
Computational Complexity of Necessary Envy-freeness

Haris Aziza, Ildikó Schlotterb,c,∗, Toby Walsha

aUNSW Sydney, Australia
bCentre for Economic and Regional Studies, Hungary

cBudapest University of Technology and Economics, Hungary

Abstract

We consider the fundamental problem of fairly allocating indivisible items when
agents have strict ordinal preferences over individual items. We focus on the
well-studied fairness criterion of necessary envy-freeness. For a constant number
of agents, the computational complexity of the deciding whether there exists an
allocation that satisfies necessary envy-freeness has been open for several years.
We settle this question by showing that the problem is NP-complete even for
three agents. Considering that the problem is polynomial-time solvable for the
case of two agents, we provide a clear understanding of the complexity of the
problem with respect to the number of agents.

Keywords: fair division; envy-freeness
JEL: C62, C63, and C78

1. Introduction

When allocating items among agents, a natural and fundamental concern
is fairness [2, 6, 10, 15]. We consider the setting in which agents have strict
ordinal preferences over the items. The fairness concept we focus on is neces-
sary envy-freeness [4, 7]. An allocation satisfies necessary envy-freeness if for
any two agents i and j with allocations Ii and Ij , there exists an injection f
from Ij to Ii such that for each item x ∈ Ij , agent i prefers the item f(x)
over x. This requirement has been referred to by different terms in the litera-
ture including responsive-set (RS) envy-freeness [4], stochastic-dominance (sd)
envy-freeness [4], not possible envy-freeness [8] and itemwise envy-freeness [9].

Bouveret et al. [7] considered the computational complexity of checking
whether a complete necessary envy-free allocation exists or not; we will call
this problem ExistsNEF (precise definitions follow in Section 2). Bouveret
et al. [7] proved that ExistsNEF is NP-complete even if the number of items
is twice as much as the number of agents. They also showed that the problem

∗Corresponding author
Email addresses: haris.aziz@unsw.edu.au (Haris Aziz), ildi@cs.bme.hu (Ildikó

Schlotter), toby.walsh@unsw.edu.au (Toby Walsh)

Preprint submitted to Elsevier August 21, 2023



is polynomial-time solvable when the number of agents is two. Since the work
of Bouveret et al. [7] in 2010, the complexity of the problem has been open
for constant number of agents [4, 7], even though scenarios where the task is
to find a fair allocation of items among a small, fixed number of agents is of
interest, and has been the focus of considerable research in the area (see, e.g.,
the papers [1, 9, 11, 12, 14]).

In this paper, we resolve this open problem by showing that ExistsNEF is
NP-complete if the number of agents is a constant at least three. We first prove
NP-completeness for the case of three agents in Section 3, and then for the case
when the number of agents is a fixed integer at least three in Section 4. This
completes our understanding of the computational complexity of ExistsNEF
as a function of the number of agents involved; see Table 1. We remark that our
result for the case where the number of agents is exactly three was announced
in conference paper [5].

|N | = 2 fixed |N | ≥ 3 unbounded |N |
ExistsNEF in P [7] NP-complete (Thm. 2) NP-complete [7]

Table 1: Complexity of ExistsNEF on a set N of agents. Our result is in bold font.

2. Preliminaries

Formally, an instance of our problem is a triple (N, I, L), where N is a set
of agents, I a set of indivisible items, and L is a collection of preference lists LA

for each agent A ∈ N . Each preference list LA is a strict linear ordering over
the set I of items.

An assignment π of items to agents is an allocation, and π is complete if it
assigns each item of I to some agent. A complete allocation can be viewed as
a partitioning of the items into |N | bundles with each bundle corresponding to
an agent’s allocation.

When reasoning about preferences over bundles of items, an agent may be re-
quired to express preferences over an exponential number of bundles. A compact
way of expressing preferences over bundles is for agents to express preferences
over individual items and then extend them over bundles of items with respect
to the responsive set extension. In this notion, we say that an agent A prefers a
set I1 of items over a set I2 of items if there exists an injection f from I2 to I1
such that for each item x ∈ I2, agent A prefers the item f(x) over x. An allo-
cation is necessarily envy-free (NEF) if each agent prefers its own set of items
over any set of items allocated to some other agent. Note that a necessarily
envy-free allocation is envy-free for all additive valuations consistent with the
ordinal preferences.

Example 1. Suppose we have four items 1, 2, 3, and 4, and two agents A and B

2



with the following preferences over the items.

A : 1 � 2 � 3 � 4

B : 2 � 1 � 4 � 3

In that case, the unique complete NEF allocation is the one in which A gets 1
and 3, while agent B gets 2 and 4.

The central problem we consider in this paper is the ExistsNEF problem
whose task is to decide whether a complete NEF allocation exists.

ExistsNEF

Input: A triple (N, I, L) where N is a set of agents, I a set of items,
and L is a collection of preference lists for each agent in N .

Question: Does there exist a complete NEF allocation for (N, I, L)?

Notation. We let [h] = {1, 2 . . . , h} for any positive integer h. For a linear
ordering L = (s1, . . . , sm) over a set S = ∪i∈[m]{si} of items, for any indices i
and j with 1 ≤ i ≤ j ≤ m we define L(i : j) = (si, si+1, . . . , sj). For X ⊆ S, we
let L|X be the restriction of L to X, and we write [L|X ] for the set of elements
in L|X , that is, [L|X ] = X.

The definition of necessary envy-freeness can be reformulated using Hall’s
theorem into the following equivalent form, which we will use throughout the
paper. The characterization below is well known in the literature, see e.g.,
Aziz [1, Lemma 1]; we present a proof for completeness.

Proposition 1. For a given set N of agents, a set I of items, and a preference
list LA for each agent A ∈ N , an allocation π : I → N is NEF if and only if for
each pair of distinct agents A and B, and index i ∈ [|I|] we have:

∣∣[LA(1 : i)] ∩ π−1(A)
∣∣ ≥

∣∣[LA(1 : i)] ∩ π−1(B)
∣∣ . (1)

Proof. We prove the two directions of the claim separately. Assume first that π
is a necessarily envy-free allocation for (N, I, L). Consider two distinct agents A
and B, and the preference list of A until the i-th item, that is, LA(1 : i). Since π
is NEF, there exists an injection f from π−1(B) to π−1(A) that to each item x
allocated to B assigns an item f(x) allocated to A that A prefers to x. Consider
any item x in LA(1 : i) that π allocates to B. Since A prefers f(x) to x, we
know that f(x), allocated to A by π, is also in LA(1 : i). Since f is an injection,
the number of items in LA(1 : i) allocated to B by π is therefore at most the
number of items in LA(1 : i) allocated to B by π. Hence, Inequality (1) holds.

Assume now that π satisfies Inequality (1) for each two agents A and B and
index i ∈ [|I|]; we will prove that π is NEF. Consider two agents A and B, and
the set of items they obtain under π; our aim is to construct an injection f that
assigns to each item x ∈ π−1(B) an item f(x) ∈ π−1(A) so that A prefers f(x)
to x. We construct a bipartite graph G over the vertex set π−1(B)∪π−1(A) by
connecting each item x ∈ π−1(B) with all items in π−1(A) that A prefers to x.

3



Clearly, if there is a complete matching M in G, then we can obtain an
injection with the desired properties by assigning to each x ∈ π−1(B) the item x′

for which {x, x′} ∈ M . Hence, it suffices to prove that G admits a complete
matching. To do so, we use Hall’s theorem, and prove the existence of a complete
matching by showing that |NG(I ′)| ≥ |I ′| for each I ′ ⊆ π−1(B) where NG(I ′)
denotes the neighborhood of I ′ in G. Let x? be the least preferred item in I ′,
and suppose that x? is the i?-th item in LA. Observe that NG(I ′) is then exactly
the set π−1(A) ∩ LA(1 : i?). Inequality (1) implies

|NG(I ′)| = |π−1(A) ∩ LA(1 : i?)| ≥ |π−1(B) ∩ LA(1 : i?)| ≥ |I ′|

where the last inequality follow from I ′ ⊆ π−1(B) ∩ LA(1 : i?), implied by our
definition of x? and i?. This proves the existence of a complete matching in G
and, in turn, the necessary envy-freeness of π.

Proposition 1 shows that a complete NEF allocation π must, for each i ∈ [|I|],
allocate at least as many items to A as to B from among A’s top i items (that
is, from the set [LA(1 : i)]), for any two agents A and B. In particular, taking
i = 1 yields that π must assign each agent its most preferred item.

3. Result for exactly three agents

We start by determining the computational complexity of ExistsNEF in
the case when there are exactly three agents.

Before stating and proving our main result, Theorem 1, let us first give
some intuition why a complete NEF allocation may be hard to find. By Propo-
sition 1, each agent must be allocated its top-choice item in any complete NEF
allocation. Hence, a natural approach would be to consider the requirements
of Proposition 1 in an iterative manner, starting with the top-choice items and
considering longer and longer prefixes of the preference lists at each step, main-
taining throughout a “representative” set of allocations of the items appearing
in the current prefixes. If we could keep the size of such a representative set
small and, simultaneously, guarantee that at least one allocation in our repre-
sentative set can be completed into a complete NEF allocation (assuming that
such an allocation exists), then such an incremental algorithm would yield a
possibility for solving ExistsNEF efficiently.

Theorem 1 shows, however, that ExistsNEF is unlikely to be polynomial-
time solvable even for three agents. The intuition behind our NP-hardness proof
builds on the flaw in the approach described in the above paragraph. First, there
may be several partial allocations that respect the requirements of Proposition 1
for some index i, and in fact, it is not hard to see that the number of such allo-
cations can grow exponentially in i. Second, as our reduction shows, selecting
a relatively small subset of partial solutions among those that satisfy the re-
quirements of Proposition 1 for some index i, so that we can safely disregard
the remaining ones when considering larger indices, is not possible. It turns out
that if such an approach were viable, then it could be used for determining the

4



value of certain variables in a given Boolean formula (or to narrow down the set
of possible truth assignments on them) without even knowing the formula itself.
So the hardness of the problem lies in deciding how to allocate those items that
appear early in the agents’ preference lists in a way that we will not regret our
choices later on, when we allocate the less-desired items.

Theorem 1. ExistsNEF, the problem of deciding whether a complete NEF
allocation exists, is NP-complete for instances with three agents.

Containment in NP is trivial due to Proposition 1. We dedicate the rest of
this section to showing the NP-hardness of our problem by a reduction from the
NP-complete Not-All-Equal 3SAT problem [16]. The input for Not-All-
Equal 3SAT is a Boolean formula ϕ = c1∧· · ·∧cm in conjunctive normal form
with variables x1, . . . , xn, where each clause contains three literals. The task is
to find a truth assignment for ϕ such that each clause contains at least one true
literal and at least one false literal; such an assignment is valid.

Not-All-Equal 3SAT

Input: A Boolean formula ϕ = c1 ∧ · · · ∧ cm in conjunctive normal
form with variables x1, . . . , xn, where each clause contains
three literals.

Question: Does there exist a valid truth assignment for ϕ?

We construct an instance (N, I, L) of ExistsNEF with N = {A,B,C} such
that (N, I, L) admits a complete NEF allocation if and only if ϕ has a valid
assignment.

Construction. Let µi denote the number of occurrences of variable xi in ϕ as
a positive or negative literal; note

∑n
i=1 µi = 3m. Without loss of generality we

may assume that each µi is an even number; this can be achieved by adding the
clause (xi ∨ xi ∨ ¬xi) for each variable xi with an odd number of occurrences.

The set I of items is defined as follows; one can verify that |I| = 66m + 3.
We will provide more information on the various type of items later on, when
we define the preferences of agents; the definition below simply serves to provide
a concise description of I.

I =
(
{a3

1,0, b
3
1,0, c

3
1,0

}
∪
⋃

k∈[m]

{vk, v′k, v′′k}

∪
⋃

i∈[n],j∈[µi]

Å
{αi,j , βi,j , γi,j} ∪

{
ahi,j , b

h
i,j , c

h
i,j : h ∈ {1, 2, 3}

}

∪
¶
abi,j , abi,j , abi,j , bci,j , bci,j , bci,j , cai,j , cai,j , cai,j

©ã
We will define the preferences of agents through several types of “building

blocks.” A block is a triple of lists where each list is a linearly ordered subset
of I. Given two blocks L = (L1, L2, L3) and L′ = (L′1, L

′
2, L
′
3) such that Li

and L′i are disjoint for each i ∈ [3], we define the concatenation of L and L′

5



Figure 1: Illustration of super-blocks Yi and Fi for some i ∈ [n], depicted in subfigures (a)
and (b), respectively. Each literal block within Yi contains equal-length sublists from each
agent’s preference list, but equivalence blocks in Fi contain only empty sublists from LA.

I0 Y1 Y2
ZYn

V1

V1
. . . . . .

LA:

LB :

LC :
F1 F2

. . . Fn
V3

V3V2

V2

Vm

Figure 2: A high-level overview of the blocks constituting the preference lists in the con-
structed instance (N, I, L). Note that the lengths of the blocks as shown on the figure are not
proportional to their real sizes. For better visibility, we tiled every other validity block with
a (yellow) striped pattern.

as L+ L′ = (L1 + L′1, L2 + L′2, L3 + L′3), where Li + L′i denotes the (standard)
concatenation of lists.

Preference lists: a high-level view. We begin with a single initial block I0.
Then, for each variable xi, i ∈ [n], we define the following blocks. For each
occurrence of xi in ϕ, we construct a literal block : for some j ∈ [µi], we denote
the literal block corresponding to the j-th occurrence of variable xi by Xi,j .
We denote the concatenation Xi,1 + · · · + Xi,µi

by Yi. We also construct µi/2
equivalence blocks Ei,2j where j ∈ [µi/2], and we denote their concatenation
Ei,2 + · · ·+ Ei,µiby Fi. See Figure 1 for an illustration of the “super-blocks” Yi
and Fi.

Each literal block will represent the choice of a truth assignment for the
given occurrence of a variable, as there will be two possible ways to allocate the
items appearing in a given literal block to the agents. The equivalence blocks
will ensure that these choices are consistent for a given variable xi. Thus, the
blocks in Yi and in Fi together represent the choice of a truth assignment for
the variable xi. The initial block I0 will be followed first by Y1 + · · · + Yn and
then by F1 + · · ·+ Fn.

Next, for each clause ck of ϕ, we define a validity block Vk; this block will
make sure that any complete NEF allocation corresponds to a truth assignment
that is valid for the clause ck. Finally, we define a closing block Z whose sole
function is to ensure that each preference list contains all items in I. The full
preference lists of the agents, as illustrated in Figure 2, are obtained by the
concatenation

I0 + Y1 + · · ·+ Yn + F1 + · · ·+ Fn + V1 + · · ·+ Vm + Z.

6



Details of the blocks. We give the definitions of the building blocks below.
For better readability, we give each block as subsequences of the preference lists
of the agents in N = {A,B,C}; hence, a block (L1, L2, L3) will be presented
below in the form

A: L1

B: L2

C: L3.

Whenever a block contains some list that does not fit into one row, it should be
read row by row, proceeding from left to right within each row.

We further refine our blocks as follows: we define a triad as a group of three
items contained in some list LX [3t + 2 : 3t + 4] for some t ∈ Z and X ∈ N .
That is, disregarding the top item as well as the last two items in any of the
preference lists, we divide the remainder into disjoint segments, each containing
three consecutive items. As we have |I| = 66m + 3 items, we obtain that
each preference list contains 22m = |I|/3 − 1 triads; namely, the preference
list LX for some agent X ∈ N contains the triads LX [3t+ 2 : 3t+ 4] for indices
t ∈ {0, . . . , 22m− 1}. In the arguments below, it will be crucial to view the list
contained in some block (other than the short blocks I0 and Z) as sequences of
triads.

Initial block I0:

A: a3
1,0

B: b31,0
C: c31,0

Recall that as a direct consequence of Proposition 1, any complete NEF
allocation gives each agent its most preferred item. Hence, we immediately
obtain the following.

Proposition 2. Suppose that π is a complete NEF allocation for (N, I, L).
Then π(a3

1,0) = A, π(b31,0) = B, and π(c31,0) = C.

Let us now proceed with the details of literal blocks.

Literal block Xi,j for some i ∈ [n] and j ∈ [µi]:

A: b3i,j−1, c
3
i,j−1, a

1
i,j , b

1
i,j , cai,j , cai,j , c1i,j , βi,j , a

2
i,j ,

c2i,j , abi,j , abi,j , b2i,j , γi,j , a
3
i,j , bci,j , abi,j , cai,j

B: a3
i,j−1, bci,j , bci,j , c3i,j−1, αi,j , b

1
i,j , a

1
i,j , c

1
i,j , b

2
i,j ,

c2i,j , abi,j , abi,j , a2
i,j , γi,j , b

3
i,j , cai,j , abi,j , bci,j

C: a3
i,j−1, bci,j , bci,j , b3i,j−1, αi,j , c

1
i,j , b

1
i,j , cai,j , cai,j ,

a1
i,j , βi,j , c

2
i,j , a2

i,j , b
2
i,j , c

3
i,j , abi,j , cai,j , bci,j

Here, we set a3
i,0 = a3

i−1,µi−1
, b3i,0 = b3i−1,µi−1

, and c3i,0 = c3i−1,µi−1
for any

index i ≥ 2; we only have duplicate names for these items to ease the formaliza-
tion. We now provide some intuition on the items appearing in a literal block;
more detailed arguments will follow later in Lemma 1.

7



First, the items a3
1,0, b31,0, and c31,0 must be assigned by any complete NEF

allocation to agents A, B, and C, respectively, due to Proposition 2. More
generally, since the items a3

i,j−1, b3i,j−1, and c3i,j−1 already appear in the previous
block, by an inductive argument we will be able to deduce that any complete
NEF allocation must assign them to agents A, B, and C, respectively. Using
this as a starting point, a careful observation of the block (presented later in
Lemma 1) will also reveal that all items ahi,j , b

h
i,j , and chi,j for some h ∈ [3]

need to be allocated to agents A, B, and C, respectively. Each of these items,
except for a3

i,j , b
3
i,j , and c3i,j appear three times in the block Xi,j , and thus do

not appear in any other block. By contrast, the items a3
i,j , b

3
i,j , and c3i,j each

appear once in the block Xi,j , and twice in the next block, which is either the
block Xi,j+1 (if j < µi) or the block Xi+1,1 (if j = µi). An exception to this
is the last literal block Xn,µn , because the items a3

n,µn
, b3n,µn

, and c3n,µn
each

appear once in Xn,µn
and twice in the closing block Z.

The items αi,j , βi,j , and γi,j will also have the property that any complete
NEF allocation assigns them to agents A, B, and C, respectively. However, each
of these items only appears twice in the literal block Xi,j . Notably, although
we will be able to infer from the structure of Xi,j that αi,j must be allocated
to A, it does not appear in the preferences of A within Xi,j . Instead, we will use
the appearance of αi,j in the preferences of A later on, namely in the validity
block belonging to the clause that contains the j-th occurrence of variable xi.
Similarly, we will be able to infer that the items βi,j and γi,j must be allocated
to B and to C, respectively, but they do not appear in the preference list of
agent B and of agent C, respectively, within the block Xi,j . Instead, we will use
the appearance of βi,j and γi,j in the preference list of B and C, respectively,
within some equivalence block Ei,j′ .

The three items abi,j , abi,j , and abi,j will have the property that each of
them are assigned to agents A or B by any complete NEF allocation, as we

will argue later on. Similarly, items bci,j , bci,j , and bci,j must be allocated to
agents B and C, and items cai,j , cai,j , and cai,j must be allocated to agents C
and A. We will call the set of these nine items the choice items for (i, j), since
their purpose is to enable a possibility of choice in our instance: the choice of
a complete NEF allocation for assigning the item abi,j , either to A or to B,
will correspond to a truth assignment for variable xi. Importantly, the choice
for assigning abi,j will also determine how each of the remaining choice items
for (i, j) are assigned to agents; moreover, we will ensure that these choices are
consistent over all literal blocks corresponding to variable xi. Note that each

of abi,j , bci,j , and cai,j appears three times in the block Xi,j , and each of the
remaining six items under consideration appears twice in Xi,j . The remaining
appearances of items abi,j , abi,j , cai,j , and cai,j will later be used in equivalence
blocks, and the remaining appearances of bci,j and bci,j will later be used in
validity blocks.

Equivalence block Ei,2j for some i ∈ [n] and j ∈ [µi/2]:

8



A: −
B: cai,2j−1, cai,2j , βi,2j−1, cai,2j−1, cai,2j , βi,2j

C: abi,2j , abi,2j+1, γi,2j , abi,2j , abi,2j+1, γi,2j+1

Here, we let abi,µi+1 = abi,1, abi,µi+1 = abi,1, and γi,µi+1 = γi,1 for each
i ∈ [n], so indices are taken modulo µi.

These blocks contain only items that have already appeared in previous
blocks. The purpose of equivalence blocks is to ensure that any complete NEF
allocation assigns all items abi,j for j ∈ [µi] to the same agent, A or B; this
will ensure also that the allocation of all choice items for (i, j) is independent
from the value of j and depends only on i. This observation will be crucial
for constructing a valid truth assignment for ϕ from a given complete NEF
allocation for (N, I, L).

Validity block Vk for some k ∈ [m]:

The definition of Vk depends on clause ck. Let ck contain the ju-th, jv-th,
and jz-th occurrence of variables xu, xv, and xz, respectively, in the formula ϕ.
If xu appears in ck as a positive literal, then we define `u as `u = bcu,ju , otherwise

we set `u = bcu,ju . Furthermore, we denote by
¬̀
u the item corresponding to the

negated form of the literal of xi contained by ck, that is, if `u = bcu,ju , then
¬̀
u = bcu,ju , and vice versa, if `u = bcu,ju , then

¬̀
u = bcu,ju . Observe that in

either case {`u, ¬̀u} = {bcu,ju , bcu,ju}. We define `v, `z,
¬̀
v, and

¬̀
z analogously.

Now we are ready to describe the validity block Vk.

A: αu,ju , vk, `u, `v, `z, v
′
k, αv,jv , αz,jz ,

¬̀
u,
¬̀
v,
¬̀
z, v
′′
k

B: vk, v
′
k, v
′′
k

C: vk, v
′
k, v
′′
k

Observe that apart from the choice items in Vk, each of which must be
allocated to either B or to C by any complete NEF allocation, the validity
block also contains three items that must be allocated to A (the items αu,ju ,
αv,jv , and αz,jz ). Further, it contains items vk, v′k, and v′′k , each appearing
three times in Vk; we will be able to show that each of our three agents must
obtain exactly one of these three items (for a given k ∈ [m]) in any complete
NEF allocation. It will always be “safe” to allocate vk to A, while the allocation
of v′k and v′′k needs more circumspection.

Example 2. Let the third clause of ϕ be c3 = (x1 ∨ ¬x4 ∨ ¬x5), and suppose
that c3 contains the first occurrences of variables x1 and x4, and the second
occurrence of variable x5 in ϕ. Then the validity block V3 corresponding to c3
is as follows:

A: α1,1, v3, bc1,1, bc4,1, bc5,2, v
′
3, α4,1, α5,2, bc1,1, bc4,1, bc5,2, v

′′
3

B: v3, v
′
3, v
′′
3

C: v3, v
′
3, v
′′
3

Closing block Z:

9



A: b3n,µn
, c3n,µn

B: a3
n,µn

, c3n,µn

C: a3
n,µn

, b3n,µn

Well-formed instance. It is clear that the construction takes polynomial time.
It is, however, not so obvious to see that the concatenation of the constructed
blocks yields a well-formed instance: one has to check that each preference list
contains each item exactly once.

Items a3
1,0, b31,0, and c31,0 appear in the initial block I0 as the top item for

agent A, B, and C, respectively, and they appear twice more within the first
literal block X1,1 in the preferences of the remaining two agents. Items of the
form ahi,j , b

h
i,j and chi,j with i ∈ [n], j ∈ [µi] and h ∈ [3] appear in the literal

block Xi,j for each agent, with two exceptions: in agent A’s preference list,
items b3i,j and c3i,j only appear in the literal block following Xi,j (or, for i = n
and j = µn, in the closing block Z); the same happens in the preference list of
agents B and C regarding the items of {a3

i,j , c
3
i,j} and {a3

i,j , b
3
i,j}, respectively.

Items of {bci,j , bci,j , αi,j} for some i ∈ [n], j ∈ [µi] appear in the preferences
of agents B and C within the literal block Xi,j . They further appear in LA

within the validity block Vk corresponding to the clause ck that contains the
j-th occurrence of variable xi in ϕ: this is easy to check for αi,j , but needs some
attention in the case of items bci,j and bci,j , since they appear under an alias

of the form `w and
¬̀
w for some appropriate w in the definition of Vk. To check

these details, recall that for each variable xu occurring the ju-th time in a given
clause ck′ , we list both items of {`u, ¬̀u} = {bcu,ju , bcu,ju} in the preferences
of A within the validity block Vk′ . Hence, we list both items of {bci,j , bci,j} in
the block Vk if ck is the clause containing the j-th occurrence of variable xi.

Items of {cai,j , cai,j , βi,j} appear within the literal block Xi,j for agents A
and C, and in the equivalence block Ei,j′ for agent B, where j′ = 2dj/2e.
Similarly, items of {abi,j , abi,j , γi,j} appear within Xi,j for agents A and B, and
in Ei,j′ for agent C, where j′ = 2bj/2c if j > 1, and j′ = µi if j = 1. Each of the

remaining choice items abi,j , bci,j , or cai,j for some i ∈ [n] and j ∈ [µi] appears
three times within the literal block Xi,j , once in each agent’s preferences. This
leaves us with the items vk, v′k, and v′′k for some k ∈ [m], each of them appearing
once in the preferences of each agent within the validity block Vk.

We can thus conclude that each constructed preference list is indeed a strict
linear order over I.

Correctness. To verify the correctness of our reduction, we state a series
of observations and lemmas that describe how a complete NEF allocation can
assign items to agents in the constructed instance.

Let a triadic prefix be a prefix of some preference list of length 3t + 1 for
some integer t with 3t+ 1 ≤ |I|. Our arguments will often rely on the following
notion: we say that an allocation π is smooth on the triadic prefix LX(1 : 3t+1)
for some agent X ∈ N and t ∈ [|I|/3− 1], if π assigns to each agent exactly one
item from each triad contained in [LX(1 : 3t+1)], and additionally, assigns to X
its most preferred item. Intuitively, an allocation is smooth on a triadic prefix,

10



if on each of its prefixes fulfills the conditions of Proposition 1 tightly. We also
say that π is smooth until a given block B in (N, I, L), if for each agent X ∈ N
it is smooth on the prefix of LX ending right before the block B. Note that
every complete NEF allocation is smooth until the first literal block X1,1 due
to Proposition 2. The following proposition explains why smoothness is an
important property.

Proposition 3. Let π be a complete NEF allocation for (N, I, L) that is smooth
on a triadic prefix P of LX for some agent X ∈ N . Then π allocates at least
one item to X from the triad following P in LX . More generally, π allocates
at least t items to X from the t consecutive triads following P in LX for each t
with |P |+ 3t ≤ |I|.
Proof. By our assumption on the smoothness of π, we know that π assigns
exactly (|P | − 1)/3 + 1 items from P to X and assigns exactly (|P | − 1)/3 items
to every other agent. For the sake of contradiction, assume that π assigns fewer
than t items to X from the t triads following P in LX . By the pigeon-hole
principle, π must assign at least t + 1 items from these triads to some other
agent X ′. Thus, π assigns at most (|P | − 1)/3 + t items to X, but at least
(|P | − 1)/3 + t + 1 items to X ′ from the triadic prefix containing P and the
next t triads in LX . By Proposition 1 this contradicts the envy-freeness of π.

Our next lemma explores the key properties of how a complete NEF and
smooth allocation can allocate the items appearing in a literal block.

Lemma 1. Let π be a complete NEF allocation for (N, I, L), and let i ∈ [n]
and j ∈ [µi]. If π is smooth until the literal block Xi,j, then:

(i) For each h ∈ [3] we have

π(ahi,j) = A, π(αi,j) = A,
π(bhi,j) = B, π(βi,j) = B,
π(chi,j) = C, π(γi,j) = C.

(ii) One of the followings hold:
(C1) Xi,j is of type 1, meaning

π(abi,j) = B, π(abi,j) = A, π(abi,j) = A,

π(bci,j) = C, π(bci,j) = B, π(bci,j) = B,
π(cai,j) = A, π(cai,j) = C, π(cai,j) = C.

(C2) Xi,j is of type 2, meaning

π(abi,j) = A, π(abi,j) = B, π(abi,j) = B,

π(bci,j) = B, π(bci,j) = C, π(bci,j) = C,
π(cai,j) = C, π(cai,j) = A, π(cai,j) = A.

(iii) π remains smooth until the block following Xi,j.

11



Figure 3: Illustration of the proof of Lemma 1 for some literal block Xi,j , describing the
steps of our arguments for the first four triads. The figure groups the triads involved in each
step, displaying also the order of these steps. Items allocated to agents A, B, and C by π
are underlined with a (red) chained, (blue) wavy, and (green) zigzagged line, respectively, as
shown for LA, LB , and LC . In those cases where there are two possibilities for π to allocate
a given item, we underline the item using both symbols representing the two possibilities.
Furthermore, we mark each item by a checkmark (X) whose allocation by π is known at the
moment when we reach the given triad in our proof.

Proof. We prove the lemma by induction on i and j. Fix some i and j, and
consider the literal block Xi,j . We will assume that either i = j = 1, or the
lemma holds for the last literal block Xi′,j′ preceding Xi,j , i.e., either for i′ = i
and j′ = j − 1, or (in the case j = 1) for i′ = i− 1 and j′ = µi−1.

We claim π(a3
i,j−1) = A, π(b3i,j−1) = B and π(c3i,j−1) = C. For i = j = 1 this

follows from Proposition 2. Otherwise, recall that Xi′,j′ is the last literal block
preceding Xi,j . Observe also that since π is smooth until Xi,j , it is also smooth
until Xi′,j′ . Hence, the claim follows from our induction hypothesis for Xi′,j′ ;
recall that if i > 1, then a3

i,0 = a3
i−1,µi−1

, b3i,0 = b3i−1,µi−1
, and c3i,0 = c3i−1,µi−1

.

We will move forward within the literal block Xi,j triad by triad. At each
step, when we consider a given set of triads, we will rely on the smoothness of π
on the triadic prefixes preceding the given triads. Using Proposition 3 and the
structure of Xi,j we will then prove that π remains smooth also on the triadic
prefixes ending with the given triads. This argument will not be made explicit
each time, in order to facilitate focusing more on the allocation of the items.
See Figures 3 and 4 for an illustration.

Since π is smooth until Xi,j , by Proposition 3 we know that each agent
has to obtain at least one item from its three most preferred items in Xi,j to
ensure necessary envy-freeness. Looking at the first triad for A within Xi,j , this
implies that π must allocate a1

i,j to A (see Step 1 in Figure 3). The first triads

for agents B and C show that one of bci,j and bci,j must be allocated to B, and
the other to C (see Step 2 in Figure 3).

Observing the second triads for B and C in Xi,j as shown in Step 3 of
Figure 3, we get that αi,j can only be allocated to A, so as not to create too many
items in the preference list of B allocated to C, or vice versa: indeed, assuming
π(αi,j) = B implies that π assigns fewer items from the prefix of LC ending
with αi,j to B than to C, contradicting the envy-freeness of π by Proposition 1;

12



Figure 4: Illustration of the proof of Lemma 1 for some literal block Xi,j , describing the steps
of our arguments for the last two triads. The notation is the same as for Figure 3 with the
addition of a “half-checkmark” ( ) for each item which is known to be allocated by π to one of
two agents at the moment when we reach the given triad in our proof (e.g., when considering

the last triads within Xi,j , we know that π assigns bci,j to either B or C).

assuming π(αi,j) = C leads to a similar contradiction. From this, we also obtain
π(b1i,j) = B and π(c1i,j) = C. Now, considering agents A and C and their second
and third triads in Xi,j , respectively, as shown in Step 4 of Figure 3, we get that
one of cai,j and cai,j must be allocated to A, and the other to C. Considering
the third triad for agent B, π(b2i,j) = B follows (Step 5).

Next, looking at the third triad for A and the fourth triad for C, as shown
in Step 6 of Figure 3, we can observe that βi,j must be allocated to B so as not
to allocate too many items from LA to C, or from LC to A; then π(a2

i,j) = A

and π(c2i,j) = C follow as well. By the fourth triads for A and B, one of abi,j

and abi,j must be allocated to A, and the other to B (Step 7). Considering
the fifth triads, depicted in Figure 4 (Steps 8 and 9), arguing as above we
get π(a3

i,j) = A, π(b3i,j) = B and π(c3i,j) = π(γi,j) = C. This shows that
statement (i) holds for Xi,j .

Now, consider the last triads of Xi,j , as shown in Step 10 of Figure 4. Clearly,
each agent has to be allocated at least one item from his or her triad, and there
are exactly three items (bci,j , cai,j , and abi,j) that they can get. Supposing

that π allocates both bci,j and cai,j to C, one can see that neither bci,j , nor cai,j
can be allocated to C, as that would create too many items allocated by π to C
in the preference list of either A or B. Analogously, we obtain that neither

π(bci,j) = π(abi,j) = B, nor π(cai,j) = π(abi,j) = A is possible. Hence, we must

have that either π(bci,j) = C, π(cai,j) = A and π(abi,j) = B, or π(bci,j) = B,

π(cai,j) = C and π(abi,j) = A. In the former case, we quickly get that A cannot
have abi,j (as then B would have two items in his last triad of Xi,j allocated
to A), yielding π(abi,j) = B. Similarly, we get π(bci,j) = C and π(cai,j) = A as
well. In the latter case, analogous arguments prove π(bci,j) = B, π(cai,j) = C
and π(abi,j) = A. Recalling our observations in the previous paragraph on
items abi,j , bci,j and cai,j , we get that Xi,j is either of type 1 or of type 2. This
proves statement (ii).

Finally, notice that (iii) follows directly from (i) and (ii).

13



Figure 5: Illustration of the proof of Lemma 2 for some equivalence block Ei,2j . The notation
is the same as for Figures 3 and 4.

Next, we turn our attention to equivalence blocks.

Lemma 2. Let π be a complete NEF allocation for (N, I, L), and let i ∈ [n]
and j ∈ [µi/2]. If π is smooth until the equivalence block Ei,2j, then:

(i) The literal blocks Xi,2j−1, Xi,2j, and Xi,2j+1 all have the same type (where
indices are taken modulo µi so that Xi,2µi+1 = Xi,1).

(ii) π remains smooth until the block following Ei,2j.

Proof. By our assumption on the smoothness of π we can apply Lemma 1 for
index i and each j′ ∈ [µi], since all literal blocks Xi,j′ , j

′ ∈ [µi], precede Ei,2j .
Thus, Lemma 1 yields {π(abi,j′), π(abi,j′)} = {A,B} and π(γi,j′) = C, and
similarly, {π(cai,j′), π(cai,j′)} = {A,C} and π(βi,j′) = B for each j′ ∈ [µi]. See
Figure 5 for an illustration of these facts.

Since π is smooth until Ei,2j , Proposition 1 implies that π cannot assign
two items to agent A (or, similarly, to agent C) from the first triad of LB

within Ei,2j : indeed, assigning both cai,2j−1 and cai,2j to A (or to C) would
mean that A (or C) would obtain t + 2 items while B would obtain only t + 1
items from LB(1 : 3t+ 3), where t denotes the number of triads preceding Ei,2j .
Therefore, either π(cai,2j−1) = A and π(cai,2j) = C, or vice versa. By Lemma 1,
this means exactly that Xi,2j−1 and Xi,2j must be of the same type. Note also
that each agent obtains exactly one item from both triads of LB within the
block.

Applying the same reasoning to the first triad of LC within Ei,2j , we get
that either π(abi,2j) = A and π(abi,2j+1) = C, or vice versa, showing that Xi,2j

and Xi,2j+1 have the same type1, and that π allocates an item from both triads
of LC within Ei,j to each agent. This finishes the proof of both statements of
the lemma.

The next lemma shows that a complete NEF allocation is, roughly speaking,
smooth on most parts of the constructed instance, and it is almost smooth
on the remaining parts. Formally, we say that an allocation π is half-smooth
on LX(1 : 6t + 1), or equivalently, on the triadic prefix containing the first 2t
triads for some agent X ∈ N and t ∈ [(|I| − 1)/6], if π assigns to each agent

1Recall that indices within the equivalence block Ei,2j are taken modulo µi, so for j = µi/2
we obtain that Xi,µ(i) and Xi,1 have the same type.

14



Figure 6: Illustration of the proof of Lemma 3 depicting some validity block Vk. We use the
same notation as for Figures 3–5 with the addition that items that π may assign to any of the
three agents are not underlined in any way.

exactly two items from the two triads in LX(6(t′ − 1) + 2 : 6t′ + 1) for each
t′ ∈ [t], and additionally, assigns to X its most preferred item.

Before stating Lemma 3, we observe the following implications of half-
smoothness; since the proof uses exactly the same arguments as the proof of
Proposition 3, we omit it.

Proposition 4. Let π be a complete NEF allocation for (N, I, L) that is half-
smooth on a triadic prefix P of LX for some agent X ∈ N such that P contains
an even number of triads. Then π allocates at least one item to X from the
triad following P in LX . More generally, π allocates at least t items to X from
the t consecutive triads following P in LX for each t with |P |+ 3t ≤ |I|.
Lemma 3. Let π be a complete NEF allocation for (N, I, L). Then π is smooth
on LB and on LC until the closing block, and it is smooth on LA until the first
validity block. Furthermore, π is half-smooth on LA until the closing block.

Proof. We start by showing that π is smooth until the first validity block, using
Lemmas 1 and 2. Note that π is smooth until the first literal block X1,1, due
to Proposition 2 and since there are no triads preceding X1,1. Now, assuming
that π is smooth until a given literal or equivalence block B, Lemma 1 (if B is a
literal block) or Lemma 2 (if B is an equivalence block) shows that π is smooth
also until the block following B. Hence, π is smooth until the first validity block.

Now, we will show that if π is smooth on LB and on LC until the valid-
ity block Vk, k ∈ [m], and half-smooth on LA until Vk, then it retains these
properties until the block following Vk. This suffices to prove the lemma.

Consider some k ∈ [m], and see Figure 6 for an illustration. Since π is a
complete NEF allocation that is smooth until Vk, Proposition 3 applied to LB

and to LC shows that π allocates at least one item to each agent from its
first triad within Vk. Hence, both B and C are allocated at least one item
from {vk, v′k, v′′k}. Proposition 4 for agent A also yields that π must allocate
to A at least two items from the first two triads of LA within Vk, containing the
items {αu,ju , vk, `u, `v, `z, v′k}. By Lemma 1, each of the choice items present

in LA within Vk (i.e., `u, `v, `z,
¬̀
u,
¬̀
v, and

¬̀
z) is allocated to B or to C by π.

Thus, we obtain that π assigns at least one item from {vk, v′k} to A. Hence,
each agent obtains exactly one item from the set {vk, v′k, v′′k}.

Consequently, π remains smooth on LB and on LC until the block follow-
ing Vk. Moreover, looking at the first two and the last two triads of LA within Vk,

15



we can also observe that π can assign at most, and hence must assign exactly,
two items to A from each of these six-item sets. Thus, π remains half-smooth
on LA until the block following Vk.

The next lemma is a direct consequence of Lemmas 2 and 3.

Lemma 4. Let π be a complete NEF allocation for (N, I, L), and let i ∈ [n].
Then all literal blocks in Yi have the same type; we call this the type of Yi.

Proof. By Lemma 3 we know that π is smooth for each agent until the first
validity block. From this, Lemma 2 yields that for any j ∈ µi, the literal
blocks Xi,2j−1, Xi,2j , and Xi,2j+1, with the indices taken modulo µi (so that
Xi,2µi+1 = Xi,1), have the same type. This means that all literal blocks Xi,j

where j ∈ [µi] must have the same type, as required.

We are now ready to show the correctness of our reduction, which proves
Theorem 1.

Lemma 5. The constructed instance (N, I, L) admits a complete NEF alloca-
tion if and only if there exists a valid truth assignment for the input formula ϕ.

Proof. Direction “⇒”: Let us first suppose that π : I → N is a complete NEF
allocation. We construct a valid truth assignment for ϕ based on allocation π.
Namely, we set xi to true if and only if the literal blocks in Yi are of type 1; by
Lemma 4, π is well defined.

Consider the validity block Vk for some k ∈ [m], involving the ju-th, jv-th,
and jz-th occurrence of the variables xu, xv, and xz, respectively. By Lemma 3
we know that π is half-smooth until the closing block Z, and thus by definition
it allocates to each agent exactly two items from the first two triads of LA

within Vk, that is, from the item set {αu,ju , vk, `u, `v, `z, v′k}. By Lemma 1, we
know π(αu,ju) = A, and from claim (ii) we get that each of `u, `v, and `z is
allocated to one of the agents B or C. Thus, either vk or v′k is allocated to A.
Therefore we obtain that π allocates either 1 or 2 among the items `u, `v, and `z
to B.

Recall now the definition of `u: if xu appears as a positive literal in ck, then
`u = bcu,ju , otherwise `u = bcu,ju . Now, bcu,ju is assigned to agent B exactly
if Yu has type 1, and bcu,ju is assigned to agent B exactly if Yu has type 2.
Hence, xu becomes a true literal in ck exactly if the item `u is assigned to B
by π. As the analogous statements hold for xv and xz as well, we obtain that the
number of true literals in the clause ck equals the number of items in {`u, `v, `z}
allocated to B by π. Since this value must be either 1 or 2 (as argued above),
we get that ck contains at least 1 but at most 2 true literals. Hence, our truth
assignment is indeed valid for ϕ.

Direction “⇐”: For the converse direction, suppose that we are given a valid
truth assignment σ for ϕ. We construct an allocation π as follows. First, we
allocate all items appearing in claim (i) of Lemma 1 as described there. Next,
for each variable xi, we let Yi have type 1 exactly if σ sets xi to true, and we
let Yi have type 2 otherwise (yielding the allocations as given in claim (ii) of

16



Lemma 1). We also set π(vk) = A for each clause ck. Finally, we set π(v′k) = C
and π(v′′k ) = B if there are 2 true literals in the clause ck according to σ, and
we set π(v′k) = B and π(v′′k ) = C otherwise.

It is clear that π is complete. To verify that it is NEF, we use the char-
acterization given in Proposition 1. Note that π allocates each agent its most-
preferred item. Therefore, if π is smooth on a triadic prefix P , then it fulfills
the requirements of Proposition 1 for prefixes of P , and is therefore a complete
NEF allocation. First, it is easy to verify that π allocates exactly one item to
each agent from each triad of any preference list, except for the triads of LA

contained in a validity block; in other words, π is smooth on LB and on LC

until the closing block Z, and on LA until the first validity block.
Regarding LA within some validity block Vk for some k ∈ [m], by our defini-

tions, the number of true literals in ck equals the number of items in {`u, `v, `z}
allocated to B by π (where `u, `v, and `z are the three choice items in the first
two triads of Vk). Hence, π assigns exactly two items from {`u, `v, `z, v′k} to B,
and assigns the remaining two items to C. Consequently, both from the first two
triads, and also from the last two triads of LA within Vk, π always assigns the
first two items to agent A, followed by four items distributed among B and C
evenly. This means that π fulfills the requirements of Proposition 1 for each
prefix of LA as well. We can conclude that π is a complete NEF allocation.

4. Result for at least three agents

In this section we generalize Theorem 1 to the case where the number of
agents is a constant integer at least three.

Theorem 2. For every fixed integer q ≥ 3, ExistsNEF, the problem of deciding
whether a complete NEF allocation exists, is NP-complete on instances with q
agents.

Again, ExistsNEF is clearly in NP, so we need to show its NP-hardness. To
this end, we are going to modify the reduction given in the proof of Theorem 1.
We will re-use most of the notation defined in Section 3. The reduction is
from the same variant of Not-All-Equal 3SAT as in the proof of Theorem 1,
meaning that we again assume that µi, the number of occurrences of variable xi,
is an even integer for each i ∈ [n].

Dummy agents and items. We construct an instance (Ñ, Ĩ, L̃) of Exists-
NEF that contains agents A, B, C and q− 3 additional dummy agents denoted
as D1, . . . , Dq−3. We will keep the set I of items used in the proof of Theorem 1,
and we define our current set of items as

Ĩ = I ∪ {drτ | r ∈ [q − 3], 0 ≤ τ ≤ |I|/3− 1}.

The dummy item drτ will appear at the (τq+1)-st position in the preference list
of agent Dr; we will make sure that any NEF allocation assigns drτ to Dr. For
brevity, we let 〈dτ 〉 denote the sequence d1

τ , . . . , d
q−3
τ , and we let 〈dτ 〉−r denote

the sequence obtained from 〈dτ 〉 by removing the item drτ .

17



Preferences. We define the preferences L̃ using the preference lists LA, LB ,
and LC defined in the proof of Theorem 1 for agents A, B, and C. Instead
of considering triads (i.e., sequences of three items in the preference lists) we
now decompose each preference list within a block (except for the initial and
closing blocks) into sequences of q items which we will call q-ads. Formally, a

q-ad is a sublist of a preference list LX of some agent X ∈ Ñ that is of the
form LX(q · t + 2 : q(t + 1) + 1) for some t ∈ N. The number of q-ads in each

preference list is then |Ĩ|/q − 1 = (|I|+ (q − 3)|I|/3)/q − 1 = |I|/3− 1 = 22m.

First, we deal with the agents A, B, and C. To construct the new preference
list L̃X for some agent X ∈ {A,B,C}, for each τ ∈ [22m] we insert 〈dτ−1〉 at
the beginning of the τ -th triad in LX , that is, the triad LX [3τ − 1 : 3τ + 1].

This way, the τ -th triad of LX becomes the τ -th q-ad of L̃X . To construct the
closing block for some agent X ∈ {A,B,C}, we append 〈d22m〉 to the end of
the preference list.

Example 3. Below we show how to transform the first triads of LA, LB , LC into
the first q-ads of L̃A, L̃B and L̃C , respectively.

LA: a3
1,0, b3i,j−1, c

3
i,j−1, a

1
i,j

LB : b31,0, a3
i,j−1, bci,j , bci,j

LC : c31,0, a3
i,j−1, bci,j , bci,j︸ ︷︷ ︸

the first triads

−→
L̃A: a3

1,0,

〈d0〉︷ ︸︸ ︷
d1

0, d
2
0, . . . , d

q−3
0 , b3i,j−1, c

3
i,j−1, a

1
i,j

L̃B : b31,0, d1
0, d

2
0, . . . , d

q−3
0 , a3

i,j−1, bci,j , bci,j

L̃C : c31,0, d1
0, d

2
0, . . . , d

q−3
0 , a3

i,j−1, bci,j , bci,j︸ ︷︷ ︸
the first q-ads

Second, we deal with the dummy agents. For each r ∈ [q − 3] we construct

the preference list L̃D
r

of dummy agent Dr based on LC as follows. We set the
item dr0 as the most preferred item for Dr. Then, to obtain the τ -th q-ad for
agent Dr for each τ ∈ [22m], we insert 〈dτ−1〉−r at the beginning and drτ at
the end of the τ -th triad of LC . To obtain the closing block for Dr we append
〈d22m〉−r and also the item c31,0 to the end of its preference list.

Example 4. Below we show how to construct the first q-ads of the dummy
agents, using the notation 〈d−r0 〉 for some r ∈ [q−3]. Note that the sole purpose
of this construction is to ensure that each dummy agent Dr is assigned the item
set {drτ : 0 ≤ τ ≤ |I|/3− 1}.

18



L̃D1 : d1
0,

〈d−1
0 〉︷ ︸︸ ︷

d2
0, d

3
0, d

4
0, . . . , d

q−3
0 , a3

i,j−1, bci,j , bci,j , d
1
1

L̃D2 : d2
0,

〈d−2
0 〉︷ ︸︸ ︷

d1
0, d

3
0, d

4
0, . . . , d

q−3
0 , a3

i,j−1, bci,j , bci,j , d
2
1

L̃D3 : d3
0,

〈d−3
0 〉︷ ︸︸ ︷

d1
0, d

2
0, d

4
0, . . . , d

q−3
0 , a3

i,j−1, bci,j , bci,j , d
3
1

...
...

L̃Dq−3 : dq−3
0 ,

〈d−(q−3)
0 〉

︷ ︸︸ ︷
d1

0, d
2
0, d

3
0, . . . , d

q−2
0 , a3

i,j−1, bci,j , bci,j , d
q−3
1︸ ︷︷ ︸

the first q-ads of dummy agents

Next, we detail all the blocks in the new preferences defined as above. For
each block B of the instance constructed in the proof of Theorem 1 we let ‹B
denote the block we obtain by modifying B as described above. Each block
comprises q lists, one for each agent, so index r in the definitions below takes
on every value in [q − 3].

Modified initial block Ĩ0:

A: a3
1,0

B: b31,0
C: c31,0
Dr: dr0

Recall again that any complete NEF allocation assigns each agent its most
preferred item. Hence, we immediately obtain the following.

Proposition 5. Suppose that π is a complete NEF allocation for (N, I, L).
Then π(a3

1,0) = A, π(b31,0) = B, π(c31,0) = C, and π(dr0) = Dr for each r ∈ [q−3].

Let us now proceed with the details of modified literal blocks.

Modified literal block X̃i,j for some i ∈ [n] and j ∈ [µi]:

Let τ ∈ [22m] be the number of q-ads preceding X̃i,j . Recall that triads
within an agent’s preferences are to be read row by row, and within each row,
from left to right. We first give the sublists of L̃A, L̃B , and L̃C within X̃i,j .

A: 〈dτ 〉, b3i,j−1, c
3
i,j−1, a

1
i,j , 〈dτ+1〉, b1i,j , cai,j , cai,j , 〈dτ+2〉, c1i,j , βi,j , a2

i,j ,

〈dτ+3〉, c2i,j , abi,j , abi,j , 〈dτ+4〉, b2i,j , γi,j , a3
i,j , 〈dτ+5〉, bci,j , abi,j , cai,j

B: 〈dτ 〉, a3
i,j−1, bci,j , bci,j , 〈dτ+1〉, c3i,j−1, αi,j , b

1
i,j , 〈dτ+2〉, a1

i,j , c
1
i,j , b

2
i,j ,

〈dτ+3〉, c2i,j , abi,j , abi,j , 〈dτ+4〉, a2
i,j , γi,j , b

3
i,j , 〈dτ+5〉, cai,j , abi,j , bci,j

C: 〈dτ 〉, a3
i,j−1, bci,j , bci,j , 〈dτ+1〉, b3i,j−1, αi,j , c

1
i,j , 〈dτ+2〉, b1i,j , cai,j , cai,j ,

〈dτ+3〉, a1
i,j , βi,j , c

2
i,j , 〈dτ+4〉, a2

i,j , b
2
i,j , c

3
i,j , 〈dτ+5〉, abi,j , cai,j , bci,j

19



Now we proceed with the sublists of L̃D
r

within X̃i,j for some r ∈ [q − 3].

Dr: 〈dτ 〉−r, a3
i,j−1, bci,j , bci,j , d

r
τ+1, 〈dτ+1〉−r, b3i,j−1, αi,j , c

1
i,j , d

r
τ+2,

〈dτ+2〉−r, b1i,j , cai,j , cai,j , drτ+3, 〈dτ+3〉−r, a1
i,j , βi,j , c

2
i,j , d

r
τ+4,

〈dτ+4〉−r, a2
i,j , b

2
i,j , c

3
i,j , d

r
τ+5, 〈dτ+5〉−r, abi,j , cai,j , bci,j , drτ+6

As we will later see in Lemma 6, the arguments we applied to the original
literal block Xi,j will remain applicable for X̃i,j as well. The key to this state-
ment will be the observation that any complete NEF allocation must assign all
dummies the items intended for them.

Modified equivalence block ‹Ei,2j for some i ∈ [n] and j ∈ [µi/2]:

As before, agent A will have an empty sublist contained in ‹Ei,2j , while every

other agent will have two q-ads of their preference lists contained in ‹Ei,2j . Let

again τ ∈ [22m] denote the number of q-ads preceding ‹Ei,2j in each of the

preference lists L̃X where X ∈ Ñ \ {A}.
A: −
B: 〈dτ 〉, cai,2j−1, cai,2j , βi,2j−1, 〈dτ+1〉, cai,2j−1, cai,2j , βi,2j

C: 〈dτ 〉, abi,2j , abi,2j+1, γi,2j , 〈dτ+1〉, abi,2j , abi,2j+1, γi,2j+1

Dr: 〈dτ 〉−r, abi,2j , abi,2j+1, γi,2j , d
r
τ+1, 〈dτ+1〉−r, abi,2j , abi,2j+1, γi,2j+1, d

r
τ+2

Modified validity block ‹Vk for some k ∈ [m]:

Set integers τ and ρ such that the number of q-ads preceding ‹Vk in agent A’s
preference list is τ , and the number of q-ads preceding ‹Vk in every other agent’s
preference list is ρ. The choice items `u, `v, `z,

¬̀
u,
¬̀
v, and

¬̀
z are defined as for

the validity block Vk. That is, let the clause ck contain the ju-th occurrence of
variable xu in ϕ; if xu appears as a positive literal in ck, then we set `u = bcu,ju
and
¬̀
u = bcu,ju , and similarly, if xu appears as a negative literal in ck, then we

set `u = bcu,ju and
¬̀
u = bcu,ju . Using analogous definitions for the items `v, `z,¬̀

v, and
¬̀
z, the modified validity block ‹Vk can be written as follows.

A: 〈dτ 〉, αu,ju , vk, `u, 〈dτ+1〉, `v, `z, v′k, 〈dτ+2〉, αv,jv , αz,jz ,
¬̀
u,

〈dτ+3〉, ¬̀v, ¬̀z, v′′k
B: 〈dρ〉, vk, v′k, v′′k
C: 〈dρ〉, vk, v′k, v′′k
Dr: 〈dρ〉−r, vk, v′k, v′′k , drρ+1

Modified closing block ‹Z:

A: b3n,µn
, c3n,µn

, 〈d22m〉
B: a3

n,µn
, c3n,µn

, 〈d22m〉
C: a3

n,µn
, b3n,µn

, 〈d22m〉
Dr: a3

n,µn
, b3n,µn

, 〈d22m〉−r, c31,0

20



It is not hard to verify that the above modified preferences are well-formed,
i.e., each preference list is a linear ordering of the set of items.

Correctness. Proving the correctness of our construction can be done along the
same lines as in the proof of Theorem 1. We start by introducing a smoothness
notion for allocations involving q agents. Let a q-adic prefix be a prefix of
some preference list of length qt + 1 for some integer t with qt + 1 ≤ |I|. An

allocation π is q-smooth on the q-adic prefix L̃X(1 : qt+1) for some agent X ∈ Ñ
and t ∈ [|I|/3 − 1], if π assigns to each agent exactly one item from each q-ad

contained in L̃X(1 : qt + 1), and additionally, assigns to X its most preferred
item. We also say that π is q-smooth until a given block B in (N, I, L), if for

each agent X ∈ Ñ it is smooth on the prefix of L̃X ending right before the
block B. We can quickly state an analog of Proposition 3; since the proof uses
exactly the same arguments as the proof of Proposition 3, we omit it.

Proposition 6. Let π be a complete NEF allocation for (Ñ, Ĩ, L̃) that is smooth

on a q-adic prefix P of L̃X for some agent X ∈ Ñ . Then π allocates at least
one item to X from the q-ad following P in L̃X . More generally, π allocates
at least t items to X from the t consecutive q-ads following P in L̃X for each t
satisfying |P |+ qt ≤ |I|.

We proceed by showing an analog of Lemma 1 that also deals with dummies.

Lemma 6. Let π be a complete NEF allocation for (Ñ, Ĩ, L̃), and let i ∈ [n]

and j ∈ [µi]. Let τ denote the number of q-ads preceding X̃i,j in the preference

lists. If π is q-smooth until the literal block X̃i,j, then statements (i) and (ii) of
Lemma 1 hold, and additionally:

(iii) For each τ + 1 ≤ t ≤ τ + 6 and r ∈ [q − 3] we have π(drt ) = Dr.

(iv) π remains q-smooth until the block following X̃i,j.

Proof. The proof is a direct analog of the proof of Lemma 1. Again we use
induction on indices i and j. So fix some i ∈ [n] and j ∈ [µi], and let τ be

the number of q-ads preceding X̃i,j . The precise induction statement we use
the following: we assume that claim (iii) holds for τ , and that claim (iv), as

well as claims (i) and (ii) from Lemma 1 hold for the last literal block X̃i′,j′

preceding X̃i,j , unless i = j = 1.
We claim π(a3

i,j−1) = A, π(b3i,j−1) = B, π(c3i,j−1) = C and π(drτ ) = Dr; recall

that τ is the number of q-ads preceding X̃i,j . If i = j = 1 and hence τ = 0, then

this follows from Proposition 5. Otherwise, recall that X̃i′,j′ is the last literal

block preceding X̃i,j . Observe also that since π is q-smooth until X̃i,j , it is also

q-smooth until X̃i′,j′ . Hence, the claim follows from our induction hypothesis

for X̃i′,j′ , using that the number of q-ads preceding X̃i′,j′ is τ − 6; recall that
if i > 1, then a3

i,0 = a3
i−1,µi−1

, b3i,0 = b3i−1,µi−1
, and c3i,0 = c3i−1,µi−1

.

We prove the induction statements q-ad by q-ad using essentially the same
arguments as in the proof of Lemma 1. Nevertheless, we clearly have to take

21



〈dτ 〉, b3i,j−1, c
3
i,j−1, a

1
i,jL̃A:

〈dτ 〉, a3i,j−1, bci,j , bci,j

〈dτ 〉, a3i,j−1, bci,j , bci,j

L̃B :

L̃C :

〈dτ+1〉, c3i,j−1, αi,j , b
1
i,j

〈dτ+1〉, b3i,j−1, αi,j , c
1
i,j

Step 1 Step 2

Step 4

Step 5

〈dτ 〉−r, a3i,j−1, bci,j , bci,j , d
r
τ+1L̃Dr

:

Step 3

〈dτ+1〉−r, b3i,j−1, αi,j , c
1
i,j , d

r
τ+2

〈dτ+1〉, b1i,j , cai,j , cai,j

Figure 7: Illustration of the proof of Lemma 6 for some literal block ‹Xi,j , describing the
first five steps of our arguments (Steps 1–5). The figure depicts the first two q-ads for each
agent, with the q-ads considered in each step grouped together. We retain the notation from
Figures 3–6 with the addition that we underline items allocated to (specific) dummy agents
with a meander-style (orange) line.

into account the presence of dummy agents and dummy items, and show that
our arguments can be applied in the modified instance as well. At each step,
when we consider a given set of q-ads, we rely on the q-smoothness of π on
the q-adic prefixes preceding these given triads. Using Proposition 6 and the
structure of X̃i,j we will then prove that π remains q-smooth also on the q-adic
prefixes ending with the given q-ads. We provide an illustration in Figures 7–10,
which describe the chain of our reasoning broken down into Steps 1–16. To avoid
repetition, we will omit those parts of the proof that require no arguments other
than those already presented in the proof of Lemma 1.

Since π is q-smooth until X̃i,j , by Proposition 6 we know that each agent has

to obtain at least one item from its q most preferred items in X̃i,j to ensure nec-

essary envy-freeness. Consider the first q-ads for agents A, B, and C within X̃i,j ,
each starting with the item series 〈dτ 〉; for an illustration see Figure 7. By our
inductive assumption, we know that all of these items are allocated to dummy
agents; namely π(drτ ) = Dr for each r. Thus, we can argue about the remaining

three items within the first q-ads of L̃A, L̃B , and L̃C exactly as we did for the
corresponding triads in the proof of Lemma 1 to obtain that π(a1

i,j) = A and

{π(bci,j), π(bci,j)} = {B,C}, as shown in Steps 1 and 2 of Figure 7.
Considering now the first q-ad of the preference list of the dummy agent Dr

within X̃i,j , this means that π assigns exactly one item from this q-ad to each
agent other than Dr. Therefore, by Proposition 6, π must assign the single
remaining item, namely drτ+1, to Dr (Step 3 of Figure 7).

Considering the second q-ads for agents B and C as shown in Step 4, we
can see that L̃B(1 : q(τ + 2)) and L̃C(1 : q(τ + 2)) both end with the item αi,j .

As π is q-smooth until X̃i,j , and by the above properties of π we know that the

prefix L̃B(1 : q(τ + 2) − 1) contains τ + 2 items allocated by π to each agent

22



L̃A:

L̃B :

L̃C :

〈dτ+2〉, a1i,j , c1i,j , b2i,j

Step 7

Step 8

Step 6

L̃Dr

:

〈dτ+2〉, b1i,j , cai,j , cai,j

〈dτ+1〉, b1i,j , cai,j , cai,j

〈dτ+2〉−r, b1i,j , cai,j , cai,j , d
r
τ+3

〈dτ+2〉, c1i,j , βi,j , a
2
i,j ,

〈dτ+1〉, c3i,j−1, αi,j , b
1
i,j

〈dτ+1〉, b3i,j−1, αi,j , c
1
i,j

〈dτ+1〉−r, b3i,j−1, αi,j , c
1
i,j , d

r
τ+2

Figure 8: Illustration of the proof of Lemma 6 for some literal block ‹Xi,j , describing Steps
6–8 of our arguments. The figure depicts the second and third q-ads for each agent.

L̃A:

L̃B :

L̃C :

Step 10

〈dτ+2〉, c1i,j , βi,j , a
2
i,j ,

〈dτ+3〉, a1i,j , βi,j , c
2
i,j

Step 11

Step 9

〈dτ+3〉, c2i,j , abi,j , abi,j

〈dτ+3〉, c2i,j , abi,j , abi,j

L̃Dr

: 〈dτ+3〉−r, a1i,j , βi,j , c
2
i,j , d

r
τ+4

〈dτ+2〉, a1i,j , c1i,j , b2i,j

〈dτ+2〉, b1i,j , cai,j , cai,j

〈dτ+2〉−r, b1i,j , cai,j , cai,j , d
r
τ+3

Figure 9: Illustration of the proof of Lemma 6 for some literal block ‹Xi,j , describing Steps
9–11 of our arguments. The figure depicts the third and fourth q-ads for each agent.

except for agent A, who gets τ+1 items. Similarly, the prefix L̃C(1 : q(τ+2)−1)
contains τ + 2 items allocated by π to each agent except for agent A, who gets
τ + 1 items. Thus, αi,j can be allocated neither to C or a dummy agent (since

then L̃B(1 : q(τ + 2)) would violate envy-freeness by Proposition 1), nor to B

(since then L̃C(1 : q(τ +2)) would violate envy-freeness by Proposition 1). This
proves π(αi,j) = A, which in turn leads to π(drτ+2) = Dr for each r ∈ [q− 3], as
shown in Step 5 in Figure 7.

Proceeding in this fashion with Steps 6–8 in Figure 8, we can argue that
{π(cai,j), π(cai,j)} = {C,A}, π(b2i,j) = B, and also that π(drτ+3) = Dr for
each r ∈ [q− 3]. Next, we again use the reasoning of the previous paragraph to
show that π(βi,j) = B, π(a2

i,j) = A and π(c2i,j) = C; see Step 9 in Figure 9.
Considering the fourth q-ads for agents A, B and some dummy agent Dr,

Steps 10 and 11 in Figure 9 show that we obtain {π(abi,j), π(abi,j)} = {A,B}

23



L̃A:

L̃B :

L̃C :

Step 13

Step 16Step 12

L̃Dr

:

〈dτ+4〉, b2i,j , γi,j , a3i,j

〈dτ+4〉, a2i,j , γi,j , b3i,j

〈dτ+4〉, a2i,j , b2i,j , c3i,j

〈dτ+5〉, bci,j , abi,j , cai,j

〈dτ+5〉, cai,j , abi,j , bci,j

〈dτ+5〉, abi,j , cai,j , bci,j

〈dτ+4〉−r, a2i,j , b
2
i,j , c

3
i,j , d

r
τ+5 〈dτ+5〉−r, abi,j , cai,j , bci,j , d

r
τ+6

Step 14

Step 15

Figure 10: Illustration of the proof of Lemma 6 for some literal block ‹Xi,j , describing Steps
12–16 of our arguments. The figure depicts the fifth and sixth q-ads for each agent.

and π(drτ+4) = Dr for each r ∈ [q − 3]. Considering the fifth q-ads within X̃i,j

as shown in Steps 12-14 of Figure 10 we obtain π(c3i,j) = C, and then by the
reasoning we applied in Steps 4 and 9 before we also get π(γi,j) = C, which
yields π(b3i,j) = B and π(c3i,j) = C, and finally π(drτ+5) = Dr for each r ∈ [q−3].

Looking at the last q-ads for agents A, B, and C, we can apply the same
arguments as in the proof of Lemma 1 to show that X̃i,j either has type 1 or
type 2 (Step 15 in Figure 10). This proves that claims (i) and (ii) of Lemma 1

hold for X̃i,j . We finish our proof by observing that π(drτ+6) = Dr for each
r ∈ [q − 3] (Step 16 in Figure 10), which proves claims (iii) and (iv).

Lemma 7. Let π be a complete NEF allocation for (Ñ, Ĩ, L̃), and let i ∈ [n]

and j ∈ [µi/2]. Let also τ denote the number of q-ads in L̃B and L̃C preceding

the equivalence block ‹Ei,2j. If π is q-smooth until ‹Ei,2j, then:

(i) π(drτ+1) = π(drτ+2) = Dr for each r ∈ [q − 3].

(ii) The literal blocks X̃i,2j−1, X̃i,2j, and X̃i,2j+1 all have the same type (where

indices are taken modulo µi so that X̃i,2µi+1 = X̃i,1).

(iii) π remains q-smooth until the block following ‹Ei,2j.
Proof. The proof is by induction on i and j, and is a direct analog of the
proof of Lemma 2. By our assumption on the q-smoothness of π we can apply
Lemma 6 for any literal block X̃i,j′ , as they all precede ‹Ei,2j (see Figure 2).
Thus, we obtain {π(abi,j′), π(abi,j′)} = {A,B} and π(γi,j′) = C, and similarly,
{π(cai,j′), π(cai,j′)} = {A,C} and π(βi,j′) = B for each j′ ∈ [µi]. We also know
that π(drτ ) = Dr for each r ∈ [q − 3]: for i = j = 1 this follows from Lemma 6
for the last literal block, while for i + j > 2 this follows by our induction
hypothesis that claim (i) holds for the dummy items in the equivalence block

preceding ‹Ei,2j . Hence, the single item that π can assign to Dr from its first q-ad

24



L̃B :

L̃C :

〈dτ 〉, cai,2j−1, cai,2j , βi,2j−1

〈dτ 〉, abi,2j , abi,2j+1, γi,2j

〈dτ+1〉, cai,2j−1, cai,2j , βi,2j

〈dτ+1〉, abi,2j , abi,2j+1, γi,2j+1

L̃Dr

: 〈dτ 〉−r, abi,2j , abi,2j+1, γi,2j , d
r
τ+1 〈dτ+1〉−r, abi,2j , abi,2j+1, γi,2j+1, d

r
τ+2

Figure 11: Illustration of the proof of Lemma 7 for some equivalence block ‹Ei,2j .
within the block ‹Ei,2j is drτ+1, so by Proposition 6 we get π(drρ) = Dr. Repeating
this argument again for the second q-ad for Dr we obtain π(drτ+2) = Dr as well,
proving claim (i). See Figure 11 for an illustration.

Considering the first q-ad of L̃B within the block, the q-smoothness of π
implies that among all items in the prefix L̃B(1 : (τ + 1)q), ending with cai,2j ,

π assigns exactly τ + 1 items to B. If the literal blocks X̃i,2j and X̃i,2j−1 are
not of the same type, then π would allocate both items cai,2j−1 and cai,2j to the
same agent (A or C), meaning that π would assign τ + 2 items to either A or

to C from the prefix L̃B(1 : (τ + 1)q), more than it assigns to B, contradicting
the envy-freeness of π by Proposition 1. Similarly, considering the first q-ad
of L̃C within ‹Ei,2j the same arguments yield that X̃i,2j and X̃i,2j+1 must be of
the same type (when taking indices modulo µi), proving claim (ii).

Observe that the above facts also imply that π allocates an item from every
q-ad of Ei,2j to each agent, showing that π remains q-smooth until the block

following ‹Ei,2j . This finishes the proof of the lemma.

Next we prove an analog of Lemma 3 saying that a complete NEF allocation
is q-smooth on most parts of the constructed instance, and it is almost q-smooth
on the remaining parts. Formally, we say that an allocation π is q-half-smooth
on L̃X(1 : 2qt+ 1), or equivalently, on the first 2t q-ads for some agent X ∈ Ñ
and integer t (with 2(t + 1)q ≤ |Ĩ|), if π assigns to each agent exactly two

items from the two q-ads in L̃X(2q(t′ − 1) + 1 : 2qt′ + 1) for each t′ ∈ [t], and
additionally, assigns to X its most preferred item.

Lemma 8. Suppose π is a complete NEF allocation for (Ñ, Ĩ, L̃). Then π is

q-smooth on L̃A until the first validity block, and it is q-smooth on L̃X for every
other agent X ∈ Ñ \{A} until the closing block. Furthermore, π is q-half-smooth

on L̃A until the closing block, and satisfies π(drt ) = Dr for each r ∈ [q − 3] and
t ∈ [22m] = [|I|/q − 1].

Proof. Since π is q-smooth until the first literal block due to Proposition 5,
Lemmas 6 and 7 imply that π is q-smooth until the first validity block ‹V1.
Then, using again Lemmas 6 and 7 we obtain that π(drt ) = Dr holds for every

index t such that drt is contained in a q-ad of L̃D
r

preceding the first validity
block.

25



L̃B :

L̃C :

〈dτ 〉, αu,ju , vk, ℓu, 〈dτ+1〉, ℓv, ℓz, v′k 〈dτ+2〉, αv,jv , αz,jz , ℓu, 〈dτ+3〉, ℓv, ℓz, v′′k
〈dρ〉, vk, v′k, v′′k
〈dρ〉, vk, v′k, v′′k

L̃A:

L̃Dr

: 〈dρ〉−r, vk, v
′
k, v

′′
k , d

r
ρ+1

Step 1

Step 2

Step 3

Figure 12: Illustration of the proof of Lemma 8 depicting some validity block Ṽk.

We will now show that, for each k ∈ [m], π is q-half-smooth on L̃A until the

block following ‹Vk, it is q-smooth on L̃X for every other agent X ∈ Ñ \ {A}
until the block following ‹Vk, and moreover, for any r ∈ [q − 3], π(drt ) = Dr for

all dummy items drt appearing in L̃D
r

either within ‹Vk or earlier. Observe that
by the previous paragraph, this claim for k = m suffices to prove the lemma.

We show our claim using induction on k; see Figure 12 for an illustration.
Let τ and ρ denote the number of q-ads in L̃A and in L̃B , respectively, that
precede ‹Vk. Note that if k = m, then τ + 3 = ρ, since the last q-ads of ‹Vk
must end at the same position for every agent. Otherwise, i.e., if k ∈ [m − 1],
then τ+3 < ρ. Therefore, for any r ∈ [q−3] all items in {drτ , drτ+1, d

r
τ+2, d

r
τ+3, d

r
ρ}

have already appeared in the q-adic prefix of Dr that ends right before ‹Vk. By
the first paragraph of this proof (for k = 1) and by our inductive hypothesis
(for k > 1) we know that π allocates each of these items to Dr.

Consider the q-ads of L̃B and L̃C and the first two q-ads of L̃A within ‹Vk;
see Step 1 on Figure 12. By our assumptions on the q-smoothness of π until ‹V1,
Lemma 6 implies that π assigns each choice item within ‹Vk either to B or
to C. Note that π is q-smooth on L̃B and L̃C until ‹Vk: for k = 1 this follows
from our first paragraph, for k > 1 from our inductive hypothesis. Therefore,
Proposition 6 implies that π must allocate both B and C at least one item
from {vk, v′k, v′′k}. Similarly, we know that π is q-half-smooth on L̃A until ‹Vk,
and hence (using an analog of Proposition 6 for q-half-smoothness, based on the
same reasoning) we obtain that π must allocate at least one item from {vk, v′k}
to A. This means {π(vk), π(v′k), π(v′′k )} = {A,B,C}.

Taking into account the q-ad of L̃D
r

within ‹Vk for some r ∈ [q−3], it follows
that π(drρ+1) = Dr; see Step 2 on Figure 12. Consequently, π remains q-smooth

on L̃X until the block following ‹Vk for each agent X other than A.
Observe that since π can assign at most one item from {vk, v′k, v′′k} to agent A,

we get that π must assign exactly two items from the first two q-ads of L̃A

within ‹Vk to each agent. Arguing the same way for the third and fourth q-ads
of L̃A, shown in Step 3 on Figure 12, we obtain that π remains q-half-smooth
on L̃A until the block following ‹Vk, finishing our proof.

26



Using Lemmas 7 and 8 we immediately get the following corollary; its proof
is the same as the the proof of Lemma 4, so we omit it.

Lemma 9. Let π be a complete NEF allocation for (Ñ, Ĩ, L̃), and let i ∈ [n].
Then all literal blocks in Yi have the same type; we call this the type of Yi.

It is straightforward to verify that using Lemmas 6–9 the same arguments
we applied to prove the correctness of the reduction in Section 3 also imply
Lemma 10 below, and consequently also Theorem 2; we leave the details to the
reader.

Lemma 10. There exists a valid allocation for the input formula ϕ if and only
if the constructed instance (Ñ, Ĩ, L̃) admits a complete NEF allocation.

5. Conclusion

We examined a fundamental fair division setting for indivisible items under
ordinal preferences and focused on necessary envy-freeness. In the literature
on cardinal valuations, a natural relaxation of envy-freeness is the ‘up to one
item’ (EF1) relaxation in which envy is allowed as long as it goes away after
ignoring some item [13]. Similar to EF1, one can define a necessary version of
EF1 called NEF1 where the requirements of NEF are met if for any envy com-
parison between agents, we ignore some item. Such a notion is easily satisfied
by allocating most valuable items among agents in a round robin manner [3].

We resolved an outstanding open problem and proved that checking whether
a necessary envy-free allocation exists is NP-complete when the number of agents
is at least three. It will be interesting to identify conditions under which the
problem is polynomial-time solvable. For example, does it help if the preferences
are single-peaked? Another interesting direction is to explore the probability for
an instance to admit an necessary envy-free allocation under some well-studied
probabilistic models of generating instances.

Funding

Ildikó Schlotter is supported by the Hungarian Academy of Sciences under its
Momentum Programme (LP2021-2) and its János Bolyai Research Scholarship,
and by the Hungarian Scientific Research Fund (OTKA grants K128611 and
K124171).

References

[1] Aziz, H., 2016. A generalization of the AL method for fair allocation of
indivisible objects. Economic Theory Bulletin 4, 307–324.

[2] Aziz, H., 2020. Developments in multi-agent fair allocation. In: Proceedings
of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020). AAAI
Press, pp. 13563–13568.

27



[3] Aziz, H., 2020. Simultaneously achieving ex-ante and ex-post fairness. In:
Proceedings of the 16th Conference on Web and Internet Economics (WINE
2020). Springer, pp. 341–355.

[4] Aziz, H., Gaspers, S., Mackenzie, S., Walsh, T., 2015. Fair assignment
of indivisible objects under ordinal preferences. Artificial Intelligence 227,
71–92.

[5] Aziz, H., Schlotter, I., Walsh, T., 2016. Control of fair division. In: Pro-
ceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI 2016). AAAI Press, pp. 67–73.

[6] Bouveret, S., Chevaleyre, Y., Maudet, N., 2016. Fair allocation of indivis-
ible goods. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia,
A. D. (Eds.), Handbook of Computational Social Choice. Cambridge Uni-
versity Press, pp. 284–310.

[7] Bouveret, S., Endriss, U., Lang, J., 2010. Fair division under ordinal pref-
erences: Computing envy-free allocations of indivisible goods. In: Pro-
ceedings of the 19th European Conference on Artificial Intelligence (ECAI
2010). Vol. 215 of Frontiers in Artificial Intelligence and Applications. IOS
Press, pp. 387–392.

[8] Brams, S. J., Edelman, P. H., Fishburn, P. C., 2001. Paradoxes of fair
division. Journal of Philosophy 98 (6), 300–314.

[9] Brams, S. J., Kilgour, D. M., Klamler, C., 2014. Two-person fair division
of indivisible items: An efficient, envy-free algorithm. Notices of the AMS
61 (2), 130–141.

[10] Brams, S. J., Taylor, A. D., 1996. Fair division: from cake-cutting to dis-
pute resolution. Cambridge University Press.

[11] Bredereck, R., Figiel, A., Kaczmarczyk, A., Knop, D., Niedermeier, R.,
2021. High-multiplicity fair allocation made more practical. In: Proceed-
ings of the 20th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2021). Association for Computing Machinery,
pp. 260–268.

[12] Bredereck, R., Kaczmarczyk, A., Knop, D., Niedermeier, R., 2019. High-
multiplicity fair allocation: Lenstra empowered by N-fold integer program-
ming. In: Proceedings of the 2019 ACM Conference on Economics and
Computation (EC 2019). Association for Computing Machinery, pp. 505–
523.

[13] Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N.,
Wang, J., 2019. The unreasonable fairness of maximum Nash welfare. ACM
Transactions on Economics and Computation 7 (3), article no. 12.

28



[14] Goldman, J., Procaccia, A. D., 2014. Spliddit: Unleashing fair division
algorithms. ACM SIGecom Exchanges 13 (2), 41–46.

[15] Moulin, H., 2003. Fair division and collective welfare. MIT Press.

[16] Schaefer, T. J., 1978. The complexity of satisfiability problems. In: Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing
(STOC 1978). Association for Computing Machinery, pp. 216–226.

29


	Introduction
	Preliminaries
	Result for exactly three agents
	Result for at least three agents
	Conclusion

