
Popular Branchings and Their Dual Certificates?

Telikepalli Kavitha1, Tamás Király2, Jannik Matuschke3, Ildikó Schlotter4,5,
and Ulrike Schmidt-Kraepelin6

1 TIFR, Mumbai, India, kavitha@tifr.res.in
2 Eötvös University, Budapest, Hungary, tkiraly@cs.elte.hu

3 Research Center for Operations Management, KU Leuven, Leuven, Belgium,
jannik.matuschke@kuleuven.be

4 Centre for Economic and Regional Studies, Budapest, Hungary
5 Budapest University of Technology and Economics, Budapest, Hungary,

ildi@cs.bme.hu
6 Technische Universität Berlin, Germany, u.schmidt-kraepelin@tu-berlin.de

Abstract. Let G be a digraph where every node has preferences over
its incoming edges. The preferences of a node extend naturally to pref-
erences over branchings, i.e., directed forests; a branching B is popular if
B does not lose a head-to-head election (where nodes cast votes) against
any branching. Such popular branchings have a natural application in
liquid democracy. The popular branching problem is to decide if G ad-
mits a popular branching or not. We give a characterization of popular
branchings in terms of dual certificates and use this characterization to
design an efficient combinatorial algorithm for the popular branching
problem. When preferences are weak rankings, we use our characteriza-
tion to formulate the popular branching polytope in the original space and
also show that our algorithm can be modified to compute a branching
with least unpopularity margin. When preferences are strict rankings, we
show that “approximately popular” branchings always exist.

1 Introduction

LetG be a directed graph where every node has preferences (in partial order) over
its incoming edges. We assume that G can have parallel edges but no self-loops.
In case G is simple, the preferences can equivalently be defined on in-neighbors.
We define a branching to be a subgraph of G that is a directed forest where each
node has in-degree at most 1; a node with in-degree 0 is a root. The size of a
branching is the number of edges in it. The problem we consider is to find a
branching that is popular.

Given any pair of branchings, we say a node u prefers the branching where it
has a more preferred incoming edge (being a root is u’s worst choice). If neither
incoming edge is preferred to the other, then u is indifferent between the two
branchings. So any pair of branchings, say B and B′, can be compared by asking
for the majority opinion, i.e., every node opts for the branching that it prefers,

? A preliminary version of this work has appeared in the proceedings of IPCO 2020.



and it abstains if it is indifferent between them. Let φ(B,B′) (resp., φ(B′, B))
be the number of nodes that prefer B (resp., B′) in the B-vs-B′ comparison. If
φ(B′, B) > φ(B,B′), then we say B′ is more popular than B.

Definition 1.1. A branching B is popular in G, if no branching in G is more
popular than B. That is, φ(B,B′) ≥ φ(B′, B) for all branchings B′ in G.

An application in computational social choice. We see the main application of
popular branchings within liquid democracy. Suppose there is an election where a
specific issue should be decided upon, and there are several proposed alternatives.
Every individual voter has an opinion on these alternatives, but might also con-
sider certain other voters as being better informed than her. Liquid democracy
is a novel voting scheme that provides a middle ground between the feasibility
of representative democracy and the idealistic appeal of direct democracy [4]:
Voters can choose whether they delegate their vote to another, well-informed
voter or cast their vote themselves. As the name suggests, voting power flows
through the underlying network, or in other words, delegations are transitive.
During the last decade, this idea has been implemented within several online
decision platforms such as Sovereign and LiquidFeedback7 and was used for in-
ternal decision making at Google [23] and political parties, such as the German
Pirate Party or the Swedish party Demoex.

In order to circumvent delegation cycles, e.g., a situation in which voter x del-
egates to voter y and vice versa, and to enhance the expressiveness of delegation
preferences, several authors proposed to let voters declare a set of acceptable
representatives [20] together with a preference relation among them [5, 23, 31].
A mechanism selects an approved representative for each voter, avoiding delega-
tion cycles. Similarly as suggested in [6], we additionally assume voters to accept
themselves as their least preferred approved representative.

This reveals the connection to branchings in simple graphs where nodes corre-
spond to voters and the edge (x, y) indicates that voter x is an approved delegate
of voter y.8 Every root in the branching casts a weighted vote on behalf of all
her descendants. We assume that voters rate branchings only based on their pre-
decessors. This is justified when approved delegates are considered to be more
competent both in deciding on the issue as well as in assessing the competence of
others. What is a good mechanism to select representatives for voters? A crucial
aspect in liquid democracy is the stability of the delegation process [3, 14]. For
the model described above, we propose popular branchings as a new concept of
stability.

Not every directed graph admits a popular branching. Consider the following
simple graph on four nodes a, b, c, d where a, b (similarly, c, d) are each other’s top
choices, while a, c (similarly, b, d) are each other’s second choices. There is no edge
between a, d (similarly, b, c). Consider the branching B = {(a, b), (a, c), (c, d)}.
A more popular branching is B′ = {(d, c), (c, a), (a, b)}. Observe that a and c

7 See www.democracy.earth and www.interaktive-demokratie.org, respectively.
8 Typically, such a delegation is represented by an edge (y, x); for the sake of consis-

tency with downward edges in a branching, we use (x, y).

2



prefer B′ to B, while d prefers B to B′ and b is indifferent between B and B′. We
can similarly obtain a branching B′′ = {(b, a), (b, d), (d, c)} that is more popular
than B′. It is easy to check that this instance has no popular branching.

1.1 Our Problem and Results

The popular branching problem is to decide if a given digraphG admits a popular
branching or not, and if so, to find one. We show that determining whether a
given branching B is popular is equivalent to solving a min-cost arborescence
problem in an extension of G with appropriately defined edge costs (these edge
costs are a function of the branching). The dual LP to this arborescence problem
gives rise to a laminar set system that serves as a certificate for the popularity
of B, if it is popular. This dual certificate is crucial in devising an algorithm for
efficiently solving the popular branching problem.

Theorem 1.2. Given a directed graph G where every node has preferences in
arbitrary partial order over its incoming edges, there is a polynomial-time algo-
rithm to decide if G admits a popular branching, and if so, to find one.

The proof of Theorem 1.2 is presented in Section 3; it is based on a char-
acterization of popular branchings that we develop in Section 2. In applications
like liquid democracy, it is natural to assume that the preference order of every
node is a weak ranking, i.e., a ranking of its incoming edges with possible ties.
In this case, the proof of correctness of our popular branching algorithm leads
to a formulation of the popular branching polytope BG, i.e., the convex hull of
incidence vectors of popular branchings in G.

Theorem 1.3. Let G be a digraph on n nodes and m edges where every node
has a weak ranking over its incoming edges. The popular branching polytope of
G admits a formulation of size O(2n) in Rm, and has Ω(2n) facets.

Though the above formulation has an exponential number of constraints, it ad-
mits an efficient separation oracle. As a consequence, when G has edge costs and
node preferences are weak rankings, the min-cost popular branching problem
can be efficiently solved. Thus we can efficiently solve extensions of the popular
branching problem where we minimize the largest rank used or allow constraints
for forced/forbidden edges when node preferences are weak rankings. In contrast,
we show that the min-cost popular branching problem is NP-hard when node
preferences are in arbitrary partial order in Section 6.

Relaxing popularity. Since popular branchings need not always exist in G, this
motivates relaxing popularity to approximate popularity—do approximately pop-
ular branchings always exist in any instance G? An approximately popular
branching B may lose an election against another branching, however the ex-
tent of this defeat will be bounded. There are two measures of unpopularity:
unpopularity factor u(·) and unpopularity margin µ(·), defined as follows:

u(B) = max
φ(B′,B)>0

φ(B′, B)

φ(B,B′)
and µ(B) = max

B′
φ(B′, B)− φ(B,B′).

3



A branching B is popular if and only if u(B) ≤ 1 or µ(B) = 0. We show the
following results.

Theorem 1.4. A branching with minimum unpopularity margin in a digraph
where every node has a weak ranking over its incoming edges can be efficiently
computed. In contrast, when node preferences are in arbitrary partial order, the
minimum unpopularity margin problem is NP-hard.

Theorem 1.5. Let G be a digraph where every node has a strict ranking over
its incoming edges. Then there always exists a branching B in G with u(B) ≤
blog nc. Moreover, for every n, we can show an instance Gn on n nodes with
strict rankings such that u(B) ≥ blog nc for every branching B in Gn.

Hardness results for restricted popular branching problems. A natural optimiza-
tion problem here is to compute a popular branching where no tree is large. In
liquid democracy, a large-sized tree shows a high concentration of power in the
hands of a single voter, and this is harmful for social welfare [20]. When there
is a fixed subset of root nodes in a directed graph, it was shown in [20] that
it is NP-hard to find a branching that minimizes the size of the largest tree.
To translate this result to popular branchings, we need to allow ties, whereas
Theorem 1.6 below holds even for strict rankings. Another natural restriction
is to limit the out-degree of nodes; Theorem 1.6 also shows that this variant is
computationally hard.

Theorem 1.6. Given a digraph G where each node has a strict ranking over its
incoming edges, it is NP-hard to decide if there exists

(a) a popular branching in G where each node has at most 9 descendants;
(b) a popular branching in G with maximum out-degree at most 2.

We also consider popular mixed branchings. A mixed branching P is a proba-
bility distribution (or lottery) over branchings inG, i.e., P = {(B1, p1) . . . , (Bk, pk)},
where Bi is a branching in G for each i and

∑k
i=1 pi = 1, pi ≥ 0 for all i. The

notion of popularity extends naturally to mixed branchings and we show that
popular mixed branchings always exist in G; moreover, a popular mixed branch-
ing can be computed in polynomial time.

Background and Related Work. The notion of popularity was introduced by
Gärdenfors [19] in 1975 in the domain of bipartite matchings. Algorithmic ques-
tions in popular matchings have been well-studied for the last 10-15 years [1,
2, 8, 9, 15, 16, 22, 24, 25, 26, 27, 29, 32]. Algorithms for popular matchings
were first studied in the one-sided preferences model where vertices on only one
side of the bipartite graph have preferences over their neighbors. Popular match-
ings need not always exist here and there is an efficient algorithm to solve the
popular matching problem [1]. The functions unpopularity factor/margin were
introduced in [32] to measure the unpopularity of a matching; it was shown in
[32] that it is NP-hard to compute a matching that minimizes either of these

4



quantities. In the domain of bipartite matchings with two-sided strict prefer-
ences, popular matchings always exist since stable matchings always exist [18]
and every stable matching is popular [19].

The concept of popularity has previously been applied to (undirected) span-
ning trees [10, 11, 12]. In contrast to our setting, voters have rankings over the
entire edge set. This allows for a number of different ways to derive preferences
over trees, most of which lead to hardness results.

Techniques. Starting from an LP formulation for determining the unpopularity
margin of a given branching, we use LP duality to characterize popular branch-
ings in terms of dual certificates. A dual certificate for a given branching is a
family of subsets of the node set V exhibiting a certain combinatorial structure.
A certificate of size k implies that the unpopularity margin of the branching
is at most n − k, and thus a certificate of size n constitutes a proof that the
branching is popular. This is analogous to characterizing popular matchings in
bipartite graphs in terms of witnesses (see [15, 25, 27]). However, such witnesses
are points in Rn rather than set families and their structure is far simpler than
that of dual certificates for popular branchings.

Our algorithm constructs a partition X ′ of V such that if G admits popular
branchings, then there has to be some popular branching in G with a dual
certificate of size n supported by X ′ (see Section 3). Moreover, when nodes
have weak rankings, X ′ supports some dual certificate of size n to every popular
branching in G: this leads to the formulation of the popular branching polytope
BG (see Section 6). Our positive results on low unpopularity branchings are
extensions of our algorithm (these results are in Section 4 and Section 5).

Notation. The preferences of node v on its incoming edges are given by a strict
partial order ≺v, so e ≺v f means that v prefers edge f to edge e. We use e ∼v f
to denote that v is indifferent between e and f , that is, neither e ≺v f nor e �v f
holds. The relation ≺v is a weak ranking if ∼v is transitive. In this case, ∼v is an
equivalence relation and there is a strict order on the equivalence classes. When
each equivalence class has size 1, we call it a strict ranking.

2 Dual Certificates

We add a dummy node r to G = (VG, EG) as the root and make (r, v) the least
preferred incoming edge of any node v in G. Let D = (V ∪{r}, E) be the resulting
graph where V = VG and E = EG ∪ {(r, u) : u ∈ V }. An r-arborescence in D is
an out-tree with root r (throughout the paper, all arborescences are assumed to
be rooted at r and to span V , unless otherwise stated).

Note that there is a one-to-one correspondence between branchings in G and
arborescences in D (simply make r the parent of all roots of the branching). A
branching is popular in G if and only if the corresponding arborescence is popular

5



among all arborescences in D.9 We will therefore prove our results for arbores-
cences in D. The corresponding results for branchings in G follow immediately
by projection, i.e., removing node r and its incident edges.

For an arborescence A in D, there is a simple way to check if A is popular
in D. Let A(v) be the incoming edge of v in A. For e = (u, v) in D, define:

cA(e) :=


0, if e �v A(v), i.e., v prefers e to A(v);

1, if e ∼v A(v), i.e., v is indifferent between e and A(v);

2, if e ≺v A(v), i.e., v prefers A(v) to e.

For S ⊆ E we define cA(S) =
∑
e∈S cA(e). Observe that cA(A) = |V | = n

since cA(e) = 1 for every e ∈ A. Let A′ be any arborescence in D and let
∆(A,A′) = φ(A,A′) − φ(A′, A) be the difference in the number of votes for
A and the number of votes for A′ in the A-vs-A′ comparison. Observe that
cA(A′) = ∆(A,A′) + n. Since µ(A) = maxA′(−∆(A,A′)) = maxA′(n− cA(A′)),
we can conclude the following.

Proposition 2.1. Let A′ be a min-cost arborescence in D with respect to cA.
Then µ(A) = n− cA(A′). In particular, A is popular in D if and only if it is a
min-cost arborescence in D with edge costs given by cA.

Consider the following linear program LP1, which computes a min-cost ar-
borescence in D, and its dual LP2. For any non-empty X ⊆ V , let δ−(X) be the
set of edges entering the set X in the graph D.

minimize
∑
e∈E

cA(e) · xe (LP1)

subject to
∑

e∈δ−(X)

xe ≥ 1 ∀X ⊆ V, X 6= ∅

xe ≥ 0 ∀ e ∈ E.

maximize
∑

X⊆V,X 6=∅

yX (LP2)

subject to
∑

X: δ−(X)3e

yX ≤ cA(e) ∀ e ∈ E

yX ≥ 0 ∀X ⊆ V, X 6= ∅.

For any feasible solution y to LP2, let Fy := {X ⊆ V : yX > 0} be the
support of y. Inspired by Edmonds’ branching algorithm [13], Fulkerson [17]
gave an algorithm to find an optimal solution y to LP2 such that y is integral.
From an alternative proof (Theorem 6.13 in [30]), we get Lemma 2.2. A family
of sets S is called laminar if for any two sets S, S′ ∈ S we have: S ⊆ S′ or S′ ⊆ S
or S ∩ S′ = ∅.
9 Note that, by the special structure of D, an arborescence is popular among all

arborescences in D if and only if it is a popular branching in D.

6



Lemma 2.2. There exists an optimal, integral solution y∗ to LP2 such that Fy∗
is laminar.

Let y be an optimal, integral solution to LP2 such that Fy is laminar. Note
that for any nonempty X ⊆ V , there is an e ∈ A ∩ δ−(X) and thus yX ≤
cA(e) = 1. This implies that yX ∈ {0, 1} for all X. We conclude that Fy is a
dual certificate for A in the sense of the following definition.

Definition 2.3. A dual certificate for A is a laminar family Y ⊆ 2V such that
|{X ∈ Y : e ∈ δ−(X)}| ≤ cA(e) for all e ∈ E.

Lemma 2.4. The following three statements are equivalent:

(1) A is popular.
(2) There exists a dual certificate Y for A with |Y| = n.
(3) There exists a dual certificate Y for A with |A ∩ δ−(X)| = 1 for all X ∈ Y

and |{X ∈ Y : e ∈ δ−(X)}| = 1 for all e ∈ A.

Proof. Let Y be a dual certificate for A of maximum cardinality and observe
that Y corresponds to an optimal solution to LP2 of value |Y|. Recall from
Proposition 2.1 that A is popular if and only if it is a min-cost arborescence in
D with respect to cA. Hence (1) is equivalent to A corresponding to an optimal
solution to LP1. By LP duality, this is the case if and only if cA(A) = |Y|,
which is equivalent to (2) because cA(A) = n by definition of cA. Lastly, (3)
is equivalent to the characteristic vectors of A and Y fulfilling complementary
slackness, which is again equivalent to A and Y being optimal solutions. ut

For the rest of this section, let Y be a dual certificate maximizing |Y|.

Observation 2.5. For every v ∈ V we have |{X ∈ Y : v ∈ X}| ≤ 2.

Observation 2.5 is implied by the fact that e = (r, v) is an edge in D for every
v ∈ V and cA(e) ≤ 2. For the case when A is popular, Lemma 2.4 establishes
the following one-to-one correspondence between the nodes in V and the sets of
Y: For every set X ∈ Y, there is a unique edge (u, v) ∈ A that enters X. We call
v the entry-point for X. Conversely, we let Yv be the unique set in Y for which v
is the entry-point; thus Y = {Yv : v ∈ V }. Laminarity of Y yields the following
corollary of Lemma 2.4 and Observation 2.5:

Corollary 2.6. If |Y| = n and w ∈ Yv \ {v} for some v ∈ V , then Yw = {w}.

Proof. Assume z ∈ Yw \ {w}. By laminarity either Yw ⊆ Yv holds, in which
case z ∈ Yw ∩ Yv ∩ Yz, a contradiction to Observation 2.5, or Yv ⊆ Yw implying
that the edge from A entering Yw enters two sets from Y, namely Yw and Yv, a
contradiction to |{X ∈ Y : e ∈ δ−(X)}| = 1 for all e ∈ A (see Lemma 2.4). ut

The following definition of the set of safe edges S(X) with respect to a subset
X ⊆ V will be useful. Let S(X) be the set of edges (u, v) in E[X] := E∩(X×X)
such that properties 1. and 2. hold:

7



1. (u, v) is undominated in E[X], i.e., (u, v) 6≺v (u′, v) ∀ (u′, v) ∈ E[X].
2. (u, v) dominates (w, v) ∀w /∈ X, i.e., (u, v) �v (w, v) ∀ (w, v) ∈ δ−(X).

Observation 2.7. If A is popular, then A ∩ E[X] ⊆ S(X) for all X ∈ Y.

Proof. Let X ∈ Y with |X| > 1. By Corollary 2.6, for every node v ∈ X other
than the entry-point for X we have {v} = Yv ∈ Y. So any edge e ∈ δ−(v)
within E[X] enters exactly one dual set, i.e., {v}, implying cA(e) ≥ 1 by LP2.
By contrast, any edge (w, v) ∈ E where w /∈ X enters two of the dual sets: X
and {v}, yielding cA((w, v)) ≥ 2. For the edge (u, v) ∈ A∩E[X], these conditions
induce exactly the constraints 1. and 2. given above, showing that the edge A(v)
must be safe. ut

3 Popular Branching Algorithm

We are now ready to present our algorithm for deciding if D admits a popular
arborescence or not. For each v ∈ V , step 1 of the algorithm builds the largest
set Xv such that v can reach all nodes in Xv using edges in S(Xv). To construct
the sets Xv we make use of the monotonicity of S(·), which follows directly from
the definition of safe edges:

Observation 3.1. If X ⊆ X ′ ⊆ V , then S(X) ⊆ S(X ′).

We will establish later that the collection X = {Xv : v ∈ V } is laminar (see
Lemma 3.2). In steps 2-3, the algorithm contracts each maximal set in X into
a single node and builds a graph D′ on these nodes and r. For each contracted
set X ∈ X , edges leading to node X in D′ correspond to undominated edges in
D leading from outside X to the candidate entry-points of X, which are nodes
v ∈ X such that X = Xv. Theorems 3.3-3.4 show that D admits a popular
arborescence if and only if D′ admits an arborescence.

Our algorithm for computing a popular arborescence in D is given below. An
example of the execution of the algorithm is shown in Figure 1.

1. For each v ∈ V do:
– let X0

v = V and i = 0;
– while v does not reach all nodes in the graph Di

v = (Xi
v, S(Xi

v)) do:

Xi+1
v = the set of nodes reachable from v in Di

v; let i = i+ 1.
– let Xv = Xi

v.

2. Let X = {Xv : v ∈ V }, X ′ = {Xv ∈ X : Xv is ⊆ -maximal in X}, E′ = ∅.
3. For every edge e = (u, v) in D such that Xv ∈ X ′ and u /∈ Xv do:

– if e is undominated (i.e., e 6≺v e′) among all edges e′ ∈ δ−(Xv), then

f(e) =

{
(U,Xv) where u ∈ U and U ∈ X ′,
(r,Xv) if u = r;

– let E′ := E′ ] {f(e)}.

8



4. If D′ = (X ′ ∪ {r}, E′) contains an arborescence A′, then
– let A′D = {e : f(e) ∈ A′};
– let R = {v ∈ V : v has an incoming edge in A′D};
– for each v ∈ R: let Av be an arborescence in (Xv, S(Xv)) rooted at v;
– return A∗ = A′D ∪v∈R Av.

Else return “No popular arborescence in D”.

Correctness of the above algorithm. We first establish the laminarity of the sets
Xu for u ∈ V constructed in step 1 of the algorithm.

Lemma 3.2. X = {Xv : v ∈ V } is laminar. For any v ∈ V , if u ∈ Xv then
Xu ⊆ Xv.

Proof. We start by proving the second statement. Let v ∈ V and u ∈ Xv. We
first show that Xi

u ⊆ Xi
v for any i, where we set Xi

v := Xv whenever Xi
v is

not defined by the above algorithm. The claim clearly holds for i = 0. Let i
be the smallest index such that x ∈ Xi

u \ Xi
v for some node x; we must have

x ∈ Xi−1
u ∩Xi−1

v . By the definition of Xi
u, x is reachable from u in S(Xi−1

u ). Note
that Xi−1

u ⊆ Xi−1
v implies S(Xi−1

u ) ⊆ S(Xi−1
v ), which yields that x is reachable

from u in S(Xi−1
v ) as well. Moreover, u is reachable from v in S(Xi−1

v ) ⊇ S(Xv)
because u ∈ Xv and S(·) is monotone. Hence it follows that x is reachable from
v in S(Xi−1

v ) via u, contradicting the assumption that x /∈ Xi
v. This concludes

the proof of the second statement.
Now we will show the laminarity of X . For contradiction, assume there exist

s, t ∈ V such that Xs and Xt cross, i.e., their intersection is non-empty and
neither contains the other. Then, by the second statement of the lemma, neither
s ∈ Xt nor t ∈ Xs can hold. So we have that s /∈ Xt and t /∈ Xs.

Let (x, y) be an edge in S(Xt) such that y ∈ Xs ∩ Xt but x ∈ Xt \ Xs;
since each node in Xt is reachable from t in S(Xt), such an edge exists. Since
y ∈ Xs \ {s}, there also exists an edge (u, y) in S(Xs). As x /∈ Xs but (u, y) ∈
S(Xs), we know that (u, y) �y (x, y) which contradicts (x, y) ∈ S(Xt). ut

Theorem 3.3. If the above algorithm returns an edge set A∗, then A∗ is a
popular arborescence in D.

Proof. We start by showing that A∗ is an arborescence in D. Laminarity of X
implies that the sets in X ′ are pairwise disjoint. Moreover, by construction, each
node in V is included in at least one set in X , namely v ∈ Xv for each v ∈ V .
Hence, X ′ forms a partition of V . Thus each w ∈ V has exactly one incoming
edge in A∗: an edge from A′D if w ∈ R or an edge from the arborescence Av for the
unique node v ∈ R with w ∈ Xv if w ∈ V \R. Now assume by contradiction that
A∗ contains a cycle C. Because the arborescences Av for v ∈ R are node-disjoint,
this cycle must contain edges from A′D and the set {f(e) : e ∈ C ∩ A′D} ⊆ A′

must contain a cycle, a contradiction. Thus A∗ is an arborescence.
We now establish that A∗ is popular by showing that Y := {Xv : v ∈

R} ∪ {{v} : v ∈ V \ R} is a dual certificate for A∗ of size n. Note that |Y| =

9



r

a b

c d

e f

g

Xa = Xb

Xe = Xf

Xc = Xd

Xg

DD′

r

a b

c d

e f

g

Xa = Xb

Xe = Xf

Xc = Xd

Xg

DD′

Fig. 1. The left figure shows an example for the graph D, i.e., the input instance ex-
tended by a root node r. Some outgoing arcs from the root are omitted in D. Solid arcs
are preferred over dashed arcs which are preferred over dotted arcs. Grey areas corre-
spond to sets in X . The right figure depicts the corresponding graph D′ constructed
by our algorithm. Any arborescence in D′ can be extended to a popular arborescence
in D. E.g., the arborescence indicated by bold blue arcs is popular.

|R| + |V \ R| = n. We now show that for all v ∈ V , the incoming edges satisfy
the constraints in LP2.

Suppose v ∈ R. An edge (w, v) ∈ E enters one set of Y iff w 6∈ Xv and no set
iff w ∈ Xv. Hence, it suffices to show that cA∗((w, v)) ∈ {1, 2} for w /∈ Xv. Let
(u, v) be the incoming edge of v in arborescence A∗; note that (u, v) ∈ A′D and
u /∈ Xv. By construction of E′, (w, v) does not dominate (u, v) and therefore
cA∗((w, v)) ∈ {1, 2}.

Suppose v ∈ V \ R. Let s ∈ R be the unique node in R with v ∈ Xs. Then
there is (u, v) ∈ As ⊆ S(Xs) by construction of As. Any edge (w, v) ∈ δ−(v)
enters at most two sets of Y: {v} and possibly Xs. If, on the one hand, (w, v) ∈
δ−(Xs), then (u, v) ∈ S(Xs) dominates (w, v) by property 2. of S(Xs), and
hence cA∗((w, v)) = 2. If, on the other hand, w ∈ Xs, then (u, v) ∈ S(Xs) is not
dominated by (w, v) by property 1. of S(Xs), and hence cA∗((w, v)) ≥ 1. This
proves that Y is a dual certificate of size n for A∗, thus A∗ is popular. ut

Theorem 3.4. If D has a popular arborescence, then our algorithm finds one.

Before we prove Theorem 3.4, we need Lemma 3.5 and Lemma 3.6.

Lemma 3.5. Let A be a popular arborescence and Y = {Yv : v ∈ V } a dual
certificate for A of size n. Then Yv ⊆ Xv for any v ∈ V .

Proof. Assume for contradiction that Yv \Xv 6= ∅. Because Yv ⊆ V = X0
v , there

is an iteration i with Yv ⊆ Xi
v and Yv 6⊆ Xi+1

v . Let z ∈ Yv \Xi+1
v . By Lemma 2.4,

A enters Yv only at v and thus A contains a directed v-z-path using only nodes
of Yv. Because z /∈ Xi+1

v , there must be an edge (u,w) ∈ A on this path with
u ∈ Xi+1

v and w ∈ Yv \Xi+1
v . Note that δ+(Xi+1

v ) ∩ S(Xi
v) = ∅ by construction

of Xi+1
v from Xi

v. Thus (u,w) /∈ S(Xi
v) and one of the following two cases must

be true:

10



Case 1: There exists an edge (x,w) ∈ E[Xi
v] that dominates (u,w) and hence

cA((x,w)) = 0. However, {w} ∈ Y by Corollary 2.6. So Y violates the dual
constraint for (x,w), a contradiction.

Case 2: There is an edge (x,w) ∈ δ−(Xi
v) which is not dominated by (u,w)

and hence cA((x,w)) ∈ {0, 1}. But since x /∈ Xi
v ⊇ Yv the edge (x,w) enters

both the set {w} and the set Yv in Y, again a contradiction. ut

Lemma 3.6. Let A be a popular arborescence in D and let X ∈ X ′. Then A
enters X exactly once, and it enters X at some node v such that X = Xv.

Proof. Let X ∈ X ′ and let A be a popular arborescence which enters X at some
node v ∈ V through an edge (u, v) ∈ A ∩ δ−(X). Moreover, let Y be a dual
certificate for A, and let Yv be the set whose entry-point is v.

Let entry(X) := {w ∈ V : Xw = X}. We first show that entry(X) ⊆ Yv.
Assume for contradiction that there exists w ∈ entry(X) such that w /∈ Yv. Since
Xw = X, we know that there exists a w-v-path P in (X,S(X)). Hence, there
exists an edge e = (u′, v′) ∈ P which enters Yv. If v′ = v, we know that e ∈ S(X)
dominates (u, v) ∈ δ−(X) and hence cA(e) = 0, a contradiction to the feasibility
of Y. If v′ 6= v, then e enters not only Yv ∈ Y, but also {v′} ∈ Y. However,
cA(e) ≤ 1 since e ∈ S(X) must be an undominated edge, a contradiction to the
feasibility of Y.

We next show that v ∈ entry(X). Let s ∈ entry(X). By the previous para-
graph and Lemma 3.5, we get s ∈ Yv ⊆ Xv, from which Lemma 3.2 implies
Xs ⊆ Xv. Because s ∈ entry(X), we have X = Xs ⊆ Xv. Because X ∈ X ′ is
inclusionwise maximal in X , we get X = Xv, proving v ∈ entry(X).

It remains to prove that A enters X only once. Suppose for contradiction
that there exist two nodes v, v′ ∈ entry(X) such that (u, v), (u′, v′) ∈ A∩ δ−(X).
By ∅ 6= entry(X) ⊆ Yv ∩Yv′ and the laminarity of Y, we can assume w.l.o.g. that
Yv ⊆ Yv′ . Moreover, since u /∈ X ⊇ Yv′ , the edge (u, v) ∈ A enters both Yv and
Yv′ , contradicting the feasibility of the dual solution Y. ut

Proof (of Theorem 3.4). Assume there exists a popular arborescence A in D;
then there exists a dual certificate Y = {Yv : v ∈ V } of size n for A. We will
show that there exists an arborescence in D′. By Lemma 3.6, for each X ∈ X ′
there exists exactly one edge eX = (u, v) of A that enters X = Xv.

We claim that (u, v) is not dominated by any (u′, v) ∈ δ−(X). Recall that
by Lemma 3.5, we know Yv ⊆ Xv = X. If some (u′, v) ∈ δ−(X) dominates
(u, v) ∈ A, its cost must be cA((u′, v)) = 0. However, (u′, v) clearly enters
Yv ⊆ X, and Y violates the dual constraint for (u′, v), a contradiction. Hence,
eX is undominated among the edges of δ−(X) ∩ δ−(v) and so our algorithm
creates an edge f(eX) in E′ pointing to X. Using that A is an arborescence
in D, it is straightforward to verify that the edges {f(eX) : X ∈ X ′} form an
arborescence A′ in D′. Thus our algorithm returns an edge set A∗, which by
Theorem 3.3 must be a popular arborescence in D. ut

Observe that step 1, the bottleneck step, takes O(mn) time per node. An
arborescence in D′ can be found by breadth first search, i.e., in time O(n′+m′)

11



where n′ and m′ are the number of vertices and edges in D′, respectively. Thus
the running time of the algorithm is O(mn2), and Theorem 1.2 follows.

4 Branchings with Minimum Unpopularity Margin

Recall the definition of the unpopularity margin for branchings from Section 1.
Again, instead of studying minimum unpopularity margin branchings within the
digraph G, we look at r-arborescences of minimum unpopularity margin within
the digraph D as constructed in Section 2. It is easy to see that the unpopular-
ity margin of a branching in G is the same as the unpopularity margin of the
corresponding arborescence in D.10 Thus we are looking for an arborescence of
minimum unpopularity margin in D. We further obtain the following variant of
Lemma 2.4 which proves useful in bounding the popularity margin of a given
arborescence in D.

Lemma 4.1. Let A be an arborescence in D and Y be a dual certificate for A.
Then µ(A) ≤ n− |Y|, with equality if Y has maximum cardinality.

Proof. Let A′ be a min-cost arborescence in D with respect to cA. Recalling the
pair of integral LPs LP1 and LP2 from Section 2, we observe that A′ corresponds
to an optimal solution to LP1 of value cA(A′) and Y corresponds to a feasible
solution to LP2 of value |Y|. We conclude that cA(A′) ≥ |Y| by LP duality. Thus,
Proposition 2.1 implies that µ(A) = n − cA(A′) ≤ n − |Y|. If Y has maximum
cardinality, it is optimal to LP2 and the inequality becomes an equality by strong
duality. ut

4.1 A Simple Extension of our Algorithm: Algorithm MinMargin

Our algorithm from Section 3 can be extended to compute an arborescence with
minimum unpopularity margin when nodes have weak rankings. If D′ does not
admit an arborescence, algorithm MinMargin below computes a maximum-size
branching B′ in D′ and adds edges from r to all root nodes in B′ to construct an
arborescence. This arborescence in D′ is then transformed into an arborescence
in D. Figure 2 shows an example execution of the algorithm.

1. Let D′ be the graph constructed in the algorithm in Section 3, and let B′

be a branching of maximum size in D′.
2. Let B′D = {e : f(e) ∈ B′}, R1 = {v ∈ V : δ−(v) ∩B′D 6= ∅}, R2 = ∅.
3. For each X ∈ X ′ which is a root in the branching B′, select one arbitrary
v ∈ V with Xv = X. Add v to R2 and add (r, v) to B′D.

4. For each v ∈ R1 ∪R2, let Av be an arborescence in (Xv, S(Xv)) rooted at v.
5. Return A∗ := B′D

⋃
v∈R1∪R2

Av.

10 Note that, due to the special structure of D, there always exists an arborescence A′

such that A′ ∈ arg maxB∈B(D) φ(B,A)−φ(A,B), where B(D) is the set of branchings
in D.

12



r

a b

c d

e f

g

Xa = Xb

Xe = Xf

Xc = Xd

Xg

DD′

r

a b

c d

e f

g

Xa = Xb

Xe = Xf

Xc = Xd

Xg

DD′

Fig. 2. Variant of the example introduced in Figure 1 with one additional incoming arc
for node b, i.e., the arc (d, b). As a consequence, D′ does not contain an arborescence.
On the right, the bold blue edges form a maximum-size branching in D′, which induces
an arborescence of minimum unpopularity margin within the graph D. Again, in the
left figure, the grey areas correspond to the sets in X and some outgoing arcs of r are
omitted.

Theorem 4.2. When nodes have weak rankings, Algorithm MinMargin re-
turns an arborescence with minimum unpopularity margin in D.

To prove Theorem 4.2, we first show in Lemma 4.3 that the size of the set R2

is an upper bound on the unpopularity margin of the arborescence A∗ returned
by Algorithm MinMargin. Then we introduce the concept of completeness of
dual certificates, which can be used to show that any arborescence in D has
unpopularity margin at least |R2|. We remark that only the latter bound requires
the properties of weak rankings, whereas the algorithm itself and Lemma 4.3 hold
for arbitrary partial-order preferences.

Lemma 4.3. Let A∗, R2 be as computed by the algorithm. Then µ(A∗) ≤ |R2|.

Proof. By Lemma 4.1 it suffices to construct a dual certificate for A∗ of size
n − |R2|. Define Y := {Xv : v ∈ R1} ∪ {{v} : v ∈ V \ {R1 ∪ R2}} and note
that Y is a laminar family of size n− |R2|. It remains to show that Y fulfills the
constraints of Definition 2.3. To this end, consider any edge e = (w, v) ∈ E and
let (u, v) be the unique incoming edge of v in A∗.

Suppose v ∈ R2. Then v is not contained in any set of Y, so the constraint
for e = (w, v) is not violated.

Suppose v ∈ R1. Then (u, v) ∈ B′D and u /∈ Xv. Edge e = (w, v) enters
exactly one set of Y if w 6∈ Xv and no set if w ∈ Xv. Hence, it suffices to show
that cA∗(e) ∈ {1, 2} for w /∈ Xv. Note that (u, v) ∈ B′D corresponds to an edge
in D′ and hence e with w /∈ Xv does not dominate (u, v) by construction of D′.
Thus cA∗(e) ∈ {1, 2} in this case.

Suppose v ∈ V \ (R1 ∪R2). Let s ∈ R1 ∪R2 be the unique node in R1 ∪R2

with v ∈ Xs. Then (u, v) ∈ As by construction of A∗. Edge e = (w, v) enters at
most two sets of Y if w 6∈ Xs and exactly one set if w ∈ Xs. If w /∈ Xs, then by
construction of As and property 2 of S(Xs), it holds that (w, v) is dominated

13



by (u, v), and hence cA∗(e) = 2. If w ∈ Xs, then by construction of As and
property 1 of S(Xs), (w, v) does not dominate (u, v), and hence cA∗(e) ∈ {1, 2}.
Thus, Y is a dual certificate for A∗ of size n− |R2|. ut

Lemma 4.4. Let A be an arborescence in D. For Z ⊆ V and v ∈ Z, let YZ,v :=
{{w} : w ∈ Z \ {v}} ∪ {Z}. If |{Y ∈ YZ,v : e ∈ δ−(Y )}| ≤ cA(e) for all
e = (w, x) ∈ E with x ∈ Z \ {v}, then Z ⊆ Xv.

Proof. The proof is a direct analog of the proof of Lemma 3.5, with Z taking
the role of Yv and noting that this proof only makes use of dual constraints for
nodes w ∈ Yv \ {v}. ut

For Observation 4.5 recall that the weakly connected components of a directed
graph are the connected components of its induced undirected graph.

Observation 4.5. Let B′ be a branching of maximum size in D′ and C ⊆ X ′ be
a weakly connected component of B′ not containing r. Then, there exists C ′ ⊆ C
such that δ−D′(C

′) = ∅.

Proof. Assume for contradiction that δ−D′(C
′) 6= ∅ for all C ′ ⊆ C. Hence, every

X ∈ C is reachable from {r}∪X ′ \C in D′. Consequently, we can modify B′ by
attaching each X ∈ C to one of the other connected components of B′, increasing
its size by 1. This contradicts the maximality of B′. ut

Completeness of dual certificates. Let A be an arborescence in D and Y a dual
certificate for A. If an edge (u, v) ∈ A enters a set Y ∈ Y we say that Y belongs
to v. Note that every set of Y belongs to some node and, since cA(e) = 1 for
every e ∈ A, at most one set may belong to a node. However, if |Y| < n,
the same set of Y may belong to multiple distinct nodes and there may be
nodes to which no set in Y belongs. We say that Y is complete on S ⊆ V , if
|{Y ∈ Y : Y belongs to some v ∈ S}| = |S|. Note that if Y is complete on S,
then for each v ∈ S there is a unique set Yv ∈ Y belonging to v, and for any two
distinct nodes v, v′ ∈ S we have Yv 6= Yv′ . In the following proof of Theorem 4.2
we will show that there exist |R2| disjoint node sets for which no dual certificate
of any arborescence can be complete.

Proof (of Theorem 4.2). Let A be an arborescence with minimum unpopularity
margin and Y a dual certificate for A with maximum cardinality. We will show
that |Y| ≤ n− |R2|. By Lemmas 4.1 and 4.3 this implies µ(A) ≥ |R2| ≥ µ(A∗),
which proves the theorem.

Note that there is a one-to-one correspondence between nodes in R2 and the
connected components of B′ in D′ not containing r. Let C be such a connected
component. By Observation 4.5, there exists some C ′ ⊆ C with δ−D′(C

′) = ∅. We
will show that Y is not complete on S :=

⋃
X∈C′ X. As the sets S are disjoint

for distinct connected components C, there exist |R2| pairwise disjoint sets on
which Y is not complete. Since each set of Y belongs to some node of V , and at
most one set belongs to each node, this implies |Y| ≤ n− |R2|.

14



It remains to show that Y is not complete on S. Assume for contradiction
that Y is complete on S and for each v ∈ S let Yv be the unique set belonging to
v. Consider any edge e = (u, v) ∈ A ∩ δ−D(S) at which A enters S. We will show
that Yv ∩ S and v fulfill the requirements of Lemma 4.4, but that Yv ∩ S 6⊆ Xv,
deriving a contradiction. Thus Y cannot be complete on S.

In the proof of the first claim, we rely on our assumption that the preferences
are given by a weak ranking.

Claim. Let Z := Yv ∩ S and YZ,v := {{w} : w ∈ Z \ {v}} ∪ {Z}. Then |{Y ∈
YZ,v : e′ ∈ δ−(Y )}| ≤ cA(e′) for all e′ = (w, x) ∈ E with x ∈ Z \ {v}.

Proof. Let e′ = (w, x) ∈ E with x ∈ Z \ {v}. By the laminarity of Y and its
completeness on S, we know that Yx ∩ S = {x}. Indeed, assuming that x′ is a
node in Yx∩S other than x, the sets Yx′ , Yx, and Yv would necessarily contradict
Observation 2.5. We distinguish two cases:

Case 1: w /∈ Yv \S. In this case e′ enters Yv if and only if it enters Z = Yv∩S.
Hence |{Y ∈ YZ,v : e′ ∈ δ−(Y )}| = |{Y ∈ Y : e′ ∈ δ−(Y )}| ≤ cA(e′).

Case 2: w ∈ Yv \ S. In that case e′ enters the two sets Yv ∩ S and {x}.
We need to prove cA(e′) = 2. Consider the set X ∈ C ′ that contains x. Note
that δ−D′(C

′) = ∅ implies that e′ must be dominated by some edge f entering
X at x. Without loss of generality we can choose f such that it is undominated
among all edges in δ−D(X) ∩ δ−D(x). Clearly, f enters the set {x} ∈ YZ,v. Note
that f cannot enter S, because δ−D′(C

′) = ∅ and f is not dominated by edges
entering X ⊆ S. So we can apply the statement of the previous case to f , yielding
1 ≤ |{Y ∈ YZ,v : f ∈ δ−(Y )}| ≤ cA(f). This implies that f does not dominate
A(x). So either A(x) �x f �x e′ or A(x) ∼x f , which also implies A(x) �x e′
because preferences are weak rankings. Hence cA(e′) = 2. �

Claim. Yv ∩ S 6⊆ Xv.

Proof. Let X ∈ X ′ be the unique set of X ′ with v ∈ X.

Case 1: Xv 6= X. Let s ∈ V with Xs = X. Note that v ∈ X implies s ∈ X ⊆
S. By construction of Xs there exists an s-v-path P ⊆ S(X) containing only
safe edges for Xs. Recall that a safe edge cannot be dominated by any other
edge. If s /∈ Yv, then there is an edge (u′, v′) ∈ P entering Yv. If v′ 6= v, then the
non-dominated edge (u′, v′) enters two sets of Y, a contradiction. If v′ = v, then
(u′, v′) dominates (u, v) ∈ A but enters Yv, again a contradiction. We conclude
that s ∈ Yv. However, as Xv 6= Xs, we know that s /∈ Xv by Lemma 3.2. We
obtain s ∈ (Yv ∩ S) \Xv.

Case 2: Xv = X. Because f(e) /∈ δ−D′(C ′) = ∅, there must be an edge e′ =
(u′, v) entering Xv at v and dominating e. Without loss of generality, we can
choose e′ such that it is undominated among all edges in δ−D(v)∩δ−D(Xv). Because
e ∈ A, we obtain cA(e′) = 0 and hence e′ cannot enter Yv ∈ Y. We conclude
that u′ ∈ (Yv ∩ S) \Xv. �

This completes the proof of Theorem 4.2. ut

15



4.2 Unpopularity Margin under Partial Preference Orders

The following theorem shows that Algorithm MinMargin cannot be extended
for the case where each node v has an arbitrary partial order over δ−(v).

Theorem 4.6. Given a directed graph where each node has a partial preference
order over its incoming edges and an integer k ≤ n, it is NP-hard to decide if
there exists a branching with unpopularity margin at most k.

Proof. We reduce from the NP-complete problem 3D-Matching where we are
given disjoint sets X,Y, Z of equal cardinality and T ⊆ X×Y ×Z, and we ask if
there exists M ⊆ T with |M | = |X| such that for distinct (x, y, z), (x′, y′, z′) ∈M
it holds that x 6= x′, y 6= y′ and z 6= z′; such an M is called a 3D-matching.
W.l.o.g. we assume that |X| > 3 and every x ∈ X ∪ Y ∪Z is in some t ∈ T . For
any t = (x, y, z) ∈ T we define S(t) := {x, y, z}.

We construct a digraph D = (V ∪ {r}, E) together with a partial order �v
over the incoming edges of v for each v ∈ V as follows. For every x ∈ X ∪ Y ∪Z
we introduce a node gadget consisting of a lower node xl and an upper node xu.

There exist two parallel edges, d
(1)
x and d

(2)
x , from xu to xl, and there exist two

parallel edges, r
(1)
x and r

(2)
x , from r to xl. Moreover, the upper node xu has an

incoming edge from the upper node of every other node gadget, i.e., (x′u, xu) ∈ E
for all x′ ∈ X ∪ Y ∪Z \ {x}. Lastly, there exists an incoming edge from r to the

upper node which we call r
(3)
x .

For each t ∈ T we introduce a hyperedge gadget consisting of six edges in D.
More precisely, for each x ∈ S(t) we introduce two parallel edges from xl to xu
which we call t

(1)
x and t

(2)
x . This finishes the definition of D.

Let us now define the preferences {�v: v ∈ V }. A lower node xl has the
following preferences over its incoming edges:

d(1)x � r(1)x , d(2)x � r(2)x ,

and all other pairs are not comparable. The preferences of an upper node xu are
as follows:

(x′u, xu) � r(3)x for each x′ ∈ X ∪ Y ∪ Z \ {x},
t
(1)
x � (x′u, xu) for each t ∈ T with x ∈ S(t) and each x′ ∈ X ∪ Y ∪ Z \ S(t),

t
(2)
x � (x′u, xu) for each t ∈ T with x ∈ S(t) and each x′ ∈ S(t) \ {x},
t
(1)
x � r(3)x , for each t ∈ T with x ∈ S(t),

t
(2)
x � r(3)x , for each t ∈ T with x ∈ S(t),

and all other pairs are not comparable. See Figure 3 for an illustration.
Note that the digraph D has the special property that every node v ∈ V

has at least one incoming edge from r. As a consequence, any branching B in D
minimizing µ(B) must in fact be an arborescence rooted at r. Moreover, we can
apply Lemma 4.1 to any given arborescence A in D as usual. In the following
we show that there exists a 3D-matching M ⊆ T with |M | = |X| iff there exists
an r-arborescence in D with unpopularity margin at most 2|X|.

16



r

xu

xl

yu

yl

zu

zl

r
(1)
x r

(2)
x

d
(1)
x

d
(2)
x

t
(1)
x

t
(2)
x

r
(3)
x

Fig. 3. Construction in the reduction for Theorem 4.6 depicting the node gadget for
x ∈ X and the hyperedge gadget for (x, y, z) ∈ T . Each solid edge dominates dashed

edges of the same color; edge r
(3)
x is dominated by all other edges; all other edge pairs

are incomparable.

First, let M ⊆ T be a 3D-matching with |M | = |X|. We construct an
arborescence A together with a feasible dual certificate Y with |Y| = 4|X|.
By Lemma 4.1, this suffices to show that A has unpopularity margin at most
6|X| − 4|X| = 2|X|. We define A and Y as

A := {r(1)x : x ∈ X ∪ Y ∪ Z} ∪ {t(1)w : t ∈M,w ∈ S(t)},

Y := {{xu} : x ∈ X ∪ Y ∪ Z} ∪ {{xu, yu, zu, xl, yl, zl} : (x, y, z) ∈M}.

It is easy to verify that A is indeed an r-arborescence. It remains to show that
Y is a feasible dual solution.

First consider a node xl for x ∈ X ∪ Y ∪ Z which has four incoming edges.

The edges d
(1)
x and d

(2)
x do not enter any set in Y and hence do not violate any

constraint in the dual LP. Moreover, since node xl is indifferent between r
(1)
x

and r
(2)
x , we obtain cA(r

(1)
x ) = cA(r

(2)
x ) = 1 and hence, none of the constraints

corresponding to an edge entering xl is violated.

Now consider xu for x ∈ X ∪ Y ∪ Z. Let S(t) = {x, y, z} for the hyperedge t
in M containing x. We obtain cA((yu, xu)) = cA((zu, xu)) = cA(e) = 1 for any
edge e pointing from xl to xu, while for any other incoming edge e of xu we
get cA(e) = 2. By construction of Y, the first group of edges enter only the set
{xu} of Y, while the second group of edges enter two sets of Y. Thus none of
the constraints is violated. This shows the first direction of the equivalence.

For the reverse direction, let A be an r-arborescence of unpopularity margin
at most 2|X|. Let Y be a corresponding laminar certificate of size |Y| = 4|X|.

Since the number of sets in Y is greater than the number of node gadgets,
there exist node gadgets which intersect with more than one set from Y. Let
x ∈ X ∪ Y ∪ Z be a node such that the corresponding node gadget intersects

17



with at least two sets Y1, Y2 ∈ Y. We will show that Y2 ⊆ Y1, {xu, xl} ⊆ Y1,
xu ∈ Y2, and xl /∈ Y2 (w.l.o.g. after possibly swapping Y1 and Y2).

First, assume for contradiction that Y1 ∩ Y2 = ∅. Then, {r(1)x , r
(2)
x } ∩ A = ∅

since otherwise cA(d
(1)
x ) = 0 or cA(d

(2)
x ) = 0, however, both of them enter a set

from Y. This implies that {t(1)x , t
(2)
x }∩A = ∅ for all t ∈ T such that x ∈ S(t) since

otherwise A would contain a cycle. Therefore, no matter which other incoming
edge of xu is used by A, there exists an edge e ∈ E from xl to xu such that
cA(e) = 0. But this contradicts Y1 ∩ Y2 = ∅, as e cannot enter any set in Y. We
conclude that Y1 and Y2 intersect and since Y is laminar we can assume w.l.o.g.
that Y2 ⊆ Y1. Second, assume for contradiction that xl /∈ Y1. Observe that, no

matter which edge points towards xu within A, both t
(1)
x or t

(2)
x have a cost of

at most 1 in cA, for any triple t ∈ T containing x. However, both of these edges
enter two sets from Y, a contradiction. An analogous argument shows xu ∈ Y1.
Finally note that xl can be contained in at most one set of Y, as no arc dominates

both r
(1)
x and r

(2)
x at the same time and therefore min{cA(r

(1)
x ), cA(r

(2)
x )} ≤ 1.

Thus xl /∈ Y2. We conclude that Y2 ⊆ Y1, {xu, xl} ⊆ Y1, Y2 ∩ {xu, xl} = {xu}.
Note that we have proved these properties for any two sets in Y that intersect
{xu, xl}; however there cannot exist three sets in Y such that any two of them
fulfill these conditions (i.e., that one of them contains both xu and xl, the other
contains only xu but not xl). Therefore, this also suffices to argue that there
exist at most two sets from Y intersecting with x’s node gadget.

Let S := {Y1 ∈ Y : Y1 is ⊆-maximal and there exists Y ′ ∈ Y, Y ′ ⊂ Y1}.
As a consequence of the above observation, no node gadget can intersect with
more than two sets of Y and therefore |Y \ S| ≤ 3|X| implying |S| ≥ |X|. For
every Y1 ∈ S we select a representative x(Y1) ∈ X ∪ Y ∪ Z whose node gadget
intersects with Y1 and one other set Y2 from Y. Consider the node gadget of
x := x(Y1). Recall that xu ∈ Y1 ∩ Y2 and xl ∈ Y1 \ Y2 and that A(xu) must
be an edge starting at xl, as established in the preceding paragraph. We claim

that A(xu) = t
(1)
x for some t ∈ T . Assume for contradiction that xu is entered

by t
(2)
x for some t ∈ T . Note that t

(2)
x is incomparable with the edges (yu, xu)

for each y ∈ X ∪ Y ∪ Z \ t, and thus none of these edges can cross both Y1
and Y2. As Y2 ⊆ Y1, we conclude that Y1 contains xu and all 3|X| − 3 nodes
yu for y ∈ X ∪ Y ∪ Z \ t. As the sets in S do not overlap, our assumption

that |X| > 3 yields the contradiction |X| ≤ |S| ≤ 3 < |X|. Thus, A(xu) = t
(1)
x

for some t = (x, y, z) ∈ T . This implies {xu, yu, zu} ⊆ Y1, since cA((yu, xu)) =
cA((zu, xu)) = 1. We conclude that neither y nor z is included in any other set

of S. Thus, M := {t ∈ T : t
(1)
x(Y1)

∈ A, Y1 ∈ S} is a 3D-matching of size |X|. ut

5 Branchings with Low Unpopularity Factor

Recall the definition of unpopularity factor from Section 1. As done in the pre-
vious section, instead of studying branchings in the digraph G, we look at r-
arborescences within the digraph D. The unpopularity factor of any branching
in G is the same as the unpopularity factor of the corresponding arborescence

18



in D. Given any arborescence A and value t, there is a simple method to verify
if u(A) ≤ t or not. This is totally analogous to our method from Section 2 to
verify popularity, and it involves computing a min-cost arborescence in D with
the following edge costs. For e = (u, v) in D, define:

cA(e) :=


0 if e �v A(v),

1 if e ∼v A(v),

t+ 1 if e ≺v A(v).

Lemma 5.1. Arborescence A satisfies u(A) ≤ t if and only if A is a min-cost
arborescence in D with edge costs given by cA defined above.

Proof. For any arborescence A′, we have cA(A′) = t · φ(A,A′) − φ(A′, A) + n.
In particular, cA(A) = n. Hence, A is a min-cost arborescence with respect to
cA iff n ≤ t · φ(A,A′)− φ(A′, A) + n holds for all arborescences A′. This in turn

holds iff φ(A′,A)
φ(A,A′) ≤ t for all A′ which is equivalent to u(A) ≤ t. ut

Lemma 5.2 follows from Lemma 5.1 and LP duality.

Lemma 5.2. Arborescence A satisfies u(A) ≤ t if and only if there exists a dual
feasible solution y to LP2 with cA(e) as defined above with

∑
X yX = n.

Proof of Theorem 1.5. We now assume that node preferences are strict;
thus we may assume the graph to be simple, and nodes to have preferences
over their in-neighbors. We modify our algorithm from Section 3 to compute an
arborescence A in D = (V ∪ {r}, E) such that u(A) ≤ blog nc.

1. Initially all nodes in V are active. Set X0
v = {v} for all v ∈ V .

2. Initialize the current edge set E′ = ∅; let i = 1.
3. Let E′ = E′∪{(u, v) : v ∈ V is active and u is v’s most preferred in-neighbor

such that u /∈ Xi−1
v }.

4. For v ∈ V let Xi
v = {w ∈ V : ∃ v-w-path in E′}.

5. Let X = {Xi
v is ⊆ -maximal in X i} where X i = {Xi

v : v is active}.
6. For each X ∈ X do:

– select any active node v such that Xi
v = X;

– deactivate all u ∈ X \ {v}. {now v is the only active node in X}
– if v is reachable from r using edges in E′, then deactivate v.
{this means all nodes in X are reachable from r}

7. If there exists any active node, then set i = i+ 1 and go to step 3 above.
8. Compute an arborescence A in (V ∪ {r}, E′) and return A.

When reaching step 8, there can be no active node. This means that every
node is reachable from r using the edges in E′, and so there exists an arborescence
A in (V ∪ {r}, E′). We now bound its unpopularity factor.

Lemma 5.3. X i is a laminar family for each iteration i.

19



r r r

Fig. 4. The figure illustrates the execution of the algorithm from the proof of Theo-
rem 1.5 for the example instance given in Figure 1. The three pictures illustrate the
iterations i = 1, i = 2, and i = 3, respectively. Grey areas depict the sets in X i−1

and only edges from the set E′ as defined in step 3 are shown. Deactivated nodes are
indicated by unfilled circles and active nodes by filled circles. The tie-breaking in step
6 was performed arbitrarily.

Proof. For F ⊆ E, let Xv(F ) := {w ∈ V : ∃ v-w-path in F} and let X (F ) :=
{Xv(F ) : v ∈ V }. Let e1, . . . , e` be the edges in E′ at the end of the algorithm
in the order that they were added to E′ (breaking ties arbitrarily among the
edges added in the same iteration). Let Ej := {e1, . . . , ej} and note that for
every i there is a j such that X i ⊆ X (Ej). Since the subset of a laminar family
is also laminar, it thus suffices to show that X (Ej) is laminar for every j, which
we show by induction on j. This is trivial for j = 0 with E0 = ∅. For some
j ≥ 0, let ej+1 = (u, v). Note that, for w ∈ V , adding ej+1 to Ej results
in Xw(Ej+1) = Xw(Ej) ∪ Xv(Ej) if u ∈ Xw(Ej) and Xw(Ej+1) = Xw(Ej)
otherwise. Combining this with the fact that Xv(Ej) is a ⊆-maximal set in the
(by the induction hypothesis) laminar family X (Ej), we conclude that X (Ej+1)
is also laminar. ut

Lemma 5.4. If v, v′ are active at the end of iteration i, then Xi
v ∩Xi

v′ = ∅.

Proof. Since v was not deactivated in iteration i, it means that all nodes in
Xi
v \ {v} were deactivated in that iteration. This implies that v′ /∈ Xi

v, and
symmetrically, v /∈ Xi

v′ . Thus Xi
v ∩Xi

v′ = ∅ by laminarty of X i. ut

Lemma 5.5. If the while-loop terminates after t+ 1 iterations, then u(A) ≤ t.

Proof. Let Yi = {Xi−1
v : v ∈ V and v got deactivated in the i-th iteration} and

let Y =
⋃
i Yi. For X ⊆ V , let yX = 1 if X ∈ Y and yX = 0 otherwise. For

each node v, there is a corresponding set Xi−1
v in Y, and by Lemma 5.4, the sets

corresponding to distinct nodes are distinct. Hence, we have
∑
X⊆V yX = n.

Consider any v ∈ V . Again by Lemma 5.4 for each i, there is at most one
set in Yi containing v. Thus

∑
X:e∈δ−(X) yX ≤ t + 1 for any edge e pointing

to v. Furthermore, the algorithm ensures that the edge (u∗, v) ∈ A is the most
preferred edge entering v among all edges with tail outside Xi−1

v . So every other
edge e = (u, v) with u /∈ Xi−1

v is ranked worse than (u∗, v) ∈ A and thus
cA(e) = t+ 1. This proves that y is a feasible dual solution for A, so u(A) ≤ t.

ut

20



Lemma 5.6. The while-loop runs for at most blog nc+ 1 iterations.

Proof. Every node v that is active at the start of some iteration either becomes
reachable from r in this iteration or it joins a weakly connected component with
at least one other active node. At the end of each iteration, there is at most
one active node in each weakly connected component. So the number of active
nodes is reduced by a factor of 1/2 in each iteration. Thus the number of active
nodes at the end of the i-th iteration of the while-loop is at most n/2i. Hence
the while-loop can run for at most blog nc+ 1 iterations. ut

Combining Lemmas 5.6 and 5.5, the first part of Theorem 1.5 follows.

A tight example. We now describe an instance on n nodes with strict preferences
where every branching has unpopularity factor at least blog nc. For convenience,
let n = 2k for some integer k. We construct an instance Gk on vertex set V =
{v0, . . . , vn−1}, where every node has in-degree k = log n. The instance on 4
vertices a, b, c, d given in Section 1 is, in fact, G2.

– For 0 ≤ i ≤ n/2−1, the nodes v2i and v2i+1 are each other’s top in-neighbors.
Thus v0, v1 are each other’s top choice in-neighbors, v2, v3 are each other’s
top choice in-neighbors, and so on.

– The nodes v0, v2 are each other’s second choice in-neighbors, similarly, v1, v3
are each other’s second choice in-neighbors, and so on. More generally, for
any i, if i ∈ {4j, . . . , 4j+ 3}, then the node v`, where ` = 4j+ (i+ 2 mod 4),
is vi’s second choice in-neighbor.

– For any i and any t ∈ {1, . . . , k}, if i ∈ {j2t, . . . , (j+ 1)2t− 1} then the node
v`, where ` = j2t + (i+ 2t−1 mod 2t), is vi’s t-th choice in-neighbor.

For example, v0’s preference order is v1 � v2 � v4 � v8 � · · · � vn/2.
The other preference orders are analogous. As an example, let n = 8 and V =
{v0, v1, . . . , v7}. The preferences of each node is then defined as below:

v0 : v1 � v2 � v4, v1 : v0 � v3 � v5,
v2 : v3 � v0 � v6, v3 : v2 � v1 � v7,
v4 : v5 � v6 � v0, v5 : v4 � v7 � v1,
v6 : v7 � v4 � v2, v7 : v6 � v5 � v3.

For any branching in Gk on 2k nodes, we claim its unpopularity factor is at
least k. We will prove this claim by induction on k. The base case, i.e., k = 1, is
trivial. So let us assume that we have u(B̃) ≥ i for any branching B̃ in Gi.

Consider Gi+1. Note that v2j and v2j+1 are each other’s top choice in-
neighbors for 0 ≤ j ≤ 2i − 1. Let B be any branching in Gi+1. Suppose it
is the case that in B, for some j: neither v2j is v2j+1’s in-neighbor nor v2j+1 is
v2j ’s in-neighbor. Then u(B) = ∞, because by making v2j the in-neighbor of
v2j+1, no node is worse-off and v2j is better-off. We assume u(B) <∞. So it is
enough to restrict our attention to the case where for each j we have in B:

(∗) either v2j is v2j+1’s in-neighbor or v2j+1 is v2j ’s in-neighbor.

21



For each j ∈ {0, . . . , 2i − 1}, contract the set {v2j , v2j+1} into a single node in
the graph Gi+1. The new graph (call it G′i) is on 2i nodes and it is exactly the
same as Gi except that there are 2 parallel edges between every adjacent pair of
nodes now – both these edges have the same rank.

Perform the same contraction step on the branching B as well. By (∗), it
follows that the contracted B (call it B′) is a branching such that B′ uses at
most 1 edge in any pair of parallel edges in G′i. Thus B′ is a branching in Gi
and we can use induction hypothesis to conclude that u(B′) ≥ i.

Claim. There is a branching A′ in G′i such that φ(A′, B′) ≥ i and φ(B′, A′) = 1.
Moreover, the lone vertex that prefers B′ to A′ is a root in A′.

We will first assume the above claim and finish our proof on u(B). Then
we will prove this claim. Opening up the size-2 supernodes in B′ will create
B: let us run the same “opening up” step on A′ to create a branching A in
Gi+1. So φ(A,B) ≥ i and φ(B,A) = 1. We will now modify A to A∗ so that
φ(A∗, B) ≥ i+ 1 and φ(B,A∗) = 1.

Let v2j be the lone vertex that prefers B to A. By the “opening up” step
in B, v2j+1 has v2j as its in-neighbor. The branching A∗ will affect only the 2
nodes v2j and v2j+1 in A. Every other node will have the same in-neighbor in
A∗ as in A. The above claim tells us that v2j is a root in A. Make v2j+1 a root
in A∗ and v2j ’s in-neighbor will be v2j+1. The node v2j was the only node that
preferred B to A and now v2j prefers A∗ to B. However there is one node that
prefers B to A∗: this is v2j+1. Recall that v2j+1’s in-neighbor in B, just as in A,
is its top-choice neighbor v2j while v2j+1 is a root in A∗. Thus φ(A∗, B) ≥ i+ 1
and φ(B,A∗) = 1.

Proof of Claim. Let Ã be a branching that maximizes φ(Ã, B′)/φ(B′, Ã). Let
{u1, . . . , uj} be the nodes that prefer B′ to Ã. There is no loss in assuming that

u1, . . . , uj are root nodes in Ã. For each i, let ni be the number of nodes in the

arborescence rooted at ui in Ã that have different in-neighbors in Ã and B′ –
note that each of these nodes prefers Ã to B′ (since the ones who prefer B′ to
Ã are root nodes in Ã).

Let nt = max{ni : 1 ≤ i ≤ j}. Let Ãt be the maximal sub-arborescence
of Ã rooted at ut, and let X be those nt nodes in Ãt that prefer Ã to B′.
We construct a branching A′. Let us define an arborescence A′t rooted at ut by
modifying Ãt as follows: for each w /∈ Ãt that is the descendant of some v ∈ Ãt in
B′, we add B′(w). We define A′ as the branching that contains A′t and for which
A′(v) = B′(v) for each v /∈ A′t. So each node in Ãt has the same in-neighbor in
A′ as in B′, except for the nodes in X ∪ {ut}.

The nt nodes in X prefer A′ to B′, and ut prefers B′ to A′, so we have
φ(A′,B′)
φ(B′,A′) = nt. By u(B) < ∞ we get u(B′) < ∞, which implies that every node

that prefers Ã to B′ is contained in a sub-arborescence of Ã rooted at one of the

nodes u1, . . . , uj . Thus we have φ(Ã, B′) =
∑j
i=1 ni, yielding φ(A′,B′)

φ(B′,A′) = nt ≥
1
j

∑j
i=1 ni = φ(Ã,B′)

φ(B′,Ã)
and the claim follows. ut

22



6 The Popular Branching Polytope

We now describe the popular arborescence polytope of D = (V ∪ {r}, E) when
every node has a weak ranking over its incoming edges. Projecting out variables
x(r,v) for all v ∈ V from these constraints will give us the formulation of the
popular branching polytope BG of G.

The arborescence polytope AD of D is described below [30].∑
e∈E[X]

xe ≤ |X| − 1 ∀X ⊆ V, |X| ≥ 2. (1)

∑
e∈δ−(v)

xe = 1 ∀ v ∈ V and xe ≥ 0 ∀ e ∈ E. (2)

We will define a subgraph D∗ = (V ∪ {r}, ED∗) of D: this is essentially the
expanded version of the graph D′ from our algorithm. The edge set of D∗ is:

ED∗ =
⋃
X∈X ′ S(X) ∪ {(u, v) ∈ E : Xv ∈ X ′, u /∈ Xv, and

(u, v) is undominated in δ−(Xv)}.
Thus each set X ∈ X ′, which is a node in D′, is replaced in D∗ by the nodes

in X and with the edges in S(X) between them. We also replace edges in D′

between sets in X ′ by the original edges in E.

Lemma 6.1. If every node has a weak ranking over its incoming edges, then
every popular arborescence in D is an arborescence in D∗ that includes exactly
|X| − 1 edges from S(X) for each X ∈ X ′.
Proof. Let A be a popular arborescence in D and let X ∈ X ′. By Lemma 3.6
we know |A∩ δ−(X)| = 1, and the proof of Theorem 3.4 tells us that the unique
edge in A ∩ δ−(X) is contained in D∗. So A contains |X| − 1 edges from E[X]
for each X ∈ X ′. We show that these |X| − 1 edges are in S(X).

Let u ∈ X. Suppose A(u) ∈ E[X] \ S(X). This means that either (i) A(u) is
dominated by some edge in E[X] ∪ δ−(X) or (ii) u is indifferent between A(u)
and some edge in δ−(X). Let Y = {Yv : v ∈ V } be a dual certificate for A. We
know that Yu ⊆ Xu ⊆ X (by Lemma 3.5). Since the entry point of A into X is
not in Yu, there is an edge e ∈ S(X) ∩ δ−(Yu).

Let e enter w ∈ Yu. Since e ∈ S(X), we have e �w A(w) or e ∼w A(w), hence
cA(e) ∈ {0, 1}. If w 6= u, then {w} ∈ Y by Corollary 2.6, and hence e enters two
sets Yu and {w}—thus the constraint in LP2 corresponding to edge e is violated.
If w = u, then e ∈ S(X) and A(u) ∈ E[X] \ S(X) imply that e ∼u A(u) is not
possible, because u has a weak ranking over its incoming edges (note that for
any two edges f and f ′ in δ−(u)∩E[X] that are tied in the preference list of u,
either {f, f ′} ⊆ S(X) or {f, f ′}∩S(X) = ∅). Since e is undominated, this implies
e �u A(u), yielding cA(e) = 0. Since e enters Yu, the constraint corresponding
to e in LP2 is again violated. So A(u) ∈ S(X), i.e., A ∩ E[X] ⊆ S(X). ut

Hence, every popular arborescence in D satisfies constraints (1)-(2) along
with constraints (3) given below, where ED∗ is the edge set of D∗.∑
e∈E[X]

xe = |X| − 1 ∀X ∈ X ′, |X| ≥ 2 and xe = 0 ∀ e ∈ E \ED∗ (3)

23



Note that constraints (3) define a face F of the arborescence polytope AD of D.
Thus every popular arborescence in D belongs to face F .

Consider a vertex in face F : this is an arborescence A in D of the form
A′ ∪X∈X ′ AX where (i) AX is an arborescence in (X,S(X)) whose root is an
entry-point of X and (ii) A′ = {eX : X ∈ X ′} where eX is an edge in D∗ entering
the root of AX . Observe that A is a possible output of the algorithm presented
in Section 3 (with appropriate tie breaking). Therefore, by Theorem 3.3, A is
popular in D. Thus we can conclude Theorem 6.2.

Theorem 6.2. If each node has a weak ranking over its incoming edges, then
face F defined by constraints (1)-(3) is the popular arborescence polytope of D.

So the popular branching polytope BG is described by constraints (1)-(3)
where for every v ∈ V ,

∑
e∈δ−(v) xe = 1 in (2) is replaced by

∑
e∈δ−G(v) xe ≤ 1,

i.e., we project out x(r,v). This shows the upper bound given in Theorem 1.3.

A compact extended formulation. We now describe a compact extended formula-
tion of the popular arborescence polytope of D when node preferences are weak
rankings. We know from Lemma 6.1 that every popular arborescence in D is
an arborescence in D∗ that includes exactly |X| − 1 edges from S(X) for each
X ∈ X ′. Conversely, any such arborescence in D∗ is a popular arborescence in
D (as a consequence of Theorem 3.3).

Thus the popular arborescence polytope of D is the face of the arborescence
polytope of D∗ that corresponds to the constraints

∑
e∈ED∗ [X] xe = |X| − 1 for

all X ∈ X ′. Let AD∗ be the arborescence polytope of D∗ = (V ∪ {r}, ED∗). We
will now use a compact extended formulation of AD∗ .

Recall that |V | = n. Let PD∗ be the polytope defined by constraints (4)-(7)
on variables xe, f

v
e for e ∈ ED∗ and v ∈ V . It is known [7] that PD∗ is a compact

extended formulation of the arborescence polytope AD∗ . Note that AD∗ is the
projection of PD∗ on to x-space.

xe ≥ fve ≥ 0 ∀v ∈ V and e ∈ ED∗ (4)∑
e∈δ+(r)

fve = 1 ∀v ∈ V (5)

∑
e∈δ+(u)

fve −
∑

e∈δ−(u)

fve = 0 ∀u, v ∈ V, u 6= v (6)

∑
e∈ED∗

xe = n. (7)

For any X ⊆ V with |X| ≥ 2, the constraint
∑
e∈ED∗ [X] xe ≤ |X| − 1 is a

valid inequality for AD∗ and also for PD∗ . Thus the intersection of AD∗ along
with the tight constraints

∑
e∈ED∗ [X] xe = |X| − 1 for all X ∈ X ′ is a face of

AD∗ . Call this face FD∗—this is the popular arborescence polytope of D.
Consider the face of PD∗ that is its intersection with

∑
e∈ED∗ [X] xe = |X|−1

for all X ∈ X ′. This face of PD∗ is an extension FD∗ . The total number of
constraints used to describe this face of PD∗ is O(mn).

24



Lower bound for the popular branching polytope BG of G. Let G = (V,E) be
the complete bidirected graph where every node v ∈ V regards all other nodes
u ∈ V as top-choice in-neighbors. Here X ′ = {V }. We claim that in any minimal
system contained in (1)-(3) (after projecting out variables x(r,v) for all v ∈ V ),
the constraint

∑
e∈E[X] xe ≤ |X| − 1 for every X ⊂ V with |X| ≥ 2 has to

be present. This is because a cycle on the nodes in X along with any rooted
arborescence A on V \X satisfies all the remaining constraints.

Thus any minimal system of inequalities from (1)-(3) that describes BG has
to contain 2n − n − 2 inequalities from (1): one for every X ⊂ V with |X| ≥ 2.
Since inequalities in a minimal system are in one-to-one correspondence with
the facets of the polyhedron they describe [7, Theorem 3.30], the lower bound
given in Theorem 1.3 follows.

Min-cost Popular Branching under Partial Preference Orders. The results above
imply that the min-cost popular branching problem has a polynomial time algo-
rithm when every node has a weak ranking over its incoming edges. The following
theorem reveals that the assumption of weak rankings is indeed crucial, as the
problem becomes NP-hard when nodes preferences are in arbitrary partial order.
At an intuitive level, the construction makes use of the fact that for arbitrary
partial orders, an edge that is incomparable to a safe edge need not be safe it-
self, and hence popular arborescences can contain differing numbers of safe edges
with respect to the sets in X ′. We show that finding a popular arborescence with
a mimimum number of such safe edges is NP-hard.

Theorem 6.3. Given a directed graph where node preferences are in arbitrary
partial order, a cost vector γ on the edges, and a number k, it is NP-hard to
decide whether there exists a popular branching of cost at most k.

Proof. We reduce from Vertex Cover: Given an undirected graphG′ = (V ′, E′)
and a number k′, does there exist a subset of at most k′ vertices of G′ that
contains at least one endpoint of every edge? We construct an instance of the
minimum-cost popular branching problem as follows. First we construct a di-
graphD = (V ∪{r}, E). This node set ofD comprises the root r, a special node w,
the node set of G′, and a node we for every edge e ∈ E′, i.e., V = V ′ ∪W ′ ∪{w}
where W ′ = {we : e ∈ E′}.

The node w has an incoming edge fe from we for each e ∈ E′, with γ(fe) =∞.
It also has an incoming edge rw from the root r, with γ(rw) = 0. Node w’s
preferences are such that w is indifferent about the edges fe for e ∈ E′, but each
of these edges dominates rw.

Each node we for some e ∈ E′ with endpoints u, v ∈ V ′ has five incoming
edges in D:

– two incoming edges pe,u and pe,v from w with γ(pe,u) = γ(pe,v) = 0,
– an incoming edge qe,u from u with γ(qe,u) = ∞ and an incoming edge qe,v

from v with γ(qe,v) =∞,
– an incoming edge re from r with γ(re) =∞.

25



The preferences of we are as follows: pe,u dominates qe,v, pe,v dominates qe,u,
and re is dominated by every other incoming edge. All other pairs of edges are
incomparable for we.

Finally, every node v ∈ V ′ has three incoming edges: an edge rv from r with
γ(rv) = ∞ and two edges zyesv , znov from w, with γ(zyesv ) = 1 and γ(znov ) = 0.
Node v prefers zyesv over rv but all other incoming edges are incomparable.

Note that every node in V has an incoming edge from r, and hence the
popular branchings in D are exactly the r-rooted popular arborescences in D.
See Figure 5 for a sketch of the construction. We show that D admits a popular
arborescence of cost k′ if and only if G′ has a vertex cover of cardinality k′.

Let A be a popular arborescence in D with cost k′ and let Y = {Yx | x ∈ V }
be the corresponding dual certificate. Without loss of generality we can assume
k′ < |V ′| (as finding a vertex cover of size |V ′| is trivial). Hence A contains no
edge of infinite cost. Let S = {v ∈ V ′ : A(v) = zyesv }. Note that |S| =

∑
a∈A γ(a)

as the edges zyesv are the only edges with finite non-zero cost in D.

We show that S is a vertex cover in G′. To this end, consider any edge e ∈ E′
with endpoints u and v. Note that A(we) ∈ {pe,u, pe,v} as these are the only
incoming edges of we with finite cost. Without loss of generality assume that
A(we) = pe,u. Note that this implies cA(qe,u) = 1 because pe,u and qe,u are
incomparable with respect to we’s preferences. Observe that A(w) = rw as this
is the only incoming edge to w with finite cost. Because fe �w rw, this implies
cA(fe) = 0 and hence we ∈ Yw. By Corollary 2.6, we get Ywe = {we}. This
implies u ∈ Yw, as otherwise qe,u would enter both Yw and Ywe , contradicting
the feasibility of the dual certificate, as cA(qu) = 1. We deduce that ru enters
both Yw and Yu, and thus cA(ru) = 2 by dual feasibility. This is only possible
if A(u) = zyesu , as zyesu is the only edge dominating ru. We conclude that u ∈ S
and hence e is covered in S. This shows that a popular arborescence of cost k′

in D can be turned into a vertex cover of cardinality k′ in G′.

For the reverse direction, consider any vertex cover S ⊆ V ′ in G′. We con-
struct an arborescence A. For each v ∈ V ′, we let A(v) = zyesv if v ∈ S and
A(v) = znov otherwise. For each e ∈ E′, let A(we) = pe,v where v ∈ S is one of
the endpoints of e that is in the vertex cover. Finally, let A(w) = rw. It is easy
to see that A constructed in this way is an arborescence of cost |S|, as the only
edges with non-zero cost are the edges zyesv for v ∈ S.

To show that A is popular, we construct a dual certificate Y = {Yx | x ∈ V }
as follows. Let Yw = {w} ∪ W ′ ∪ S and let Yx = {x} for all x ∈ V \ {w}.
We verify that this defines a dual certificate for A. First, consider any edge
entering w. This edge is either the edge rw ∈ A, which enters exactly the set
Yw, or it is an edge of type fe for some e ∈ E′. Because we ∈ Yw, such an
edge does not enter any set in Y. Next consider the edges entering a node we
for some e ∈ E′ with endpoints u and v. W.l.o.g., let u ∈ S be the endpoint
with A(we) = pe,u. Note that cA(pe,u) = cA(pe,v) = 1 and both pe,u and pe,v
enter exactly the set Ywe

. Furthermore, cA(qe,u) = 1, cA(qe,v) = c(re) = 2 as
pe,u is incomparable to qe,u but dominates both qe,v and re. As u ∈ S ⊆ Yw, the
edge qe,u enters only the set Ywe . As we is contained in two sets of Y, the dual

26



r
w we

u

v

rw

pe,v

pe,u

fe||

re ||
qe,u||

zyesu |
znou

ru

||

qe,v||

zyesv
|

znov

rv

||

Fig. 5. Sketch of the construction used in the proof of Theorem 6.3. The figure shows
the graph D resulting from an instance of Vertex Cover with two nodes u and v
connected by a single edge e. Each solid edge dominates dashed edges of the same
color; edge re is dominated by all other edges. Edges marked with two crossbars have
infinite cost, edges marked with a single crossbar have cost 1, and edges marked with
no crossbar have cost 0.

feasibility constraints for the edge qe,v and re are also fulfilled. Now consider the
edges entering some node u ∈ S. Note that u is contained exactly in the sets Yu
and Yw. Furthermore cA(zyesu ) = cA(znou ) = 1 and cA(ru) = 2, since A(u) = zyesu

dominates ru and is incomparable to znou . The former two edges originate at
w ∈ Yw and thus only enter Yu, hence dual feasibility is fulfilled for all edges
entering u. Finally, consider any edge entering some node u ∈ V ′ \ S. Note that
cA(zyesu ) = cA(znou ) = cA(ru) = 1 as A(u) = znou , which is not dominated by any
edge. Because u is only contained in Yu, dual feasibility is fulfilled at u. We thus
showed that Y is a dual certificate for A. ut

7 Restricted popular branching problems

In this section we prove Theorem 1.6 which we restate here for convenience.

Theorem 1.6. Given a digraph G where each node has a strict ranking over its
incoming edges, it is NP-hard to decide if there exists

(a) a popular branching in G where each node has at most 9 descendants;
(b) a popular branching in G with maximum out-degree at most 2.

In fact, we will show that Theorem 1.6 holds for simple graphs, therefore in
this section we will assume that nodes have preferences over their in-neighbors.
Nevertheless, we will say that an edge (u, v) is a top-choice edge, if u is the best
choice for v. The following lemma will be useful to prove Theorem 1.6.

27



Lemma A. Let D be a digraph where each node has a strict ranking over its
in-neighbors, and let A be a popular arborescence in D with dual certificate Y. If
C is a directed cycle consisting of only top-choice edges, then A enters C exactly
once. Let a be the unique edge in A∩ δ−(C) (guaranteed by Lemma 2.4), and let
Ya be the unique set in Y entered by a. Then C ⊆ Ya.

Proof. Observe that cA(e) ≤ 1 for any edge e in C, as e is a top-choice edge.
Let c1, . . . , ck be the nodes of C in this order, with a pointing to ck. Since ck
prefers ck−1 in C to the tail of a, we get cA((ck−1, ck)) = 0 and thus ck−1 ∈ Ya
by the constraints of LP2. Supposing ck−2 /∈ Ya we get that (ck−2, ck−1) /∈ A
because exactly one edge of A enters Ya, by Lemma 2.4. Using that ck−1 has
strict linear preferences and prefers ck−2 most, we obtain cA((ck−2, ck−1)) = 0,
but this contradicts the constraints of LP2. Hence we get ck−2 ∈ Ya as well.
Repeatedly applying this argument, we get that C ⊆ Ya. ut

Proof of Theorem 1.6, part (a). The reduction is from the NP-hard problem
3-sat where we are given a 3-CNF formula ϕ =

∧m
j=1 cj over variables x1, . . . , xn

with each clause cj containing at most 3 literals; the task is to decide whether ϕ
can be satisfied. It is well known that the special case where each variable occurs
at most 3 times is NP-hard as well, so we assume this holds for ϕ.

We define a digraph Dϕ as follows. For each variable xi we define a variable-
gadget consisting of a directed 9-cycle Ai on nodes a1i , . . . , a

9
i , together with

nodes ti and fi, both having in-degree 0 in Dϕ. The top choice for any node
aki on Ai is its in-neighbor ak−1i on Ai, its second choice is ti if k = 1 and fi
otherwise.11 Next, for each clause cj we define a clause-gadget as a directed cycle
Cj on nodes c1j , . . . , c

h
j where h is the number of literals in cj ; we may assume

h ∈ {2, 3}. The top choice for any node ckj on Cj is its in-neighbor on Cj . The

second choice of ckj depends on the k-th literal `kj in cj : it is ti if `kj = xi, and

it is fi if `kj = xi. We claim that the digraph Dϕ defined this way admits a
popular branching where every node has at most 9 descendants if and only if ϕ
is satisfiable.

First let us suppose that we have a satisfying truth assignment for ϕ; we
create a branching B. If variable xi is true, then we add to B the edge (fi, a

2
i )

and all edges of Ai except for (a1i , a
2
i ); if xi is false we add to B the edge (ti, a

1
i )

and all edges of Ai except for (a9i , a
1
i ). For each j ∈ [m] let us choose a literal `kj

in clause cj that is true according to our truth assignment. If `kj = xi, then we

let B contain the edge (ti, c
k
j ); if `kj = xi, then we let B contain the edge (fi, c

k
j ).

In either case, we also add to B all edges of Cj but the one going into ckj ; this
finishes the definition of B. Observe that if xi is true, then the descendants of
fi in B are the nodes of Ai, and the descendants of ti are among the nodes of
those cycles Cj where xi is a literal of Cj ; the case when xi is false is analogous.
Hence, each node in B has at most 9 descendants as promised.

11 Throughout the rest of the proof, we treat superscripts in a circular way, that is,
modulo length of the cycle in question.

28



Let us prove that B is popular. To this end, we define the graph D′ϕ by
adding a new dummy root r0 to Dϕ and making it the worst choice for every
node in Dϕ; moreover, we define an arborescence A in D′ϕ by adding an edge
from r0 to each root of B. Then B is a popular branching in Dϕ if and only if A
is a popular arborescence in D′ϕ. To show the latter, we define a dual certificate
Y that contains the set V (Ai) for each i ∈ [n], the set V (Cj) for each j ∈ [m],
and a singleton for each node except for those at which an edge of B enters some
cycle Ai or Cj . It is straightforward to check that Y is indeed a dual solution
proving the popularity of A in D′ϕ, and therefore of B in Dϕ.

Let us now suppose that we have a popular branching B with each node hav-
ing at most 9 descendants; we are going to define a satisfying truth assignment
for ϕ. Note that the only possible roots in B are the nodes in R =

⋃
i∈[n]{ti, fi},

since any other node v has an in-neighbor in R (assuming v to be a root in B,
adding an edge from R to v results in a branching more popular than B). Let A
be the popular arborescence corresponding to B, and let Y be a dual certificate
proving the popularity of A.

Let ei be the edge entering Ai in B, and let Yei be the unique set in Y entered
by ei. Similarly, let e′j be the edge entering Cj in B, and let Ye′j be the unique

set in Y entered by e′j . By Lemma A, we know that Ai ⊆ Yei and Cj ⊆ Ye′j .
Let us define a truth assignment by setting xi true if and only if the head of

ei is fi. Note that all 9 nodes of Ai are descendants of the head of ei. Hence, the
head of an edge e′j can only be fi if xi is false, and similarly, it can only be ti if xi
is true. Thus, any cycle Cj must be the descendant of a node representing a true
literal (where ti and fi represent xi and xi, respectively). By the construction of
Dϕ, we have that any clause contains a literal set to true by the truth assignment,
so ϕ is satisfiable, proving the theorem. ut

Proof of Theorem 1.6, part (b). We give a reduction from the variant of the
Directed Hamiltonian Path problem where the input digraph has a root r
with in-degree 0 that is the parent of all other nodes; it is easy to see that this
version is also NP-hard. Let G = (V ∪{r}, E) be our given input. For each node
we fix an arbitrary ordering on its in-neighbors, and we denote by n(v, i) the
i-th in-neighbor of a node v ∈ V .

We are going to construct a digraph D that consists of a node gadget Gv for
each v ∈ V , together with extra nodes r (having in-degree 0) and r′. The gadget
Gv consists of a core cycle Cv together with pendant cycles Pv,1, . . . , Pv,dv , each
of length dv, where dv denotes the in-degree of v in G. The nodes in the core
cycle are c1v, . . . , c

dv
v , those in the i-th pendant cycle Pv,i are p1v,i, . . . , p

dv
v,i; we

treat superscripts modulo dv. The top choice for any node on these cycles is its
in-neighbor within the cycle. The preferences are as follows, where for simplicity
we define c1r := r.

cjv : cj−1v � c1n(v,j) � c
1
n(v,j+1) � · · · � c

1
n(v,dv)

� c1n(v,1) � · · · � c
1
n(v,j−1);

pjv,i : pv,i−1 � cjv;
r′ : r.

29



This finishes the definition of D.

We claim that G has a Hamiltonian path if and only if D has a popular
branching with out-degree at most 2.

For the first direction, suppose that D has such a branching B. Clearly, r
is a root of B, since it has in-degree 0. We claim that B is an arborescence
with root r. First observe that any pendant cycle must be entered by A once,
as otherwise there exists a root of B in the cycle, and adding the second-choice
edge of this root node to B (coming form a core cycle unreachable from the
pendant cycle) we obtain a branching B′ that is more popular than B. Since
(r, v) ∈ E for each v ∈ V , each node cjv in a core cycle has an incoming edge
from r, so such a node cannot be a root in B either, proving that B is indeed
an arborescence. In particular, δ−(Cv) ∩B 6= ∅ for each v ∈ V .

By Lemma A we know that B enters any core cycle Cv exactly once, and
therefore |B∩Cv| = dv−1. In addition, there are exactly dv edges of B pointing
from Cv to the pendant cycles Pv,j , j ∈ [dv], because B is an arborescence.
This implies that there can be at most 1 edge of B leaving Cv and pointing
to another core cycle Cu, as otherwise the dv nodes in Cv would together have
more than 2dv outgoing edges in B, yielding that at least one of them would
have out-degree 3 in B, a contradiction.

Let us now define a set H of edges in G as follows: for each u, v ∈ V , we add
(u, v) to H if and only if there is an edge from Cu to Cv in B. Furthermore,
we add the edge (r, v) to H if and only if there is an edge from r to Cv in B;
note that there can be at most one such edge, because (r, r′) ∈ B and B has
out-degree at most 2. Observe that by the construction of D, we have H ⊆ E.
Recall that by the previous paragraph, |δ+(v) ∩ H| ≤ 1 for each v ∈ V ∪ {r},
and that |δ−(v)∩H| ≥ 1 for each v ∈ V . Moreover, H is acyclic, since any cycle
in H would imply the existence of a cycle in B as well. Therefore, H must be a
Hamiltonian path.

For the other direction, let H be a Hamiltonian path in G, starting from r.
We define a popular branching B that happens to be an arborescence. First, for
each (u, v) ∈ H we add (c1u, c

j
v) to B where u is the j-th in-neighbor of v, and we

also add all edges of Cv to B except for the one pointing to cjv; note that here we
cover the case where u = r as well. Notice that for each v ∈ V there are at most
dv edges of B whose tail is in Cv. Hence, there exist dv edges in δ+(Cv) whose
addition to B does not violate our bound on the out-degree and such that each
of these edges points to a distinct pendant cycle Pv,j (note that any pendant
cycle can be connected to any node on Cv). Let us add these edges to B as well,
together with all edges in Pv,j except for the one whose head already has an
incoming edge in B, for each j ∈ [dv]. Finally, we add the edge (r, r′) to B. It is
easy to verify that the edge set B obtained this way is indeed an arborescence
with root r, and has out-degree at most 2.

It remains to show that B is popular. To this end, we define the graph D′

by adding a new dummy root r0 to D and making it the worst choice for every
node in D; moreover, we define an arborescence A in D′ by adding the edge
(r0, r) to B. Then B is a popular branching in D if and only if A is a popular

30



arborescence in D′. To prove the latter, we provide a dual certificate Y as follows.
For each core or pendant cycle C, we put the set V (C) into Y, together with a
singleton {v} for each v ∈ V (C) except for the node at which B enters C. We
also add singletons {r′} and {r}. The set system Y so obtained contains exactly
|V (D)| sets, so it remains to show that it fulfills the conditions of LP2. First note
that any edge may enter at most two sets from Y. Note also that if v is a node
such that B enters a core or pendant cycle C at v, then δ−(v)∩B is the second
choice for v (and its best choice is within C, the set of Y corresponding to v);
otherwise δ−(v)∩B is the best choice for v. From these facts it is straightforward
to verify the constraints of LP2, so the popularity of B and hence the theorem
follows. ut

8 Popular Mixed Branchings

Recall that a mixed branching P is a probability distribution over branchings in
G, i.e., P = {(B1, p1) . . . , (Bk, pk)}, where Bi is a branching in G for each i and∑k
i=1 pi = 1, pi ≥ 0 for all i. Popular mixed matchings were studied in [29] where

it was shown that popular mixed matchings always exist and can be efficiently
computed. Using the proof and method in [29], we now show that popular mixed
branchings also always exist and such a mixed branching can be computed in
polynomial time.

The function φ(B,B′) that allowed us to compare two branchings B,B′

generalizes to mixed branchings in a natural way. For mixed branchings P =
{(B1, p1) . . . , (Bk, pk)} and Q = {(B′1, q1) . . . , (B′`, q`)}, the function φ(P,Q) is
the expected number of nodes that prefer B to B′ where B and B′ are drawn
from the probability distributions P and Q respectively; in other words,

φ(P,Q) =

k∑
i=1

l∑
j=1

pi qj φ(Bi, B
′
j).

Definition 8.1. A mixed branching P is popular if φ(P,Q) ≥ φ(Q,P ) for all
mixed branchings Q.

Consider the instance on 4 nodes a, b, c, d described in Section 1 that did not
admit any popular branching. Let B1 = {(a, b), (b, d), (d, c)}, B2 = {(b, a), (a, c),
(c, d)}, B3 = {(c, d), (d, b), (b, a)}, and B4 = {(d, c), (c, a), (a, b)}. It can be veri-
fied that the mixed matching P = {(B1, 1/4), (B2, 1/4), (B3, 1/4), (B4, 1/4)} is
popular.

Proposition 8.2. Every instance G admits a popular mixed branching.

The proof of the above proposition is the same as the one given in [29] for
popular mixed matchings. Consider a two-player zero-sum game where the rows
and columns of the payoff matrix M are indexed by all branchings B1, . . . , BN
in G. The (i, j)-th entry of the matrix M is ∆(Bi, Bj) = φ(Bi, Bj)− φ(Bj , Bi).
A mixed strategy of the row player is a probability distribution 〈p1, . . . , pN 〉 over

31



the rows of M ; similarly, a mixed strategy of the column player is a probability
distribution 〈q1, . . . , qN 〉 over the columns of M .

The column player seeks to find a mixed branchingQ that minimizes maxP ∆(P,Q).
The row player seeks to find a mixed branching P that maximizes minQ∆(P,Q).
We have:

0 ≤ min
Q

max
P

∆(P,Q) = max
P

min
Q

∆(P,Q) ≤ 0,

where the first inequality follows by taking P = Q, the last inequality follows by
taking Q = P , and the (middle) equality follows from Von Neumann’s minimax
theorem. Thus maxP minQ∆(P,Q) = 0, i.e., there exists a probability distribu-
tion P over branchings such that ∆(P,Q) ≥ 0 for all mixed branchings Q. In
other words, P is a popular mixed branching.

Computing a popular mixed branching. As branchings in G and r-arborescences
in D = (V ∪ {r}, E) are equivalent with respect to popularity, we will work in
the graph D now. Analogous to [29], instead of mixed arborescences, it will be
more convenient to deal with fractional arborescences.

A fractional arborescence x is a point in the arborescence polytope A of D,
i.e., x is a point that satisfies constraints (1)-(2). So x is a convex combination
of arborescences in D, i.e., it is a mixed arborescence {(A1, α1) . . . , (Ak, αk)}
where x =

∑
j αjIAj (note that there may be multiple ways of expressing x as

a mixed arborescence).

Conversely, every mixed arborescence P = {(A′1, p1) . . . , (A′t, pt)} maps to a
fractional arborescence

∑
k pkIA′k , where IA′k is the incidence vector of arbores-

cence A′k. Thus there is a many-to-one mapping between mixed arborescences
and fractional arborescences. Given a fractional arborescence x, there exists a
polynomial time algorithm to find a mixed arborescence corresponding to x.
More precisely, as the class of arborescence polytopes is solvable, we can apply
the technique described in [21, Theorem 3.9].

For any two fractional arborescences x, y, define ∆(x, y) as follows:

∆(x, y) =
∑
u∈V

∑
e∈δ−(u)
e′∈δ−(u)

xe ye′ voteu(e, e′),

where voteu(e, e′) ∈ {1, 0,−1} corresponds to e �u e′, e ∼u e′, and e ≺u e′, re-
spectively. Let P,Q be two mixed arborescences and let x, y be the corresponding
fractional arborescences. It is easy to show that ∆(P,Q) = ∆(x, y).

A fractional arborescence x is popular if ∆(x, y) ≥ 0 for all fractional arbores-
cences y. It follows from Proposition 8.2 that popular fractional arborescences
always exist in D. The following polytope is the set of all popular fractional
arborescences.

∆(x,A) ≥ 0 ∀ arborescences A in D

x ∈ A

32



Observe that the above region is is the set of fractional arborescences that
do not lose to any integral arborescence. This immediately implies that such a
fractional arborescence is a popular fractional arborescence.

There are two sets of exponentially many constraints in the above formu-
lation. Both sets of constraints admit efficient separation oracles: to decide if
x ∈ A or not, a min r-cut needs to be computed in D with edge capacities given
by x. If this cut (S ∪ {r}, V \ S) has value less than 1, then the set V \ S forms
a violating constraint w.r.t. (1); else x ∈ A.

To decide if ∆(x,A) ≥ 0 for all arborescences A, we compute a min-cost
arborescence in D with the following edge costs:

cx(e) =
∑
e′�ue

xe′ −
∑
e′≺ue

xe′ ∀e ∈ E.

It is simple to check that for any arborescence A, we have cx(A) = ∆(x,A).
Thus x is unpopular if and only if there is an arborescence A with cx(A) < 0.

Since a min-cost arborescence can be computed in polynomial time [13, 30],
we can efficiently find a violating constraint ∆(x,A) < 0 if x is unpopular. Thus
we can compute a popular mixed arborescence in polynomial time using the
ellipsoid method. Hence we have shown the following theorem.

Theorem 8.3. A popular mixed branching in a digraph G where every node has
preferences in arbitrary partial order over its incoming edges can be computed in
polynomial time.

Acknowledgement

Part of this work was done at the 9th Emléktábla workshop in Gárdony, Hungary.
We are grateful to the reviewers for their very helpful comments and suggestions.
Thanks to Markus Brill for helpful discussions on liquid democracy, and to Nika
Salia for our conversations in Gárdony.

Telikepalli Kavitha is supported by the DAE, Government of India, under
project no. RTI4001. Tamás Király is supported by the National Research, De-
velopment and Innovation Fund of Hungary, grant no. K120254 and Applica-
tion Domain Specific Highly Reliable IT Solutions project under Thematic Ex-
cellence Programme TKP2020-NKA-06. Jannik Matuschke is supported by in-
ternal funds of KU Leuven. Ildikó Schlotter was supported by the Hungarian
Academy of Sciences under its Momentum Programme (LP2016-3/2018) and
Cooperation of Excellences Grant (KEP-6/2018), and by the Hungarian Scien-
tific Research Fund through NFKIH grants no. K128611 and K124171. Ulrike
Schmidt-Kraepelin is supported by the Deutsche Forschungsgemeinschaft (DFG)
under grant BR 4744/2-1.

References

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular
matchings. SIAM Journal on Computing, 37(4):1030–1034, 2007.

33



[2] P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the mar-
riage and roommates problems. In Proceedings of the 7th International
Conference on Algorithms and Complexity (CIAC), volume 6078 of Lecture
Notes in Computer Science (LNCS), pages 97–108. Springer, 2010.

[3] D. Bloembergen, D. Grossi, and M. Lackner. On rational delegations in
liquid democracy. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI), 2019.

[4] C. Blum and C. I. Zuber. Liquid democracy: Potentials, problems, and
perspectives. Journal of Political Philosophy, 24(2):162–182, 2016.

[5] M. Brill. Interactive democracy. In Proceedings of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS) Blue
Sky Ideas Track, pages 1183–1187, 2018.

[6] Z. Christoff and D. Grossi. Binary voting with delegable proxy: An analysis
of liquid democracy. In Proceedings of the 16th Conference on Theoretical
Aspects of Rationality and Knowledge (TARK), pages 134–150, 2017.

[7] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming, volume
271 of Graduate Texts in Mathematics. Springer, 2014.

[8] Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided
preferences and one-sided ties. SIAM Journal on Discrete Mathematics,
31(4):2348 – 2377, 2017.

[9] Á. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathe-
matical Programming, 172(1):209 – 229, 2017.

[10] A. Darmann. Popular spanning trees. International Journal of Foundations
of Computer Science, 24(5):655 – 677, 2013.

[11] A. Darmann. It is difficult to tell if there is a Condorcet spanning tree.
Mathematical Methods of Operations Research, 84(1):94 – 104, 2016.

[12] A. Darmann, C. Klamler, and U. Pferschy. Finding socially best spanning
trees. Theory and Decision, 70(4):511 – 527, 2011.

[13] J. Edmonds. Optimum branchings. Journal of Research of the National
Bureau of Standards, 71B(4):233 – 240, 1967.

[14] B. Escoffier, H. Gilbert, and A. Pass-Lanneau. The convergence of itera-
tive delegations in liquid democracy in a social network. In Proceedings of
the 12th International Symposium on Algorithmic Game Theory (SAGT),
volume 11801 of Lecture Notes in Computer Science (LNCS), pages 284 –
297. Springer, 2019.

[15] Y. Faenza and T. Kavitha. Quasi-popular matchings, optimality, and ex-
tended formulations. In Proceedings of the 31st Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 325–344, 2020.

[16] Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular matchings and
limits to tractability. In Proceedings of the 30th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2790–2809, 2019.

[17] D. R. Fulkerson. Packing rooted directed cuts in a weighted directed graph.
Mathematical Programming, 6(1):1 – 13, 1974.

[18] D. Gale and L. S. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9–15, 1962.

34



[19] P. Gärdenfors. Match making: Assignments based on bilateral preferences.
Behavioral Science, 20(3):166–173, 1975.

[20] P. Gölz, A. Kahng, S. Mackenzie, and A. Procaccia. The fluid mechanics
of liquid democracy. In Proceedings of the 14th International Workshop on
Internet and Network Economics (WINE), volume 11316 of Lecture Notes
in Computer Science (LNCS), pages 188–202. Springer, 2018.

[21] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197,
1981.

[22] S. Gupta, P. Misra, S. Saurabh, and M. Zehavi. Popular matching in room-
mates setting is NP-hard. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2810 – 2822, 2019.

[23] S. Hardt and L. Lopes. Google votes: A liquid democracy experiment on a
corporate social network. Technical report, Technical Disclosure Commons,
2015.

[24] C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage
problem. Information and Computation, 222:180 – 194, 2013.

[25] C.-C. Huang and T. Kavitha. Popularity, mixed matchings, and self-duality.
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 2294–2310, 2017.

[26] T. Kavitha. A size-popularity tradeoff in the stable marriage problem.
SIAM Journal on Computing, 43(1):52–71, 2014.

[27] T. Kavitha. Popular half-integral matchings. In Proceedings of the
43rd International Colloquium on Automata, Languages, and Programming
(ICALP), volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2016.

[28] T. Kavitha, T. Király, J. Matuschke, I. Schlotter, and U. Schmidt-
Kraepelin. Popular branchings and their dual certificates. Technical Report
1912.01854, arXiv, 2019. https://arxiv.org/abs/1912.01854.

[29] T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical
Computer Science, 412(24):2679–2690, 2011.

[30] B. Korte and J. Vygen. Combinatorial Optimization. Springer, 2012.
[31] G. Kotsialou and L. Riley. Incentivising participation in liquid democracy

with breadth first delegation. In Proceedings of the 19th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pages
638–644, 2020.

[32] R. M. McCutchen. The least-unpopularity-factor and least-unpopularity-
margin criteria for matching problems with one-sided preferences. In Pro-
ceedings of the 8th Latin American Conference on Theoretical Informat-
ics (LATIN), volume 4957 of Lecture Notes in Computer Science (LNCS),
pages 593–604. Springer, 2008.

35

https://arxiv.org/abs/1912.01854

	Popular Branchings and Their Dual Certificates

