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Abstract

A preference system I is an undirected graph where vertices have preferences
over their neighbors, and I admits a master list if all preferences can be de-
rived from a single ordering over all vertices. We study the problem of deciding
whether a given preference system I is close to admitting a master list based on
three di�erent distance measures. We determine the computational complexity
of the following questions: can I be modi�ed by (i) k swaps in the preferences,
(ii) k edge deletions, or (iii) k vertex deletions so that the resulting instance
admits a master list? We investigate these problems in detail from the view-
point of parameterized complexity and of approximation. We also present two
applications related to stable and popular matchings.

Keywords: preference system; master list; parameterized complexity;
approximation; preference swap; vertex/edge deletion.

1. Introduction

A preference system models a set of agents as an undirected graph where
agents are vertices, and each agent has preferences over its neighbors. Prefer-
ence systems are a fundamental concept in the area of matching under pref-
erences which, originating in the seminal work of Gale and Shapley [21] on
stable matchings, is a prominent research �eld in the intersection of algorithm
design and computational social choice that has steadily gained attention over
the last two decades. Preference systems may admit a master list, that is, a
global ranking over all agents from which agents derive their preferences. Master
lists arise naturally in many practical scenarios such as P2P networks [20, 35],
job markets [28], and student housing assignments [39]. Consequently, mas-
ter lists and its generalizations have been the focus of research in several pa-
pers [8, 11, 13, 28, 29, 33, 38].
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In this work we aim to investigate the computational complexity of recogniz-
ing preference systems that are close to admitting a master list. Such instances
may arise as a result of noise in the data set, or in scenarios where a global
ranking of agents is used in general, with the exception of a few anomalies.

1.1. Our contribution

We introduce three measures to describe the distance of a given preference
system I from the class of preference systems admitting a master list. The �rst
measure, ∆swap(I) is based on the swap distance between agents' preferences,
while the measures ∆edge(I) and ∆vert(I) are based on classic graph operations,
the deletion of edges or vertices; precise de�nitions follow in Section 2. We
study in detail the complexity of computing these values for a given preference
system I. After proving that computing any of these three measures is NP-hard,
we apply the framework of parameterized complexity and of approximation
algorithms to gain a more �ne-grained insight.

In addition to the problems of computing ∆swap(I), ∆edge(I), and ∆vert(I),
we brie�y look at two applications. First, we show that if a strict preference
system I is close to admitting a master list, then we can bound the number
of stable matchings as a function of the given distance measure. This yields
an e�cient way to solve a wide range of stable matching problems in instances
that are close to admitting a master list. Second, we consider an optimization
problem over popular matchings where the task is to �nd a maximum-utility
popular matching while keeping the number (or cost) of blocking edges low. We
prove that this notoriously hard problem can be e�ciently solved if preferences
are close to admitting a master list. In both of these applications, the running
time of the obtained algorithms heavily depends on the distance measure used.

1.2. Related work

Master lists have been extensively studied in the context of stable match-
ings [8, 13, 28, 29]. Various models have been introduced in the literature to
generalize master lists, and capture preferences that are similar to each other
in some sense. Closest to our work might be the paper by Bredereck et al. [8]
who examine the complexity of multidimensional stable matching problems on
instances that are, in some sense, close to admitting a master list. Abraham
et al. investigated a setting where agent pairs are ranked globally [1]. Bhatna-
gar et al. [4] examined three restrictions on preference systems: the k-attribute
model where agents are evaluated through a linear function of k attributes, the
k-range model where for each agent p on one side of a bipartite preference sys-
tem the rankings of p by the agents on the other side falls into a range of size k,
and the k-list model where agents can be partitioned into k types, and agents
of the same type have identical preferences. Meeks and Rastegari studied hard
problems under a variant of the k-list model [38]. Khanchandani and Watten-
hofer considered a distributed stable matching problem in a bipartite k-range
model [33]. Cheng and Rosenbaum [11] examined the expressive powers of the
k-range, k-attribute, and a bipartite version of the k-list model in terms of the
rotation poset realized by such preference systems.
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Restricted preference pro�les have been extensively studied in the broader
context of computational social choice as well; see the survey by Elkind et
al. [17]. In election systems, computing the Kemeny score [32] for a multiset
of votes (where each vote is a total linear order over a set of candidates) is
analogous to computing the value ∆swap(I) for a preference system I, although
there are some di�erences between these two problems. Apart from the liter-
ature on the computational complexity of computing the Kemeny score (see
e.g. [2, 3, 19, 27]), our work also relates to the problem of computing certain
distance measures between elections which has been investigated by Boehmer
et al. [6]. Distance from a strongly unanimous pro�le (where all votes coincide)
has been considered as a parameter in the study by Gupta et al. on committee
selection [23].

1.2.1. Organization.

We start with the preliminaries in Section 2, and de�ne our three distance
measures and the corresponding problems in Section 3. Section 4 contains our
main results, �rst for strict and then for weak preferences, and we present our
two applications in Section 5. We conclude with a short summary and some
suggestions for future research in Section 6.

2. Preliminaries

Let us now introduce our notation, giving all necessary de�nition about
directed and undirected graphs, preference systems, and certain concepts of
computational complexity theory.

2.1. Graph-theoretic notions

We de�ne most of the basic graph-related concepts we need for directed
graphs, as the corresponding concepts for undirected graphs are usually de�ned
analogously. We use the notation [n] = {1, . . . , n} for any n ∈ Z+.

Directed graphs. For a directed graph (or digraph) D, we denote by V (D)
and A(D) its vertex and arc set, respectively; each arc is an ordered pair of
vertices. For some vertex v ∈ V (G) we let N−D (v) and N+

D (v) denote the set
containing v's in- and out-neighbors in D, respectively. A loop is an arc (v, v)
for some v ∈ V (D), and two arcs are parallel if they both point from a to b for
some a, b ∈ V (D). In this paper, parallel arcs will be labelled, and we will be
able to identify them via their labels. A source in D is a vertex with in-degree 0,
and a sink is one with out-degree 0. A path in D is a series v1, . . . , vp of distinct
vertices such that (vi, vi+1) ∈ A(D) for each i ∈ [p− 1]; if additionally, (vp, v1)
is also an arc in D, then these vertices form a cycle in D. We say that D is
acyclic, if it contains no cycles. The vertices of an acyclic digraph can be listed
in a topological order which is a strict order v1, . . . , vn of the vertices of D such
that any arc (vi, vj) ∈ A(D) satis�es i < j.

Graph operations. A subgraph of D is a graph obtained by deleting some
edges and vertices from D. For a set X of edges or vertices in D, we let D−X
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denote the subgraph of D obtained by deleting X from D. For a set W ⊆ V (D)
of vertices, we let D[W ] = D− (V (D)\W ) denote the subgraph induced by W .
We may interpret paths or cycles in G also as subgraphs of G. By subdividing
an arc (u, v) we mean replacing (u, v) with two new arcs (u, x) and (x, v) where
x is a newly introduced vertex; the inverse operation is lifting the vertex x from
the path (u, x, v). By contracting a subgraph D′ of D we mean the following:
we replace V (D′) with a new vertex x, and for each arc e ∈ A(D) we replace
any endpoint of e contained in D′ by x; if any loops are created in the process,
we delete them.

Undirected graphs. Given an undirected graph G, we let V (G) and E(G)
denote its vertex and edge set, respectively; each edge is a set of two of vertices.
For some vertex v ∈ V (G) we let NG(v) denote the set containing v's neighbors
in G. All other concepts de�ned in the previous two paragraphs are de�ned
analogously for undirected graphs. A clique is a set K ⊆ V (G) of vertices such
that there is an edge between each two vertices ofK. The bidirected version of G
is obtained by replacing each edge {u, v} ∈ E(G) by two arcs (u, v) and (v, u).

2.2. Preference systems

A preference system is de�ned as a pair I = (G,⪯) where G is an undirected
graph and ⪯= {⪯v: v ∈ V (G)} where ⪯v is a weak or a strict order over NG(v)
for each vertex v ∈ V (G), indicating the preferences of v. For some v ∈ V (G)
and a, b ∈ NG(v), we say that v prefers b to a, denoted by a ≺v b, if a ̸⪯v b.
We write a ∼v b, if a ⪯v b and b ⪯v a. A tie in v's preferences is a maximal
set T ⊆ NG(v) such that t ∼v t′ for each t and t′ in T . If each tie has size 1,
then I is a strict preference system, and we may denote it by (G,≺).

Deletions and Swaps. For a set X of edges or vertices in G, let I − X
denote the preference system whose underlying graph is G −X and where the
preferences of each vertex v ∈ V (G −X) is the restriction of ⪯v to NG−X(v).
We may refer to I −X as a sub-instance of I.

If vertex v has strict preferences ≺v in I, then a swap is a triple (a, b; v)
with a, b ∈ NG(v), and it is admissible if a and b are consecutive1 in v's pref-
erences. Performing an admissible swap (a, b; v) in I means switching a and b
in v's preferences; the resulting preference system is denoted by I◁(a, b; v). For
a set S of swaps, I ◁ S denotes the preference system obtained by performing
the swaps in S in I in an arbitrary order as long as each swap is admissible
(if this is not possible, I ◁ S is unde�ned). For non-strict preferences, similar
notions will be discussed in Section 3.

Master Lists. A weak or strict order ⪯ml over V (G) is a master list for (G,⪯),
if for each v ∈ V (G), the preferences of v are consistent with ⪯ml, that is, ⪯v

is the restriction of ⪯ml to NG(v). We will denote by FML the family of those
preference systems that admit a master list. Notice that FML is closed under

1Vertices a and b are consecutive in v's preferences, if either a ≺v b but there is no vertex c
with a ≺v c ≺v b, or b ≺v a but there is no vertex c with b ≺v c ≺v a.
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taking subgraphs: if we delete a vertex or an edge from a preference system
in FML, the remainder still admits a master list.

Stable and popular matchings. A matching in a preference system I is a set
of edges such that no two of them share an endpoint. For an edge {a, b} in M ,
we say that M matches a to b and vice versa, and we denote this by setting
M(a) = b and M(b) = a. A vertex v in G is unmatched in M if no edge of M
has v as its endpoint. A blocking edge for M is an edge {a, b} of G such that
(i) either a is unmatched in M or M(a) ≺a b, and (ii) either b is unmatched
in M or M(b) ≺b a. The set of blocking edges for M is denoted by bp(M), and
M is stable if bp(M) = ∅. For a preference system I, we will denote by S(I)
the set of stable matchings in I.

We say that a vertex v prefers some matching M over another matching M ′,
if either v is unmatched in M ′ but matched in M , or it is matched in both but
M ′(v) ≺v M(v). For two matchings M and M ′ in I, we say that M is more
popular than M ′, if the number of vertices that prefer M to M ′ is more than
the number of vertices preferring M ′ to M . A matching M in popular in I, if
there is no matching more popular than M .

2.3. Computational complexity

We assume that the reader is familiar with the basic concepts and tools of
classic computational complexity theory, such as NP-hardness and polynomial-
time reductions.

Parameterized complexity. In the framework of parameterized complexity,
each problem instance I is associated with an integer k, and the aim is to �nd
algorithms whose running time is f(k)|I|O(1) for some computable function f ;
such an algorithm is called �xed-parameter tractable (or FPT) with parameter k.
The basic complexity class in the parameterized framework is W[1], and if a pa-
rameterized problem is proved to be W[1]-hard, then this is considered a strong
evidence that it is not FPT with the given parameterization. To show that a
given parameterized problem P is W[1]-hard, it su�ces to give a parameterized
or FPT reduction from anotherW[1]-hard problem Q, which is a function f that
for each instance (I, k) of the problem Q computes in FPT time an equivalent
instance (I ′, k′) of P such that k′ ≤ g(k) for some function g.

Approximation. For a minimization problem P, let objP denote its objective
function, and let OPTP(I) = objI(S) denote the value of an optimal solution S
for an instance I of P. For some c ≥ 1, an algorithm is a c-approximation or
an approximation with factor c for P, if for any instance I of P it returns a
solution S for I with objP(S) ≤ c·OPTP(I). For two minimization problems P1

and P2, an approximation preserving reduction [41, Section A.3.1] from P1 to P2

consists of two functions f and g computable in polynomial time such that

(i) for any instance I1 of P1, function f yields an instance I2 = f(I1) of P2

with OPTP2
(I2) ≤ OPTP1

(I1), and
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(ii) for any solution S2 of I2, function g yields a solution S1 = g(S2) for I1
with objI1(S1) ≤ objI2(S2).

Given such a reduction, an approximation algorithm A for P2 with factor c
yields an approximation algorithm for P1 with the same factor.

Some of our intractability results hold under certain standard complexity-
theoretic assumptions such as W[1] ̸= FPT or the so-called Unique Games Con-
jecture [34] which we will use in our paper without giving its precise de�nition.

For more on these topics, we refer the reader to the corresponding books [14,
15, 22, 41].

3. Problem de�nition and initial results

In Section 3.1 we introduce the notion of a preference digraph, a directed
graph associated with a given preference system, which can be exploited to ob-
tain a useful characterization of preference systems that admit a master list. In
Section 3.2 we de�ne our three measures for describing the distance of a pref-
erence system from FML, and observe a simple fact regarding the relationship
between these distances.

3.1. Characterization of FML through the preference digraph

With a strict preference system I = (G,≺) where G = (V,E), we associate
an arc-labelled directed graph DI that we call the preference digraph of I. We
let DI have the same set of vertices as G, and we de�ne the arcs in DI by
adding an arc (a, b) labelled with v whenever a ≺v b holds for some vertices a, b
and v in V . Note that several parallel arcs may point from a to b in DI , each
having a di�erent label, so we have |V (DI)| = |V | but |A(DI)| = O(|V |·|E|).
Observation 1 immediately follows from the fact that acyclic digraphs admit a
topological order.

Observation 1. A strict preference system (G,≺) admits a master list if and
only if the preference digraph of G is acyclic.

For a preference system I = (G,⪯) with G = (V,E) that is not necessarily
strict we extend the concept of the preference digraph of I as follows. Again,
we let DI have V as its vertex set, but now we add two types of arcs to DI :
for any v in V and a, b ∈ NG(V ) with a ̸= b we add a strict arc (a, b) with
label v whenever a ≺v b, and we add a pair of tied arcs (a, b) and (b, a), both
with label v, whenever a ∼v b. Note that this way we indeed generalize our
de�nition above for the preference digraph of strict preference systems. We will
call a cycle of DI that contains a strict arc a strict cycle. The following lemma
is a straightforward generalization of Observation 1.

Lemma 1. A preference system (G,⪯) admits a master list if and only if no
cycle of the preference digraph of G is strict.
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Proof. By de�nition, (G,⪯) ∈ FML if and only if there exists a weak order ⪯ml

on V such that ⪯v is the restriction of ⪯ml to NG(v) for any v ∈ V .
Let C be a cycle in DI , and suppose that a master list ⪯ml exists for I.

Note that for any arc (a, b) in C we know that a ⪯v b for some v ∈ V , implying
a ⪯ml b. As this holds for any arc on the cycle, we get that only a ∼ml b is
possible, and therefore no arc on C can be strict.

For the other direction, suppose that no cycle in DI contains a strict arc.
Let us de�ne a master list ⪯ml on V as follows. First, we let a ∼ml b whenever
a is reachable from b via tied arcs. Clearly, ∼ml is symmetric, and moreover,
if a ∼ml b, then a ≺v b is not possible for any v ∈ V , as otherwise a path from b
to a via tied arcs would form a cycle with the strict arc (a, b) with label v.
Furthermore, contracting all tied arcs creates an acyclic digraph D′. Let ≺top

be a topological ordering on the vertices of D′. For each v ∈ V , let φ(v) denote
the vertex of D′ to which v has been contracted. We set a ≺ml b whenever
φ(a) ≺top φ(b) holds. It is easy to see that ≺ml is a weak ordering on V .

To see that ≺ml is a master list for I, let a and b be two distinct vertices in V .
First note that a ∼v b for some v ∈ V immediately implies a ∼ml b. Second,
if a ≺v b for some v ∈ V , then we already know a ̸∼ml b, yielding φ(a) ̸= φ(b).
Therefore, D′ contains an arc from φ(a) to φ(b), yielding φ(a) ≺top φ(b) and
hence a ≺ml b. □

3.2. Measuring the distance from FML

Let us now de�ne our three measures to describe the distance of a given
strict preference system I = (G,≺) from the family FML of preference systems
that admit a master list:

� ∆swap(I) = min{|S| : S is a set of swaps in I such that I ◁ S ∈ FML};

� ∆edge(I) = min{|S| : S ⊆ E(G), I − S ∈ FML};

� ∆vert(I) = min{|S| : S ⊆ V (G), I − S ∈ FML}.

The measures ∆edge(I) and ∆vert(I) can be easily extended for preference sys-
tems that are not necessarily strict, since the above de�nitions are well-de�ned
for any preference system (G,⪯).

Extending the measure ∆swap(I) for non-strict preference systems is, how-
ever, not entirely straightforward. If there are ties in the preferences of some
vertex v, how can we de�ne an admissible swap? In this paper we use the
following de�nition for swap distance, which seems to be standard in the liter-
ature [7, 10]. Let ⪯u and ⪯v be weak orders. If they are not de�ned over the
same sets, then the swap distance of ⪯u and ⪯v, denoted by ∆(⪯u,⪯v) is ∞,
otherwise

∆(⪯u,⪯v) = |{{a, b} : a ≺u b but b ⪯v a}|+ |{{a, b} : a ∼u b but a ̸∼v b}|.

For two preferences systems I = (G,⪯) and I ′ = (G′,⪯′) with G = (V,E) and
G′ = (V ′, E′), we let their swap distance, denoted by ∆(I, I ′), be ∞ if they
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are not de�ned over the same vertex set; otherwise (that is, if V = V ′) we let
∆(I, I ′) =

∑
v∈V ∆(⪯v,⪯′v). Using this, we can de�ne

∆swap(I) = min {∆(I, I ′) : I ′ ∈ FML} .

The following lemma follows easily from the de�nitions.

Lemma 2. ∆swap(I) ≥ ∆edge(I) ≥ ∆vert(I) for any preference system I.

Proof. Suppose that ∆swap(I) = k, meaning that
∑

v∈V ∆(⪯v,⪯′v) ≤ k for
some instance I ′ = (G,⪯′) ∈ FML. Let U be the family containing all pairs
of the form ({a, b}, v) for which a ≺v b but b ⪯′v a, or a ∼v b but a ̸∼′v b.
By de�nition, |U | =

∑
v∈V ∆(⪯v,⪯′v) ≤ k. Note that for each ({a, b}, v) ∈ U ,

deleting the edge e = {a, v} from G decreases the distance of I from I ′, that
is, ∆(I − e, I ′ − e) ≤ k − 1 (clearly, the same holds for the edge {b, v} as well).
Repeating this for each pair in U , we can delete a set S of at most k edges
from G so that ∆(I − S, I ′ − S) = 0. Since FML is closed under edge deletions,
we know I ′ − S ∈ FML, implying ∆edge(I) ≤ |S| ≤ k.

Proving the remaining statement of the lemma is easier: instead of deleting
k = ∆edge(I) edges to obtain an instance I ′ ∈ FML, we can simply delete a set
of at most k vertices covering these edges in G to get a sub-instance of I ′. This
shows ∆vert(I) ≤ ∆edge(I). □

LetMaster List by Swaps (or MLS for short) be the problem whose input
is a preference system I and an integer k, and the task is to decide whether
∆swap(I) ≤ k. Assuming that I is a strict preference system, a set S of at
most k swaps whose application in I yields an instance admitting a master list
is called a solution for the instance (I, k) of MLS. We de�ne the Master List
by Edge Deletion (or MLED) and theMaster List by Vertex Deletion
(or MLVD) problems and their solution concepts analogously.

3.2.1. MLS versus the Kemeny Score problem.

We note that the MLS problem for a strict preference system (G,≺) on a
graph G = (V,E) can be reformulated as an instance of the Kemeny Score
problem where votes are allowed to be incomplete, by setting V as the can-
didate set and interpreting each ≺v, v ∈ V , as a vote containing only the
candidates NG(v); we refer to Betzler et al. [3] for a precise de�nition of this
variant of Kemeny Score. Note that even if G is a complete graph, NG(v)
excludes v, and thus MLS di�ers from the classic form of the Kemeny Score
problem where each vote is a ranking over the whole candidate set. We fur-
ther remark that, when considering weak orders, MLS and Kemeny Score
signi�cantly di�er in the way they treat ties [3, 27]. We will comment in more
detail on the connection between our �ndings for MLS and the known results
for Kemeny Score in Section 4.1.
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4. Computing the distance from admitting a master list

Let us now present our main results on recognizing when a given prefer-
ence list is close to admitting a master list. We investigate the classical and
parameterized complexity of the problem of determining each of the three dis-
tance measures de�ned in Section 2 for a given preference system, that is, the
problems MLS, MLED, and MLVD. In Section 4.1 we consider strict prefer-
ence systems, and then extend our results for weakly ordered preferences in
Section 4.2.

4.1. Strict preferences

We are going to show that computing the distance from FML is computa-
tionally hard for each of our three distance measures. In particular, Theorem 1
presents a reduction from Feedback Arc Set to MLS and also to MLED,
and Theorem 4 provides a reduction from the Hitting Set problem to MLVD.
Although both of these classic problems are NP-hard, their approximability
and their parameterized complexity for the standard parameterization�where
the parameter is the desired value for the objective function�di�ers consid-
erably, suggesting that the problem of computing the three distance measures
may behave di�erently when viewed from the perspective of approximation or
of parameterized complexity. Indeed, intrinsic di�erences between our three
problems under examination will surface when we consider their computational
complexity in �ner detail.

We start with Theorem 1 showing that we cannot expect a polynomial-time
algorithm for MLS or for MLED and even a polynomial-time approximation is
unlikely to exist already for bipartite graphs. As already mentioned, the proof
of Theorem 1 relies on a connection between MLS, MLED, and the Feedback
Arc Set problem which, given a directed graph D and an integer k, asks
whether there exists a set of at most k arcs in D whose deletion from D yields
an acyclic graph. Interestingly, the connection of this problem to MLS and to
MLED can be used both ways: on the one hand, it serves as the basis of our
reduction for proving computational hardness, and on the other hand, we will
be able to apply already existing algorithms for Feedback Arc Set in our
quest for solving MLS and MLED.

Theorem 1. MLS and MLED are both NP-hard, and assuming the Unique
Games Conjecture they are NP-hard to approximate by any constant factor in
polynomial time. All of these hold even if the input graph is bipartite with all
vertices on one side having degree 2, and preferences are strict.

Proof. We give a reduction from the NP-hard Feedback Arc Set problem
that proves the theorem for both MLS and MLED. Let digraph D = (V,E) and
an integer k be the input of Feedback Arc Set.

Given D, we create the following bipartite preference system I = (G,≺).
For each arc e = (a, b) ∈ E, we create a dummy vertex ze whose neighbors
are a and b, and we set a ≺ze b. We set V ∪ Z as the set of vertices in G
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where Z = {ze : e ∈ E}. To de�ne the preferences of agents in V , we �x an
arbitrary strict ordering ≺Z over the set Z of dummy vertices, and let ≺v be
the restriction of ≺Z to NG(v) for each v ∈ V . Note that G can be obtained
from the undirected version of D by subdividing every edge, and therefore G
is bipartite. Moreover, the preference digraph DI of I is the disjoint union
of DI [Z], which is acyclic, and DI [V ], which is exactly the digraph D, with
each arc (a, b) labelled by z(a,b).

We claim that the following three statements are equivalent:

(1) ∆swap(I) ≤ k;

(2) ∆edge(I) ≤ k;

(3) there exists a feedback arc set of size at most k in D.

First note that (1) ⇒ (2) is implied by Lemma 2.
To prove (2) ⇒ (3), suppose that S is a set of at most k edges in G such

that I−S admits a master list ≺ml. Recall that |NG(z)| = 2 for each z ∈ Z and
E(G) ⊆ Z × V . De�ne a set FS = {e ∈ E : ze is incident to some edge in S}
of arcs; notice that |FS | ≤ |S| ≤ k. Then F is a feedback arc set, since the
restriction of ≺ml on V is a topological order for V in D − FS . Indeed, if
e = (a, b) ∈ E \ FS then (ze, a), (ze, b) are both present in I − S, implying that
a ≺ze b is consistent with the master list in I − S, that is, a ≺ml b.

To prove (3) ⇒ (1), suppose that F is a feedback arc set of size at most k
in D. W.l.o.g. we may assume that F is inclusion-minimal, and thus reversing
each arc of F inD results in an acyclic digraphD←−

F
. Accordingly, let us �reverse�

the preferences of the agents corresponding to edges in F , that is, let S be the
set of swaps that switches a and b for each e = (a, b) ∈ F in the preferences
of ze. Note that swapping a and b in the preferences if z{a,b} is admissible, since
NG(ze) = {a, b}, and it is equivalent to reversing the arc (a, b) in the preference
digraph. Thus we obtain that the preference digraph of the instance I ◁ S is
acyclic, as it is the disjoint union of DI [Z] and the digraph D←−

F
. This means

that I ◁ S ∈ FML by Observation 1, implying ∆swap(I) ≤ |S| ≤ k.
Hence, our claim holds and the reduction is correct, showing NP-hardness

for both MLS and MLED.
To show our inapproximability result, let f(D) denote the instance I created

in the above reduction (I is an instance of MLS as well as one of MLED). The
above arguments prove that an optimal solution for f(D) = I has the same size
as a feedback arc set for D of minimum size. Moreover, for any set S of edges
in G that is a solution for our MLED instance I, the arc set FS is a feedback
arc set in D with |FS | ≤ |S|, so setting g(S) = FS yields that the pair (f, g) is
an approximation preserving reduction from Feedback Arc Set to MLED.
Similarly, for any set S′ of swaps in I that is a solution for our MLS instance I,
using the arguments of Lemma 2 we can compute a set h(S′) of at most |S′|
edges in G for which I − h(S′) ∈ FML, so setting g′(S′) = Fh(S′) yields that
(f, g′) is an approximation preserving reduction from Feedback Arc Set to
MLS. By the results of Guruswami et al. [24], we know that no polynomial-
time algorithm can obtain a constant-factor approximation for Feedback Arc
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Set unless the Unique Games Conjecture fails, ruling out a polynomial-time
constant-factor approximation algorithm both for MLS and for MLED under
the same assumption. □

Thanks to Lemma 1 below, for any strict preference system I we can decide
whether ∆swap(I) ≤ k for some k ∈ N by applying the FPT algorithm of
Lokshtanov et al. [36] for Feedback Arc Set on the preference digraphDI and
parameter k. Their algorithm runs in time O(k!4kk6(n+m)) on an input graph
with n vertices andm arcs [36]. If G = (V,E) is the graph underlying I, thenDI
has |V | vertices and O(|V |·|E|) arcs, implying a running time of O(k!4kk6|V |·|E|).

Lemma 1. For a strict preference system I, ∆swap(I) ≤ k if and only if the
preference digraph of I admits a feedback arc set of size at most k.

Proof. Let I = (G,≺) be a strict preference system with G = (V,E) as its
underlying graph, and let DI be the preference digraph of I. Observe that
performing a swap that is admissible in the preferences of some vertex v ∈ V
corresponds to reversing an arc in DI with label v. Hence, a set S of swaps such
that I◁S ∈ FML directly yields a feedback arc set of size |S| for the preference
digraph DI .

To see the other direction, we need to show that a feedback arc set F for DI
can be turned into a set S of admissible swaps in I with |S| ≤ |F |. We can
assume w.l.o.g. that F is inclusion-minimal. Given F , we iteratively �nd an
arc f = (a, b) ∈ F with label v such that (a, b) is an admissible swap in v's
preferences, and then proceed with the instance I ′ resulting from I ◁ (a, b; v)
and the set F \ {f} which is a feedback arc set for the preference digraph
of I ◁ (a, b; v).

It remains to show that we can always �nd a suitable arc f = (a, b) ∈ F
with label v such that (a, b) is an admissible swap in v's preferences. Suppose
otherwise, and let (a, b) ∈ F with label v be such that the distance between
a and b in v's preferences is as small as possible. As (a, b; v) is not a suitable
swap in I, there exists a vertex c between a and b in v's preferences. This
yields a path P = (a, c, b) in DI with both of its arcs having label v. Since F
is inclusion-minimal, P cannot be a path in DI − F , and so at least one of its
arcs is in F , contradicting our choice of f . □

Corollary 1. If preferences are strict, then MLS is �xed-parameter tractable
with parameter k, and can be solved in time O(k!4kk6|V |·|E|).

We remark that the connection between Kemeny Score and Feedback
Arc Set has already been noted by Bartholdi III et al. [2] who proved its
NP-completeness. The variant of Kemeny Score with incomplete votes was
investigated by Betzler et al. [3]; they proved its �xed-parameter tractability
when parameterized by the desired value of the Kemeny score. This already
implies that MLS is �xed-parameter tractable with parameter k, although the
running time we obtain in Corollary 1 is better than the one stated in [3, The-
orem 10], mainly due to the improvement by Lokshtanov et al. [35] over the
original FPT algorithm for Feedback Arc Set by Chen et al. [9].

11



In contrast to MLS, the MLED problem is W[1]-hard with k as the param-
eter; the reduction is from Multicolored Clique [18].

Theorem 2. MLED is W[1]-hard with parameter k, even for strict preferences.

Proof. We are going to present a reduction from the W[1]-hard Multicol-
ored Clique problem [18], where the input is an undirected graph G and
a parameter k ∈ N with the vertex set of G partitioned into k independent
sets V 1, . . . , V k, and the task is to �nd a clique of size k in G. Clearly, such a
clique must contain one vertex from each set V i, i ∈ [k]. Let vi1, v

i
2, . . . , v

i
|V i|

denote the vertices in V i. We are going to construct a preference system I =
(G′,≺) and an integer k′ such that G contains a clique of size k if and only if
there exists a set S of at most k′ edges in G′ such that I − S ∈ FML.

Instead of de�ning G′ directly, we are going to de�ne a digraph D that will
be the preference digraph of I. Furthermore, we will explicitly label only a
subset of the arcs in D, and declare the remaining arcs as �xed, meaning that
they represent a set k′+1 parallel arcs, each labelled by distinct dummy vertices.
First, we create a set {ae, a′e, be, b′e : e ∈ E(G)} and a set {v, v′ : v ∈ V (G)}
of vertices. Next, for each i ∈ [k] and each v ∈ V i we create a gadget Dv

as follows. For each j ∈ [k] \ {i}, let Ej(v) denote the set of edges in G that
connect v with some vertex in V j , and let nj

v = |Ej(v)|. Let us create a bijection
σj
v : [nj

v] → Ej(v). The gadget Dv will contain v as a source and v′ as a sink,
and we de�ne k − 1 arc-disjoint paths from v to v′: for each 1 ≤ j < i we add
the path

P j
v = (v, aσj

v(1)
, a′

σj
v(1)

, aσj
v(2)

, a′
σj
v(2)

, . . . , aσj
v(n

j
v)
, a′

σj
v(n

j
v)
, v′),

and for each i < j ≤ k we add the path

P j
v = (v, bσj

v(1)
, b′

σj
v(1)

, bσj
v(2)

, b′
σj
v(2)

, . . . , bσj
v(n

j
v)
, b′

σj
v(n

j
v)
, v′).

If Ej(v) = ∅, then the corresponding path from v to v′ consist solely of the
arc (v, v′). For each arc (ae, a

′
e) appearing in Dv we add be as its label, and

conversely, for each arc (be, b′e) appearing in Dv we add ae as its label; we declare
all remaining arcs in D as �xed.

Next, for each i ∈ [k], we chain the gadgets corresponding to vertices of V i

into a cycle by adding an arc ((viℓ)
′, viℓ+1) for each ℓ ∈ [|V i|], where we de�ne

vi|V i|+1 := vi1. We declare each of these arcs as �xed. Let Di denote the directed

graph created thus far on the vertices {V (Dv) : v ∈ V i}; note that for any two
indices i ̸= j, the digraphs Di and Dj are vertex-disjoint, and there are no
arcs running between them. Observe also that every cycle in Di traverses all
vertices {v, v′ : v ∈ V i}, using some path P j

v for each v ∈ V i to get from v to v′.
We let the union of D1, . . . , Dk be the subgraph of D induced by all non-dummy
vertices.

To �nish the construction of D, it remains to take care of dummy vertices
(recall that by de�nition, V (D) = V (G′)). Let Z be the set of dummy vertices
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introduced while creating the �xed arcs, and let ≺Z be an arbitrary ordering
on Z. Note that each dummy z ∈ Z is used only once, when creating some
�xed arc ez in D (meaning that z is the label of one of the k′ + 1 parallel arcs
which together constitute the �xed arc ez), so NG′(z) is the set of endpoints
of ez. We then de�ne the preferences of all non-dummy vertices so that they
prefer non-dummy vertices to dummies, and their preferences between dummies
are derived from ≺Z . Observe that our instance I = (G′,≺) and its preference
digraph D are now well-de�ned. Finally, we set k′ =

(
k
2

)
.

We claim that G admits a clique of size k if and only if there exists a set S
of at most k′ edges in G′ such that I − S ∈ FML.

First assume that the vertices x1, . . . , xk form a clique in G. We de�ne a
corresponding set S = {{ae, be} : e = {xi, xj} for some 1 ≤ i < j ≤ k}. Notice
that deleting an edge {ae, be} from I corresponds to deleting two arcs from
the preference subgraph D, namely the arc (ae, a

′
e) labelled with be and the

arc (be, b
′
e) labelled with ae. Hence, the deletion of S removes an arc from each

of the paths P j
xi

with 1 ≤ i < j ≤ k, which ensures for each i ∈ [k] that there is
no path from xi to x′i. Hence, the preference digraph of I −S is indeed acyclic,
and thus I − S ∈ FML by Observation 1.

Assume now that there exists a set S ⊆ E(G′) with |S| ≤ k′ such that
I − S ∈ FML. Notice that �xed arcs in D are also present as arcs in the
preference digraph DS of I − S, by our bound |S| ≤ k′. Also, for each i ∈ [k]
there must exist some xi ∈ V i for which there is no path in DS from xi to x′i, as
otherwise these paths together with the �xed arcs between gadgets form a cycle.
Inspecting the gadget Dxi , it is clear that the deletion of S must remove at least
one arc on the path P j

xi
for each j ∈ [k] \ {i}, which can be achieved by deleting

some edge of G′ incident to ae or to be for some e ∈ Ej(xi). This means that we
have to remove at least k−1 arcs from each Di, a total of at least k(k−1) = 2k′

arcs. This can only be achieved by the deletion of |S| ≤ k′ edges, if the deletion
of each edge in S from G′ results in the removal of exactly two arcs (as no
edge deletion can remove more than 2 arcs from the preference digraph labelled
by non-dummy vertices), and hence cannot involve any vertices of the form a′e
or b′e. Therefore, S must contain a set of

(
k
2

)
edges of the form {ae, be} whose

deletion from G′ results in the removal of an arc from each of the paths P j
xi

for
each 1 ≤ i < j ≤ k. This is only possible if S consists of the edge set of a clique
consisting of the vertices x1, . . . , xk. □

Although Theorem 2 provides strong evidence that there is no FPT algo-
rithm for MLED with parameter k, and by Theorem 1 we cannot hope for
a polynomial-time approximation algorithm for MLED either, our next re-
sult shows that combining these two approaches yields a way to deal with
the computational hardness of the problem. Namely, Theorem 3 provides a
2-approximation for MLED whose running time is FPT with parameter k. This
result again relies heavily on the connection between MLED and Feedback
Arc Set.

Theorem 3. There exists an algorithm that achieves a 2-approximation for
MLED if preferences are strict, and runs in FPT time with parameter k.
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Algorithm 1 Obtaining a 2-approximation for MLED on input (I, k) with
strict preferences
1: Construct the graph HI .
2: Let F be a solution for Feedback Arc Set on input (HI , k).
3: Ensure that each arc in F is incident to some vertex in V by replacing all

arcs of F entering some a−v with (a−v , a).
4: Return SF = {{a, v} ∈ E : (a, a+v ) ∈ F or (a−v , a) ∈ F}.

2-approximation FPT algorithm for MLED (strict preferences). Let
the strict preference system I = (G,≺) with underlying graph G = (V,E)
and k ∈ N be our input for MLED. See Algorithm 1 for a formal description.

First, we construct a directed graph HI by setting

V (HI) = V ∪ {a−v , a+v : {a, v} ∈ E},
A(HI) = {(a+c , b−c ) : a, b, c ∈ V, a ≺c b} ∪ {(a−v , a), (a, a+v ) : v ∈ V, a ∈ NG(v)}.

Next, we compute a minimum feedback arc set F in HI using the algorithm
by Lokshtanov et al. [36]. Notice that w.l.o.g. we may assume that F only
contains arcs incident to some vertex in V , as we can replace any arc (a+c , b

−
c )

with the sole arc leaving b−c , namely (b−c , b), since all cycles containing (a+c , b
−
c )

must also go through (b−c , b).
Finally, we return the set SF = {{a, v} ∈ E : (a, a+v ) ∈ F or (a−v , a) ∈ F}.

Proof (of Theorem 3). We prove that Algorithm 1 gives a 2-approximation,
that is, if there is a set S of at most k edges in G such that I−S admits a master
list ≺ml, then Algorithm 1 returns a solution for I of size at most 2|S| ≤ 2k.

For a given instance I = (G,≺), consider the directed graph HI constructed
by the algorithm. Observe �rst that contracting for each v ∈ V the subgraph
of HI induced by {v}∪{v+a , v−a : a ∈ NG(v)} in HI yields exactly the preference
digraph of I (without the arc-labelling). Furthermore, HI is acyclic if and only
if the preference subgraph of I is acyclic.

Take any vertex a ∈ V incident to some edge in S; let {a, b1}, . . . , {a, bt} be
the edges of S incident to a. Instead of deleting these edges, it is also possible
to �move� the vertices in B = {b1, . . . , bt} within the preferences of a to obtain
an instance I ′ whose preferences are consistent with ≺ml: when representing a's
preferences as a list, each b ∈ B needs to be moved either to the left (becoming
more preferred by a) or to the right (becoming less preferred by a). In the former
case we mark the arc (b, b+a ), and in the latter case we mark (b−a , b). Clearly, we
have marked at most 2|S| ≤ 2k arcs in HI , since for each edge {a, b} ∈ S we
may need to move a in b's preferences, and also to move b in a's preferences,
and each such move results in marking one arc.

We claim that the set M of marked arcs is a feedback arc set in HI . Suppose
for contradiction that there is a cycle C in HI − M . Observe that C can be
decomposed into paths of length 3 of the form (a, a+c , b

−
c , b). For such a path it

follows that a ≺ml
c b holds: �rst, a ≺c b holds in G by construction, and we have
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not moved a up in c's preferences (by (a, a+c ) /∈ M), nor have we moved b down
in c's preferences (by (b−c , b) /∈ M), so c still prefers b to a in the instance I ′
whose preferences are consistent with ≺ml. Therefore, the cycle C implies a
cycle in the preference digraph of I −S, a contradiction. Thus, M is a feedback
arc set of size at most 2k.

This implies that Algorithm 1 will produce a feedback arc set F for HI of
size at most 2k on line 2. It remains to show that the set SF is indeed a solution
for our instance I of MLED. Consider the changes in the digraph HI as a result
of deleting the edges of SF from I. Note that the deletion of SF from I ensures
the removal of all arcs in F from HI (since deleting an edge {a, b} from G
corresponds to removing the vertices a+b , a

−
b , b

+
a , and b−a and all arcs incident to

them from HI), so the resulting digraph HI−SF
is acyclic. Recall that HI−SF

is acyclic if and only if the preference digraph of I − SF is acyclic. Thus by
Observation 1 we get I − SF ∈ FML. This proves that Algorithm 1 yields a
2-approximation.

Note that HI has |V | + 2|E| vertices and at most |V |·|E| + 4|E| arcs. The
total running time of Algorithm 1 is therefore O(k!4kk6|V |·|E|) which is indeed
FPT with parameter k. □

Contrasting our positive results for MLS and MLED, a reduction from the
classic Hitting Set problem [30] shows that MLVD is computationally hard
both in the classic and in the parameterized sense, and cannot be approximated
by any FPT algorithm, as stated by Theorem 4.

Theorem 4. MLVD is NP-hard and W[2]-hard with parameter k. Furthermore,
no FPT algorithm with k as the parameter can achieve an f(k)-approximation
for MLVD for any computable function f , unless FPT = W[1]. All of these hold
even if the input graph is bipartite and preferences are strict.

Proof. We present a reduction from the Hitting Set problem. The input of
Hitting Set is a set U (the universe), a family S1, . . . , Sm of subsets of U , and
an integer k; the task is to �nd a hitting set of size at most k, where a hitting
set is a set H ⊆ U such that H ∩ Si ̸= ∅ for each i ∈ [m].

Given an instance H = (U, S1, . . . , Sm, k), let u(Si, j) be the j-th item in Si

for each j ∈ [|Si|]. We construct a bipartite preference system I = (G,≺) as
follows. For each i ∈ [m] and j ∈ [|Si|], we create an agent xj

Si
. The vertex set

of G is V = X ∪ U where X = {xj
Si

: i ∈ [m], j ∈ [|Si|]}, and we de�ne the

edge set of G by connecting u(Si, j) for each i ∈ [m] and j ∈ [|Si|] to both xj
Si

and xj+1
Si

(where we de�ne x|Si|+1
Si

= x1
Si
for each i); we set also xj

Si
≺u(Si,j) x

j+1
Si

.
Note that G is bipartite. To de�ne the full preferences of agents in U , we further
add that for any agent u ∈ U whose neighborhood contains some agents xj

Si

and xj′

Si′
with i ̸= i′, we let xj

Si
≺u xj′

Si′
exactly if i < i′. To �nish the de�nition

of the preferences in I, we �x an arbitrary strict ordering ≺U over the universe U
as a master list over U , i.e., for any x ∈ X we set u ≺x u′ for some u and u′

in U if and only if u ≺U u′.
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We claim that there exists a hitting set of size at most k for H if and only
if ∆vert(I) ≤ k.

Suppose �rst that S is a set of at most k vertices inG such that I−S admits a
master list ≺ml. Let HS be the union of S∩U and {u(Si, j) : x

j
Si

∈ X∩S}. Note
that |HS | ≤ |S| ≤ k; we show that HS is a hitting set for H. To see this, suppose
that a set Si for some i ∈ [m] is not hit by HS , that is, Si ∩HS = ∅. Then by
de�nition, Si∪{xj

Si
: j ∈ [|Si|]} is disjoint from S. We show that the sub-instance

of I − S consisting of these 2|Si| vertices cannot be consistent with the master
list ≺ml: if there exists some ℓ ∈ [|Si| − 1] for which xℓ

Si
̸≺ml xℓ+1

Si
, then this

contradicts xℓ
Si

≺u(Si,ℓ) x
ℓ+1
Si

; otherwise we know x1
Si

≺ml x2
Si

≺ml · · · ≺ml x
|Si|
Si

which contradicts x|Si|
Si

≺u(Si,|Si|) x
1
Si
. This proves that HS is indeed a hitting

set for H.
Suppose now that H is a hitting set for H; we will show that H itself is a

solution for our instance I of MLVD by de�ning a master list ≺ml for I −H.
For each i ∈ [m], let ℓi be the index for which u(Si, ℓi) ∈ H; such an index ℓi
exists by the de�nition of a hitting set. Then we set

xℓi+1
Si

≺ml xℓ+2
Si

≺ml · · · ≺ml x
|Si|
Si

≺ml x1
Si

≺ml · · · ≺ml xℓi
Si
.

Furthermore, we set xℓi
|Si| ≺

ml x
ℓi+1+1
Si+1

for each i ∈ [m− 1], so that ≺ml is now a
strict linear order over X. It is clear that the preferences of each agent u ∈ U \H
in I −H are consistent with ≺ml. Finally, we let ≺ml order U according to ≺U ;
then preferences of agents in U are consistent with ≺ml as well, proving that
I −H ∈ FML, which in turn proves the correctness of the reduction.

Observe that the above reduction is a polynomial-time reduction as well as
an FPT-reduction, if the parameter is k both in the instance H of Hitting
Set and in MLVD. Since Hitting Set is NP-hard and W[2]-complete with
parameter k (see [30],[15]), this shows that MLVD is NP-hard and W[2]-hard
with parameter k. To show our inapproximability result, let f(H) denote the
instance I created in the above reduction. The above arguments prove that the
size of an optimal solution for f(H) = I equals the size of a hitting set for H of
minimum size. Moreover, for any set S of vertices in G that is a solution for our
MLVD instance I, the set HS is a hitting set in H with |HS | ≤ |S|, so setting
g(S) = HS yields that the pair (f, g) is an approximation preserving reduction
from Hitting Set to MLVD. By the results of Karthik et al. [31], we know
that no FPT algorithm with parameter k can obtain an f(k)-approximation for
Hitting Set for any computable function f , unless FPT = W[1].2 Hence, our
reduction implies the inapproximability statement of the theorem. □

2In fact, Karthik et al. [31] deal with the Dominating Set problem, which is a subset of
the Set Cover problem, which is in turn well known to be equivalent with Hitting Set.
Thus, the results in [31] carry over for Hitting Set.
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4.2. Weakly ordered preferences

Let us now consider preference systems that are not necessarily strict. The
hardness results of Section 4.1 trivially hold for weakly ordered preferences, so
we will focus on extending the algorithmic results of the previous section. We
start by showing that Lemma 1 can be generalized for instances with weakly
ordered preferences.

Lemma 2. For any preference system I = (G,⪯), ∆swap(I) ≤ k if and only if
there exists a set of at most k arcs in the preference digraph DI of I that hits
every strict cycle of DI .

Proof. Suppose �rst that ∆swap(I) ≤ k. This means that there exists a pref-
erence system I ′ = (G,⪯′) ∈ FML such that ∆(I, I ′) ≤ k. Let V denote the
vertex set of G, and let

Sv = {{a, b} : a ≺v b but b ⪯′v a, or a ∼v b but a ̸∼′v b}.

By de�nition,
∆(I, I ′) =

∑
v∈V

∆(⪯v,⪯′v) =
∑
v∈V

|Sv| ≤ k.

We construct an arc set F in DI by adding an arc to F for each {a, b} ∈ Sv

for some v as follows:

(i) if a ≺v b but b ⪯′v a, then we add the strict arc (a, b) with label v to F ;

(ii) if a ∼v b but a ≺′v b, then we add the tied arc (b, a) with label v to F .

Note that |F | ≤
∑

v∈V |Sv| ≤ k.
We claim that deleting F fromDI yields a subgraph ofDI′ , and additionally,

all arcs that are strict in DI and are not in F are also strict in DI′ . To see
this, let us compare DI and DI′ . Note that both I and I ′ have G as their
underlying graph. Therefore, it su�ces to consider the changes in the preference
digraph when preferences change from ⪯ to ⪯′, which amounts to considering
each pair {a, b} ∈

⋃
v∈V Sv. Let us �x some v, and consider {a, b} ∈ Sv. First,

if a ≺v b, then DI contains a strict arc (a, b) with label v, but this arc has been
added to F in case (i), and hence there is no arc with label v with endpoints a
and b in DI − F . Second, if a ∼v b but a ≺′v b, then DI contains a pair of
tied arcs with label v between a and b, but the one pointing from b to a has
been added to F in case (ii), and hence only the arc (a, b) with label v remains
in DI − F ; by a ≺′ b, such an arc is also present in DI′ as a strict arc. This
proves our claim.

As a consequence, any cycle C in DI that contains a strict arc and is not
hit by F (i.e., A(C)∩F = ∅) is also present in DI′ , and contains an arc that is
strict in DI′ . In other words, any strict cycle in DI corresponds to a strict cycle
in SI′ . However, by Lemma 1 no strict cycle can be present in DI′ , as I ′ ∈ FML.
This shows that F hits all strict cycles in DI .
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To prove the other direction of our statement, suppose now that F is a set
of at most k arcs in DI that hits all strict cycles. Let us call a path in DI a
strict path if it contains a strict arc. We proceed with the following iteration
on DI −F : as long as there exist distinct vertices a and b such that there is no
strict path either from a to b or from b to a, add a pair of tied arcs between a
and b. Let D′ be the digraph obtained at the end of this iteration. Observe
that D′ still has the property that it contains no cycle passing through a strict
arc.

Let us now de�ne a master list ≺ml by setting a ≺ml b whenever there is a
strict path from a to b. Observe that the relation ≺ml is irre�exive (as a strict
path from a to a would yield a strict cycle), asymmetric (as a strict path from a
to b and from b to a implies the existence of a strict cycle), and transitive as well
(as a strict path from a to b together with one from b to c yields a strict path
from a to c, due to the absence of strict cycles). Thus, ≺ml is a partial order,
and it remains to show that indi�erence w.r.t. ≺ml, that is, ∼ml is transitive.
And indeed, if a ∼ml b and b ∼ml c for vertices a, b, c ∈ V , then as a results of
our iterative process there must exist a pair of tied arcs between a and b, and
also between b and c. Therefore, a ≺ml c is not possible, as a strict path from a
to c together with the arcs (c, b) and (b, a) would imply the existence of a strict
cycle in D′, a contradiction.

Let I ′ be the preference system whose underlying graph is G and preferences
are derived from ⪯ml; then I ′ ∈ FML. We claim ∆(I, I ′) ≤ |F | ≤ k, which
would imply ∆swap(I) ≤ k, and hence would �nish the proof. For each v ∈ V
let us de�ne

Sv = {{a, b} : a ≺v b but b ⪯ml a, or a ∼v b but a ̸∼ml b}.

Consider any pair {a, b} ∈ Sv for some v ∈ V . First, if a ≺v b but a ̸≺ml b,
then the strict arc (a, b) with label v must be contained in F , as otherwise it
would imply a strict path from a to b in D′, contradicting a ̸≺ml b. Second,
if a ∼v b but a ≺ml b, then the arc (b, a) (part of a pair of tied arcs in DI) must
be contained in F , as otherwise together with the strict path from a to b (whose
existence follows from a ≺ml b) it would yield a cycle passing through a strict
arc in D′. Therefore we know

∑
v∈V |Sv| ≤ |F | ≤ k, proving our claim. □

Thanks to Lemma 2, we can reduce MLS to a generalization of the Feed-
back Arc Set problem where, instead of searching for a feedback arc set, the
task is to seek an arc set that only hits certain relevant cycles. In the Subset
Feedback Arc Set (or SFAS) problem the input is a directed graph D, a
vertex set W ⊆ V (D) and an integer k, and the task is to �nd a set of at most k
arcs in D that hits all relevant cycles in D, where a cycle is relevant if it goes
through some vertex of W .

To solve SFAS, we apply an FPT algorithm by Chitnis et al. [12] for the
vertex variant of SFAS, the Directed Subset Feedback Vertex Set (or
DSFVS) problem that, given a directed graph D, a set W ⊆ V (D) and a
parameter k ∈ N, asks for a set of at most k vertices that hits all relevant cycles
in D. Applying a simple, well-known reduction from SFAS to DSFVS, we can
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use the algorithm by Chitnis et al. [12] to obtain an FPT algorithm for MLS
with parameter k.

Theorem 5. MLS is �xed-parameter tractable with parameter k, even if pref-
erences are weak orders.

Proof. Due to Lemma 2, we know that we can reduce MLS to an instance of
the Subset Feedback Arc Set problem. To reduce SFAS to DSFVS (that
is, Directed Subset Feedback Vertex Set), we will apply a well-known
reduction that is often used to reduce arc-deletion problems to vertex-deletion
problems: given our input instance (D,W, k) for SFAS we �rst subdivide each
arc e ∈ A(D) by a new vertex ae, and then replace each vertex v ∈ V (D) by
a set Xv = {v1, . . . , vk+1} of vertices containing k + 1 copies of v, with each vi

having the same in- and out-neighbors as v (after the subdivisions). Let D′

denote the directed graph we obtain. It is not hard to see that (D,W, k) is a
`yes'-instance of SFAS if and only if (D′,W ′, k) is a `yes'-instance of DSFVS
where W ′ =

⋃
{Xv : v ∈ W}, as it makes no sense to delete any vertex in Xv for

some v ∈ V (D) (since at least one of the k + 1 copies of v in Xv will survive),
and deleting a vertex ae in D′ is equivalent with deleting the arc e in D. Thus,
by the FPT algorithm of Chitnis et al. [12] for DSFVS, we know that SFAS is
also FPT with parameter k. □

Next we extend Theorem 3 for weak orders, by reducing MLED to SFAS.

Theorem 6. There exists an algorithm that achieves a 2-approximation for
MLED, and runs in FPT time with parameter k.

2-approximation FPT algorithm for MLED. Let the preference system I
with underlying graph G = (V,E) and k ∈ N be our input for MLED. For each
vertex v ∈ V , let Tv be the set family containing every tie that appears in the
preferences of v. See Algorithm 2 for a formal description.

First, we construct a directed graph HI with V (HI) = V ∪T ∪U ∪Z where

T = {t : v ∈ V, t ∈ Tv},
U = {a−v , a+v : {a, v} ∈ E},
Z = {z(a,b,v) : a ≺v b for some a, b, v ∈ V },

and with arc set A(HI) = AT ∪AU ∪AZ where

AT = {(t, a−v ), (a+v , t) : v ∈ V, t ∈ Tv, a ∈ t}
AU = {(a−v , a), (a, a+v ) : v ∈ V, a ∈ NG(v)}
AZ = {(a+v , z(a,b,v)), (z(a,b,v), b−v ) : z(a,b,v) ∈ Z}.

Next, we solve the Subset Feedback Arc Set problem (HI , Z, k) by
applying the above reduction from SFAS to DSFVS and then using the algorithm
of Chitnis et al. [12]; let F be the solution obtained for (HI , Z, k). Observe that
we may assume that F only contains arcs of AU . Indeed we can replace any
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Algorithm 2 Obtaining a 2-approximation for MLED on input (I, k)
1: Construct the graph HI .
2: Let F be a solution for Subset Feedback Arc Set on input (HI , Z, k).
3: Ensure F ⊆ AU by replacing all arcs pointing to some a−v ∈ U with (a−v , a)

and all arcs leaving some a+v ∈ U with (a, a+v ).
4: Return SF = {{a, v} ∈ E : (a, a+v ) ∈ F or (a−v , a) ∈ F}.

arc f ∈ F in AT ∪ AZ by an appropriately chosen arc f ′ ∈ AU : note that f
either points to some a−v ∈ U or it leaves some a+v ∈ U ; in the former case
we set f ′ = (a−v , a), while in the latter case we set f ′ = (a, a+v ). Then any
cycle containing f must also contain f ′, so we can safely replace f with f ′,
as F \ {f} ∪ {f ′} still hits all relevant cycles. Hence, we will assume F ⊆ AU .

Finally, we return the set SF = {{a, v} ∈ E : (a, a+v ) ∈ F or (a, a+v ) ∈ F}.

Proof (of Theorem 6). It is clear that Algorithm 2 runs in FPT time with
parameter k, so it su�ces to show that it yields a 2-approximation. Let us show
that if there exists a set S of at most k edges inG such that I−S admits a master
list ≺ml, then Algorithm 2 returns a solution for I of size at most 2|S| ≤ 2k.

Take any vertex a ∈ V incident to some edge in S; let {a, b1}, . . . , {a, bt} be
the edges of S incident to a. Instead of deleting these edges, it is also possible
to �move� the vertices in B = {b1, . . . , bt} within the preferences of a to obtain
an instance I ′ whose preferences are consistent with ≺ml: when representing
a's preferences as a list possibly containing ties, each b ∈ B needs to be moved
either to the left (becoming more preferred by a) or to the right (becoming less
preferred by a). In the former case we mark the arc (b, b+a ), and in the latter
case we mark (b−a , b). Clearly, we have marked at most 2|S| ≤ 2k arcs in HI ,
since for each edge {a, b} ∈ S we may need to move a in b's preferences, and
also to move b in a's preferences, and each such move results in marking one
arc.

We claim that the set M of marked arcs hits every relevant cycle in HI ,
that is, HI −M contains no cycle passing through a vertex of Z. Suppose for
contradiction that there is a cycle C in DI−M going through a vertex of Z. Let
us consider the decomposition of C into paths P1, . . . , Pr such that V ∩ V (Pi)
contains exactly the endpoints of Pi for each i ∈ [r]. Let Pi be such a path
from a to b. Observe that there are two possible forms Pi can take: either

(i) Pi = (a, a+v , t, b
−
v , b) for some v ∈ V and t ∈ Tv, or

(ii) Pi = (a, a+v , z(a,b,v), b
−
v , b).

In both cases it follows that a ⪯ml b holds: �rst, a ⪯v b holds in G by con-
struction (since a ∼v b in case (i) and a ≺v b in case (ii)), and we have not
moved a up in v's preferences (because (a, a+v ) /∈ M), nor have we moved b
down in v's preferences (because (b−v , b) /∈ M), so v still weakly prefers b to a
in the instance I ′ whose preferences are consistent with ≺ml. Furthermore, in
case (ii) we know a ≺v b, and using the same reasoning we obtain a ≺ml b as

20



well. Therefore, the cycle C implies a cycle in the preference digraph DI′ of I ′,
and since C contains a vertex of Z, at least one arc of this cycle is a strict arc
(namely, if z(a,b,v) ∈ V (C), then the arc (a, b) with label v is a strict arc in DI′),
which contradicts I ′ ∈ FML by Lemma 1. Thus, M hits every relevant cycle
in HI , and has size at most 2k.

This implies that Algorithm 2 will produce an arc set F for HI of size at
most 2k on line 2. It remains to show that the set SF is indeed a solution for
our instance I of MLED. For this, we will need the observation that, due to
the construction of HI , we can obtain the preference digraph DI from HI by
applying the following operations:

1. For each v ∈ V , contract all arcs running between v and U . Note that
each such arc is either the unique outgoing or the unique incoming arc of
some vertex of U . We will keep referring to the node resulting from these
contractions as v, corresponding directly to the vertex v in DI .

2. For each t ∈ Tv for some v ∈ V , replace t and its neighborhood in HI
(which induces a bidirected star with center t) with a bidirected clique
on NHI (t), i.e., for each {a, b} ⊆ t, add the pair (a, b) and (b, a) of arcs
with label v. These arcs correspond to a pair of tied arcs in DI .

3. Lift each z(a,b,v) ∈ Z, i.e., delete z(a,b,v) and add an arc (a, b) with label v.
These arcs correspond to strict arcs in DI .

It follows that there is a bijection between the cycles in HI passing through
some vertex of Z and the cycles in DI passing through a strict arc.

Now, consider how the digraph HI changes as a result of deleting the edges
of SF from I. Note that the deletion of SF ensures the removal of all arcs in F
(since deleting an edge {a, b} from G results in the removal of vertices a+b , a

−
b , b

+
a ,

and b−a and all arcs incident to them from HI), so the resulting digraph HI−SF

contains no cycles passing through a vertex of Z. As we proved in the previous
paragraph, HI−SF

contains no cycles passing through a vertex of Z if and only
if the preference digraph of I − SF contains no cycles passing through a strict
arc. Therefore by Lemma 1 we get I − SF ∈ FML. □

5. Applications

In this section we consider two examples related to stable and popular match-
ings where we can e�ciently solve computationally hard optimization problems
on preference systems that are close to admitting a master list.

5.1. Optimization over stable matchings

One of the most appealing property of the distances de�ned in Section 3 is
that whenever the distance of a strict (but not necessarily bipartite) preference
system from admitting a master list is small, we obtain an upper bound on the
number of stable matchings contained in the given preference system. Therefore,
strict preference systems that are close to admitting a master list are easy to
handle, as we can e�ciently enumerate their stable matchings, as Lemmas 3
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and 4 show. We omit presenting a proof for these lemmas, because we will
prove more generals versions of them in Section 5.2, namely, Lemmas 5 and 6.

Lemma 3. Given a strict preference system I = (G,≺) with G = (V,E) and a
set S ⊆ E of edges such that I −S ∈ FML, the number of stable matchings in I
is at most 2|S|, and it is possible to enumerate all of them in time 2|S| ·O(|E|).

Observe that Corollary 2 follows immediately from Lemma 3 and the fact
that ∆edge(I) ≤ ∆swap(I) for any preference system I (as stated by Lemma 2).

Corollary 2. In a strict preference system I, the number of stable matchings
is at most 2∆

swap(I).

Notice that although the number of stable matchings may grow exponentially
as a function of the distance ∆edge or ∆swap, this growth does not depend on
the size of the instance. By contrast, this is not the case for the distance ∆vert,
as stated by Lemma 4 below.

Lemma 4. Given a strict preference system I = (G,≺) with G = (V,E) and
a set S ⊆ V of vertices such that I − S ∈ FML, the number of stable matchings
in I is at most |V ||S|, and it is possible to enumerate all stable matchings of I
in time |V ||S| ·O(|E|).

There exists an algorithm by Gus�eld and Irving [25, 26] that outputs the
set S(I) of stable matchings in a preference system I over a graph G = (V,E)
in O(|S(I)|·|E|) time after O(|V | · |E| log |V |) preprocessing time. As a conse-
quence, the bounds of Lemma 3, Corollary 2, and Lemma 4 on |S(I)| directly
yield a way to handle computationally hard problems on any preference sys-
tem I where ∆swap(I), ∆edge(I), or ∆vert(I) has small value, even without the
need to determine a set S of edges or vertices for which I−S ∈ FML or a set S of
swaps for which I ◁ S ∈ FML. Thus, we immediately have the following result,
even without having to use our results in Section 4. For the de�nitions of the
NP-hard problems mentioned as an example in Theorem 7, see the book [37].

Theorem 7. Let I be a strict (but not necessarily bipartite) preference system,
and Q any optimization problem where the task is to maximize or minimize
some function f over S(I) such that f(M) can be computed in polynomial time
for any matching M ∈ S(I). Then Q can be solved

(i) in FPT time with parameter ∆edge(I) or ∆swap(I);

(ii) in polynomial time if ∆vert(I) is constant.
In particular, these results hold for Sex-Equal Stable Matching, Bal-
anced Stable Matching, (Generalized) Median Stable Matching3,
Egalitarian Stable Roommates, and Maximum-Weight Stable Room-
mates.

3Although the problem of �nding a (generalized) median matching is not an optimization
problem over S(I), it is clear that it can be solved in |S(I)| ·O(|I|) time.
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5.1.1. Tightness of our bounds on the number of stable matchings.

The bounds stated in Lemmas 3 and 4 are tight in the following sense.
First, the tightness of Lemma 3 is shown by the existence of a strict preference
system Ik for any k ∈ N such that ∆edge(Ik) = k and Ik admits 2k stable
matchings. A simple example for such an instance Ik is obtained by taking k
disjoint copies of a preference system whose underlying graph is a cycle of length
four, with cyclic preferences.

Second, to show the asymptotic tightness of Lemma 4, one can construct a
strict preference system Jk,n for any k, n ∈ N with n ≥ k such that the following
properties are satis�ed: ∆vert(Jk,n) = k, the number of vertices in Jk,n is 2n,
and Jk,n admits

(
n
k

)
stable matchings. Such a family of preference systems is

presented in Example 1.

Example 1. Let the vertex set of Jk,n be V = A∪B∪S whereA = {a1, . . . , an},
B = {b1, . . . , bn−k}, and S = {s1, . . . , sk}; note |V | = 2n. Let ai ∈ A be adja-
cent to all vertices of S, and let it be adjacent to some vertex bj ∈ B exactly
if i − k ≤ j ≤ i; we denote by E the set of edges thus de�ned, and we let
G = (V,E) be the graph underlying Jk,n. See Figure 1 for an illustration. The
preferences of the vertices are as follows:

� any vertex b ∈ B prefers aj to ai for some aj , ai ∈ NG(b) exactly if j > i;

� any vertex s ∈ S prefers aj to ai for some aj , ai ∈ NG(s) exactly if j < i;

� the preference list of some ai ∈ A is bi, s1, bi−1, s2, . . . , bi−k+1, sk, bi−k; if
some of these vertices are not de�ned, they are omitted from the list.

Observe that deleting the vertices of S from Jk,n yields an instance that admits
a master list, and moreover, deleting less than k vertices cannot result in an
instance in FML, since any vertex of S and any vertex of B disagree on the
order of vertices in A. Hence, ∆vert(Jk,n) = k.

We claim that Jk,n admits
(
n
k

)
stable matchings. Let A′ = {ai1 , . . . , aik}

be any subset of k vertices from A. We de�ne a matching MA′ as follows.
First, let MA′ contain the edges sjaij for each j ∈ [k]. Second, let MA′ match
some bj with aj+ℓ if ℓ is the number of indices in {i1, . . . , ik} smaller or equal
to j. It is straightforward to verify that MA′ is stable, since no vertex of A
can be part of a blocking edge. Since stable matchings in Jk,n are complete,
any stable matching M must be of the form MA′ for some A′ ⊆ A (namely, for
A′ = {M(s) : s ∈ S}), so the number of stable matchings in Jk,n is exactly

(
n
k

)
.

We remark that we were not able to construct a preference system that, for
a given k, is at ∆swap-distance k from admitting a master list, and contains 2k

stable matchings. Recall the preference system Ik that served as an example to
prove the tightness of Lemma 3 for the ∆edge-distance, containing k copies of
a four-cycle with cyclic preferences. It is not hard to see that ∆swap(Ik) = 2k,
implying that the number of stable matchings in a strict preference system I
can be as large as 2∆

swap(I)/2. We leave it as an open question to determine the
exact bound on the maximum number of stable matchings in a strict preference
system I as a function of ∆swap(I).
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Figure 1: Illustration of the preference system Jk,n for k = 3. Edges of the underlying
graph are shown in grey, while edges of a stable matching are shown in black (and bold).
Preferences are depicted either by numbers determining the rank of the given edge, or by an
arrow, pointing from less-preferred edges towards more-preferred ones.

5.2. Maximum-utility popular matchings with instability costs

We now turn our attention to theMax-Utility Popular Matching with
Instability Costs problem, studied in [40]: given a strict preference sys-
tem I = (G,≺), a utility function ω : E(G) → N, a cost function c : E(G) → N,
an objective value t ∈ N and a budget β ∈ N, the task is to �nd a popular
matching in I whose utility is at least t and whose blocking edges have total
cost at most β. Our aim is to investigate whether we can solve this problem
e�ciently for instances that are close to admitting a master list.

Note that in general this problem is computationally hard even if the given
preference system is strict, bipartite, admits a master list, and the cost and
utility functions are very simple. Namely, given a strict, bipartite preference
system (G,≺) ∈ FML for which a stable matching has size |V (G)|/2 − 1, it is
NP-hard and W[1]-hard with parameter β to �nd a complete popular matching
(i.e., one that is larger than a stable matching) that admits at most β blocking
edges [40]. Nevertheless, if the total cost β of the blocking edges that we allow
is a constant and each edge has cost at least 1, then Max-Utility Popular
Matching with Instability Costs can be solved in polynomial time for
bipartite, strict preference systems that admit a master list (in fact, it su�ces
to assume that the preferences of all vertices on one side of the bipartite input
graph are consistent with a master list), representing an island of tractability
for this otherwise extremely hard problem [40]. Therefore, it is natural to ask
whether we can extend this result for strict preferences systems that are close
to admitting a master list. Theorem 8 answers this question a�rmatively.

Theorem 8. Let I be a strict (but not necessarily bipartite) preference system
with G = (V,E). Then an instance (I, ω, c, t, β) of Max-Utility Popular
Matching with Instability Costs where c(e) ≥ 1 for all edges e ∈ E, and
β is constant, can be solved
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(i) in FPT time with parameter ∆edge(I) or ∆swap(I);

(ii) in polynomial time if ∆vert(I) is constant.

We apply the same approach as in Section 5.1, with a crucial di�erence: for
the algorithms proving Theorem 8 we will need to determine a set of edges or
vertices whose deletion yields an instance in FML. Using such a set, we then
apply Lemma 5 or 6 below; these are generalizations of Lemmas 3 and 4 for the
case when we allow a �xed set of edges to block the desired matching.

Lemma 5. Given a strict preference system I = (G,≺) with G = (V,E) and
edge sets B ⊆ E and S ⊆ E such that I−S ∈ FML, the number of matchings M
for which B = bp(M) is at most 2|S|, and it is possible to enumerate them in
time 2|S| ·O(|E|).

Proof. We propose an algorithm that enumerates all matchings M of the in-
put instance I for which bp(M) = B by using a bounded search tree approach.
Let M be a hypothetical stable matching in I. The algorithm tries all pos-
sible ways to �nd M , thus enumerating all stable matchings, as follows. See
Algorithm 3 for a pseudocode.

First, the algorithm �guesses� the set MS = M ∩ S. Then it creates a pref-
erence system I ′ by deleting the edges of B ∪ S and also the vertices in V (MS)
from I; note that I ′ admits a master list. Therefore, there exists a unique stable
matching M ′ in I ′ which can be found in time O(|E|) [28]4. The algorithm then
checks if bp(MS ∪ M ′) = B holds in I (this can be performed in O(|E|) time
as well), and if so, outputs it. Observe that the algorithm outputs at most 2|S|

matchings, and has running time 2|S| · O(|E|), because there are 2|S| possible
ways to choose MS .

Algorithm 3 Enumerating all matchings in a preference system I that admit a
�xed set B of blocking edges, given a set S of edges in I such that I−S ∈ FML.
1: for all MS ⊆ S do
2: Let I ′ = I − (S ∪B)− V (MS). ▷ Note I ′ ∈ FML.
3: Compute the unique stable matching M ′ in I ′.
4: Let M = MS ∪M ′.
5: if bp(M) = B in I then output M .

It is clear that any matching output by the algorithm satis�es bp(M) = B
in I. It remains to prove that it enumerates all such matchings in I. So letM be
any matching of I for which bp(M) = B. Consider the iteration corresponding
to choosing MS = M ∩ S on line 1 of Algorithm 3. Note that M \ MS is a

4In fact, Irving et al. [28] only considered the bipartite case, but it is easy to see that
the straightforward algorithm where vertices pick their partners one-by-one according to their
order on the master list, each choosing their favorite among those still available, results in the
unique stable matching, regardless of whether the underlying graph is bipartite or not.
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matching that is present in I ′ = I − (S ∪B)− V (MS), and we show that it is
stable in I ′ as well. Note that by de�nition, M is stable in I − B, and also
in I − (B ∪ (S \ M)). Furthermore, deleting the edges of MS ⊆ M together
with their endpoints yields a stable matching in the remaining instance, and
so M \MS is also stable in I − (B ∪ (S \M))−V (MS) = I ′. Since there is only
one stable matching in I ′, we obtain that M \ MS must be the matching M ′

found at line 3 (within the iteration corresponding to choosing MS on line 1).
Hence, the algorithm creates the matching MS ∪ (M \ MS) = M on the next
line, and since bp(M) = B holds in I, the algorithm outputs it on line 5. □

Lemma 6. Given a strict preference system I = (G,≺) with G = (V,E), an
edge set B ⊆ E, and a vertex set S ⊆ V such that I − S ∈ FML, the number
of matchings M for which B = bp(M) is at most |V ||S|, and it is possible to
enumerate them in time |V ||S| ·O(|E|).

Proof. We propose an algorithm that enumerates all matchings M of the in-
put instance I for which bp(M) = B by using a bounded search tree approach.
Let M be a hypothetical stable matching in I. The algorithm tries all pos-
sible ways to �nd M , thus enumerating all stable matchings, as follows. See
Algorithm 4 for a pseudocode.

First, the algorithm �guesses� the set MS ⊆ E of those edges in M that have
at least one endpoint in S. Then it creates a preference system I ′ by deleting
the edges of B and the vertices in V (MS) ∪ S from I; note that I ′ admits a
master list. Therefore, there exists a unique stable matching M ′ in I ′ which can
be found in time O(|E|) [28]. The algorithm then checks if bp(MS ∪M ′) = B
holds in I (this can be performed in O(|E|) time as well), and if so, outputs it.
Observe that the algorithm outputs at most |V ||S| matchings, and has running
time |V ||S| ·O(|E|), because there are at most |V ||S| possible ways to chooseMS .

Algorithm 4 Enumerating all matchings in a preference system I that admit a
�xed set B of blocking edges, given a set S of vertices in I such that I−S ∈ FML.
1: for all matching MS in I with each edge of MS having an endpoint in S
do

2: Let I ′ = I −B − (S ∪ V (MS)). ▷ Note I ′ ∈ FML.
3: Compute the unique stable matching M ′ in I ′.
4: Let M = MS ∪M ′.
5: if bp(M) = B in I then output M .

It is clear that any matching output by the algorithm satis�es bp(M) = B
in I. It remains to prove that it enumerates all such matchings in I. So letM be
any matching of I for which bp(M) = B. Consider the iteration corresponding
to choosing MS = {e : e ∈ M, e has an endpoint in S} on line 1 of Algorithm 4.
Note that M \ MS is a matching that is present in I ′ = I −B − S − V (MS),
and we show that it is stable in I ′ as well. Note that M is stable in I − B
by de�nition. Furthermore, deleting the edges of MS ⊆ M together with their
endpoints and the vertices of S \ V (MS), left unmatched by M , yields a stable
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matching in the remaining instance, therefore we know that M \MS is stable
in I − B − (V (MS) ∪ S) = I ′. Since there is only one stable matching in I ′,
we obtain that M \MS must be the matching M ′ found at line 3 (within the
iteration corresponding to choosing MS on line 1). Hence, the algorithm creates
the matching MS∪(M \MS) = M on the next line, and since bp(M) = B holds
in I, the algorithm outputs it on line 5. □

We now present our key lemma that, combined with Theorem 3, is the basis
for Theorem 8.

Lemma 7. An instance (I, ω, c, t, β) of Max-Utility Popular Matching
with Instability Costs where I = (G,≺) is a strict preference system with
underlying graph G = (V,E) and c(e) ≥ 1 for all edges e ∈ E, can be solved

(i) in 2|S| · O(|E|β+1
√

|V | log |V |) time, assuming that a set S ⊆ E of edges
such that I − S ∈ FML is provided as part of the input;

(ii) in |V ||S| ·O(|E|β+1
√
|V | log |V |) time, assuming that a set S ⊆ V of ver-

tices such that I − S ∈ FML is provided as part of the input.

Proof. Since all edges have cost at least 1, we know that the desired matching
may admit at most β blocking edges. For each possible edge set B ⊆ E of size at
most β whose cost does not exceed the budget β, the algorithm of Lemma 5 can
in 2|S| ·O(|E|) time enumerate all matchingsM with bp(M) = B in case (i), and
the algorithm of Lemma 6 can in |V ||S| ·O(|E|) time enumerate all matchings M
with bp(M) = B in case (ii). For each such matching, we can check in linear
time whether it has total utility at least t, and we can test in O(|E|

√
|V | log |V |)

time whether it is popular [5, 16]. □

We are now ready to prove Theorem 8.

Proof (of Theorem 8). Let our input instance of Max-Utility Popular
Matching with Instability Costs be J = (I, ω, c, t, β) where I = (G,≺)
is a strict preference system with G = (V,E) and c(e) ≥ 1 for all edges e ∈ E.

First, suppose that ∆vert(I) is a constant. Then we �nd a set S ⊆ V of
vertices with |S| = ∆vert(I) whose deletion yields a preference system admitting
a master list; this can be performed in |V |∆vert(I) = |V |O(1) time by trying all
possible vertex sets of size at most ∆vert(I). Then we apply Lemma 7 to solve
our instance J , using the set S. Note that the total running time is indeed
polynomial, assuming that ∆vert(I) as well as our budget β is constant.

Second, assume that our parameter is∆edge(I). To obtain an FPT algorithm
with respect to ∆edge(I), we �rst use the 2-approximation of Theorem 3 to
determine a set S ⊆ E of edges with |S| ≤ 2∆edge(I) whose deletion yields
a preference system admitting a master list. Given the set S, we again apply
Lemma 7 to solve our instance J . Observe that the total running time now is
indeed FPT with parameter ∆edge(I), assuming that β is constant.

Since ∆swap(I) ≥ ∆edge(I), an FPT algorithm with parameter ∆edge(I)
immediately yields an FPT algorithm with parameter ∆swap(I). A more direct
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Table 1: Summary of our results on MLS, MLED, and MLVD. Results marked by the sign †
assume the Unique Games Conjecture.

Problem Parameterized complexity Approximation
MLS FPT w.r.t. k constant-factor approx. is NP-hard†

(Corollary 1, Theorem 5) (Theorem 1)

MLED W[1]-hard w.r.t. k constant-factor approx. is NP-hard†

(Theorem 2) 2-approx. FPT algorithm w.r.t. k
(Theorems 1, 3, and 6)

MLVD W[2]-hard w.r.t. k f(k)-approx. is W[1]-hard w.r.t. k
(Theorem 4) (Theorem 4)

approach is to use Corollary 1 to directly determine a set S of swaps of minimum
cardinality for which I ◁ S ∈ FML, transform S into a set S′ of edges with
size |S′| ≤ |S| such that I − S ∈ FML, and then apply Lemma 7 to solve J
using the edge set S′. □

6. Summary and further research

We summarize our main results on MLS, MLED, and MLVD in Table 1.
Interestingly, all our hardness results hold for strict preference systems, and we
were able to extend all our positive results for preference systems with weak
orders.

There are a few questions left open in the paper. We gave asymptotically
tight bounds on the maximum number of stable matchings in a strict preference
system I as a function of ∆edge(I) and ∆vert(I), but we were not able to do
the same for ∆swap(I). Another question is whether the approximation factor
of our 2-approximation FPT algorithm for MLED can be improved.

Apart from answering these speci�c questions, there are several possibilities
for future research. One direction would be to identify further problems that can
be solved e�ciently on preference systems that are close to admitting a master
list. Also, it would be interesting to see how these measures vary in di�erent
real-world scenarios, and to �nd those practical applications where preference
pro�les are usually close to admitting a master list.
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