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Abstract. The model of a housing market, introduced by Shapley and
Scarf in 1974 [14], captures a fundamental situation in an economy where
each agent owns exactly one unit of some indivisible good: a house. We
focus on an extension of this model where duplicate houses may exist.
As opposed to the classical setting, the existence of an economical equi-
librium is no longer ensured in this case. Here, we study the deficiency of
housing markets with duplicate houses, a notion measuring how close a
market can get to an economic equilibrium. We investigate the complex-
ity of computing the deficiency of a market, both in the classical sense
and also in the context of parameterized complexity.
We show that computing the deficiency is NP-hard even under several
severe restrictions placed on the housing market, and thus we consider
different parameterizations of the problem. We prove W[1]-hardness for
the case where the parameter is the value of the deficiency we aim for.
By contrast, we provide an FPT algoritm for computing the deficiency
of the market, if the parameter is the number of different house types.

Keywords. Housing market, Economic equilibrium, Parameterized com-
plexity.

1 Introduction

The standard mathematical model of a housing market was introduced in the
seminal paper of Shapley and Scarf [14], and has successfully been used in
the analysis of real markets such as campus housing [15], assigning students to
schools [1], and kidney transplantation [13]. In a housing market there is a set of
agents, each one owns one unit of a unique indivisible good (house) and wants to
exchange it for another, more preferred one; the preference relation of an agent
is a linearly ordered list (possibly with ties) of a subset of goods. Shapley and
Scarf proved that in such a market an economic equilibrium always exists. A
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constructive proof in the form of the Top Trading Cycles algorithm is attributed
to Gale (see [14]).

However, if we drop the assumption that each agent’s house is unique, it
may happen that the economic equilibrium no longer exists, and it is even NP-
complete to decide its existence, see Fekete, Skutella, and Woeginger [8]. Further
studies revealed that the border between easy and hard cases is very narrow: if
agents have strict preferences over house types then a polynomial algorithm to
decide the existence of an equilibrium is possible, see Cechlárová and Fleiner [4].
Alas, the problem remains NP-complete even if each agent only distinguishes
between three classes of house types (trichotomous model): better house types,
the type of his own house, and unacceptable house types [4]. So it becomes inter-
esting to study the so-called deficiency of the housing market, i.e. the minimum
possible number of agents who cannot get a most preferred house in their budget
set under some prices of the house types.

In the present paper we give several results concerning the computation of
the deficiency of housing markets, also from the parameterized complexity view-
point. First, we show that the deficiency problem is NP-hard even in the case
when each agent prefers only one house type to his endowment, and the max-
imum number of houses of the same type is two. This result is the strongest
possible one in the sense that each housing market without duplicate houses ad-
mits an equilibrium [14]. Then we show that the deficiency problem is W[1]-hard
with the parameter α describing the desired value of the deficiency, even if each
agent prefers at most two house types to his own house, and the preferences are
strict. Notice that the parameterized complexity of the case when each agent
prefers only one house type to his endowment remains open. On the other hand,
assuming that the preferences are strict, we provide a brute force algorithm that
decides whether the deficiency is at most α in polynomial time for each fixed
constant α. This shows that the problem is contained in XP when parameterized
by α. This is in a strict contrast with the trichotomous model where even the
case α = 0 is NP-hard [4]. Finally, we provide an FPT algorithm for comput-
ing the deficiency (that works irrespectively of the type of preferences) if the
parameter is the number of different house types.

To put our results into a broader context, let us mention that for general
markets with divisible goods the celebrated Arrow–Debreu Theorem [2] guar-
antees the existence of an equilibirum under some mild conditions on agents’
preferences. By contrast, it is well-known that in case of indivisible goods an
equilibrium may not exist. From many existing approaches trying to cope with
this nonexistence, let us mention Deng, Papadimitriou, and Safra [6] who intro-
duced a notion of an ε-approximate equilibrium as one where the market “clears
approximately”, and the utility of each agent is within ε from the maximum
possible utility in his budget set. They concentrated on approximation possi-
bilites, and as far as we know such questions have not been studied yet from the
parameterized complexity viewpoint.



2 Preliminaries

The paper is organized as follows. First, we introduce the model under examina-
tion, and give a brief overview of the basic concepts of parameterized complexity.
In Section 3 we present some hardness results, whilst Section 4 is devoted to the
proposal of two algorithms concerned with the computation of deficiency.

2.1 Description of the model

Let A be a set of N agents, H a set of M house types. The endowment function
ω : A → H assigns to each agent the type of house he originally owns. In
the classical model of Shapley and Scarf [14], M = N and ω is a bijection.
If N > M we say that the housing market has duplicate houses. Preferences
of agent a are given in the form of a linear preference list P (a). The house
types appearing in the preference list of agent a are said to be acceptable, and
we assume that ω(a) belongs to the least preferred acceptable house types for
each a ∈ A. The notation i �a j means that agent a prefers house type i to house
type j. If i �a j and simultaneously j �a i, we say that house types i and j are in
a tie in a’s preference list; if i �a j and not j �a i, we write i �a j and say that
agent a strictly prefers house type i to house type j. (If the agent is clear from the
context, the subscript will be omitted.) The N -tuple of preferences (P (a), a ∈ A)
will be denoted by P and called the preference profile.

The housing market is the quadruple M = (A, H, ω,P). We also define the
submarket of M restricted to some agents of S ⊆ A in the straightforward way.

We say that M is a housing market with strict preferences if there are no
ties in P . The maximum house-multiplicity of a market M, denoted by β(M),
is the maximum number of houses of the same type, i.e. β(M) = maxh∈H |{a ∈
A : ω(a) = h}|. The maximum number of preferred house types in the market,
denoted by γ(M), is the maximum number of house types that any agent might
strictly prefer to its own house, i.e. γ(M) = maxa∈A |{h ∈ H : h �a ω(a)}|. We
say that the market M is simple, if γ(M) = 1.

The set of types of houses owned by agents in S ⊆ A is denoted by ω(S).
For each agent a ∈ A we denote by fT (a) the set of the most preferred house
types from T ⊆ H . For a set of agents S ⊆ A we let fT (S) =

⋃

b∈S fT (b).
For one-element sets of the form {h} we often write simply h in expressions
like ω(S) = h, fT (S) = h, etc.

We say that a function x : A → H is an allocation if there exists a per-
mutation π on A such that x(a) = ω(π(a)) for each a ∈ A. Notation x(S)
for S ⊆ A denotes the set

⋃

a∈S{x(a)}. In the whole paper, we assume that allo-
cations are individually rational, meaning that x(a) is acceptable for each a ∈ A.
Notice that for each allocation x, the set of agents can be partitioned into di-
rected cycles (trading cycles) of the form K = (a0, a1, . . . , a`−1) in such a way
that x(ai) = ω(ai+1) for each i = 0, 1, . . . , ` − 1 (here and elsewhere, indices
for agents on cycles are taken modulo `). We say that agent a is trading in
allocation x if x(a) 6= ω(a).



Given a price function p : H → R, the budget set of agent a according to p
is the set of house types that a can afford, i.e. {h ∈ H : p(h) ≤ p(ω(a))}. A
pair (p, x), where p : H → R is a price function, and x is an allocation is an
economic equilibrium for market M if x(a) is among the most preferred house
types in the budget set of a.

It is known that if (p, x) is an economic equilibrium, then x is balanced with
respect to p, i.e. p(x(a)) = p(ω(a)) for each a ∈ A (see [8, 4]).

As a housing market with duplicate houses may admit no equilibrium, we
are interested in price-allocation pairs that are “not far” from the equilibrium.
One possible measure of this distance was introduced in [4] by the notion of
deficiency of the housing market.

An agent is said to be unsatisfied with respect to (p, x) if x(a) is not among
the most preferred house types in his budget set according to p. We denote
by DM(p, x) the set of unsatisfied agents in M w.r.t. (p, x); more formally

DM(p, x) = {a ∈ A : ∃h ∈ H such that h �a x(a) and p(h) ≤ p(ω(a))}.

Given a price function p and an allocation x balanced w.r.t. p, we say
that (p, x) is an α-deficient equilibrium, if |DM(p, x)| = α. Clearly, an economic
equilibrium is a 0-deficient equilibrium. The deficiency of a housing market M,
denoted by D(M) is the minimum α such that M admits an α-deficient equilib-
rium. Given a housing market M and some α ∈ N, the task of the Deficiency

problem is to decide whether D(M) ≤ α.

We shall deal with the computational complexity of Deficiency. For com-
putational purposes, we shall say that the size of the market is equal to the total
length of all preference lists of the agents, denoted by L.

2.2 Parameterized complexity

The aim of parameterized complexity theory is to study the computational com-
plexity of NP-hard problems in a more detailed manner than in the classical
setting. In this approach, we regard the running time of an algorithm as a func-
tion that depends not only on the size but also on some other crucial properties
of the input. To this end, for each input of a given problem we define a so-called
parameter, usually an integer, describing some important feature of the input.

Given a parameterized problem, we say that an algorithm is fixed-parameter
tractable or FPT, if its running time on an input I with parameter k is at most
f(k)|I|O(1) for some computable function f that only depends on k, and not on
the size |I| of the input. The intuitive motivation for this definition is that such
an algorithm might be tractable even for large instances, if the parameter k is
small. Hence, looking at some parameterized version of an NP-hard problem, an
FPT algorithm may offer us a way to deal with a large class of typical instances.

The parameterized analysis of a problem might also reveal its W[1]-hardness,
which is a strong argument showing that an FPT algorithm is unlikely to exist.
Such a result can be proved by means of an FPT-reduction from an already



known W[1]-hard problem such as Clique. Instead of giving the formal defini-
tions, we refer to the books by Flum and Grohe [9] or by Niedermeier [12]. For
a comprehensive overview, see the monograph of Downey and Fellows [7].

Considering the Deficiency problem, the most natural parameters, each
describing some key property of a market M, are as follows: the number of
different houses types |H | = M , the maximum house-multiplicity β(M), and the
maximum number of preferred house types γ(M) in the market. The value α
describing the deficiency of the desired equilibrium can also be a meaningful
parameter, if we aim for a price-allocation pair that is “almost” an economic
equilibrium. The next sections investigate the influence of these parameters on
the computational complexity of the Deficiency problem.

3 Hardness results

We begin with a simple observation which will be used repeatedly later on.

Lemma 1. Let M = (A, H, ω,P) be a housing market, p a price function and x
a balanced allocation for p. Suppose ω(U) = u and ω(Z) = z for some sets U, Z ⊆
A of agents. Suppose also that fH(Z) = u and fT (U) = z where T ⊆ H
contains the budget sets of all agents in U . Then p(u) 6= p(z) implies that at
least min{|U |, |Z|} agents in U ∪ Z are unsatisfied with respect to (p, x).

Proof. If p(u) 6= p(z) and the allocation is balanced, agents from the two sets
cannot trade with each other. Therefore, due to the assumptions, if p(u) > p(z)
then all the agents in U are unsatisfied; if p(z) > p(u) then all the agents in Z
must be unsatisfied, and the assertion follows. ut

Theorem 1. The Deficiency problem is NP-complete even for simple mar-
kets M with β(M) = 2.

Proof. We provide a reduction from the Directed Feedback Vertex Set.
We shall take its special version where the out-degree of each vertex is at most
2, which is also NP-complete, see Garey and Johnson [10], Problem GT7.

Given a directed graph G = (V, E) with vertex set V and arc set E such
that the outdegree of each vertex is at most 2, and an integer k, we construct a
simple housing market M with β(M) = 2 such that D(M) ≤ k if and only if G
admits a feedback vertex set of cardinality at most k.

First, there are two house types v̂, v̂′ for each vertex v ∈ V and k + 1 house
types ê1, . . . , êk+1 for each arc e ∈ E. The agents and their preferences are given
in Table 1. Here and later on, we write [n] for {1, 2, . . . , n}. The last entry in the
list of each agent represents its endowment.

It is easy to see that M is simple, β(M) = 2, the number of house types
in M is 2|V | + (k + 1)|E| and the number of agents |V | + (2k + 3)|E|. To make
the following arguments more straightforward, let us imagine M as a directed
multigraph Ḡ, where vertices are house types, and an arc from vertex h ∈ H
to vertex h′ ∈ H corresponds to an agent a with ω(a) = h and h′ �a h. Now,



agent preference list

one agent v̄ for each v ∈ V v̂′ � v̂

one agent ē for each e = vu ∈ E ê1 � v̂′

two agents ēi for each e = vu ∈ E; i ∈ [k] êi+1 � êi

two agents ēk+1 for each e = vu ∈ E û � êk+1

Table 1. Endowments and preferences of agents in the market.

each directed cycle C in G has its counterpart C̄ in Ḡ, but each arc e = vu
on C corresponds to a “thick path” v̄ → ū containing k + 1 consecutive pairs of
parallel arcs in Ḡ (agents ēi, i ∈ [k + 1]). We shall also say that agents ē, ēi, i =
1, 2, . . . , k + 1 are associated with the arc e = vu.

Now suppose that G contains a feedback vertex set W with cardinality at
most k. For each v ∈ W we remove agent v̄ (together with its endowed house
of type v̂) from M. The obtained submarket is acyclic, so assigning prices to
house types in this submarket according to a topological ordering, we get a
price function and an allocation with no trading in M, where the only possible
unsatisfied agents are the agents {v̄ | v ∈ W}.

Conversely, suppose that M admits a k-deficient equilibrium (p, x). If x pro-
duced any trading, then each trading cycle would necessarily involve some thick
path v̄ → ū and thus exactly one agent from each pair ēi, i ∈ [k + 1] on this
thick path, making at least k + 1 agents unsatisfied. Hence, there is no trading
in x. Now, take any cycle C = (v1, v2, . . . , vr, v1) in G. Since it is impossible
that all the inequalities p(v̂1) < p(v̂2), p(v̂2) < p(v̂3),. . . , p(v̂r) < p(v̂1) along the
vertices of C are fulfilled, at least one agent in C̄ is unsatisfied. If this agent is v̄
or belongs to the set of agents associated to an arc e = vu, we choose vertex v
into a set W . It is easy to see that W is a feedback vertex set and |W | ≤ k. ut

Theorem 1 yields that Deficiency remains NP-hard even if γ(M) = 1 and
β(M) = 2 holds for the input market M. This immediately implies that Defi-

ciency is not in the class XP w.r.t. the parameters β(M), describing the maxi-
mum house-multiplicity, and γ(M), denoting the maximum number of preferred
house types. Next, we show that regarding α (the desired value of deficiency) as
a parameter is not likely to yield an FPT algorithm, not even if γ(M) = 2.

Theorem 2. The Deficiency problem for a market M with strict preferences
and with γ(M) = 2 is W[1]-hard with the parameter α.

Proof. We are going to show a reduction from the W[1]-hard Clique problem,
parameterized by the size of the solution. Given a graph G and an integer k
as the input of Clique, we will construct a housing market M = (A, H, ω,P)
with strict preferences and with γ(M) = 2 in polynomial time such that M
has deficiency at most α = k2 if and only if G has a clique of size k. Since α
depends only on k, this construction yields an FPT-reduction, and we obtain
that Deficiency is W[1]-hard with the parameter α.



agent preferences “multiplicity”

a ∈ A ĉ � â |A| = n − k

b ∈ B â � d̂ � b̂ |B| = 2m − k(k − 1)

b ∈ B′ â � b̂ |B′| = t − (2m − k(k − 1))

f ∈ F c
1 ĉ � f̂c

2 � f̂c
1 |F c

1 | = k

f ∈ F c
2 f̂c

1 � f̂c
2 |F c

2 | = k + 1

f ∈ F d
1 d̂ � f̂d

2 � f̂d
1 |F d

1 | = k(k − 1)

f ∈ F d
2 f̂d

1 � f̂d
2 |F d

2 | = k(k − 1) + 1
ci ∈ C â � q̂i � ĉ |C| = n

d ∈ D b̂ � ŝi � d̂ if d ∈ {d1
i , d

2
i } |D| = 2m

qi ∈ Q f̂c
1 � d̂ � q̂i |Q| = n

s1
i ∈ S q̂x � f̂d

1 � ŝi where ei = vxvy ∈ E, x < y |{s1
i | i ∈ [m]}| = m.

s2
i ∈ S q̂y � f̂d

1 � ŝi where ei = vxvy ∈ E, x < y |{s2
i | i ∈ [m]}| = m.

Table 2. The preference profile of the market M.

Let G = (V, E) with V = {v1, v2 . . . , vn} and E = {e1, e2 . . . , em}. We can
clearly assume n > k2 + k, as otherwise we could simply add the necessary
number of isolated vertices to G, without changing the answer to the Clique

problem. Similarly, we can also assume m > k2, as otherwise we can add the nec-
essary number of independent edges (with newly introduced endvertices) to G.

The set of house types in M is H = {â, b̂, ĉ, d̂, f̂ c
1 , f̂ c

2 , f̂d
1 , f̂d

2 } ∪ Q̂ ∪ Ŝ, where
Q̂ = {q̂i | i ∈ [n]} and Ŝ = {ŝi | i ∈ [m]}. Let t = max{2m−k(k−1), n−k+α+1}.
First, we define seven sets of agents, A, B, B′, F c

1 , F c
2 , F d

1 and F d
2 . The cardinality

of these agent sets are shown in Table 2; note that there might be zero agents
in the set B′. Any two agents will have the same preferences and endowments
if they are contained in the same set among these seven sets. Additionally, we
also define agents in C ∪D ∪ Q∪ S, where C = {ci | i ∈ [n]}, Q = {qi | i ∈ [n]},
D = {d1

i , d
2
i | i ∈ [m]}, and S = {s1

i , s
2
i | i ∈ [m]}. The preference profile of the

market is shown on Table 2. Again, the endowment of an agent is the last house
type in its preference list.

First, suppose that M admits a balanced allocation x for some price func-
tion p such that (p, x) is α-deficient. Observe that fH(c) = â for each c ∈ C,
fH(a) = ĉ for each a ∈ A. By |C| > |A| > α and Lemma 1, we obtain that
p(â) = p(ĉ) must hold. Moreover, by |C| = |A| + k we also know that there are
at least k agents in C who cannot obtain a house of type â, let C∗ ⊆ C be a set
containing k such agents. Clearly, agents in C∗ are unsatisfied. Moreover, if all
agents in C \ C∗ are satisfied, then they must trade with the agents of A.

Second, note that fH(b) = â for each b ∈ B ∪ B′, so |B ∪ B′| > |A| + α

(which follows from the definition of t) implies that p(â) > p(b̂) must hold, as
otherwise more than α agents in B∪B′ could afford a house of type â but would
not be able to buy one. Thus, the budget set of the agents B ∪ B′ does not
contain the house type â. In particular, we get that no agent in B′ is trading
in x. Note also that fH\{â}(b) = d̂ and fH(d) = b̂ for each b ∈ B and d ∈ D, so



Lemma 1 and |D| > |B| > α yield that only p(b̂) = p(d̂) is possible. Taking into
account that |B| = |D| − k(k − 1), we know that there must be at least k(k − 1)

unsatisfied agents in D who are not assigned a house of type b̂; let D∗ denote
this set of unsatisfied agents. Notice that if all the agents in D \D∗ are satisfied,
then they must be trading with the agents of B.

As C∗ ∪ D∗ contains α unsatisfied agents w.r.t. (p, x), and the deficiency
of (p, x) is at most α, we get that no other agent can be unsatisfied. By the above

arguments, this implies x(A) = ĉ, x(C \ C∗) = â, x(B) = d̂, and x(D \ D∗) = b̂.

Next, we will show that x(f) = ĉ for each f ∈ F c
1 and x(f) = d̂ for

each f ∈ F d
1 . We will only prove the first claim in detail, as the other state-

ment is symmetric. First, observe that p(f̂ c
2 ) ≥ p(f̂ c

1) is not possible, because

by fH(F c
2 ) = f̂ c

1 and |F c
2 | > |F c

1 | such a case would imply at least one unsatis-

fied agent in F c
2 . Thus, we know p(f̂ c

2) < p(f̂ c
1), which means that f̂ c

2 is in the
budget set of each agent in F c

1 . But since they do not buy such a house (as x
is balanced), and they cannot be unsatisfied, we obtain that they must prefer

their assigned house to f̂ c
2 . Thus, for each agent f in F c

1 we obtain x(f) = ĉ,
proving the claim. The most important consequence of these facts is that every
agent in C∗ ∪D∗ must be trading according to x, as otherwise the agents in F c

1

and in F d
1 would not be able to get a house of type ĉ or d̂, respectively.

Recall that agents in C∗ are unsatisfied, as they do not buy houses of type â.
But since they are trading, they must buy k houses from Q̂; let q̂i1 , q̂i2 , . . . , q̂ik

be these houses. The agents F c
1 , C∗, Q∗ = {qij

| j ∈ [k]} trade with each other

at price p(ĉ), yielding x(F c
1 ) = ĉ, x(C∗) = ω(Q∗) and x(Q∗) = f̂ c

1 .

Similarly, the k(k− 1) agents in D∗ must be trading, buying k(k− 1) houses
of the set Ŝ; let S∗ denote the owners of these houses. Now, it should be clear
that exactly 2m − k(k − 1) houses of type d̂ are assigned to the agents B, and
the remaining k(k − 1) such houses are assigned to the agents F d

1 .

It should also be clear that the agents S∗ are trading with agents F d
1 , so we

obtain x(F d
1 ) = ω(D∗) = d̂ and x(D∗) = ω(S∗). Thus, agents of Q \ Q∗ can

neither be assigned a house of type d̂ (as those are assigned to the agents B ∪
F d

1 ∗), nor a house of type f̂ c
1 (as those are assigned to agents in Q∗). As agents

of Q \ Q∗ cannot be unsatisfied, we have that p(q̂i) < p(d̂) < p(f̂ c
1 ) holds for

each qi ∈ Q\Q∗, meaning that these agents do not trade according to x. (Recall

that p(d̂) = p(b̂) < p(â) = p(ĉ) = p(f̂ c
1).)

Now, if x(d) = si for some agent d ∈ D∗ and i ∈ [m], then we know

that p(ŝi) = p(d̂) = p(f̂d
1 ). As neither of s1

i and s2
i can be unsatisfied, but

neither of them can get a house from Q̂, it follows that both of them must
obtain a house of type f̂d

1 . Therefore, the set S∗ must contain pairs of agents
owning the same type of house, i.e. S∗ = {s1

ji
, s2

ji
| i ∈ [k(k − 1)]}.

Let us consider the agents s1
j and s2

j in S∗, and let vx and vy denote the two

endpoints of the edge ej, with x < y. Since s1
j prefers q̂x to x(s1

j ) = fd
1 , we must

have p(ŝj) < p(q̂x), since s1
j must not be unsatisfied. Similarly, s2

j prefers q̂y

to x(s2
j ) = fd

1 , implying p(ŝj) < p(q̂y). Taking into account that p(ŝj) = p(d̂) >



p(q̂i) for each qi ∈ Q \Q∗, we get that both qx and qy must be contained in Q∗.
Hence, each edge in the set E∗ = {ej | s1

j , s
2
j ∈ S∗} in G must have endpoints

in the vertex set V ∗ = {vi | qi ∈ Q∗}. This means that the
(

k
2

)

edges in E∗ have
altogether k endpoints, which can only happen if V ∗ induces a clique of size k
in G. This finishes the soundness of the first direction of the reduction.

For the other direction, suppose that V ∗ is a clique in G of size k. We con-
struct an α-deficient equilibrium (p, x) for M as follows. Let I∗ = {i | vi ∈ V ∗}
and J∗ = {j | ej = vxvy, vx ∈ V ∗, vy ∈ V ∗} denote the indices of the vertices and
edges of this clique, respectively. We define Q∗ = {qi | i ∈ I∗}, C∗ = {ci | i ∈ I∗},
S∗ = {s1

j , s
2
j | j ∈ J∗}, and D∗ = {d1

j , d
2
j | j ∈ J∗}. Now, we are ready to define

the price function p as follows.

p(â) = p(ĉ) = p(f̂ c
1 ) = p(q̂i) = 4 for each qi ∈ Q∗,

p(b̂) = p(d̂) = p(f̂d
1 ) = p(ŝi) = 3 for each i where s1

i , s
2
i ∈ S∗,

p(q̂i) = 2 for each qi ∈ Q \ Q∗,
p(h) = 1 for each remaining house type h.

It is straightforward to verify that the above prices form an α-deficient equi-
librium with the allocation x, defined below.

x(A) = ω(C \ C∗), x(C \ C∗) = â,

x(B) = ω(D \ D∗), x(D \ D∗) = b̂,

x(F c
1 ) = ω(C∗), x(C∗) = ω(Q∗), x(Q∗) = f̂ c

1 ,

x(F d
1 ) = ω(D∗), x(D∗) = ω(S∗), x(S∗) = f̂d

1 ,
x(a) = ω(a) for each remaining agent a.

It is easy to see that D(p, x) = C∗ ∪ D∗, implying that (p, x) is indeed α-
deficient by |C∗ ∪ D∗| = k + k(k − 1) = α. The only non-trivial observation
we need during this verification is that p(q̂x) > p(ŝi) and p(q̂y) > p(ŝi) for
any si, where vx and vy are the endpoints of ei. These inequalities trivially hold
if si /∈ S∗. In the case si ∈ S∗ we know vx, vy ∈ V ∗ (since ei is an edge in the
clique V ∗), which yields p(q̂x) = p(q̂y) = p(ŝi) + 1.

Hence, the reduction is correct, proving the theorem. ut

4 Algorithms for computing the deficiency

Theorem 2 implies that we cannot expect an algorithm with running time
f(α)LO(1) for some computable function f for deciding whether a given market
has deficiency at most α. However, we present a simple brute force algorithm
that solves the Deficiency problem for strict preferences in O(Lα+1) time,
which is polynomial if α is a fixed constant. This means that Deficiency is in
XP with respect to the parameter α. Recall that due to the results of [4], no
such algorithm is possible if ties are present in the preference lists, as even the
case α = 0 is NP-hard in the trichotomous model.

Theorem 3. If the preferences are strict, then the Deficiency problem can be
solved in O(Lα+1) time.



Proof. Let M = (A, H, ω,P) be the market given, and let α denote the defi-
ciency what we aim for. Suppose (p, x) is an α-deficient equilibrium for M, and
let DM(p, x) = {a1, a2, . . . , aα} be the set of unsatisfied agents. Let also hi =
x(ai) denote the house type obtained by the unsatisfied agent ai for each i ∈ [α].

Now, we define a set of modified preference lists P [p, x] as follows: for each
agent a ∈ DM(p, x) we delete every house type from its preference list, except
for x(a) and ω(a). We claim that (p, x) is an equilibrium allocation for the
modified market M[p, x] = (A, H, ω,P [p, x]). First, it is easy to see that x is
balanced with respect to the price function p and for M[p, x], as neither the
prices nor the allocation was changed. Thus, we only have to see that there
are no unsatisfied agents in M[p, x] according to (p, x). By definition, in the
market M[p, x] we know x(ai) = fH(ai) for each agent ai ∈ DM(p, x). It should
also be clear that for each other agent b /∈ DM(p, x), we get that x(b) is the
first choice of b in its budget set according to p, since b was satisfied according
to (p, x) in M. Thus, b is also satisfied according to (p, x) in M[p, x]. This means
that (p, x) is indeed an equilibrium allocation for M[p, x].

For the other direction, it is also easy to verify that any equilibrium alloca-
tion (p′, x′) for M[p, x] results in an equilibrium for M with deficiency at most α,
as only agents in DM(p, x) can be unsatisfied in M with respect to (p′, x′).

These observations directly indicate a simple brute force algorithm solving
the Deficiency problem. For any set {a1, a2, . . . , aα} of α agents, and for any α-
tuple h1, h2, . . . , hα of house types such that hi is in the preference list of ai (for
each i ∈ [α]), find out whether there is an economic equilibrium for the modified
market, constructed by deleting every house type except for hi and ω(ai) from
the preference list of ai, for each i ∈ [α]. Finding an economic equilibrium for
such a submarket can be carried out in O(L) time using the algorithm provided
by Cechlárová and Jeĺınková [5].

Note that we have L possibilities for choosing an arbitrary agent together
with a house type from its preference list (as L is exactly the number of “feasible”
agent-house pairs), so we have to apply the algorithm of [5] at most

(

L
α

)

times.
Therefore, the running time of the whole algorithm is O(Lα+1). The correctness
of the algorithm follows directly from the above discussion. ut

Finally, we provide an FPT algorithm for the case where the parameter is
the number of house types in the market.

Theorem 4. There is a fixed-parameter tractable algorithm for computing the
deficiency of a housing market with arbitrary preferences, where the parameter is
the number M of house types in the market. The running time of the algorithm
is O(MM

√
NL).

Proof. Let M = (A, H, ω,P) be a given housing market. If there is an α-deficient
equilibrium (p, x) for M for some α, then we can modify the price function p
to p′ such that all prices are integers in [M ], and (p′, x) forms an α-deficient
equilibrium. Thus, we can restrict our attention to price functions from H to [M ].

The basic idea of the algorithm is the following: for each possible price func-
tion, we look for an allocation maximizing the number of satisfied agents. As a



result, we get the minimum number of unsatisfied agents over all possible price
functions. Note that we have to deal with exactly MM price functions.

Given a price function p : H → [M ] and an agent a, we denote by T (a) the
house types having the same price as ω(a), and by B(a) the budget set of a.

Clearly, for any balanced allocation x w.r.t. p, we know x(a) ∈ T (a). Thus,
we can reduce the market by restricting the preference list of each agent a to
the house types in T (a); let P ′(a) denote the resulting list. The reduced market
now defines a digraph G with vertex set A and arcs ab for agents a, b ∈ A
where b owns a house of type contained in P ′(a); note that each vertex has a
loop attached to it. It is easy to see that any balanced allocation x indicates a
cycle cover of G, and vice versa. (A cycle cover is a collection of vertex disjoint
cycles covering each vertex.)

By definition, a is satisfied in some allocation x with respect to p, if x(a) ∈
fB(a)(a). We call an arc ab in G important, if ω(b) is contained in fB(a)(a). Hence,
an agent a is satisfied in a balanced allocation if and only if the arc leaving a in
the corresponding cycle cover is an important arc. By assigning weight 1 to each
important arc in G and weight 0 to all other arcs, we get that any maximum
weight cycle cover in G corresponds to an allocation with the maximum possible
number of satisfied agents with respect to p.

To produce the reduced preference lists and construct the graph G, we
need O(L) operations. For finding the maximum weight cycle cover, a folklore
method reducing this problem to finding a maximum weight perfect matching in
a bipartite graph can be used (see e.g. [3]). Finding a maximum weight perfect
matching in a bipartite graph with |V | vertices, |E| edges, and maximum edge
weight 1 can be accomplished in O(

√

|V ||E|) time [11]. With this method, our
algorithm computes the minimum possible deficiency of a balanced allocation in
time O(

√
NL), given the fixed price function p. As the algorithm checks all pos-

sible price functions from H to [M ], the total running time is O(MM
√

NL). ut

5 Conclusion

We have dealt with the computation of the deficiency of housing markets. We
showed that in general, if the housing market contains duplicate houses, this
problem is hard even in the very restricted case where the maximum house-
multiplicity in the market M is two (β(M) = 2) and each agent prefers only
one house type to his own (γ(M) = 1).

To better understand the nature of the arising difficulties, we also looked
at this problem within the context parameterized complexity. We proposed an
FPT algorithm for computing the deficiency in the case where the parameter
is the number of different house types. We also presented a simple algorithm
that decides in O(Lα+1) time if a housing market with strict preferences has
deficiency at most α, where L is the length of the input. By contrast, we showed
W[1]-hardness for the problem where the parameter is the value α describing
the deficiency of the equilibrium we are looking for.



This W[1]-hardness result holds if γ(M) = 2, leaving an interesting problem
open: if each agent prefers only one house type to his endowment (i.e. γ(M) = 1),
is it possible to find an FPT algorithm with parameter α that decides whether
the deficiency of the given market M is at most α? Looking at the digraph
underlying such a market where vertices correspond to house types and arcs
correspond to agents, and using the characterization of housing markets that
admit an economic equilibrium given by Cechlárová and Fleiner [4], it is not
hard to observe that this problem is in fact equivalent to the following natural
graph modification problem: given a directed graph G, can we delete at most
α edges from it such that each strongly connected component of the remaining
graph is Eulerian?
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