to (weak) Condorcet winners [5, 25] and it is well-known in
social choice theory that such a winner need not exist.

For the case when preferences are weak rankings, a combinatorial characterization of popular matchings was
given in [1] and this yielded an efficient algorithm to solve the popular matching problem in this case. Note that
the characterization in [1] does not generalize to partial order preferences, as argued in [20]. Several extensions of
the popular matching problem have been considered such as random popular matchings [23], weighted voters [26],
capacitated objects [30], popular mixed matchings [21], and popularity with matroid constraints [17]. We refer
to [6] for a survey on results in popular matchings.

Popular spanning trees were studied in [7–9] where the incentive was to find a “socially best” spanning tree.
However, in contrast to the popular colorful spanning tree problem, edges have no colors in their model and voters
have rankings over the entire edge set. Many different ways to compare a pair of trees were studied here, and most
of these led to hardness results. Popular branchings, i.e., popular directed forests, in a directed graph (where each
vertex has preferences as a partial order over its incoming edges) were studied in [19] where a polynomial-time
algorithm was given for the popular branching problem. When preferences are weak rankings, polynomial-time
algorithms for the min-cost popular branching problem and the k-unpopularity margin branching problem were
shown in [19]; however these problems were shown to be NP-hard for partial order preferences. The popular
branching problem where each vertex (i.e., voter) has a weight was considered in [27].

The popular assignment algorithm from [18] solves the popular maximum matching problem in a bipartite
graph, and works for partial order preferences. It was also shown in [18] that the min-cost popular assignment
problem is NP-hard, even for strict rankings.

Many combinatorial optimization problems can be expressed as (largest) common independent sets in the
intersection of two matroids. Interestingly, constraining one of the two matroids in the matroid intersection to
be a partition matroid is not really a restriction, because any matroid intersection can be reduced to the case
where one matroid is a partition matroid (see [11, Claims 104–106]). We refer to [15, 29] for notes on matroid
intersection and for the formulation of the matroid intersection polytope.

1.2 An overview of our algorithm. For an arborescence A, we can naturally define a weight function
wtA : E → {−1, 0, 1} such that for any arborescence A′ we have wtA(A

′) = ϕ(A′, A)− ϕ(A,A′). Then a popular
arborescence A is a max-weight arborescence in G = (V ∪ {r}, E) with this function wtA. Therefore, the popular
arborescence problem is the problem of finding A ∈ AG such that maxA′∈AG

wtA(A
′) = wtA(A) = 0 where AG

is the set of all arborescences in G. Thus a popular arborescence A is an optimal solution to the max-weight
arborescence LP with edge weights given by wtA.

Dual certificates. We show that every popular arborescence A has a dual certificate with a special structure;
this corresponds to a chain C = {C1, . . . , Cp} of subsets of E with ∅ ⊊ C1 ⊊ · · · ⊊ Cp = E and span(A∩Ci) = Ci

for all i.3 Our algorithm to compute a popular arborescence is a search for such a chain C and arborescence A.
At a high level, this method is similar to the approach used in [18] for popular assignment, however our dual
certificates are more complex than those in [18], and hence the steps in our algorithm (and its proof of correctness)
become much more challenging.

Given a chain C of subsets of E, there is a polynomial-time algorithm to check if C corresponds to a dual
certificate for some popular arborescence. It follows from dual feasibility and complementary slackness that C
is a dual certificate if and only if a certain subgraph GC = (V ∪ {r}, E(C)) admits an arborescence A such that
span(A ∩ Ci) = Ci for all Ci ∈ C. If such an arborescence A exists in GC , then it is easy to show that A is a
popular arborescence in G with C as its dual certificate.

If GC does not admit such an arborescence, then we need to update C. Since updating C changes E(C), we
now seek an arborescence A in the new graph GC such that span(A ∩ Ci) = Ci for all i. If such an A does not
exist, then C is updated again. Note that updating C may increase |C|. When |C| becomes larger than |V |, we
claim that G has no popular arborescence. Among other ideas, our technical novelty lies in the proof of this claim
that is based on the strong exchange property of matroids.

3In the arborescence case, the set span(A ∩ Ci) is defined as (A ∩ Ci) ∪ { e ∈ E : (A ∩ Ci) + e contains a cycle }.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Matroid Intersection. Our algorithm holds in the generality of matroid intersection (where one of the
matroids is a partition matroid); dual certificates for popular common bases are exactly the same, i.e., chains that
are described above. We also show that a popular common independent set has a dual certificate C = {C,E} of
length at most 2. This leads to the polyhedral result given in Theorem 1.3.

Our algorithm is quite different from the popular branching algorithm [19] that (loosely speaking) first finds
a maximum branching on best edges and then augments this branching with second best edges entering certain
vertices. Indeed, as seen in Theorem 1.3, popular branchings or popular common independent sets have a
significantly simpler structure than popular common bases—the latter seem far tougher to characterize and
analyze. Pleasingly, as we show here, there is a clean and compact algorithm to solve the popular common base
problem (see Algorithm 1).

For the sake of readability, we will describe our results for the popular common base problem in terms of the
popular arborescence problem and our results for the popular common independent set problem in terms of the
popular colorful forest problem.

Organization of the paper. The rest of the paper is organized as follows. Section 2 describes dual
certificates for popular arborescences. Section 3 presents the popular arborescence algorithm and its proof of
correctness. In Section 4, we discuss popular colorful forests and their polytope. Section 6 provides the algorithm
for the popular arborescence problem with forced/forbidden edges.

Section 5 shows the NP-hardness of the min-cost popular arborescence problem and we refer to the full version
of our paper for the proof of Theorem 1.6. In Appendix A, we present various examples and explain how our
algorithm works on them.

2 Dual Certificates

In this section we show that every popular arborescence has a special dual certificate—this will be crucial in
designing our algorithm in Section 3. Our input is a directed graph G = (V ∪{r}, E) where the root vertex r has
no incoming edge, and every vertex v ∈ V has a partial order ≻v over its set of incoming edges, denoted by δ(v).
For edges e, f ∈ δ(v), we write e ∼v f to denote that v is indifferent between e and f , i.e., e ̸≻v f and f ̸≻v e.

Given an arborescence A, there is a simple method (as shown in [19]) to check if A is popular or not. We
need to check that ϕ(A,A′) ≥ ϕ(A′, A) for all arborescences A′ in G. For this, we will use the following function
wtA : E → {−1, 0, 1}.

For any v ∈ V , let A(v) be the unique edge in A ∩ δ(v). For any v ∈ V and e ∈ δ(v), let

wtA(e) =


1 if e ≻v A(v) (v prefers e to A(v));

0 if e ∼v A(v) (v is indifferent between e and A(v));

−1 if e ≺v A(v) (v prefers A(v) to e).

It immediately follows from the definition of wtA that we have wtA(A
′) = ϕ(A′, A) − ϕ(A,A′) for any

arborescence A′ in G. Thus A is popular if and only if every arborescence in G has weight at most 0, where edge
weights are given by wtA.

Consider the linear program problem LP1 below. The constraints of LP1 describe the face of the matroid
intersection polytope corresponding to common bases. Recall that this is the intersection of the partition matroid
on E =

⋃· v∈V δ(v) with the graphic matroid M = (E, I) of G, whose rank is |V |. Here, rank : 2E → Z+ is the
rank function of (E, I), i.e, for any S ⊆ E, the value of rank(S) is the maximum size of an acyclic subset of S in
the graph G.

max
∑
e∈E

wtA(e) · xe(LP1)

s.t.
∑

e∈δ(v)

xe = 1 ∀ v ∈ V

∑
e∈S

xe ≤ rank(S) ∀S ⊆ E

xe ≥ 0 ∀ e ∈ E.

min
∑
S⊆E

rank(S) · yS +
∑
v∈V

αv

(LP2)

s.t.
∑

S:e∈S

yS + αv ≥ wtA(e) ∀ e ∈ δ(v),∀v ∈ V

yS ≥ 0 ∀S ⊆ E.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

The feasible region of LP1 is the arborescence polytope of G. Hence LP1 is the max-weight arborescence LP
in G with edge weights given by wtA. The linear program LP2 is the dual LP in variables yS and αv where S ⊆ E
and v ∈ V .

The arborescence A is popular if and only if the optimal value of LP1 is at most 0, more precisely, if the
optimal value is exactly 0, since wtA(A) = 0. Equivalently, A is popular if and only if the optimal value of LP2 is 0.
We will now show that LP2 has an optimal solution with some special properties. For a popular arborescence A,
a dual optimal solution that satisfies all these special properties (see Lemma 2.1) will be called a dual certificate
for A.

The function span : 2E → 2E of a matroid (E, I) is defined as follows:

span(S) = { e ∈ E : rank(S + e) = rank(S) } where S ⊆ E.

In particular, if S ∈ I, then span(S) = S ∪ { e ∈ E : S + e ̸∈ I }.
A chain C of length p is a collection of p distinct subsets of E such that for each two distinct sets C,C ′ ∈ C,

we have either C ⊊ C ′ or C ′ ⊊ C. That is, a chain has the form C = {C1, C2, . . . , Cp} where C1 ⊊ C2 ⊊ · · · ⊊ Cp.
Lemma 2.1 shows that LP2 always admits an optimal solution in the following special form. The proof is

based on basic facts on matroid intersection and linear programming, and we postpone it to the end of Section 3.

Lemma 2.1. An arborescence A is popular if and only if there exists a feasible solution (y⃗, α⃗) to LP2 such that∑
S⊆E rank(S) · yS +

∑
v∈V αv = 0 and properties 1–4 are satisfied:

1. y⃗ is integral and its support C := {S ⊆ E : yS > 0 } is a chain.

2. Each C ∈ C satisfies span(A ∩ C) = C.

3. Every element in C is nonempty, and the maximal element in C is E.

4. For each C ∈ C, we have yC = 1. For each v ∈ V , we have αv = −| {C ∈ C : A(v) ∈ C } |.

For any chain C, we will now define a subset E(C) of E that will be used in our algorithm. The construction
of E(C) is inspired by the construction of an analogous edge subset in the popular assignment algorithm [18].

For a chain C = {C1, C2, · · · , Cp} with ∅ ⊊ C1 ⊊ · · · ⊊ Cp = E, define

levC(e) = the index i such that e ∈ Ci \ Ci−1 for any e ∈ E,

lev∗C(v) = max { levC(e) : e ∈ δ(v) } for any v ∈ V,

where we let C0 = ∅. Thus every element e ∈ E has a level in {1, . . . , p} associated with it, which is the minimum
subscript i such that e ∈ Ci (where Ci ∈ C). Furthermore, each v ∈ V has a lev∗C-value which is the highest level
of any element in δ(v).

Define E(C) ⊆ E as follows. For each v ∈ V , an element e ∈ δ(v) belongs to E(C) if one of the following two
conditions holds:

• levC(e) = lev∗C(v) and there is no element e′ ∈ δ(v) such that levC(e
′) = lev∗C(v) and e′ ≻v e;

• levC(e) = lev∗C(v) − 1 and there is no element e′ ∈ δ(v) such that levC(e
′) = lev∗C(v) − 1 and e′ ≻v e, and

moreover, e ≻v f for every f ∈ δ(v) with levC(f) = lev∗C(v).

In other words, e ∈ δ(v) belongs to E(C) if either (i) e is a maximal element in δ(v) with respect to ≻v among those
in lev∗C(v) or (ii) e is a maximal element in δ(v) among those in lev∗C(v)− 1 and v strictly prefers e to all elements
in level lev∗C(v). From Lemma 2.1, we obtain the following useful characterization of popular arborescences.

Lemma 2.2. An arborescence A is popular if and only if there exists a chain C = {C1, . . . , Cp} such that
∅ ⊊ C1 ⊊ · · · ⊊ Cp = E, A ⊆ E(C), and span(A ∩ Ci) = Ci for all Ci ∈ C.

The proof is given below. Recall that for a popular arborescence A, we defined its dual certificate as a dual
optimal solution (y⃗, α⃗) to LP2 that satisfies properties 1–4 in Lemma 2.1. As shown in the proof of Lemma 2.2,
we can obtain such a solution (y⃗, α⃗) from a chain satisfying the properties in Lemma 2.2. We therefore will also
use the term dual certificate to refer to a chain as described in Lemma 2.2.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Proof of Lemma 2.2. We first show the existence of a desired chain C for a popular arborescence A. Since A
is popular, we know from Lemma 2.1 that there exists an optimal solution (y⃗, α⃗) to LP2 such that properties 1–4
hold, where C is the support of y⃗. Since the properties ∅ ⊊ C1 ⊊ · · · ⊊ Cp = E and span(A ∩ Ci) = Ci (∀Ci ∈ C)
directly follow from properties 3 and 2, respectively, it remains to show that A ⊆ E(C).

Since (y⃗, α⃗) is a feasible solution of LP2, we have
∑

S:e∈S yS + αv ≥ wtA(e) for every e ∈ δ(v) with v ∈ V .
By property 4, the left hand side can be expressed as

| {Ci ∈ C : e ∈ Ci } | − | {Ci ∈ C : A(v) ∈ Ci } | = (p− levC(e) + 1)− (p− levC(A(v)) + 1) = levC(A(v))− levC(e).

Thus it is equivalent to the condition that for every e ∈ δ(v):

(2.1) levC(A(v))− levC(e) ≥ wtA(e) =


1 if e ≻v A(v);

0 if e ∼v A(v);

−1 if e ≺v A(v).

In particular, this holds for an edge e′ with levC(e
′) = lev∗C(v), and hence we have levC(A(v)) ≥ lev∗C(v)− 1. Since

levC(A(v)) ≤ lev∗C(v) by A(v) ∈ δ(v), levC(A(v)) is either lev∗C(v) or lev
∗
C(v)− 1.

• If levC(A(v)) = lev∗C(v), then for any e ∈ δ(v) with levC(e) = lev∗C(v), the left hand side of (2.1) is 0,
and hence it must be the case that either A(v) ≻v e or A(v) ∼v e. Hence A(v) is a maximal element
in { e ∈ δ(v) : levC(e) = lev∗C(v) } with respect to ≻v.

• If levC(A(v)) = lev∗C(v) − 1, then we can similarly show that A(v) is a maximal element in the
set { e ∈ δ(v) : levC(e) = lev∗C(v)− 1 } with respect to ≻v. Furthermore, in this case, for any e ∈ δ(v)
with levC(e) = lev∗C(v), the left hand side of (2.1) is −1, and hence A(v) ≻v e must hold.

Therefore, in either case, we have A(v) ∈ E(C), which implies that A ⊆ E(C).

For the converse, suppose that C = {C1, . . . , Cp} is a chain such that ∅ ⊊ C1 ⊊ · · · ⊊ Cp = E, A ⊆ E(C), and
span(A ∩ Ci) = Ci for all Ci ∈ C. Define y⃗ by yCi = 1 for every Ci ∈ C and yS = 0 for all S ∈ 2S \ C. We also
define α⃗ by αv = −| {C ∈ C : A(v) ∈ C } | for any v ∈ V . Then (y⃗, α⃗) satisfies properties 1-4 given in Lemma 2.1,
which also implies that the objective value is 0. Thus it is enough to show that (y⃗, α⃗) is a feasible solution to LP2,
because it implies that A is a popular arborescence by Lemma 2.1. Observe that constraint (2.1) is satisfied for
every v ∈ V and e ∈ δ(v), which follows from A ⊆ E(C). Since it is equivalent to the constraint in LP2 for v ∈ V
and e ∈ δ(v), the proof is completed. 2

3 Our Algorithm

We now present our main result. The popular arborescence algorithm seeks to construct an arborescence A along
with its dual certificate C = {C1, . . . , Cp}, which is a chain satisfying (i) ∅ ⊊ C1 ⊊ · · · ⊊ Cp = E, (ii) A ⊆ E(C),
and (iii) span(A ∩ Ci) = Ci for all Ci ∈ C.

- The existence of such a chain C means that A is popular by Lemma 2.2.

- Since a popular arborescence need not always exist, the algorithm also needs to detect when a solution does
not exist.

The algorithm starts with the chain C = {E} and repeatedly updates it. It always maintains C as a multichain,
where a collection C = {C1, · · · , Cp} of indexed subsets of E is called a multichain if C1 ⊆ · · · ⊆ Cp. Note that it
is a chain if all the inclusions are strict. We will use the notations levC , lev

∗
C , and E(C) also for multichains, which

are defined in the same manner as for chains.
During the algorithm, C = {C1, . . . , Cp} is always a multichain with Cp = E and span(Ci) = Ci for all Ci ∈ C.

Note that when span(Ci) = Ci holds, the condition (iii) for some A above is equivalent to |A ∩ Ci| = rank(Ci).
Furthermore, as explained later, any multichain can be modified to a chain that satisfies (i) preserving the
remaining conditions (ii) and (iii). Therefore, we can obtain a desired chain if |A∩Ci| = rank(Ci) is attained for
all Ci ∈ C for some arborescence A ⊆ E(C) in the algorithm.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Lex-maximal branching. In order to determine the existence of an arborescence A ⊆ E(C) that satisfies
|A ∩ Ci| = rank(Ci) for all Ci ∈ C, the algorithm computes a lex-maximal branching I in E(C). That is, I is
a branching whose p-tuple (|I ∩ C1|, . . . , |I ∩ Cp|) is lexicographically maximum among all branchings in E(C).
If (|I∩C1|, . . . , |I∩Cp|) = (rank(C1), . . . , rank(Cp)), then we can show that I is a popular arborescence4; otherwise
the multichain C is updated. We describe the algorithm as Algorithm 1; recall that rank(E) = |V | = n.

Algorithm 1 The popular arborescence algorithm

1: Initialize p = 1 and C1 = E. ▷ Initially we set C = {E}.
2: while p ≤ n do
3: Compute the edge set E(C) from the current multichain C.
4: Find a branching I ⊆ E(C) that lexicographically maximizes (|I ∩ C1|, . . . , |I ∩ Cp|).
5: if |I ∩ Ci| = rank(Ci) for every i = 1, . . . , p then return I.

6: Let k be the minimum index such that |I ∩ Ck| < rank(Ck).
7: Update Ck ← span(I ∩ Ck).
8: if k = p then p← p+ 1, Cp ← E, and C ← C ∪ {Cp}.
9: Return “G has no popular arborescence”.

We include some examples in Appendix A to illustrate the working of Algorithm 1 on different input instances.
The following observation is important.

Observation 3.1. During Algorithm 1, C is always a multichain and span(Ci) = Ci for all Ci ∈ C.

Proof. When Ck is updated, it becomes smaller but the inclusion Ck−1 ⊆ Ck is preserved. Indeed, since
|I ∩Ck−1| = rank(Ck−1) by the choice of k, we have Ck−1 ⊆ span(I ∩Ck−1) ⊆ span(I ∩Ck), for the set Ck before
the update. Hence the updated value for Ck, i.e., span(I ∩ Ck), is still a superset of Ck−1, and thus C remains a
multichain.

Since any Ci ∈ C is defined in the form span(X) for some X ⊆ E (note that E = span(E)) and
span(span(X)) = span(X) holds in general, we have span(Ci) = Ci.

Line 4 can be implemented in polynomial time by a max-weight branching algorithm [2, 4, 10] and, in the
more general case of the intersection of two matroids, by the weighted matroid intersection algorithm [12]. Hence
Algorithm 1 can be implemented in polynomial time.

Correctness of the algorithm. Suppose that a branching I is returned by the algorithm. Then I is an
arborescence (see Footnote 4) with I ⊆ E(C), where C is the current multichain. Since I was returned by the
algorithm, we have |I ∩ Ci| = rank(Ci) for all Ci ∈ C and this implies span(I ∩ Ci) = Ci for all Ci ∈ C by
Observation 3.1.

In order to prove that I is a popular arborescence, let us first prune the multichain C to a chain C′, i.e.,
C′ contains a single occurrence of each Ci ∈ C; we will also remove any occurrence of ∅ from C′. Observe that
E(C) ⊆ E(C′): indeed, if Ci = Ci+1 in C, then no element e ∈ E can have levC(e) = i+ 1, and hence no element
gets deleted from E(C) by pruning Ci+1 from C. Thus I ⊆ E(C) ⊆ E(C′). This implies that C′ = {C ′

1, . . . , C
′
p′}

satisfies ∅ ⊊ C ′
1 ⊊ · · · ⊊ C ′

p′ = E, I ⊆ E(C′), and span(I ∩ C ′
i) = C ′

i for all C ′
i ∈ C′.5 Hence I is a popular

arborescence by Lemma 2.2.
We will now show that the algorithm always returns a popular arborescence, if G admits one. Let A be any

popular arborescence in G and let D = {D1, . . . , Dq} be a dual certificate for A.

Claim 3.1. We have q ≤ n where |D| = q.

Proof. From the definition of dual certificate, we have ∅ ⊊ D1 ⊊ · · · ⊊ Dq = E and span(Di) = Di for each Di.
This implies 0 < rank(D1) < · · · < rank(Dq). Since rank(Dq) = rank(E) = |V |, we obtain q ≤ |V | = n.

4Observe that the branching I will be an arborescence since |I ∩ E| = |I ∩ Cp| = rank(Cp) = rank(E) = |V |.
5In fact, it will turn out that C = C′, i.e., the final C obtained by the algorithm itself is a dual certificate of I if the algorithm

returns an arborescence I. This fact follows from Lemma 3.1 (with C′ substituted for D).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

The following crucial lemma shows an invariant of the algorithm that holds for the multichain C = {C1, . . . , Cp}
constructed in the algorithm and a dual certificate D = {D1, . . . , Dq} of any popular arborescence A. The proof
will be given in this section.

Lemma 3.1. At any moment of Algorithm 1, p ≤ q and Di ⊆ Ci holds for i = 1, . . . , p.

If p = n+ 1 occurs in Algorithm 1, then Lemma 3.1 implies q ≥ n+ 1. This contradicts Claim 3.1. Hence it
has to be the case that G has no popular arborescence when p = n+1. Thus assuming Lemma 3.1, the correctness
of Algorithm 1 follows.

Before we prove Lemma 3.1, we need the following claim on E(C) and E(D).

Claim 3.2. Assume p ≤ q and Di ⊆ Ci for i = 1, . . . , p. For each e ∈ E, if levC(e) = levD(e) and e ∈ E(D), then
e ∈ E(C).

Proof. Suppose for the sake of contradiction that e fulfills the conditions of the claim, but e ̸∈ E(C). Let e ∈ δ(v).
It follows from the definition of E(C) that there exists an element e′ ∈ δ(v) such that one of the following three
conditions holds: (a) levC(e

′) ≥ levC(e) + 2, (b) levC(e
′) = levC(e) + 1 and e ̸≻v e′, or (c) levC(e

′) = levC(e)
and e′ ≻v e.

Because Di ⊆ Ci for each i ∈ {1, . . . , p}, we have levD(e
′) ≥ levC(e

′). Since levD(e) = levC(e), the existence of
such an e′ ∈ δ(v) implies e ̸∈ E(D), a contradiction. Thus we have e ∈ E(C).

The proof of Lemma 3.1 will use the following fact, known as the strong exchange property, that is satisfied
by any matroid.6

Fact 3.1. (Brualdi [3]) For any X,Y ∈ I and e ∈ X \Y , if Y + e ̸∈ I, then there exists an element f ∈ Y \X
such that X − e+ f and Y + e− f are in I.

Now we provide the proof of Lemma 3.1. As mentioned above, this completes the proof of the correctness
of our algorithm, and hence we can conclude Theorem 1.1. Furthermore, we can conclude Theorem 1.2 since
Algorithm 1 and its correctness proof hold in the generality of a common base in the intersection of the partition
matroid on the set E =

⋃· v∈V δ(v) with any matroid M = (E, I) of rank |V |.
Proof of Lemma 3.1. Algorithm 1 starts with C = {E}. Then the conditions in Lemma 3.1 hold at the
beginning. We show by induction that they are preserved through the algorithm.

It is easy to see that the condition p ≤ q is preserved. Indeed, whenever Algorithm 1 is going to increase p
(in line 8), it is the case that p+ 1 ≤ q because Dp ⊆ Cp ⊊ E = Dq by the induction hypothesis. Thus p ≤ q is
maintained in the algorithm.

We now show that Di ⊆ Ci (i = 1, . . . , p) is maintained. Note that C is updated in lines 7 or 8. The update
in line 8 (adding Cp = E) clearly preserves the condition. We complete the proof by showing that the update in
line 7 also preserves the condition, i.e., we show the following statement.

• Let C = {C1, . . . , Cp} be a multichain with Cp = E such that p ≤ q and Di ⊆ Ci for i = 1, . . . , p. Suppose
the following two conditions hold.

1. I is a lex-maximal common independent set subject to I ⊆ E(C).
2. span(I ∩ Ci) = Ci for i = 1, . . . , k − 1, and span(I ∩ Ck) ⊊ Ck.

Then Dk ⊆ span(I ∩ Ck).

To show this statement, assume for contradiction that Dk ̸⊆ span(I ∩ Ck).
We will first show the existence of distinct elements e1 and f1 such that e1, f1 ∈ δ(v1) for some v1 ∈ V

and f1 ∈ A \ I while e1 ∈ I \A. Then we will use the pair e1, f1 to show the existence of another pair e2, f2 such
that e2, f2 ∈ δ(v2) where f2 ̸= f1 and f2 ∈ A \ I while e2 ∈ I \A. In this manner, for any t ∈ Z+ we will be able
to show distinct elements f1, f2, . . . , ft that belong to A. However A has only n elements, a contradiction. Then
we can conclude that our assumption Dk ̸⊆ span(I ∩ Ck) is wrong. The following is our starting claim.

6The original statement in [3] claims this property only for pairs of bases (maximal independent sets), but it is equivalent to

Fact 3.1. Indeed, if we consider the rank(E)-truncation of the direct sum of (E, I) and a free matroid whose rank is rank(E), then
the axiom in [3] applied to this new matroid implies Fact 3.1 for (E, I).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Claim 3.3. There exists v1 ∈ V such that there are e1, f1 ∈ δ(v1) satisfying the following properties:

1. f1 ∈ A \ I, I1 := (I ∩ Ck) + f1 ∈ I, I1 ⊆ E(C), and levC(f1) = k,

2. e1 ∈ I1 \A and levC(e1) = levD(e1) ≤ k.

Proof. Since D is a dual certificate of A, we have span(A ∩ Dk) = Dk. So Dk ̸⊆ span(I ∩ Ck) implies that
span(A ∩ Dk) ̸⊆ span(I ∩ Ck). Hence A ∩ Dk ̸⊆ span(I ∩ Ck). So there exists f1 such that f1 ∈ A ∩ Dk and
f1 ̸∈ span(I ∩ Ck).

Since Dk ⊆ Ck, we have f1 ∈ Dk ⊆ Ck. We also have Dk−1 ⊆ Ck−1 = span(I ∩ Ck−1) ⊆ span(I ∩ Ck) ̸∋ f1.
Hence f1 ∈ Ck \ Ck−1 and f1 ∈ Dk \Dk−1, i.e., levC(f1) = levD(f1) = k.

Since f1 ∈ A ⊆ E(D) and levC(f1) = levD(f1), we have f1 ∈ E(C) by Claim 3.2. As I ⊆ E(C), we then have
I1 := (I ∩ Ck) + f1 ⊆ E(C). Also, I1 ∈ I by f1 ̸∈ span(I ∩ Ck). Since levC(f1) = k, the set I1 = (I ∩ Ck) + f1 is
lexicographically better than I. Then, the lex-maximality of I implies that I1 must violate the partition matroid
constraint, i.e., there exists e1 ∈ I1 such that e1 ̸= f1 and e1, f1 ∈ δ(v1) for some v1 ∈ V .

We have levC(e1) ≤ k as e1 ∈ I1 \ {f1} = I ∩ Ck. Since f1 ∈ δ(v1) ∩ A and |δ(v1) ∩ A| ≤ 1, we have e1 ̸∈ A.
Note that f1 ∈ E(D) implies levD(f1) ≥ levD(e1) − 1 and e1 ∈ E(C) implies levC(e1) ≥ levC(f1) − 1. Note also
that, for any element e ∈ E, we have levD(e) ≥ levC(e) because Di ⊆ Ci for all i.

• If f1 ≻v1 e1, then levC(e1) > levC(f1) by e1 ∈ E(C),7and hence levD(f1) ≥ levD(e1) − 1 ≥ levC(e1) − 1 ≥
levC(f1). As we have levD(f1) = levC(f1), all the equalities hold.

• If e1 ≻v1 f1, then levD(f1) > levD(e1) by f1 ∈ E(D), and hence levD(f1) ≥ levD(e1) + 1 ≥ levC(e1) + 1 ≥
levC(f1). As we have levD(f1) = levC(f1), all the equalities hold.

• If f1 ∼v1 e1, then levC(e1) ≥ levC(f1) by e1 ∈ E(C); also levD(f1) ≥ levD(e1) by f1 ∈ E(D). Hence, we have
levD(f1) ≥ levD(e1) ≥ levC(e1) ≥ levC(f1). Since levD(f1) = levC(f1), all the equalities hold.

Thus in all the cases, we have levC(e1) = levD(e1) ≤ k and e1 ∈ I1 \A.

Our next claim is the following. Recall that I1 := (I ∩ Ck) + f1 ∈ I.

Claim 3.4. There exists v2 ∈ V such that there are e2, f2 ∈ δ(v2) satisfying the following properties:

1. f2 ∈ A \ I1, I2 := I1 − e1 + f2 ∈ I, I2 ⊆ E(C), and levC(e1) = levC(f2),

2. e2 ∈ I2 \A and levC(e2) = levD(e2) ≤ k.

Proof. We know from Claim 3.3 that I1 = (I∩Ck)+f1 ∈ I. The set I1 satisfies span(I1∩Ci) = span(I∩Ci) = Ci

for each 1 ≤ i ≤ k − 1; this is because I1 ∩ Ci = I ∩ Ci for each i ≤ k − 1. Let us apply the exchange axiom
in Fact 3.1 to I1, A ∈ I and e1 ∈ I1 \ A. Since A is maximal in I, we have A + e1 ̸∈ I, and hence there exists
f2 ∈ A \ I1 such that I1 − e1 + f2 and A+ e1 − f2 are in I.

Using that span(A ∩Di) = Di for 1 ≤ i ≤ q, from e1 /∈ span(A− f2) we obtain levD(f2) ≤ levD(e1): indeed,
assuming levD(f2) = ℓ ≥ 2 we get Dℓ−1 = span(A ∩Dℓ−1) ⊆ span(A − f2), which implies e1 /∈ Dℓ−1 and hence
also levD(e1) ≥ ℓ = levD(f2). Similarly, from f2 /∈ span(I1 − e1), levC(e1) ≤ k, and span(I1 ∩ Ci) = Ci for
1 ≤ i ≤ k − 1, we obtain levC(e1) ≤ levC(f2). Thus we have levC(e1) ≤ levC(f2) ≤ levD(f2) ≤ levD(e1) = levC(e1),
implying all the equalities. Hence we have

f2 ∈ A \ I1, levC(f2) = levD(f2), levC(e1) = levC(f2).

As f2 ∈ A ⊆ E(D), Claim 3.2 implies f2 ∈ E(C).
Observe that I2 := I1 − e1 + f2 = (I ∩Ck) + f1 − e1 + f2 ⊆ E(C), and recall I2 ∈ I. Since levC(e1) = levC(f2)

and levC(f1) = k, I2 is lexicographically better than I. This implies that I2 must violate the partition matroid
constraint. By the same argument as used in Claim 3.3 to show levC(e1) = levD(e1), we see that there exists e2
such that e2, f2 ∈ δ(v2) for some v2 ∈ V , satisfying

e2 ∈ I2 \A, levC(e2) = levD(e2) ≤ k.

This completes the proof of this claim.

7Actually, the case f1 ≻v1 e1 is impossible because levC(e1) > levC(f1) contradicts levC(e1) ≤ k = levC(f1). We write the proof in
this form because the proofs of Claims 3.4 and 3.5 refer to the argument here to apply it to ej , fj , where levC(fj) = k is not assumed.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Note that f2 ̸= f1 since f1 ∈ I1 and f2 ∈ A \ I1. Let t ∈ Z+. As shown in Claim 3.4 for t = 3, suppose we
have constructed for 2 ≤ j ≤ t− 1:

1. fj ∈ A \ Ij−1, Ij := Ij−1 − ej−1 + fj ∈ I, Ij ⊆ E(C), and levC(ej−1) = levC(fj),

2. ej ∈ Ij \A and levC(ej) = levD(ej) ≤ k.

For each j with 2 ≤ j ≤ t− 1, note that Ij satisfies span(Ij ∩Ci) = span(I ∩Ci) = Ci for each 1 ≤ i ≤ k− 1.
Indeed, since levC(ej−1) = levC(fj), we have |Ij ∩ Ci| = |I ∩ Ci| = rank(Ci) for each i ≤ k − 1. This implies
span(Ij ∩ Ci) = Ci. Claim 3.5 generalizes Claim 3.4 for any t ≥ 3.

Claim 3.5. There exists vt ∈ V such that there are et, ft ∈ δ(vt) satisfying the following properties:

1. ft ∈ A \ It−1, It := It−1 − et−1 + ft ∈ I, It ⊆ E(C), and levC(et−1) = levC(ft),

2. et ∈ It \A and levC(et) = levD(et) ≤ k.

Proof. Let us apply the exchange axiom in Fact 3.1 to It−1, A ∈ I and et−1 ∈ It−1 \A. Since A+ et−1 ̸∈ I, there
exists ft ∈ A \ It−1 such that It−1 − et−1 + ft and A+ et−1 − ft are in I.

By the conditions span(A∩Di) = Di for 1 ≤ i ≤ q we have levD(ft) ≤ levD(et−1), and by span(It−1∩Ci) = Ci

for 1 ≤ i ≤ k − 1 and levC(et−1) ≤ k we have levC(et−1) ≤ levC(ft). Then levC(et−1) ≤ levC(ft) ≤ levD(ft) ≤
levD(et−1) = levC(et−1), and hence all the equalities hold.

So we have ft ∈ A \ It−1, levC(ft) = levD(ft), and levC(et−1) = levC(ft). As ft ∈ A ⊆ E(D), Claim 3.2 implies
ft ∈ E(C).

Observe that It := It−1 − et−1 + ft = (I ∩ Ck) + f1 − e1 + . . . + ft−1 − et−1 + ft ⊆ E(C), and recall It ∈ I.
Since levC(ej−1) = levC(fj) for 2 ≤ j ≤ t and levC(f1) = k, the set It is lexicographically better than I. This
implies that It must violate the partition matroid constraint. By the same argument as used in Claim 3.3 to show
levC(e1) = levD(e1), we see that there exists et such that et, ft ∈ δ(vt) for some vt, satisfying also et ∈ It \A and
levC(et) = levD(et) ≤ k. This completes the proof of this claim.

Observe that ft is distinct from f1, . . . , ft−1 since {f1, . . . , ft−1} ⊆ It−1 while ft ∈ A \ It−1. Thus, for
each t ∈ Z+, we have shown distinct elements f1, . . . , ft in A, contradicting that |A| ≤ n. Therefore, it has to be
the case that Dk ⊆ span(I ∩ Ck).

This completes the proof of Lemma 3.1. 2

We conclude this section with the proof of Lemma 2.1, which was postponed in Section 2.

Proof of Lemma 2.1. The optimal value of LP1 is at least 0 since wtA(A) = 0. Thus if there exists a feasible
solution (y⃗, α⃗) to LP2 whose objective value is 0, then (y⃗, α⃗) is an optimal solution to LP2. Since the optimal
value of LP2 is 0, A is a popular arborescence in G.

If A is a popular arborescence, then the optimal value of LP2 is 0. We will now show there always exists an
optimal solution (y⃗, α⃗) to LP2 that satisfies properties 1-4.

1. It is a well-known fact on matroid intersection (see [29, Theorem 41.12] or [15, Lecture 12, Claim 2]) that
there exists an integral optimal solution to LP2 such that the support of the dual variables corresponding to the
matroid M is a chain. Thus property 1 follows.

2. Among all the optimal solutions to LP2 that satisfy property 1, let (y⃗, α⃗) be the one that minimizes∑
C∈C |span(C) \ C|, where C is the support of y⃗. We claim that span(A ∩ C) = C holds for all C ∈ C. Observe

that each C ∈ C satisfies yC > 0, and hence complementary slackness implies that the characteristic vector x⃗ of A
satisfies

∑
e∈C xe = rank(C), i.e., |A ∩ C| = rank(C). Therefore, to obtain span(A ∩ C) = C for all C ∈ C, it

suffices to show span(C) = C for all C ∈ C. Suppose to the contrary that it does not hold. Then there exists at
least one C ∈ C with span(C) ̸= C. Among all such C, let C∗ ∈ C be the maximal one.

Define z⃗ as follows: (i) zspan(C∗) = yspan(C∗) + yC∗ , (ii) zC∗ = 0, and (iii) zS = yS for all other S ⊆ E. Then
C′ = (C \ {C∗}) ∪ {span(C∗)} is the support of z⃗. Note that C′ is again a chain because any C ∈ C with C∗ ⊊ C
satisfies span(C) = C by the choice of C∗, hence span(C∗) ⊆ span(C) = C.

Observe that (z⃗, α⃗) is a feasible solution to LP2. Moreover, since rank(C∗) = rank(span(C∗)), it does
not change the objective value. Thus (z⃗, α⃗) is an optimal solution to LP2 that satisfies property 1 and∑

C∈C′ |span(C) \ C| <
∑

C∈C |span(C) \ C|. This contradicts the choice of (y⃗, α⃗).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3. Suppose (y⃗, α⃗) satisfies properties 1–2 but not property 3. If ∅ ∈ C, then remove ∅ from C and modify y⃗
by setting y∅ = 0. This does not change the objective value and does not violate feasibility constraints.

If E ̸∈ C, then add E to C and modify (y⃗, α⃗) by (i) setting yE = 1 and (ii) decreasing every αv value by 1.
Since rank(E) = |V |, the objective value does not change. Also, all constraints in LP2 are preserved. Hence the
new solution satisfies properties 1–3.

4. Among all the optimal solutions to LP2 that satisfy properties 1–3, let (y⃗, α⃗) be the one that minimizes∑
S⊆E yS and let C be the support of y⃗. Note that αv = −

∑
C∈C:A(v)∈C yC holds for any v ∈ V by complementary

slackness (observe that xA(v) > 0 for A’s characteristic vector x⃗).

Suppose yC∗ ≥ 2 for some C∗ ∈ C. Define (z⃗, β⃗) as follows: zC∗ = yC∗−1 and zS = yS for every other S ⊆ E.

For any v ∈ V , let βv = −
∑

C∈C:A(v)∈C zC . We will show below that (z⃗, β⃗) is a feasible solution to LP2. Let us

first see what is the objective value attained by (z⃗, β⃗).

This value is
∑

C∈C rank(C) ·zC +
∑

v∈V βv. When compared to
∑

C∈C rank(C) ·yC +
∑

v∈V αv, the first term
has decreased by rank(C∗) and the second term has increased by | { v ∈ V : A(v) ∈ C∗ } | = |A∩C∗| ≤ rank(C∗).
Thus the objective value does not increase.

We will now show that (z⃗, β⃗) is a feasible solution to LP2, that is,
∑

C∈C:e∈C zC + βv ≥ wtA(e) for
each e ∈ δ(v), v ∈ V . Since (y⃗, α⃗) is feasible and the first term

∑
C∈C:e∈C zC decreases by at most 1 and

the second term βv = −
∑

C∈C:A(v)∈C zC never decreases, the only case we need to worry about is when the

first term decreases and the second term does not increase. This implies that e ∈ C∗ and A(v) ̸∈ C∗; hence∑
C∈C:e∈C zC + βv =

∑
C∈C:e∈C zC −

∑
C∈C:A(v)∈C zC ≥ zC∗ ≥ 1 ≥ wtA(e). Thus (z⃗, β⃗) is a feasible solution

to LP2; furthermore, it is an optimal solution to LP2. Since
∑

S⊆E zS <
∑

S⊆E yS , this contradicts the choice
of (y⃗, α⃗).

Thus, we have shown that (y⃗, α⃗) satisfies properties 1–3 and yC = 1 for all C ∈ C. Since we have
αv = −

∑
C∈C:A(v)∈C yC , it follows that αv = −| {C ∈ C : A(v) ∈ C } | for each v ∈ V . 2

4 Popular Colorful Forests

This section proves Corollary 1.1 and Theorem 1.3 (in terms of the popular colorful forest problem). Let
H = (UH , EH) be an undirected graph where EH = E1 ∪· · · · ∪· En, i.e., EH is partitioned into n color classes.
Equivalently, there are n agents 1, . . . , n where agent i owns the elements in Ei. For each i, there is a partial
order ≻i over elements in Ei.

Recall that S ⊆ EH is a colorful forest if (i) S is a forest in H and (ii) |S ∩ Ei| ≤ 1 for every i ∈ {1, . . . , n}.
We refer to Section 1 on how every agent compares any pair of colorful forests; for any pair of colorful forests F
and F ′, let ϕ(F, F ′) be the number of agents that prefer F to F ′.

Definition 4.1. A colorful forest F is popular if ϕ(F, F ′) ≥ ϕ(F ′, F) for any colorful forest F ′.

The popular colorful forest problem is to decide if a given instance H admits a popular colorful forest or not.
We will now show that Algorithm 1 solves the popular colorful forest problem.

Observe that a popular colorful forest is a popular common independent set in the intersection of the partition
matroid defined by EH = E1 ∪· · · · ∪· En and the graphic matroid of H. In order to use the popular common base
algorithm to solve this problem, we will augment the ground set EH .

An auxiliary instance G. For each i ∈ {1, . . . , n}, add a dummy edge ei = (ui, vi) with endpoints ui, vi,
where ui and vi are new vertices that we introduce; call the resulting graph G. The vertex and edge sets
of G = (U,E) are given by U = UH ∪

⋃n
i=1{ui, vi} and E = EH ∪

⋃n
i=1{ei}. Furthermore, for each i, the edge ei

will be the worst element in i’s preference order ≻i, i.e., every f ∈ Ei satisfies f ≻i ei.
In the setting of general matroids, n dummy elements e1, . . . , en are being introduced into the ground set E

as free elements, i.e., for any i, no set S ⊆ E such that ei /∈ S can span ei. The partitions in the constructed
matroid are Ei ∪ {ei} for all i ∈ {1, . . . , n}.

Observe that there exists a one-to-one correspondence between colorful forests in H and colorful forests of
size n in G. Suppose FH is a colorful forest in H and let C ⊆ {1, . . . , n} be the set of colors missing in FH , i.e.,
FH ∩ Ei = ∅ exactly if i ∈ C. Let FG = FH ∪

⋃
i∈C{ei}. Then FG is a colorful forest of size n in G. Conversely,

given a colorful forest FG of size n in G, we can obtain a colorful forest FH in H by deleting the dummy elements.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

Colorful forests in G. Let FH and F ′
H be colorful forests in H and let FG and F ′

G be the corresponding
forests (of size n) in G. Observe that ϕ(FH , F ′

H) = ϕ(FG, F
′
G). Thus popular colorful forests in H correspond to

popular colorful forests of size n in G and vice-versa. We want popular colorful forests of size n to be popular
common bases in the intersection of the partition matroid and the graphic matroid of G.

Hence we will consider the n-truncation of the graphic matroid of G, i.e., all sets of size larger than n will
be deleted from the graphic matroid of G. The function rank(·) now denotes the rank function of the truncation
and we have rank(E) = n. Thus solving the popular common base problem in the intersection of the partition
matroid defined by the color classes on E and the truncated graphic matroid of G solves the popular colorful
forest problem in H. Observe that such a reduction holds for the popular common independent set problem; hence
Corollary 1.1 follows.

The popular colorful forest polytope. We will henceforth refer to a colorful forest of size n in the
auxiliary instance G as a colorful base in G. Every popular colorful base F in G has a dual certificate as given in
Lemma 2.18 and Lemma 2.2. We will now show these dual certificates are even more special than what is given
in Lemma 2.2—along with the properties described there, the following property is also satisfied.

Lemma 4.1. Let F be a popular colorful base in the auxiliary instance G and let C = {C1, . . . , Cp} be a dual
certificate for F . Then p ≤ 2.

Proof. Suppose not, i.e., p ≥ 3. From the definition of a dual certificate C, we have ∅ ⊊ C1 ⊊ C2 ⊊ · · · ⊊ Cp = E
(see Lemma 2.2). We will now show that F ∩C1 = ∅. Since span(F ∩C1) = C1, this means C1 = ∅; however this
contradicts C1 ̸= ∅. This will give us the desired contradiction, proving p ≤ 2.

In order to show that F ∩ C1 = ∅, it suffices to prove that for each i ∈ {1, . . . , n}, the unique element
in F ∩ (Ei ∪ {ei}), denoted by F (i), is not contained in C1.

• If F (i) ̸= ei, then the dummy edge ei is not in F . Since ei is not spanned by any set S ⊆ E with ei ̸∈ S
and rank(S) < n, the condition span(F ∩Cj) = Cj , yielding also |F ∩Cj | = rank(Cj), for all j = 1, 2, . . . , p
implies that ei ̸∈ Cj for any j < p. Hence levC(ei) = p, which implies that every edge in E(C) ∩ Ei has
level either p or p− 1. Because p ≥ 3, this means that no edge of C1 is present in E(C)∩Ei. Thus we have
F (i) ̸∈ C1.

• If F (i) = ei, then ei ∈ E(C). This implies levC(ei) > 1 because ei is the worst element in Ei ∪ {ei}. Hence
F (i) is not in C1.

In both cases, F (i) ̸∈ C1 for any i ∈ {1, . . . , n}. Thus we have F ∩ C1 = ∅, as desired.

Lemma 4.1 shows that any dual certificate C for a popular colorful base F in G has length at most 2, i.e.,
F has a dual certificate either of the form C = {E} or of the form C = {C,E}. Let F be the popular colorful
base computed by Algorithm 1 in G and let C be a dual certificate for F . The following lemma shows that if
preferences are weak rankings, then C is a dual certificate for all popular colorful bases. Note that this proof
crucially uses the fact that preferences are weak rankings—recall that we use this assumption in Theorem 1.3 as
well. Indeed, assuming weak rankings is indispensable there, since the min-cost popular colorful forest problem for
partial order preferences is NP-hard, due to the NP-hardness of its special case, the min-cost popular branching
problem with partial order preferences [19].

Lemma 4.2. Assume that preferences are weak rankings and suppose that F is the popular colorful base computed
by Algorithm 1 in the auxiliary instance G, and C is a dual certificate for F . Then for any arbitrary popular
colorful base F ′ in G, we have (i) F ′ ⊆ E(C) and (ii) if C = {C,E}, then |F ′ ∩ C| = rank(C).

Proof. Let (y⃗, α⃗) be the dual variables defined from C as given in Lemma 2.1. That is, yĈ = 1 for each Ĉ ∈ C
and yS = 0 for any other S ⊆ E, and αi = −| { Ĉ ∈ C : F (i) ∈ Ĉ } | for every i ∈ {1, . . . , n}. Note that the length
of C is at most two by Lemma 4.1.

Consider LP1 and LP2 defined with respect to F . Since both F and F ′ are popular, their characteristic
vectors are both optimal solutions to LP1. Since (y⃗, α⃗) is an optimal solution to LP2, if C = {C,E} then we have

8In LP1 and LP2 defined with respect to F , the set δ(v) for v ∈ V will be replaced by Ei ∪ {ei} for i ∈ {1, . . . , n}, and in the
definition of wtF , the edge A(v) will be replaced by the unique element in F ∩ (Ei ∪ {ei}), denoted by F (i).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

|F ′ ∩C| = rank(C) by complementary slackness. Then, what is left is to show F ′ ⊆ E(C). We consider the cases
where the length of C is one and two.

1. Suppose C = {E}. Let D be a dual certificate of F ′ as described in Lemma 2.2. Then F ′ ⊆ E(D). Assume
that D = {D,E} (otherwise D = {E} = C).
Take any i ∈ {1, . . . , n}. We now show F ′(i) ∈ E(C). If F ′(i) ∈ D then levD(F

′(i)) = 1 = levC(F
′(i)); along

with F ′(i) ∈ E(D), this implies F ′(i) ∈ E(C) by Claim 3.2. We thus assume that F ′(i) /∈ D.

Since the characteristic vector x⃗ of F and x⃗′ of F ′ are optimal solutions to LP1 (defined with respect to
F) and (y⃗, α⃗) is an optimal solution to LP2 (its dual LP), we will use complementary slackness. Because
xF (i) = 1, we have

∑
Ĉ∈C:F (i)∈Ĉ yĈ + αi = wtF (F (i)) (= 0). Similarly, because x′

F ′(i) = 1, we have∑
Ĉ∈C:F ′(i)∈Ĉ yĈ + αi = wtF (F

′(i)). By subtracting the former from the latter, we obtain

(4.2)
∑

Ĉ∈C:F ′(i)∈Ĉ

yĈ −
∑

Ĉ∈C:F (i)∈Ĉ

yĈ = wtF (F
′(i)).

Since C = {E}, the left hand side is 1 − 1 = 0. By this wtF (F
′(i)) = 0, which implies F (i) ∼i F

′(i). The
fact F (i) ∈ E(C) implies that F (i) is maximal with respect to ≻i in Ei∪{ei}. Because ≻i is a weak ranking,
F (i) ∼i F

′(i) means that F ′(i) is also maximal, and hence F ′(i) ∈ E(C) follows.

2. Suppose C = {C,E}. Let D be a dual certificate of F ′. Then we have D = {D,E} and D ⊆ C (by
Lemma 3.1). Take any i ∈ {1, . . . , n}. We now show F ′(i) ∈ E(C). If F ′(i) ̸∈ C (resp., if F ′(i) ∈ D), then
F ′(i) ̸∈ D (resp., F ′(i) ∈ C); hence levC(F

′(i)) = levD(F
′(i)). This fact along with F ′(i) ∈ E(D) implies

that F ′(i) ∈ E(C), by Claim 3.2. Therefore, let us assume that F ′(i) ∈ C \D.

By the same analysis as given in Case 1, Equation (4.2) holds. Let us also consider LP1 and LP2 defined

with respect to F ′ (instead of F). Let (z⃗, β⃗) be the optimal solution of LP2 corresponding to D. As before,
the characteristic vectors of F and F ′ are optimal solutions to LP1. By the same argument (with F ′, F
and D taking the places of F , F ′, and C, resp.), we have:

(4.3)
∑

D̂∈D:F (i)∈D̂

zD̂ −
∑

D̂∈D:F ′(i)∈D̂

zD̂ = wtF ′(F (i)).

Since F ′(i) ∈ C, the left hand side of (4.2) is 1 or 0, and so is wtF (F
′(i)), which implies that we have

F ′(i) ≻i F (i) or F ′(i) ∼i F (i). Furthermore, since F ′(i) /∈ D, the left hand side of (4.3) is 1 or 0, and so
is wtF ′(F (i)), which implies that F (i) ≻i F

′(i) or F (i) ∼i F
′(i). Therefore we must have F ′(i) ∼i F (i).

Hence F (i) ∈ C follows from (4.2).

We have shown that F ′(i) ∼i F (i) and F (i) ∈ C. We also have F ′(i) ∈ C. Since F (i) ∈ E(C), we see that
F (i) is maximal in C ∩ (Ei ∪ {ei}) and dominates all elements in (Ei ∪ {ei}) \ C with respect to ≻i. Since
≻i is a weak ranking and F ′(i) ∼i F (i), the element F ′(i) ∈ C also satisfies these conditions, and hence
F ′(i) ∈ E(C).

Thus we have F ′(i) ∈ E(C) for every i ∈ {1, . . . , n}. Hence F ′ ⊆ E(C).

By Lemma 4.2, any popular colorful base F ′ in G satisfies F ′ ⊆ E(C) and |F ′ ∩ C| = rank(C) if C = {C,E}.
Conversely, any popular colorful base F ′ in G that satisfies these conditions is popular by Lemma 2.2. Therefore
the set of all popular colorful bases in G can be described as a face of the matroid intersection polytope. Since a
popular colorful forest in the given instance H is obtained by deleting the dummy elements from popular colorful
bases in G, Theorem 1.3 follows.

We also state this result explicitly in Theorem 4.1 in the setting of popular colorful forests. Let C = {C,E}
be a dual certificate for the popular colorful base F in G computed by Algorithm 1.

Theorem 4.1. If preferences are weak rankings, an extension of the popular colorful forest polytope of the given
instance H is defined by the constraints

∑
e∈C xe = rank(C) and xe = 0 for all e ∈ E \ E(C) along with all the

constraints of LP1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5 Min-Cost Popular Arborescence

We prove Theorem 1.4 in this section. We present a reduction from the Vertex Cover problem, whose input
is an undirected graph H and an integer k, and asks whether H admits a set of k vertices that is a vertex cover,
that is, contains an endpoint from each edge in H.

Our reduction is strongly based on the reduction used in [19, Theorem 6.3] which showed the NP-hardness
of the min-cost popular branching problem when vertices have partial order preferences. Recall that the min-cost
popular branching problem is polynomial-time solvable when vertices have weak rankings [19] (also implied by
Theorem 1.3). Note also that neither the hardness of min-cost popular branching for partial order preferences [19],
nor the hardness of min-cost popular assignment for strict preferences [18] implies Theorem 1.4, since the min-cost
popular arborescence problem with strict rankings does not contain either of these problems.

To show the NP-hardness of the min-cost popular arborescence problem when vertices have strict rankings, we
construct a directed graph G = (V ∪ {r}, E = E1 ∪ E2 ∪ E3) as follows; see Figure 1 for an illustration. We set

V = {w} ∪ {v0, v1 : v ∈ V (H)} ∪ {eu, ev : e = uv ∈ E(H)},
E1 = {(eu, ev), (ev, eu), (eu, w), (ev, w) : e = uv ∈ E(H)}

∪ {(v0, v1), (v1, v0) : v ∈ V (H)},
E2 = {(r, w)} ∪ {(w, x) : x ∈ V (G) \ {r, w}},
E3 = {(r, v1) : v ∈ V (H)} ∪ {(u0, eu), (v0, ev) : e = uv ∈ E(H)}.

To define the preferences of each vertex in G, we let all vertices prefer edges of E1 to edges of E2, which in turn
are preferred to edges of E3. Whenever some vertex has more than one incoming edge in some Ei, i ∈ {1, 2, 3},
then it orders them in some arbitrarily fixed strict order. We set the cost of each edge in E3, as well as the cost of
all edges entering w except for (r, w) as ∞. We set the cost of (w, v1) as 1 for each v ∈ V (H), and we set the cost
of all remaining edges as 0. We define our budget to be k, finishing the construction of our instance of min-cost
popular arborescence.

We are going to show thatH admits a vertex cover of size at most k if and only if G has a popular arborescence
of cost at most k.

Suppose first that A is a popular arborescence in G with cost at most k. We prove that the set
S = {v ∈ V (H) : (w, v1) ∈ A} is a vertex cover in H. Since each edge (w, v1) has cost 1, our budget implies
|S| ≤ k.

For a vertex v ∈ V (H) and an edge e = uv ∈ E(H), let Av = A∩ (δ(v0)∪ δ(v1)) and Ae = A∩ (δ(eu)∪ δ(ev)),
respectively. We note that any v ∈ V (H) satisfies that Av is either {(w, v0), (v0, v1)} or {(w, v1), (v1, v0)}. Indeed,
if it is not the case, we have Av = {(w, v0), (w, v1)}, since A is an arborescence with finite cost. However, this
contradicts the popularity of A, since A\{(w, v1)}∪{(v0, v1)} is more popular than A. We can similarly show that
each e = uv ∈ E(H) satisfies that Ae is either {(w, eu), (eu, ev)} or {(w, ev), (ev, eu)}. Note also that (r, w) ∈ A,
as all other edges entering w have infinite cost.

Assume for the sake of contradiction that S is not a vertex cover of H, i.e., there exists an edge
e = uv ∈ E(H) such that neither (w, u1) nor (w, v1) is contained in A. Then we have Au = {(w, u0), (u0, u1)} and
Av = (w, v0), (v0, v1)}. By symmetry, we assume without loss of generality that Ae = {(w, eu), (eu, ev)}. Define
an edge set A′ by

A′ = (A \ (Ae ∪Av ∪ {(r, w)})) ∪ {(r, v1), (v1, v0), (v0, ev), (ev, eu), (eu, w)}.

We can see that A′ is an arborescence and is more popular than A, since three vertices, v0, eu, and w, prefer A′

to A, while two vertices, v1 and ev, prefer A to A′, and all others are indifferent between them. This proves that
S is a vertex cover of H.

For the other direction, assume that S is a vertex cover in H. We construct a popular arborescence A of
cost |S| in G. For each e ∈ E(H) we fix an endpoint σ(e) of e that is contained in S, and we denote by σ̄(e) the
other endpoint of e (which may or may not be in S). Let

A = {(r, w)} ∪ {(w, v1), (v1, v0) : v ∈ S}
∪ {(w, v0), (v0, v1) : v ∈ V (H) \ S}
∪ {(w, eσ̄(e)), (eσ̄(e), eσ(e)) : e ∈ E(H)}.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

r
w

eu

ev

u0

u1

v0

v1

(a)

||

||

||

||

||
||

|

|

first rank

second rank

third rank

C1 :

C2 :

r
w

eu

ev

u0

u1

v0

v1

(b)

||

||

||

||

||
||

|

|

Figure 1: Illustration of the reduction in the proof of Theorem 1.4. Figure (a) illustrates the construction showing
a subgraph of G, assuming that the input graph H contains an edge e = uv. Edges in E1, E2, and E3 are depicted
with double red, single blue, and dashed green lines, respectively. Edges marked with two, one, and zero crossbars
have cost ∞, 1, and 0, respectively. Figure (b) illustrates the popular arborescence A in bold, assuming v ∈ S
and u /∈ S. The chain C1 ⊊ C2 ⊊ C3 = E certifying the popularity of A is shown using grey and dotted ellipses
for edges in C1 and C2, respectively.

It is straightforward to verify that A is an arborescence and its cost is exactly |S|. Hence it remains to prove its
popularity, which is done by showing a dual certificate C for A.

To define C, let us first define a set X = {w} ∪ {eu, ev : e = uv ∈ E(H)} ∪ {v0, v1 : v ∈ S} of vertices in G.
Then we set C = {C1, C2, C3} where

C1 = {(eu, ev), (ev, eu) : e = uv ∈ E(H)} ∪ {(v0, v1), (v1, v0) : v ∈ S},
C2 = {f ∈ E(H) : f has two endpoints in X} ∪ {(v0, v1), (v1, v0) : v ∈ V (H) \ S},
C3 =E.

Let us first check that rank(Ci) = |A ∩ Ci| for each Ci ∈ C. Clearly, C1 consists of mutually vertex-disjoint
2-cycles, and A contains an edge from each of them. Thus rank(C1) = |A ∩C1| follows. The edge set C2 consists
of all edges induced by the vertices of X, together with another set of mutually vertex-disjoint 2-cycles that share
no vertex with X. It is easy to verify that A ∩ C2 contains an edge from each of the 2-cycles in question, as well
as a directed tree containing all vertices of X. Thus, rank(C2) = |A ∩ C2| holds. Since A is an arborescence,
rank(C3) = rank(E) = |V | = |A ∩ C3| is obvious. Observe that for each i ∈ {1, 2, 3} we have span(Ci) = Ci, and
hence rank(Ci) = |A ∩ Ci| implies span(A ∩ Ci) = Ci.

It remains to see that A ⊆ E(C). First, A(w) = (r, w) is the unique incoming edge of w with C-level 3. For
some v ∈ S, lev∗C(v0) = 2 while lev∗C(v1) = 3, and by their preferences both A(v0) = (v1, v0) and A(v1) = (w, v1)
are in E(C). For some v ∈ V (H)\S, lev∗C(v0) = lev∗C(v1) = 3, and hence both A(v0) = (w, v0) and A(v1) = (v0, v1)
are in E(C). Finally, consider an edge e = uv ∈ E(H) with σ(e) = v ∈ S. As lev∗C(eu) ≤ 3, and since eu prefers
(w, eu) to (u0, eu), we know that the edge A(eu) = (w, eu) ∈ C2 is contained in E(C). By contrast, since v ∈ S
implies v0 ∈ X, we obtain lev∗C(ev) = 2, and therefore the edge A(ev) = (eu, ev) ∈ C1 is contained in E(C). By
Lemma 2.2, this proves that A is indeed a popular arborescence.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

6 Popular Arborescences with Forced/Forbidden Edges

We prove Theorem 1.5 in this section. Observe that the problem of deciding if there exists a popular arborescenceA
such that A ⊇ E+ for a given set E+ ⊆ E of forced edges can be reduced to the problem of deciding if there exists
a popular arborescence A such that certain edges are forbidden for A.

Let V ′ ⊆ V be the set of those vertices v such that δ(v) ∩ E+ ̸= ∅; clearly, we may assume |δ(v) ∩ E+| = 1
for each v ∈ V ′. Let E′ =

⋃
v∈V ′(δ(v) \E+). Since A ⊇ E+ if and only if A∩E′ = ∅, it follows that the problem

of deciding if there exists a popular arborescence A such that E+ ⊆ A and E− ∩ A = ∅ reduces to the problem
of deciding if there exists a popular arborescence A such that A ∩ E0 = ∅ for a set E0 ⊆ E of forbidden edges.

Forbidden edges. We present our algorithm that decides if G admits a popular arborescence that avoids E0

for a given subset E0 of E as Algorithm 2. The only difference from the original popular arborescence algorithm
(Algorithm 1) is in line 4: the new algorithm finds a lexicographically maximal branching in the set E(C) \ E0

instead of E(C). Recall that rank(E) = |V | = n.

Algorithm 2 The popular arborescence algorithm with the forbidden edge set E0

1: Initialize p = 1 and C1 = E. ▷ Initially we set C = {E}.
2: while p ≤ n do
3: Compute the edge set E(C) from the current multichain C.
4: Find a branching I ⊆ E(C) \ E0 that lexicographically maximizes (|I ∩ C1|, . . . , |I ∩ Cp|).
5: if |I ∩ Ci| = rank(Ci) for every i = 1, . . . , p then return I.

6: Let k be the minimum index such that |I ∩ Ck| < rank(Ck).
7: Update Ck ← span(I ∩ Ck).
8: if k = p then p← p+ 1, Cp ← E, and C ← C ∪ {Cp}.
9: Return “G has no popular arborescence that avoids E0”.

Theorem 6.1. Let E0 ⊆ E. The instance G = (V ∪{r}, E) admits a popular arborescence A such that A∩E0 = ∅
if and only if Algorithm 2 returns a popular arborescence with no edge of E0.

Proof. The easy side is to show that if Algorithm 2 returns an arborescence I, then (i) I is popular and
(ii) I ∩ E0 = ∅. As done in Section 3, let us prune the multichain C into a chain C′. Because I ⊆ E(C) \ E0 and
E(C) ⊆ E(C′), we have I ⊆ E(C′) \ E0. Since I ⊆ E(C′) and |I ∩ C ′

i| = rank(C ′
i) (and hence span(I ∩ C ′

i) = C ′
i)

for every C ′
i ∈ C′, it follows from Lemma 2.2 that I is a popular arborescence.

We now show the converse. Suppose that G admits a popular arborescence A with A ∩ E0 = ∅. Let
D = {D1, . . . , Dq} be a dual certificate for A. Then we have A ⊆ E(D) \E0. It suffices to show that Algorithm 2
maintains the following invariant: the multichain C = {C1, . . . , Cp} maintained in the algorithm satisfies p ≤ q
and Di ⊆ Ci for any i = 1, 2, . . . , p.

We can show a variant of Lemma 3.1, i.e., we can show that when Ck is updated in the algorithm,
Dk ⊆ span(I ∩Ck) holds where I is a lexicographically maximal branching in E(C) \E0. The proof of Lemma 3.1
works almost as it is. Recall that we sequentially find elements f1, e1, f2, e2, . . . in the proof of Lemma 3.1. For
each j = 1, 2, . . . , in addition to the condition fj ∈ E(C), we have fj ̸∈ E0 since fj ∈ A ⊆ E \ E0. By this,
Ij = (I ∩ Ck) + f1 − e1 + f2 · · · − ej−1 + fj satisfies Ij ⊆ E(C) \ E0 for each j. Hence the proof of Lemma 3.1
works with “lex-maximality subject to I ⊆ E(C) \ E0” replacing “lex-maximality subject to I ⊆ E(C)”.

7 Conclusions

We considered the popular arborescence problem, which asks to determine whether a given directed rooted graph,
in which vertices have preferences over incoming edges, admits a popular arborescence or not and to find one if
so. We provided a polynomial-time algorithm to solve this problem, which affirmatively answers an open problem
posed in 2019 [22]. Our algorithm and its correctness proof work in the generality of matroid intersection (where
one of the matroids is a partition matroid), which means that we also solved the popular common base problem.
Furthermore, we observed that the popular common independent set problem, which includes the popular colorful
forest problem as a special case, can be reduced to the popular common base problem, and hence can be solved by

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

our algorithm. Utilizing structural observations, we also proved that the min-cost popular common independent
set problem is tractable if preferences are weak rankings.

On the intractability side, we proved that the min-cost popular arborescence problem and the k-unpopularity
margin arborescence problem are both NP-hard even for strict preferences. Note that the min-cost problem is
NP-hard for popular common bases (a fact implied by the NP-hardness of the popular assignment problem shown
in [18], as well as by Theorem 1.4), while it is tractable for popular common independent sets if preferences are
weak rankings by Theorem 1.3. By analogy, one may expect the problem of finding a common independent set
with unpopularity margin at most k to be polynomial-time solvable. However, this is not the case (unless P = NP),
since the k-unpopularity matching problem is NP-hard even for strict rankings [24]. Note that the k-unpopularity
margin branching problem is polynomial-time solvable when preferences are weak rankings, as shown in [19], but
this does not contradict the above fact: branchings and matchings are both special cases of common independent
sets (where one matroid is a partition matroid), but neither of them includes the other.

Acknowledgments

We are grateful for inspiring discussions on the popular arborescence problem to Chien-Chung Huang, Satoru
Iwata, Tamás Király, Jannik Matuschke, and Ulrike Schmidt-Kraepelin. We thank the anonymous reviewers for
their valuable comments. Telikepalli Kavitha is supported by the Department of Atomic Energy, Government of
India, under project no. RTI4001. Kazuhisa Makino is partially supported by JSPS KAKENHI Grant Numbers
JP20H05967, JP19K22841, and JP20H00609. Ildikó Schlotter is supported by the Hungarian Academy of Sciences
under its Momentum Programme (LP2021-2) and its János Bolyai Research Scholarship, and by the Hungarian
Scientific Research Fund (OTKA grant K124171). Yu Yokoi is supported by JST PRESTO Grant Number
JPMJPR212B. This work was partially supported by the joint project of Kyoto University and Toyota Motor
Corporation, titled “Advanced Mathematical Science for Mobility Society.”

Appendix A Examples of Algorithm Execution

We illustrate how Algorithm 1 works using some examples. We provide three instances of the popular arborescence
problem. In all of these instances, a digraph is given as G = (V ∪{r}, E) with V = {a, b, c, d}, and each node v ∈ V
has a strict preference on δ(v). For better readability, for a multichain C = {C1, . . . , Cp} with C1 ⊆ · · · ⊆ Cp we
will also use the notation ⟨C1, . . . , Cp⟩.

A.1 Example 1. This instance is similar to the one illustrated in Section 1; the only difference is that now
the edge (r, d) is deleted. In contrast to the case where (r, d) exists, this instance admits a popular arborescence,
which is found by Algorithm 1 as follows.

The preference orders for the four vertices are as follows:

(b, a) ≻a (c, a) ≻a (r, a)

(a, b) ≻b (d, b) ≻b (r, b)

(d, c) ≻c (a, c) ≻c (r, c)

(c, d) ≻d (b, d).

r

a b

c d

first rank

second rank

third rank

For convenience, we denote by E1, E2, and E3 the sets of the first, second and third choice edges, respectively.
That is, E1 = {(b, a), (a, b), (d, c), (c, d)}, E2 = {(c, a), (d, b), (a, c), (b, d)}, and E3 = {(r, a), (r, b), (r, c)}.

Algorithm Execution. Below we describe the steps in our algorithm.

1. p = 1 and C1 = E. Then E(C) = E1 and I = {(a, b), (c, d)} is a lex-maximal branching in E(C). Since
|I ∩ C1| = 2 < 4 = rank(C1), the set C1 is updated to span(I ∩ C1) = E1. Since C1 = Cp is updated, p is
incremented and E is added to C as C2.

2. p = 2 and ⟨C1, C2⟩ = ⟨E1, E⟩. Then E(C) = E1 ∪ E2 and I = {(a, b), (c, d), (a, c)} is a lex-maximal
branching in E(C). Since |I ∩ C1| = 2 = rank(C1) and |I ∩ C2| = 3 < 4 = rank(C2), the set C2 is updated
to span(I ∩ C2) = E1 ∪ E2. Since C2 = Cp is updated, p is incremented and E is added to C as C3.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3. p = 3 and ⟨C1, C2, C3⟩ = ⟨E1, E1∪E2, E⟩. Then E(C) = {(c, d)}∪E2∪E3 and I = {(c, d), (c, a), (d, b), (r, c)}
is a lex-maximal branching in E(C). Since |I ∩ C1| = 1 < 2 = rank(C1), the set C1 is updated to
span(I ∩ C1) = {(c, d), (d, c)}.

4. p = 3 and ⟨C1, C2, C3⟩ = ⟨{(c, d), (d, c)}, E1 ∪ E2, E⟩. Then we
have E(C) = {(r, a), (b, a), (r, b), (a, b), (r, c), (a, c), (c, d), (b, d)} (all
edges on the figure to the right) and I = {(r, a), (a, b), (a, c), (c, d)}
(thick edges on the figure to the right) is a lex-maximal branching
in E(C). Since |I∩Ci| = rank(Ci) holds for i = 1, 2, 3, the algorithm
returns I.

r

a b

c d

Note that I ′ = {(r, b), (b, a), (a, c), (c, d)} is also a possible output of the algorithm. Indeed, both I and I ′ are
popular arborescences.

A.2 Example 2. We next demonstrate how the algorithm works for an instance that admits no popular
arborescences.

Consider the instance illustrated in the introduction. For
the reader’s convenience, we include the same figure again. As
observed there, this instance has no popular arborescence.
We denote by E1, E2, and E3 the sets of the first, second and

third rank edges, respectively. Note that, unlike in Example 1,
here E3 contains (r, d).

r

a b

c d

first rank

second rank

third rank

Algorithm Execution

1. The first step is the same as Step 1 in Example 1. That is, p = 1, C1 = E, E(C) = E1, and I = {(a, b), (c, d)}
is found as a lex-maximal branching in E(C). Then, C1 is updated to span(I ∩C1) = E1, p is incremented,
and E is added to C as C2.

2. The second step is also the same as Step 2 in Example 1. That is, p = 2, ⟨C1, C2⟩ = ⟨E1, E⟩, E(C) = E1∪E2,
and I = {(a, b), (c, d), (a, c)} is found as a lex-maximal branching in E(C). Then, C2 is updated to
span(I ∩ C2) = E1 ∪ E2, p is incremented, and E is added to C as C3.

3. p = 3 and ⟨C1, C2, C3⟩ = ⟨E1, E1 ∪ E2, E⟩. Then E(C) = E2 ∪ E3 (compared to Example 1, here (r, d) is
included while (c, d) is excluded) and I = {(a, c), (b, d), (r, a), (r, b)} is a lex-maximal branching in E(C).
Since |I ∩ C1| = 0 < 2 = rank(C1), the set C1 is updated to span(I ∩ C1) = ∅.

4. p = 3 and ⟨C1, C2, C3⟩ = ⟨∅, E1 ∪ E2, E⟩. Then E(C) = E1 ∪ E3 and I = {(a, b), (c, d), (r, a), (r, c)} is a
lex-maximal branching in E(C). Since |I ∩ C1| = rank(C1) and |I ∩ C2| = 2 < 3 = rank(C2), the set C2 is
updated to span(I ∩ C2) = E1.

5. p = 3 and ⟨C1, C2, C3⟩ = ⟨∅, E1, E⟩. Then E(C) = E1 ∪ E2 and I = {(a, b), (c, d), (a, c)} is a lex-maximal
branching in E(C). (Observe that these E(C) and I are the same as Step 2.) Since |I ∩ Ci| = rank(Ci)
for i = 1, 2 and |I ∩ C3| = 3 < 4 = rank(C3), the set C3 is updated to span(I ∩ C3) = E1 ∪ E2, p is
incremented, and E is added to C as C4.

6. p = 4 and ⟨C1, C2, C3, C4⟩ = ⟨∅, E1, E1 ∪ E2, E⟩. Then, as in Step 3, E(C) = E2 ∪ E3 and
I = {(a, c), (b, d), (r, a), (r, b)} is a lex-maximal branching in E(C). Since |I ∩ C1| = rank(C1) and
|I ∩ C2| = 0 < 2 = rank(C2), the set C2 is updated to span(I ∩ C2) = ∅.

7. p = 4 and ⟨C1, C2, C3, C4⟩ = ⟨∅, ∅, E1 ∪ E2, E⟩. By the same argument as in Step 4, the set C3 is updated
to E1.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

8. p = 4 and ⟨C1, C2, C3, C4⟩ = ⟨∅, ∅, E1, E⟩. By the same argument as in Step 5, the set C4 is updated
to E1 ∪ E2, p is incremented, and E is added to C as C5.

9. p = 5 and ⟨C1, C2, C3, C4, C5⟩ = ⟨∅, ∅, E1, E1 ∪E2, E⟩. Since p = 5 > 4 = n = |V |, the algorithm halts with
returning “G has no popular arborescence.”

The reader might observe that whenever C1 becomes empty in the algorithm, then by Lemma 3.1 we can
conclude that the instance admits no popular arborescence, since the dual certificate contains only non-empty
sets (Lemma 2.2) and hence D1 ⊆ C1 = ∅ is not possible. Therefore, we could in fact stop the algorithm already
in Step 3 when C1 gets updated to ∅. Nevertheless, the algorithm will reach a correct answer even without using
this observation, as illustrated by the above example.

A.3 Example 3. We next provide an example that shows the importance of considering multichains. During
the algorithm’s execution on this instance, C does become a multichain that is not a chain.

The preferences of the four vertices are as follows:

(b, a) ≻a (r, a)

(c, b) ≻b (a, b)

(d, c) ≻c (b, c)

(c, d)

r a b c d

first rank

second rank

where (c, d) is the unique incoming edge of d. For convenience, we denote by Eabcd, Ebcd, and Ecd the edge sets of
the induced subgraphs for the vertex sets {a, b, c, d}, {b, c, d}, and {c, d}, respectively. That is, Eabcd = E\{(r, a)},
Ebcd = {(b, c), (c, b), (c, d), (d, c)}, and Ecd = {(c, d), (d, c)}. Note that {(r, a), (a, b), (b, c), (c, d)} is the unique
arborescence in this instance, and hence it is a popular arborescence.

Algorithm Execution

1. p = 1 and C1 = E. Then E(C) = {(b, a), (c, b), (d, c), (c, d)} and I = {(b, a), (c, b), (c, d)} is a lex-maximal
branching in E(C). Since |I ∩C1| = 3 < 4 = rank(C1), the set C1 is updated to span(I ∩C1) = Eabcd. Since
C1 = Cp is updated, p is incremented and E is added to C as C2.

2. p = 2 and ⟨C1, C2⟩ = ⟨Eabcd, E⟩ (shown by braces on the right).
Then E(C) = {(r, a), (b, a), (c, b), (d, c), (c, d)} (all edges on the
right) and I = {(b, a), (c, b), (c, d)} (thick edges on the right) is a
lex-maximal branching in E(C). Since |I ∩ C1| = rank(C1) and
|I ∩ C2| = 3 < 4 = rank(C2), C2 is updated to span(I ∩ C2) =
Eabcd. Since C2 = Cp is updated, p is incremented and E is added
to C as C3.

C1

C2

r a b c d

3. p = 3 and ⟨C1, C2, C3⟩ = ⟨Eabcd, Eabcd, E⟩ (so C1 = C2). Then
E(C) = {(r, a), (c, b), (d, c), (c, d)}. Note that (b, a) is not in E(C)
as levC((b, a)) = 1 while levC((r, a)) = 3. I = {(r, a), (c, b), (c, d)}
is a lex-maximal branching in E(C). Since |I ∩ C1| = 2 < 3 =
rank(C1), the set C1 is updated to span(I ∩ C1) = Ebcd.

C1 = C2

C3

r a b c d

4. p = 3 and ⟨C1, C2, C3⟩ = ⟨Ebcd, Eabcd, E⟩. Then, E(C) =
E\{(b, c)} and I = {(b, a), (c, b), (c, d)} is a lex-maximal branching
in E(C). Since |I ∩ Ci| = rank(Ci) for i = 1, 2 and |I ∩ C3| = 3 <
4 = rank(C3), the set C3 is updated to span(I ∩ C3) = Eabcd.
Since C3 = Cp is updated, p is incremented and E is added to C
as C4.

C1

C2

C3

r a b c d

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

5. p = 4 and ⟨C1, C2, C3, C4⟩ = ⟨Ebcd, Eabcd, Eabcd, E⟩. E(C) =
E \ {(b, a), (b, c)} and I = {(r, a), (c, b), (c, d)} is a lex-maximal
branching in E(C). Since |I ∩ C1| = rank(C1) and |I ∩ C2| = 2 <
3 = rank(C2), the set C2 is updated to span(I ∩ C2) = Ebcd. C1

C2 = C3

C4

r a b c d

6. p = 4 and ⟨C1, C2, C3, C4⟩ = ⟨Ebcd, Ebcd, Eabcd, E⟩. Then E(C) =
E \ {(b, c), (c, b)} and I = {(r, a), (a, b), (c, d)} is a lex-maximal
branching in E(C). Since |I ∩C1| = 1 < 2 = rank(C1), the set C1

is updated to span(I ∩ C1) = Ecd.
C1 = C2

C3

C4

r a b c d

7. p = 4 and ⟨C1, C2, C3, C4⟩ = ⟨Ecd, Ebcd, Eabcd, E⟩. Then E(C) =
E and I = {(r, a), (a, b), (b, c), (c, d)} is a lex-maximal branching
in E(C). Since |I ∩ Ci| = rank(Ci) holds for i = 1, 2, 3, 4, the
algorithm returns I.

C1

C2

C3

C4

r a b c d

References

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing,
37(4):1030–1045, 2007.

[2] F. C. Bock. An algorithm to construct a minimum directed spanning tree in a directed network. In B. Avi-Itzak,
editor, Developments in Operations Research, pages 29–44. Gordon and Breach, New York, 1971.

[3] R. A. Brualdi. Comments on bases in dependence structures. Bulletin of the Australian Mathematical Society,
1(2):161–167, 1969.

[4] Y. Chu and T. Liu. On the shortest arborescence of a directed graph. Scientia Sinica, 14:1396–1400, 1965.
[5] M. Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix.

L’Imprimerie Royale, 1785.
[6] Á. Cseh. Popular matchings. In U. Endriss, editor, Trends in computational social choice, chapter 6, pages 105–122.

AI Access, 2017.
[7] A. Darmann. Popular spanning trees. International Journal of Foundations of Computer Science, 24(5):655 – 677,

2013.
[8] A. Darmann. It is difficult to tell if there is a Condorcet spanning tree. Mathematical Methods of Operations Research,

84(1):94 – 104, 2016.
[9] A. Darmann, C. Klamler, and U. Pferschy. Finding socially best spanning trees. Theory and Decision, 70(4):511 –

527, 2011.
[10] J. Edmonds. Optimum branchings. Journal of Research of the National Institute of Standards, 71B:233–240, 1967.
[11] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani, N. Sauer, and

J. Schönheim, editors, Combinatorial Structures and Their Applications, pages 69–87. Gordon and Breach, 1970.
[12] A. Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2:328–336, 1981.
[13] D. Gale and L. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 69(1):9–

15, 1962.
[14] P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science, 20:166–173, 1975.
[15] M. Goemans. Combinatorial optimization. http://www-math.mit.edu/~goemans/18453S17/18453.html.
[16] S. Hardt and L. Lopes. Google votes: A liquid democracy experiment on a corporate social network. Technical

report, Technical Disclosure Commons, 2015.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

http://www-math.mit.edu/~goemans/18453S17/18453.html

[17] N. Kamiyama. Popular matchings with ties and matroid constraints. SIAM Journal on Discrete Mathematics,
31(3):1801–1819, 2017.

[18] T. Kavitha, T. Király, J. Matuschke, I. Schlotter, and U. Schmidt-Kraepelin. The popular assignment problem:
when cardinality is more important than popularity. In SODA 2022: Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 103–123. SIAM, 2022.

[19] T. Kavitha, T. Király, J. Matuschke, I. Schlotter, and U. Schmidt-Kraepelin. Popular branchings and their dual
certificates. Mathematical Programming, 192(1):567–595, 2022.

[20] T. Kavitha, T. Király, J. Matuschke, I. Schlotter, and U. Schmidt-Kraepelin. The popular assignment problem: when
cardinality is more important than popularity, 2023. arXiv:2110.10984 [cs.DS] (full version).

[21] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science, 412:2679–2690, 2011.
[22] T. Király. Popular arborescences. 9th Emléktábla Workshop (Matching Theory), https://users.renyi.hu/

~emlektab/emlektabla9problems.pdf, 2019.
[23] M. Mahdian. Random popular matchings. In Proceedings of the 7th ACM Conference on Electronic Commerce

(EC-2006), Ann Arbor, Michigan, USA, June 11-15, 2006, pages 238–242. ACM, 2006.
[24] R. M. McCutchen. The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with

one-sided preferences. In Proceedings of the 8th Latin American Conference on Theoretical Informatics (LATIN
2008), volume 4957 of Lecture Notes in Computer Science, pages 593–604. Springer, 2008.

[25] S. Merrill and B. Grofman. A Unified Theory of Voting: Directional and Proximity Spatial Models. Cambridge
University Press, 1999.

[26] J. Mestre. Weighted popular matchings. ACM Transactions on Algorithms, 10(1)(2), 2014.
[27] K. Natsui and K. Takazawa. Finding popular branchings in vertex-weighted directed graphs. Theoretical Computer

Science, 953, 2023.
[28] U. Schmidt-Kraepelin. Models and algorithms for scalable collective decision making. PhD Thesis, TU Berlin, 2022.
[29] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Vol. 24 of Algorithms and Combinatorics.

Springer-Verlag, Berlin, 2003.
[30] C. T. S. Sng and D. F. Manlove. Popular matchings in the weighted capacitated house allocation problem. Journal

of Discrete Algorithms, 8(2):102–116, 2010.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

arXiv:2110.10984
https://users.renyi.hu/~emlektab/emlektabla9problems.pdf
https://users.renyi.hu/~emlektab/emlektabla9problems.pdf

	Introduction
	Background.
	An overview of our algorithm.

	Dual Certificates
	Our Algorithm
	Popular Colorful Forests
	Min-Cost Popular Arborescence
	Popular Arborescences with Forced/Forbidden Edges
	Conclusions
	Examples of Algorithm Execution
	Example 1.
	Example 2.
	Example 3.

