
A connection between sports and matroids:
How many teams can we beat?

Ildikó Schlotter1? and Kataŕına Cechlárová2??

1 Budapest University of Technology and Economics
H-1521 Budapest, Hungary

ildi@cs.bme.hu
2 Institute of Mathematics, Faculty of Science, P.J. Šafárik University

Jesenná 5, 040 01 Košice, Slovakia
katarina.cechlarova@upjs.sk

Abstract. Given an on-going sports competition, with each team hav-
ing a current score and some matches left to be played, we ask whether it
is possible for our distinguished team t to obtain a final standing with at
most r teams finishing before t. We study the computational complexity
of this problem, addressing it both from the viewpoint of parameterized
complexity and of approximation. We focus on a special case equivalent
to finding a maximal induced subgraph of a given graph G that admits
an orientation where the in-degree of each vertex is upper-bounded by a
given function. We obtain a Θ(log |V (G)|) approximation for this prob-
lem based on an asymptotically optimal approximation we present for a
certain matroid problem in which we need to cover a base of a matroid
by picking elements from a set family.

Keywords: sports elimination problem; graph labelling; parameterized
complexity; approximation; matroids; gammoids.

1 Introduction

This paper was motivated by the so-called Sports Elimination problem: given
a set of teams in a sports competition, each with a current score, and some
matches to be played between the teams, can a distinguished team still win
the competition? The study of this problem was initiated by a paper from
Schwartz [29], and has been the subject of numerous papers [1, 3, 4, 14, 15, 18–
20, 22, 24, 28, 30] since then. As the rules for score allocation in the competition
influence the computational complexity of Sports Elimination, it has been
studied for various kinds of competitions. For instance, Sports Elimination
for baseball, where each match has a winner team that gets 1 point while the
other team gets 0, can be solved in polynomial time [29]. By contrast, Sports
Elimination for European football, where the winner gets 3 points, the loser

? Supported by the Hungarian Scientific Research Fund (OTKA grants no. K-108383
and no. K-108947).

?? Supported by the grants VEGA 1/0344/14, VEGA 1/0142/15, and APVV-15-0091.

gets 0, and each team in a draw gets 1 point, turns out to be NP-hard [19]. Kern
and Paulusma [20, 19] addressed the Generalized Sports Elimination(S)
problem (gse(S) for short), where S describes the possible outcomes of a match,
thus allowing the study of the Sports Elimination problem for different sports
in a general framework.

In their paper, Kern and Paulusma [20] gave a dichotomy characterizing all
sets S of possible outcomes for which gse(S) is polynomial-time solvable, and
proving NP-hardness for the remaining cases. According to their results, the only
easy cases are those equivalent (in some specific sense, as discussed later) to the
case where S is complete, meaning that in each match k points are distributed
between the two participating teams for some k ∈ N, and all outcomes with the
one team getting i points and the other team obtaining k − i points for some
i ∈ N are possible.

In this paper, we concentrate on the following generalization of gse(S) that
we call MinStanding(S): given a set of teams in a competition, each with a
current standing, and a set of remaining matches to be played, does there exist
a way to play the remaining matches so that in the final standing at most r
teams will have more points than our distinguished team t? In other words, can
our team t finish not worse than at the (r + 1)-st place? Hoffman and Rivlin
[18] showed that this question is hard to answer already for baseball, which has
essentially the simplest score allocation rule.

To tackle the computational hardness of MinStanding(S), we applied the
framework of parameterized complexity, investigated the possibilities for approx-
imation, and searched for computationally tractable special cases. In particular,
we mainly focused on the setting where S is complete, in which case we can
decide the question for r = 0 in polynomial time, as implied by the results of
Kern and Paulusma [19, 20].

Interestingly, MinStanding(S) where S is complete turns out to be equiv-
alent to the following very natural graph problem: given an undirected graph G
with vertex capacities c : V (G)→ N and an integer r ∈ N, decide whether there
exists a set of at most r vertices X in G such that G−X admits an orientation
where each vertex v has in-degree at most c(v). We refer to this problem as
Vertex Deletion to In-degree Bounded Orientation (vdibo), and we
feel that it deserves to be studied on its own right. Indeed, the question whether
a given graph with vertex capacities admits an in-degree bounded orientation is
a well-studied problem in combinatorial optimization: Hakimi [16] gave a com-
pact characterization for the existence of such orientations already in 1965. Since
then, various extensions of the problem have been examined, see e.g. [5, 7, 10,
11]. Asahiro et al. [2] considered a variant of the degree-constrained orientation
problem where a penalty function on the violated degree bounds is to be min-
imized, but to the best of our knowledge vdibo as defined here has not been
studied before.

Further, we show that vdibo is strongly connected to the field of matroids.
Namely, vdibo leads us to the following problem that we call Matroid Base
Cover (mbc): given a matroid M and a family F of subsets of its universe,

find a minimum number of sets from F whose union contains a base forM. The
fact that vdibo reduces to the special case of Matroid Base Cover where
M is a gammoid and F is a partition of the universe ofM allows us to apply a
greedy approach for approximating vdibo.

Our contribution. To handle the computational hardness of MinStanding(S),
we mostly focus on approximation and fixed-parameter tractability.

For the case when the set S of possible outcomes is complete, we prove that
MinStanding(S) is polynomially equivalent to the Vertex Deletion to In-
degree Bounded Orientation problem. To deal with vdibo, we present a
reduction to the Matroid Base Cover problem. For this, in turn, we pro-
pose a greedy approximation algorithm in Theorem 8 that has logarithmic ratio:
given an instance of mbc with optimum OPT , the algorithm of Theorem 8
yields a solution with at most 1 + bOPT ln bc sets where b denotes the rank
of the input matroid. Using our reduction from vdibo to mbc, this algorithm
immediately yields an approximation with θ(log n) ratio for vdibo (or, equiv-
alently, for MinStanding(S)), where n is the number of vertices in the input
graph (or the number of teams participating in the competition, in the context
of MinStanding(S)); this result is stated in Theorem 7.

In Theorem 9 we also prove that for any ε > 0, approximating mbc within a
ratio of (1− ε) ln |Y | is NP-hard, where Y is the universe of the input matroid.
This shows that the ratio of our greedy approximation proposed for mbc is tight.
Furthermore, in Theorem 10 we also show that the approximation ratio of the
algorithm of Theorem 7 for vdibo is roughly optimal, since for any ε > 0, vdibo
is NP-hard to approximate with ratio ε lnn.

Regarding the general case where the set S of outcomes can be arbitrary3, we
prove various intractability results (parameterized hardness results, NP-hardness
for certain restricted cases and strong inapproximability), and also identify
polynomial-time solvable special cases. Namely, in Theorem 2 we show that
MinStanding(S) is W[2]-hard with parameter r; hence, the problem remains
hard even if the number r of teams allowed to beat our distinguished team can be
assumed to be small. Similarly, Theorem 3 proves W[1]-hardness for the dual pa-
rameter “number of teams to beat” (i.e., n−r). Notably, both these results hold
also if the graph underlying the input has restricted structure: Theorem 2 holds
even for bipartite graphs, and Theorem 3 remains true for K1,4-free graphs. To
contrast these strong intractability results, we propose a simple cubic-time algo-
rithm for MinStanding(S) in the special case where the graph G underlying the
input is a tree. Using this algorithm, we prove polynomial-time solvability also
for the case where G is a forest (Corollary 1) or has maximum degree 2 (Corol-
lary 2). In Theorem 5 we further prove that Corollary 2 is sharp in the sense
that MinStanding(S) remains NP-hard if each vertex in G has degree 2 or 3
(or even if all vertices have degree 3); hence we obtain a clear limit of tractability
of the problem with respect to vertex degrees in the underlying graph. Finally,

3 Actually we need certain small technical assumptions on S, essentialy to rule out
the degenerate case when the matches can only have one possible outcome.

in Theorem 6 we prove that MinStanding(S) for general S is essentially inap-
proximable with any approximation ratio, even if we allow for a large additive
term as well.

Organization. The next section contains the preliminaries used in the paper,
and provides our model for the MinStanding(S) problem. In Section 3 we con-
sider MinStanding(S) for general S, and present our classical and parameter-
ized hardness results, as well as our polynomial-time algorithms for trees, forests,
and graphs with maximum degree 2. Section 4 deals with MinStanding(S) in
the case where S is complete. After showing its equivalence with vdibo, we give
the reduction from vdibo to mbc, the greedy approximation to mbc (and its ap-
plication to vdibo), and to close the section, the contrasting inapproximability
results. We sum up our work and give conclusions in Section 5.

2 Preliminaries

2.1 Formulation of the model

Following the works [20, 4], we regard each match in a given competition to be
played by two teams: the ‘home’ team and the ‘away’ team. Each match can end
in several ways, and these possible outcomes are described by pairs of the form
(α, β), where α and β denote the number of points obtained by the home and
the away team, respectively. We denote the set of all possible outcomes by S. For
instance, S = {(1, 0), (0, 1)} describes baseball, while S = {(3, 0), (1, 1), (0, 3)}
describes the score allocation in European football competitions. Notice that we
allow for an asymmetry between the home and the away team in a match.

Kern and Paulusma [20] proved that we can restrict our attention to so-called
normalized sets of outcomes, where S = {(α0, β0), . . . , (αk, βk)} with k ≥ 1 and

α0 = 0, α1 = 1 < α2 < · · · < αk and β0 > β1 > · · · > βk−1 ≥ 1, βk = 0. (1)

Although they considered the Generalized Sports Elimination(S) prob-
lem, their observations hold also in the context of MinStanding(S). Hence,
throughout the paper we assume all sets of outcomes to be normalized. In most
of our hardness proofs though, we will only make use of the more relaxed prop-
erty that S contains some pairs (α, 0) and (0, β) for some positive α and β.
We call a set S with this property well-based, and we call (α, 0) and (0, β) the
extreme outcomes in S. Another special property that we will focus on is the
case where S is complete, meaning that S = {(i, k− i) | i = 0, 1, . . . , k} for some
k ∈ N.

Given some normalized set S of outcomes, it is easy to see that we can
assume w.l.o.g. that the distinguished team t has no remaining matches to play,
as otherwise we can just assume that t wins as many points in the remaining
matches as possible (as in this case all other teams gain as few points from these
matches as possible, since S is normalized). Hence, we can calculate the total
score st that our team t must have at the end of the competition. Then, our

question is reduced to asking whether all the remaining matches can be played
in a way such that in the end at most r teams have score higher than st.

We can represent this situation using a directed multigraph, where vertices
correspond to teams participating in the competition (except for our distin-
guished team t), and arcs correspond to the remaining matches to be played in
the sense that each arc (t1, t2) represents a match where t1 is the home team
and t2 is the away team. The set of outcomes for a match are represented by a
set of labels on the corresponding arc; thus, choosing an outcome for a match
can be thought of as choosing a label for the given arc. Furthermore, each vertex
is assigned an integer capacity whose value is the number of points the corre-
sponding team can gain during the remainder of the competition (in addition to
its already achieved score) without overtaking our distinguished team t, that is,
without ending up with a score higher than st. We can formalize our question
as the following graph labelling problem.

MinStanding(S):
Instance: A triple (G, c, r) where G = (V,A) is a directed multigraph,
c : V → R describes vertex capacities, and r is an integer.
Question: Does there exist an assignment p : A → {0, . . . , k} such that
the number of vertices in V violating the inequality

scrp(v) :=
∑

a=(v,u)∈A

αp(a) +
∑

a=(u,v)∈A

βp(a) ≤ c(v) (2)

is at most r?

Vertices violating Inequality (2) according to some score assignment are called
violating vertices. A score assignment under which there are at most r violating
vertices, is called r-violating.

2.2 Parameterized complexity

In the study of computationally hard problems, parameterized complexity plays
an important role. In this framework, we associate with each input I of a given
problem Q an integer ` called the parameter, and we examine how this parameter
affects the complexity of the problem. Namely, we consider the running time of
an algorithm as a function of both the input size |I| and the parameter `, allowing
us a more refined view on the computational complexity of Q.

We say that a parameterized problem Q is fixed-parameter tractable, if it
admits an algorithm that runs in time f(`)|I|O(1) for some computable function
f . Note that in the running time, the dependence on |I| has constant degree,
independent of `. Therefore, such algorithms can be efficient in practice for small
values of the parameter, even if the function f is, say, exponential.

To argue that a problem is not fixed-parameter tractable, one can show its
hardness by means of a parameterized or FPT-reduction. Given two parameter-
ized problems Q and Q′, an FPT-reduction from Q to Q′ is a function f such

that (1) f can be computed by a fixed-parameter tractable algorithm, (2) for
each input (x, `) of Q it holds that (x, `) ∈ Q if and only if f(x, `) = (x′, `′) ∈ Q′,
and (3) `′ ≤ g(`) for some function g.

The basic class of parameterized intractability is W[1]; if a parameterized
problem is W[1]-hard, then this yields strong evidence that it does not admit
an FPT algorithm. The class W[2] is the next class in the parameterized class
hierarchy

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P],

where each containment is believed to be strict. A problem is called W[1]-hard
(respectively, W[2]-hard), if all problems in W[1] (respectively, W[2]) can be
reduced to it by an FPT-reduction.

For more details on parameterized complexity, we refer the reader to the
recent monograph by Downey and Fellows [8].

2.3 Graph theory and matroids

Graphs. Throughout the paper we will use standard notation concerning graphs,
see e.g. [6]. For a directed graph G = (V,A), we will denote by δ−(v) and δ+(v)
the in-degree and the out-degree of a vertex v ∈ V , respectively. For a subgraph
H of G, we let δ−H(v) denote the in-degree of v restricted to H, that is, the
number of arcs in H that enter v. Similarly, we δ+H(v) denote the number of
arcs in H that leave v. By the degree δ(v) of v we mean the sum of its in- and
out-degree, so δ(v) = δ−(v) + δ+(v). For an undirected graph G = (V,E), we
denote the degree of a vertex v ∈ V by d(x).

For a set X of arcs, edges, or vertices in a (directed or undirected) graph G,
we write G − X to denote the subgraph of G obtained from G by deleting X;
when deleting vertices, all incident edges are deleted too. Also, for a subgraph
H of G, we let G−H be the graph G− V (H).

Matroids. Given a set U and a family I ⊆ 2U of subsets of U , we say that
M = (I, U) is a matroid over the universe U , if (i) ∅ ∈ I, (ii) if X ∈ I and
Y ⊆ X, then Y ∈ I, and (iii) if X,Y ∈ I and |X| < |Y |, then there exists some
y ∈ Y \X for which X ∪ {y} ∈ I as well. The subsets of U contained in I are
called independent sets. A base of the matroid M is a maximal independent set
in I. From the definitions it follows that any two bases of M have the same
size; this number is called the rank of M. Analogously, the rank r(W) of a set
W ⊆ U is defined as the maximum size of any independent set contained in W
(hence, the rank of M equals to the rank of U).

If every subset of U that has size at most r(U) is an independent set of
M, then M is called a uniform matroid of rank r(U). Given a directed graph
G = (V,A) with two sets of terminals T1, T2 ⊆ V , we can define a matroid over
the universe T1 in which some set W ⊆ T1 is independent if there exist |W |
vertex-disjoint paths leading in G from W to distinct vertices of T2; a matroid
defined this way is called a gammoid. Given two matroids M1 and M2 defined
over the universes U1 and U2, respectively, the direct sum of M1 and M2 is a
matroid whose universe is the disjoint union of U1 and U2, and in which some

set is independent if it can be obtained as the union of an independent set from
M1 and an independent set from M2.

For more background on matroids, see e.g. [25] or a less technical texbook [21]
that explains the main ideas of how classical combinatorial optimization prob-
lems have been generalized to the notion of a matroid.

3 MinStanding(S) for general S

The special case of MinStanding(S) where we fix the integer r to be zero yields
exactly the gse(S) problem. Thus, the complexity dichotomy given in [20] has
the following consequences.

Theorem 1 (Kern & Paulusma [20]). Given a normalized set S of outcomes
that is not complete, the restriction of MinStanding(S) to the case r = 0 is
NP-complete. By contrast, if S is complete, then MinStanding(S) on instances
where r = 0 can be solved in polynomial time.

For general values of r, strong NP-completeness of MinStanding(S) has
been proved in [18] for the special case S = {(1, 0), (0, 1)}. The following theorem
shows that MinStanding(S) remains intractable even if the number r of teams
that are allowed to beat our distinguished team (in other words, the number of
violating vertices) is small, and the set of outcomes is the simplest possible.

Theorem 2. MinStanding(S) is strongly NP-complete, and also W[2]-hard
with parameter r for any well-based set S of outcomes, even if the (undirected
version of the) input graph is bipartite.

Proof. We reduce from the Red-Blue Dominating Set problem which is NP-
hard and also W[2]-hard [9]. The input of this parameterized problem consists of
a bipartite graph G = (R,B;E), with the two color classes R and B referred to as
red and blue, and an integer parameter r. The task is to decide if there exists a set
of at most r red vertices that dominate all blue vertices. We present a polynomial-
time reduction from this problem to MinStanding(S) that is an FPT-reduction
as well, proving both NP-hardness and W[2]-hardness; containment in NP is
trivial.

Let G = (R,B;E) and r be our input instance of Red-Blue Dominating
Set. Let (0, β) and (α, 0) be extreme outcomes in S. We construct an instance
(G′, c, r) of MinStanding(S) as follows. To define G′, we simply orient the
edges of G such that the vertices of R become sources. Then we set the vertex
capacities as follows.

c(v) =

{
0, if v ∈ R,
(δ(v)− 1)β, if v ∈ B.

First, let D ⊆ R be a set of r red vertices dominating all blue ones in G. We
can define a score assignment on the arcs of G′ in which teams corresponding to
vertices of D win all their remaining matches gaining α points in each of them,

while teams corresponding to vertices of R \D lose all their remaining matches
gaining 0 point in each match. In such an assignment p, scrp(v) = 0 for each
v ∈ R \ D, and since each blue vertex has at least one neighbor in D, we also
have scrp(v) ≤ (δ(v)− 1)β for each v ∈ B. Thus, we have a score assignment for
G′ in which the only violating vertices are the r vertices in D.

For the other direction, suppose that we are given an r-violating score as-
signment p. If there exists a blue vertex v that is violating in p, then we modify
p as follows: we let v gain β points on all but one of its incoming arcs, and we let
v gain 0 point on the remaining (arbitrarily chosen) arc leading from some red
vertex u to v. Note that our blue vertex v ceases to be violating in the resulting
score assignment p′, and the only vertex that might become newly violating is
the red vertex u. Hence, p′ is also r-violating, and contains less violating blue
vertices than p does. Repeating this procedure as long as it is possible, we ar-
rive at an r-violating score assignment where the set D of violating vertices is a
subset of R; recall |D| ≤ r.

Since any blue vertex v ∈ B receives β points from each arc leading from
R \ D to v, the capacity of v ensures that v must have a neighbor in D, as
otherwise it would gain δ(v)β > c(v) points, contradicting to the fact that v
cannot be violating. Hence, D must indeed dominate all blue vertices. ut

The result of Theorem 2 shows that even for small values of r, it is hard
to decide whether our team can finish no worse than at the (r + 1)-st place.
Similarly, we can ask whether our team can beat at least a few other teams. In
other words, we aim for a score assignment where at least a few number of vertices
are non-violating. NP-hardness of this problem is already implied by Theorem 2,
and below we prove intractability of this situation in the parameterized sense as
well. Namely, we show that MinStanding(S) is W[1]-hard with respect to the
parameter n− r, where n is the number of vertices in the input graph. The fact
that neither r, nor its dual parameter n− r leads to fixed-parameter tractability
(as opposed to many examples in the parameterized literature) suggests that
MinStanding(S) is a considerably tough problem.

Theorem 3. MinStanding(S) is W[1]-hard with parameter |V (G)|−r for any
well-based set S of outcomes, even if the (undirected version of the) input graph
G is K1,4-free.4

Proof. We give a simple FPT-reduction from the W[1]-hard Independent Set
problem, which is known to be W[1]-hard even on K1,4-free graphs [17]. Let
G be the input graph and ` the parameter given. The constructed instance of

MinStanding(S) will be (
−→
G, c, |V (G)| − `) where

−→
G is an arbitrarily oriented

version of G, and c is the constant zero function.

4 In the version of this paper published in Algorithmica, we erronously claimed this
result to hold for claw-free graphs instead of K1,4-free graphs; we later corrected this
mistake in an erratum. We are grateful for Matthias Mnich who kindly pointed out
this error.

Now, it is easy to see that a set X of vertices in G is independent if and

only if there is a score assignment on
−→
G in which vertices of X are not violating.

(Again, we make use of the fact that S is well-based.) ut

On the positive side, we were able to establish that MinStanding(S) can
be solved in polynomial time on trees. Though sports competitions where a
team’s success is measured by its score collected over several matches do not
usually use a tree as the underlying structure for scheduling matches, the result
of Theorem 4 can still be applicable in practice: after most of the matches have
already been played, a situation might arise when the structure of the remaining
matches does not contain any cycles (see also Corollary 1).5

Theorem 4. For any well-based set S of outcomes, MinStanding(S) can be
solved in O(r2n) (and hence also in O(n3)) time, if the input graph is a directed
tree on n vertices.

Proof. Let (G, c, r) be our input; we may assume r ≤ |V (G)|. We perform dy-
namic programming, so we will assume that T = Ḡ is a rooted tree with root
vroot. For any vertex v ∈ V (T), we let Cv ⊆ V (T) denote the children of v, Tv
the subtree of T rooted at v, and Gv = G[Tv].

We compute the following values for each v ∈ V (T). First, for each i ∈
{0, . . . , r} we let scr i(v) be the minimum score of v in any i-violating score
assignment for Gv where v is not violating. If no such assignment exists, then
we set scr i(v) = +∞. Second, we also compute the non-negative integer r∗(v)
defined as the minimum i such that there is a score assignment for Gv in which
i vertices of V (Tv) \ {v} are violating; note that here we allow v to be violating,
and thus such a score assignment may be altogether (i+ 1)-violating.

Observe that (?) there is an i-violating score assignment on Gv for some
i ∈ {0, . . . , r} exactly if scr i(v) ≤ c(v) or r∗(v) + 1 ≤ i. Hence, (G, c, r) is a
yes-instance if and only if scrr(vroot) ≤ c(vroot) or r∗(vroot) + 1 ≤ r .

Clearly, r∗(v) = 0 and scr i(v) = 0 for each leaf v of T and 0 ≤ i ≤ r.
For a non-leaf node v, we have

r∗(v) =
∑
x∈Cv

min{i | scr i(x) ≤ c(x) or r∗(x) + 1 ≤ i}. (3)

To see this, notice that if we allow v to be a violating vertex, then to each arc
vx (or xv) incident to v in Gv we can assign the outcome where the child x of v
gains 0 points from this arc. Hence, the minimum number of violating vertices
in such an assignment, not counting v itself, can be computed by summing up
the minimum values i for each x ∈ Cv such that Gx admits an i-violating score
assignment; by (?) this yields exactly the formula above.

To compute the values scr i(v) for a non-leaf node v, i ∈ {0, . . . , r}, we first
compute for each x ∈ Cv and each j ∈ {0, . . . , r} the minimum gain of v from

5 In fact, this situation occurs at latest when each team has at most one remaining
match to be played.

the arc vx (or xv) in any score assignment for G[Tx ∪ {v}] that is j-violating on
the vertices of Tx; we denote this value by gv(x, j). It is easy to check that we
have the following (in the formula below, q can take values from {0, . . . , k}, and
we use the convention that taking the minimum over an empty set yields +∞)

gv(x, j) =

0 if r∗(x) < j,
min{αq | scr j(x) + βq ≤ c(x)} if r∗(x) ≥ j and vx ∈ A(G),
min{βq | scr j(x) + αq ≤ c(x)} if r∗(x) ≥ j and xv ∈ A(G).

(4)

Let Cv = {x1, . . . , xt} be the children of v. An i-violating assignment p on
Gv can be viewed as the union of certain score assignments on the subgraphs
G[Txh

∪ {v}] for h = 1, . . . , t. Clearly, if v is not violating in p, then the number
of violating vertices in these score assignments sums up to at most i, because p
is i-violating. The minimum possible score that v gains when taking the union
of such score assignments is, by the definitions, exactly

gminv (i) = min

{
t∑

h=1

gv(xh, jh) | j1, . . . jt ∈ N with

t∑
h=1

jh = i

}
. (5)

From this we immediately obtain that

scr i(v) =

{
gminv (i) if gminv (i) ≤ c(v),
+∞ otherwise.

(6)

Having determined a recurrence for the values we aim to compute, let us
now look at the time needed for their calculation. We perform the necessary
computations in a bottom-up manner, so when computing the values r∗(v) and
scr i(v), i ∈ {0, . . . , r}, we assume that the corresponding values are already
available for each child x of v. Then r∗(v) can clearly be computed using (3) in
O(r|Cv|) time. The computation of all the values gv(x, j) using (4) can be done
in total time O(kr|Cv|).

However, computing gminv (i) for some i using the recurrence (5) directly
would take exponential time, so we need a slightly more elaborate approach.
Namely, we can apply dynamic programming: instead of taking into account all
the t children of v at once, we deal with them in t steps, considering only the
children x1, . . . , x` in the `-th step. To this end, for each ` = 1, . . . , t we let

gminv (x1 → x`, i) = min

{∑̀
h=1

gv(xh, jh) | j1, . . . j` ∈ N with
∑̀
h=1

jh = i

}
.

Note that gminv (x1 → x1, i) = gv(x, i), and for ` ≥ 2 we get

gminv (x1 → x`, i) = min
{
gminv (x1 → x`−1, j) + g(x`, j

′) | j, j′ ∈ N with j + j′ = i
}
.

(7)
One computation of the form (7) takes O(r) time, so calculating gminv (x1 →

x`, i) for each ` = 1, . . . , t and i = 0, . . . , r takes O(r2t) = O(r2|Cv|) time. By
gminv (i) = gminv (x1 → xt, i) and (6), from this we immediately obtain also the

values scr i(v), i ∈ {0, . . . , r}. Hence, the overall running time of the algorithm
is ∑

v∈V (T)

|Cv|(O(r) +O(kr) +O(r2)) = |V (G)|O(kr + r2) = O(|V (G)|r2).

ut

Given an instance I of MinStanding(S) where the underlying graph G is
a directed forest, we can solve I by processing each connected component of
G independently. Supposing that G consists of the trees T1, . . . , Tc, for each
i ∈ {1, . . . , c} we can determine the minimum number of violating vertices vi for
each tree Ti; the minimum number of violating vertices in any score assignment
for I is then simply

∑c
i=1 vi. This yields the following corollary of Theorem 4.

Corollary 1. For any well-based set S of outcomes, MinStanding(S) can be
solved in O(r2n) (and hence also in O(n3)) time if the input graph is a directed
forest on n vertices.

A further consequence of Theorem 4 is that MinStanding(S) can also be
solved in polynomial time if the input graph has maximum degree at most 2.
This means that if each team in the competition has at most two remaining
matches to be played, then our problem becomes tractable.

Corollary 2. For any well-based set S of outcomes, MinStanding(S) can be
solved in O(r2n) (and hence also in O(n3)) time, if the input graph has n vertices
and maximum degree 2.

Corollary 2 relies on the observation that an undirected graph with maximum
degree at most 2 is a collection of disjoint cycles and paths. Paths can be handled
by Theorem 4 directly. To calculate the minimum number of violating vertices
for a cycle, we need to pick an arbitrary arc of the cycle, try assigning each
of the |S| = k + 1 possible outcomes to it, and then apply the algorithm of
Theorem 4 on each of the resulting instances. For details of this method, we
refer to Cechlárová et al. [4, Theorems 3 and 4] who apply the same arguments
for the Sports Elimination problem.

Remark 1. We remark that Theorem 4 and hence Corollaries 1 and 2 hold even
if S is not necessarily well-based, by the polynomial-time reduction provided by
Kern and Paulusma [20] that produces an equivalent instance with a normalized
(and thus, well-based) set of outcomes.

We now present a result sharply contrasting Corollary 2 by proving that
MinStanding(S) is NP-complete if each vertex of the input graph has degree
either 2 or 3, or even if all vertices have degree 3. Since many sports competitions
schedule matches in a way that at any moment every team has roughly the
same number of remaining matches, Theorem 5 has great practical relevance.
Together with Corollary 2, it shows that deciding whether our distinguished

team is still able to obtain a good final standing is computationally intractable
while there are teams with three remaining matches, but becomes easily solvable
in the moment when all teams have at most two matches to play. Theorem 5
also shows that, somewhat surprisingly, MinStanding(S) remains NP-complete
even if each team has the same number of remaining matches. Let us remark that
the case when r = 0 (that is, the Sports Elimination problem) was already
known to be NP-complete for any S that is not complete, even if each team has
at most 3 remaining matches [4]; Theorem 5 proves a similar result for general
values of r that holds for practically any set S of outcomes (it only assumes S
to be well-based).

Theorem 5. MinStanding(S) is strongly NP-complete for any well-based set
S of outcomes, even if the (undirected version of the) input graph is bipartite
and (a) each vertex has degree 2 or 3, or (b) each vertex has degree 3.

Proof. We present a reduction from the following NP-hard [12] variant of Exact
Cover by 3-Sets which we denote by 3X3C. The input of 3X3C consists of
a set U with 3n elements for some n ∈ N, together with a family T of triplets
of elements of U , such that each element of U is contained in at least two but
at most three triplets. The task is to decide whether there exist n triplets in T
whose union is U ; such a family of triplets is called an exact cover for U .

Observe that 3X3C can be turned into an equivalent instance of Red-Blue
Dominating Set: let G = (T , U ;E) be the bipartite graph where we set T as
the set of red vertices and U as the set of blue vertices, and we connect some
T ∈ T with some u ∈ U if and only if u ∈ T . Observe T ′ ⊆ T is a set of at most
n red vertices dominating all blue ones if and only if T ′ is an exact cover for U .
Hence, the instance (G,n) of Red-Blue Dominating Set is equivalent to our
input instance of 3X3C.

Thus, we can re-use the reduction from Red-Blue Dominating Set to
MinStanding(S) presented in the proof of Theorem 2. It remains to observe
that each vertex of G has degree either 2 or 3, and since the reduction used in the
proof of Theorem 2 only orients the edges of the given graph (without altering
vertex degrees), the constructed instance (G′, c, n) of MinStanding(S) has the
properties required in case (a).

To obtain the result for case (b), that is, when all vertices have degree 3, it
suffices to use the same reduction from the variant of 3X3C where each element
appears in exactly three triplets; this problem is also NP-hard [13]. ut

To examine the possibilities of approximation for MinStanding(S), we de-
fine its optimization variant in the standard way: instead of giving the integer r
as part of an instance for MinStanding(S), the aim is to determine the mini-
mum value for r that results in a yes-instance. Thus, in the optimization variant
of MinStanding(S), each input instance is a pair (G, c) formed by a multigraph
G = (V,A) and a capacity function c : V → R. We say that a set of vertices
R ⊆ V is a solution for (G, c) if there exists a score assignment for G in which
all violating vertices (with respect to c) are contained in R. The task is then to
find a solution of minimum size.

Regarding the (in)approximability of MinStanding(S) for the cases where
S is not complete, the NP-hardness of MinStanding(S) for r = 0 implies
that MinStanding(S) cannot be approximated within any multiplicative fac-
tor, since deciding whether the optimum is zero or not already is NP-hard.
However, this reasoning does not rule out the existence of an approximation al-
gorithm that has an additive term in the size of its output, such as the algorithm
of Theorem 7. Below we show that allowing for an additive term in the approx-
imation guarantee does not yield an opportunity for an efficient approximation
algorithm.

Theorem 6. If P 6= NP, S is a set of outcomes that is not complete, and ε is
a constant with 0 < ε < 1, then no polynomial-time algorithm exists that for a
given instance I of MinStanding(S) outputs a solution for I with size at most
α(I)OPT + n1−ε, where n is the number of vertices in the input graph, OPT is
the optimum solution size for I, and α is an arbitrary function.

Proof. Suppose for contradiction that such an algorithm A exists. Using A, we
are going to give an algorithm for the special case of MinStanding(S) with
r = 0 that runs in polynomial time. By the results of Kern & Paulusma [20] (as
repeated in Theorem 1), this problem is NP-hard for any S that is not complete.

We define a constant c0 as the integer b 1−εε c + 1. Given some instance I =
(G, c, 0) of MinStanding(S), we construct an instance I ′ for MinStanding(S)
by taking nc0 disjoint copies of G and setting the capacity function to equal c on
each of the copies. Note that the number of vertices in I ′ is N = nc0+1, which
is polynomial in n. We run A on I ′.

Clearly, if I is a yes-instance, then the optimum solution size OPT for I ′ is
0, since an assignment with no violating vertices exists for (G, c) and hence for
any number of disjoint copies of it as well. Thus, algorithm A is guaranteed to
output a solution of size at most α(I ′)OPT +N1−ε = n(c0+1)(1−ε).

By contrast, if I is a no-instance, then any solution R for I ′ must contain
at least one vertex from each copy of G, implying |R| ≥ nc0 . In particular, the
output of A must have size at least nc0 . By c0 >

1−ε
ε we quickly get that

n(c0+1)(1−ε) < nc0 ,

which implies that we can distinguish between yes- and no-instances for MinStanding(S)
with r = 0. ut

4 MinStanding(S) for complete S

From now on, let us deal with the special case of MinStanding(S) where S =
{(i, k − i) | 0 ≤ i ≤ k} for some k ∈ N.

It is not hard to see that an instance (G, c, r) of MinStanding(S) is equiva-
lent with an instance (G′, c, r) of MinStanding({(1, 0), (0, 1)}), where G′ is the
digraph obtained from G by replacing each arc ab with k parallel arcs from a to
b. Indeed, assigning the outcome (i, k − i) ∈ S on some arc ab in G corresponds

precisely to assigning the outcome (1, 0) to i arcs and the outcome (0, 1) to k− i
arcs among the k parallel arcs leading from a to b in G′.

Considering the case S = {(1, 0), (0, 1)}, we can reformulate our problem as
follows.

Vertex Deletion to In-degree Bounded Orientation (vdibo):
Instance: A triple (G, c, r) where G = (V,E) is an undirected multigraph,
c : V → N represents degree bounds, and r is an integer.
Question: Does there exist a set R of at most r vertices such that there
exists an orientation of G−R in which δ−(v) ≤ c(v) for each v ∈ V \R?

Similarly as for MinStanding(S), we call a set R of vertices fulfilling the
above requirement a solution, and we say that R is minimal if no proper subset
of R is a solution.

By Theorem 2, we know that vdibo is strongly NP-complete, and even W[2]-
hard with parameter r. Nevertheless, MinStanding(S) for a complete S, and
therefore vdibo as well, is in XP with respect to the parameter r: the problem
can be solved in polynomial time for each fixed value of r by the simple brute
force algorithm checking for all possible sets R of size r whether R is a solution
for the given instance: deleting R from the input graph and solving the remainder
(setting also r = 0 to forbid additional deletions) can be done in polynomial time
by Theorem 1.

Here we provide a greedy approximation algorithm for vdibo with approx-
imation ratio O(ln |V (G)|). In Section 4.1, we reduce our problem instance to
a certain matroid covering problem, for which we propose an approximation
algorithm in Section 4.2.

4.1 Reduction to matroid base cover

Suppose we are given an instance (G, c, r) of vdibo. Let us start from an arbi-
trary orientation of G. We call a vertex v unsaturated, exact, or oversaturated,
if δ−(v) is smaller, equal to, or larger than c(v), respectively. We will call the
number exc(v) = δ−(v)− c(v) the excess of v.

Preprocessing phase. We apply the following simple step as long as it is
possible: if there is a directed path leading from an unsaturated vertex to an
oversaturated vertex, then reverse all arcs on this paths. When there are several
such paths, we can choose one arbitrarily (even though the graph obtained at
the end of this phase depends on our choices).

Observe that reversing a path leading from a to b during the preprocessing
phase decreases the excess of b, while it does not turn a into an oversaturated

vertex. After the preprocessing phase, let
−→
G be the obtained digraph, and U

the set of all vertices in
−→
G which are reachable from some unsaturated vertex.

Observe that U contains all unsaturated vertices but contains no oversaturated
vertex, and moreover, no arcs leave U in

−→
G . This implies that any minimal

solution R must be disjoint from U . Hence, we can delete U from our graph

without changing the solvability of our instance; let D1 be the digraph
−→
G − U .

Note that each vertex of D1 is either oversaturated or exact, and thus has non-
negative excess.

The following series of lemmas help us to reformulate our question in terms
of matroids.

Lemma 1. A set R ⊆ V (D1) is a solution for (G, c, r) if and only if there exists
a set P of arc-disjoint paths in D1 such that each path of P leads from R to an
oversaturated vertex of D1, and for each vertex v ∈ V (D1) \ R, exactly exc(v)
paths of P end in v.

Proof. By the discussion above, a set R ⊆ V (D1) is a solution for (G, c, r) if and
only if it is a solution for (G−U, c|G−U , r) where c|G−U is the restriction of c to
the vertices of G− U (meaning c|G−U (v) = c(v) for each v ∈ V (G) \ U).

Suppose that R is a set of vertices and P a set of paths fulfilling the conditions
of the lemma. We claim that reversing all paths of P in D1 yields an orientation
where each vertex not in R has in-degree at most its capacity. Observe that the
only vertices whose in-degree is affected by the reversal of a directed path P are
the endvertices of P . If P ∈ P, then P starts at a vertex of R, so reversing P
decreases the in-degree of its endpoint by one, but does not modify the indegree
of any other vertex in V (D1) \ R. Since for each v ∈ V (D1) \ R, exactly exc(v)
paths of P end in v, the claim follows. Therefore, R indeed yields a solution.

For the other direction, suppose that some set R ⊆ V (D1) is a solution for
(G, c, r), and thus for (G−U, c|G−U , r). Let DR be an orientation of G−U where
each vertex v not in R has in-degree at most c(v). Let ∆ be the subgraph of
D1 spanned by those arcs in D1 which are oriented in the opposite direction
in DR as in D1 (recall that both digraphs were obtained by orienting G − U).
Notice that for each vertex v ∈ V (D1) \ R, the in-degree of v in DR is exactly
δ−D1

(v)− δ−∆(v) + δ+∆(v), from which we know that

δ−∆(v)− δ+∆(v) ≥ excD1(v) ≥ 0. (8)

We show that ∆ contains a set of paths as reqired by the lemma.
Let P be an inclusion-wise maximal set of arc-disjoint paths in ∆, each

starting at some vertex of R, such that |Pv| ≤ exc(v) for each v ∈ V (D1) \ R
where Pv is the set of paths in P ending at v. For contradiction, suppose that
there exists at least one vertex w ∈ V (D1) \R with |Pw| < exc(w). Let W be a
maximal walk ending in ∆− P that ends at w and uses each arc at most once,
and let x be its starting vertex. If x ∈ R, then we can turn W into a path from
x to w by shortcutting all previously visited nodes in W , which contradicts the
maximality of P. Thus, x /∈ R, and so |Px| ≤ exc(x) which implies

δ−∆−P(x)− δ+∆−P(x) = δ−∆(x)− δ+∆(x)− |Px| ≥ δ−∆(x)− δ+∆(x)− exc(x) ≥ 0,

where the last inequality follows from (8). However, the maximality of W shows
that there is no arc of ∆ − P entering x not already used by W , yielding
δ−∆−P(x)− δ+∆−P(x) < 0, a contradiction. This finishes the proof of the lemma.

ut

Observe that using Lemma 1 we can easily decide if a given set R of vertices is
a solution, by computing a maximum flow in an appropriate network. However,
to construct such an R we need some additional tools.

Let D2 be the graph obtained from D1 as follows. For each vertex v ∈ V (D1),
we add a set X(v) of exc(v) new vertices together with the arcs {vx | x ∈ X(v)}.
We let X =

⋃
v∈V (D1)

X(v). The following lemma is a direct consequence of
Lemma 1.

Lemma 2. A set R ⊆ V (D1) is a solution for (G, c, r) if and only if there exists
a set of |X| arc-disjoint paths in D2 leading from R to distinct vertices of X.

Next, we proceed from arc-disjoint paths to vertex-disjoint ones, by con-
structing the following digraph D3. First, for each v ∈ V (D2) \ X we replace
v with a set Y (v) = {v→u | vu ∈ A(D2)} of new vertices. Intuitively, v→u
will host those paths running through v in D2 that leave v towards u. We let
Y =

⋃
v∈V (D2)\X Y (v), so the vertex set of D3 will be the disjoint union of X

and Y . Second, for each arc vu ∈ A(D2) with u ∈ X we replace vu with the arc
v→uu, and for each arc vu ∈ A(D2) with u /∈ X we replace vu with the arcs
{v→uy | y ∈ Y (u)}.

Lemma 3. For any set R ⊆ V (D1), there exist |X| arc-disjoint paths in D2

leading from R to distinct vertices of X if and only if there exist |X| vertex-
disjoint paths in D3 leading from a subset of

⋃
v∈R Y (v) to X.

Let D4 be the digraph obtained by reversing each arc of D3. We say that a
subset T ⊆ Y is linked to X, if there are |T | vertex-disjoint paths leading from
X to T in D4. It is well known that the family of those vertex sets T which are
linked to X in D4 form the independent sets of a matroid MX defined over Y ;
in particular,MX is a gammoid [26] (see also [25]). Hence, by Lemmas 2 and 3,
we can formulate our task as follows. Given the matroid MX and the partition
Y = {Y (v) | v ∈ V (D1)} of its universe Y , we need to decide if there exists at
most r blocks from the partition Y whose union contains a base ofMX . In other
words, we aim for a base of MX that can be covered with the smallest number
of blocks from Y.

To deal with the above described problem, we actually examine a somewhat
more general case. Namely, we define the following problem that we name Ma-
troid Base Cover.

Matroid Base Cover (mbc):
Instance: A matroidM defined over a universe Y , and a family F ⊆ 2Y

of subsets of Y .
Task: Find a minimum number of sets from F whose union covers a base
of M.

In Theorem 8 of Section 4.2 we propose a polynomial-time approximation
algorithm for mbc that produces a solution with 1+bOPT ln bc sets, where OPT
is the number of sets in an optimal solution and b is the rank of the given matroid.

Applying this algorithm on the matroidMX and the partition Y defined above,
we obtain an approximation algorithm for vdibo. Notice that the rank b of
MX is |X| =

∑
v∈V (D1)

exc(v), and therefore we must have b ≤ |V (G)|2 if our
instance is solvable. This, together with the arguments of this section, yields the
following theorem.

Theorem 7. There is a polynomial-time approximation algorithm for vdibo
that produces a solution of size at most

1 +

OPT ln

 ∑
v∈V (D1)

exc(v)

 ≤ 1 + bOPT · 2 ln |V (G)|c ,

where G is the input graph, D1 is the digraph obtained after the preprocessing
step, and OPT is the size of an optimal solution.

4.2 Greedy approximation for Matroid Base Cover

Here we give a greedy approximation algorithm for mbc. LetM be our matroid
given, with a family F of subsets of its universe Y .

We are going to construct a base B ofM. At the i-th step, we will obtain an
independent set Ii as follows. We start from I0 = ∅, and the set Ii is constructed
from Ii−1 by choosing a set Fi ∈ F that maximizes r(Fi∪Ii−1). We let Ii ⊃ Ii−1
be a maximal independent set in Fi ∪ Ii−1. The algorithm terminates if Ii is a
base ofM; we let i∗ denote the index of this step. We let b the rank ofM, that
is, b = |Ii∗ |.

Suppose that BOPT is a base that can be covered with the minimum num-
ber OPT of sets from F . Let FOPT denote the family of these sets. The key
observation in the analysis of our algorithm is the following.

Lemma 4. For each i = 1, . . . , i∗ we have

|Ii| − |Ii−1| ≥
b− |Ii−1|
OPT

. (9)

Proof. Let us consider the i-th step, and let F1, F2, . . . , Fi−1 be the sets of F
chosen by the previous steps; we denote the family of these sets by Fi−1. We say
that a set F ∈ F has value r(F ∪ Ii−1)− |Ii−1|. Our greedy algorithm picks the
set in F with the highest value.

Adding the sets in FOPT to Fi−1 yields a family of at most i − 1 + OPT
sets whose union contains BOPT . By properties of a matroid, this means that
summing up the values of the sets in FOPT yields at least b − |Ii−1|. Hence,
at least one of the sets from FOPT has value at least (b − |Ii−1|)/OPT . As
our greedy algorithm picks the set Fi having the highest value in F , we know
that this value is at least (b− |Ii−1|)/OPT . Therefore, we obtain |Ii| − |Ii−1| =
r(Fi ∪ Ii−1)− |Ii−1| ≥ (b− |Ii−1|)/OPT , as promised. ut

Applying (9) repeatedly, we obtain

|Ii| ≥
b

OPT

(
1 +

(
1− 1

OPT

)
+

(
1− 1

OPT

)2

+ · · ·+
(

1− 1

OPT

)i−1)

= b

(
1−

(
1− 1

OPT

)i)
.

Clearly, the algorithm terminates if |Fi| > b − 1. This leads us to the fact
that i∗ is the smallest integer such that(

1− 1

OPT

)i
<

1

b
,

that is,

i <
ln b

OPT ln OPT
OPT−1

OPT.

Considering the function f(x) = x ln x
x−1 , it is not hard to see that f(x) > 1

for any x > 1. Therefore, we obtain that the number of blocks chosen by the
greedy algorithm can be upper bounded by i∗ ≤ 1 + bOPT ln bc. Thus, we have
the following theorem.

Theorem 8. There is a polynomial-time approximation algorithm for Matroid
Base Cover that produces a solution containing at most 1 + bOPT ln bc sets,
where b is the rank of the matroid given and OPT is the number of sets in an
optimal solution.

4.3 Inapproximability results

In Theorem 8 presented in the previous section, we proposed an algorithm for
mbc that always yields a solution of size 1 + bOPT ln bc where b is the rank of
the input matroid and OPT is the size of an optimum solution. To complement
this result, the following theorem shows that this is essentially optimal, since no
polynomial-time algorithm can provide an approximation with ratio (1 − ε)|Y |
unless P = NP, where Y is the universe of the input matroid; note that b ≤ |Y |
always holds.

Theorem 9. For any ε > 0, it is NP-hard to approximate Matroid Base
Cover within a ratio of (1 − ε) ln |Y |, where Y is the universe of the input
matroid M, even if

– M is the direct sum of uniform matroids each with rank 1, and
– the set family F ⊆ 2Y forms a partition of Y .

Proof. We present a reduction from Set Cover. In this problem, we are given
a set U = {u1, . . . , un} together with a family of subsets S ⊆ 2U , and the task is
to find a minimum number of sets from S whose union contains U . In a recent

paper, Moshkovitz [23] proved that Set Cover on inputs of size N cannot be
approximated within a ratio of (1 − ε) lnN for any ε > 0 in polynomial time,
unless P = NP.

We are going to construct an instance of Matroid Base Cover with input
matroid M and set family F . Suppose that the sets given for Set Cover are
S = {S1, . . . , Sm}. We define the universe of matroid M as Y = {yi,j | ui ∈
Sj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Note that |Y | equals the size N of the Set Cover
instance. We let M be the direct sum of the matroids Mi, 1 ≤ i ≤ n, where
Mi is the uniform matroid with universe Yi = {yi,j | ui ∈ Sj , 1 ≤ j ≤ m} and
rank 1. We define F as the partition of Y whose blocks are the sets Fj = {yi,j |
ui ∈ Sj , 1 ≤ i ≤ n} for j = 1, . . . ,m.

Clearly, the sets in F bijectively correspond to the sets in S, and some F ′ ⊆ F
covers a base ofM if and only if it contains at least one element from each of the
sets Yi, which happens exactly if the corresponding sets S ′ ⊆ S form a covering
of set U . Hence, applying an approximation algorithm with ratio (1 − ε) ln |Y |
for some ε > 0 to the constructed instance of Matroid Base Cover we obtain
an approximation algorithm for Set Cover with ratio (1 − ε) lnN . As the
contruction can be performed in polynomial time, the theorem follows. ut

Remark 2. It is well known that matroids obtained as the direct sum of uniform
matroids with rank 1 belong to the class of gammoids, and also to the class of
graphic matroids (see e.g. [25]). Hence, the inapproximability result of Theorem 9
also holds for these special cases as well.

Let us also mention here a result by Richey and Punnen [27], who proved
that given a graph G and a partition E of its edges, finding a minimum number
of sets in E whose union contains a spanning tree of G is NP-hard6. Since this
problem is in fact the special of Matroid Base Cover where M is graphic
and F is a partition of the universe of M, Theorem 9 can be thought of as a
generalization of the result by Richey and Punnen.

Recall that vdibo can be reduced to the special case of Matroid Base
Cover where the matroid M given is a gammoid, and the family F of sub-
sets (from which we have to cover a base) is a partition of the universe. By
Theorem 9 and Remark 2, the approximation algorithm for Matroid Base
Cover provided by Theorem 8 is essentially optimal. However, this does not
rule out the possibility of approximating vdibo directly with a better approx-
imation ratio. To address this issue, we prove below that the approximation
algorithm presented in Theorem 7 has roughly optimal ratio: assuming P 6= NP,
no polynomial-time algorithm can provide an approximation with ratio ε lnn for
any constant ε with n denoting the number of vertices in the input graph; this
contrasts the bound 1 + bOPT · 2 lnnc on the solution size guaranteed by the
algorithm of Theorem 7.

Theorem 10. For any constant ε > 0, it is NP-hard to approximate vdibo with
ratio ε lnn, where n is the number of vertices in the input graph.

6 In fact, Richey and Punnen [27] proved NP-hardness for a slightly more general
version of this problem, but their reduction proves the stronger result stated here.

Proof. Again, we present a reduction from Set Cover. Let us be given an
instance ISC of Set Cover with ground set U = {u1, . . . , un}, and subsets
S1, . . . , Sm of U . W.l.o.g. we assume that each element of U is contained in at
least one of the set S1, . . . , Sm. We construct a bipartite graph G with vertex set
U ∪{s1, . . . , sm}; we connect ui with sj exactly if ui ∈ Sj , for each 1 ≤ i ≤ n and
1 ≤ j ≤ m. We define the capacities by setting c(sj) = 0 for each 1 ≤ j ≤ m,
and we set c(ui) = d(ui)− 1 for each 1 ≤ i ≤ n.

First observe that for any solution R for (G, c) there exists a solution R′

with |R′| ≤ |R| and R′ ⊆ {s1, . . . , sm}. To see this, suppose that ui ∈ R for
some i. It is easy to see that replacing ui by any vertex sj ∈ NG(ui) still yields
a solution. Hence, replacing every vertex in U ∩ R with corresponding vertices
from {s1, . . . , sm} we obtain a solution R′ not larger than R, as desired.

Since each vertex of G−U has zero capacity, we know that there must exist
an orientation of G where all edges are oriented towards U except those incident
to some vertex of R′. Such an orientation can respect the capacities for vertices of
U only if each u ∈ U has at least one outgoing arc, meaning that it is adjacent to
at least one vertex in R′. By the definition of G, this implies that the set family
{Sj | sj ∈ R′} yields a solution to the Set Cover instance ISC. It is also easy
to see that any solution for ISC containing k sets yields a solution for (G, c) with
k vertices.

Hence, an approximation for vdibo with ratio ε lnn where n is the number
of vertices in the input graph would yield an approximation with ratio ε lnN for
Set Cover on inputs of size N ; using the result of Moshkovitz [23] the theorem
follows. ut

5 Conclusions

We conducted a thorough examination of the computational complexity of the
MinStanding(S) problem both in the case where the set S of outcomes is
general, obtaining mostly intractability results, and where S is complete. The
latter case lead us to the investigation of a vertex-deletion problem concerning
in-degree bounded orientations of graphs, for which in turn we discovered a
strong connection to a special class of matroids (namely, gammoids). Based on
this connection, we were able to provide a polynomial-time approximation for
our problem with roughly optimal approximation ratio.

We hope our findings will motivate researchers to investigate further possi-
bilities for revealing and utilizing connections between the area of classical graph
(or matroid) theory and problems connected to sports competitions, or more gen-
erally, to social choice. In particular, it would be interesting to see which special
cases of Matroid Base Cover may have practical applications, and whether
these special cases admit efficient (approximation or optimal-value) algorithms.

References

1. Ilan Adler, Alan L. Erera, Dorit S. Hochbaum, and Eli V. Olinick. Baseball,
optimization and the world wide web. Interfaces, 32(2):12–22, 2002.

2. Yuichi Asahiro, Jesper Jansson, Eiji Miyano, and Hirotaka Ono. Upper and lower
degree bounded graph orientation with minimum penalty. In CATS 2012: Proceed-
ings of the 18th Comouting: The Australasian Theory Symposium, volume 128 of
Conferences in Research and Practice in Information Technology, pages 139–146,
2012.

3. Thorsten Bernholt, Alexander Gülich, Thomas Hofmeister, and Niels Schmitt.
Football elimination is hard to decide under the 3-point-rule. In MFCS 1999:
Proceedings of the 24th International Symposium on Mathematical Foundations
of Computer Science, volume 1672 of Lecture Notes in Computer Science, pages
410–418. Springer, 1999.

4. Kataŕına Cechlárová, Eva Potpinková, and Ildikó Schlotter. Refining the complex-
ity of the sports elimination problem. Discrete Applied Mathematics, 199:172–186,
2016.

5. M. Chrobak and D. Eppstein. Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoretical Computer Science, 86:243–266, 1991.

6. Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, Heidelberg, 2005.

7. Yann Disser and Jannik Matuschke. Degree-constrained orientations of embedded
graphs. Journal of Combinatorial Optimization, 31(2):758–773, 2016.

8. Rod G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, London, 2013.

9. Rod G. Downey and Micheal R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer-Verlag, New York, 1999.

10. Stefan Felsner. Lattice structures from planar graphs. The Electronic Journal of
Combinatorics, 11:#R15, 2004.

11. András Frank and András Gyárfás. How to orient the edges of a graph. Colloquia
mathematica societatis János Bolyai, 18:353–364, 1976.

12. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, 1979. A
Series of Books in the Mathematical Sciences.

13. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

14. Dan Gusfield and Charles U. Martel. A fast algorithm for the generalized paramet-
ric minimum cut problem and applications. Algorithmica, 7(5&6):499–519, 1992.

15. Dan Gusfield and Charles U. Martel. The structure and complexity of sports
elimination numbers. Algorithmica, 32(1):73–86, 2002.

16. S. L. Hakimi. On the degrees of the vertices of a directed graph. Journal of the
Franklin Institute, 279:290–308, 1965.

17. Danny Hermelin, Matthias Mnich, and ErikJan Leeuwen. Parameterized complex-
ity of induced H-matching on claw-free graphs. In ESA 2012: Proceedings of the
16th Annual European Symposium on Algorithms, volume 7501 of Lecture Notes
in Computer Science, pages 624–635. Springer, 2012.

18. Alan J. Hoffman and Theodore J. Rivlin. When is a team “mathematically” elimi-
nated? In Proceedings of the Princeton Symposium on Mathematical Programming,
pages 391–401. Princeton University Press, 1970.

19. Walter Kern and Daniël Paulusma. The new fifa rules are hard: complexity aspects
of sports competitions. Discrete Applied Mathematics, 108(3):317–323, 2001.

20. Walter Kern and Daniël Paulusma. The computational complexity of the elimina-
tion problem in generalized sports competitions. Discrete Optimization, 1(2):205–
214, 2004.

21. Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Dover
Books on Mathematics. Courier Corporation, 2012.

22. S. Thomas McCormick. Fast algorithms for parametric scheduling come from
extensions to parametric maximum flow. Operations Research, 47(5):744–756, 1999.

23. Dana Moshkovitz. The projection games conjecture and the NP-hardness of lnn-
approximating Set-Cover. Theory of Computing, 11:221–235, 2015.

24. Stefan Neumann and Andreas Wiese. This house proves that debating is harder
than soccer. In FUN 2016: Proceedings of the 8th International Conference on Fun
with Algorithms, pages 25:1–25:14, 2016.

25. J.G. Oxley. Matroid Theory. Oxford graduate texts in mathematics. Oxford Uni-
versity Press, 2006.

26. Hazel Perfect. Applications of Menger’s graph theorem. J. Math. Anal. Appl.,
22:96–110, 1968.

27. Michael B. Richey and Abraham P. Punnen. Minimum perfect bipartite matchings
and spanning trees under categorization. Discrete Applied Mathematics, 39:147–
153, 1992.

28. Lawrence W. Robinson. Baseball playoff eliminations: An application of linear
programming. Operations Research Letters, 10(2):67 – 74, 1991.

29. Benjamin L. Schwartz. Possible winners in partially completed tournaments. SIAM
Review, 8:302–308, 1966.

30. Kevin D. Wayne. A new property and a faster algorithm for baseball elimination.
SIAM Journal on Discrete Mathematics, 14(2):223–229, 2001.

