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Abstract. We study the Hospitals/Residents with Couples problem, a
variant of the classical Stable Marriage problem. This is the extension
of the Hospitals/Residents problem where residents are allowed to form
pairs and submit joint rankings over hospitals. We use the framework of
parameterized complexity, considering the number of couples as a param-
eter. We also apply a local search approach, and examine the possibilities
for giving FPT algorithms applicable in this context. Furthermore, we
also investigate the matching problem containing couples that is the sim-
plified version of the Hospitals/Residents with Couples problem modeling
the case when no preferences are given.

1 Introduction

The classical Hospitals/Residents problem (which is a generalization of the well-
known Stable Marriage problem) was introduced by Gale and Shapley [11] to
model the following situation. We are given a set of hospitals, each having a
number of open positions, and a set of residents applying for jobs in the hospitals.
Each resident has a ranking over the hospitals, and conversely, each hospital
has a ranking over the residents. Our aim is to assign as many residents to a
hospital as possible, with the restrictions that the capacities of the hospitals are
not exceeded and the resulting assignment is stable. Stability will be formally
defined in Section 3, but essentially an assignment is unstable, if there is a
hospital h and a resident r such that r is not assigned to h, but both h and r
would benefit from contracting with each other instead of accepting the given
assignment.

The original version of the Hospitals/Residents problem is well understood: a
stable assignment always exists, and every stable assignment has the same size.
(The size of an assignment is the number of residents that have a job.) Moreover,
the classical Gale-Shapley algorithm [11] can find a stable assignment in linear
time. However, several practical applications motivate some kind of extension or
modification of the problem (see e.g. the NRMP program for assigning medical
residents in the USA [29, 32] or the detailing process of the US Navy [27]), and
in the recent decade various versions have been investigated. Among the most
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frequently studied variants are the case when preference lists involve ties and
may be incomplete [20, 21], the case when the market of the agents is one-sided,
called the Stable Roommates problem [14, 15], and the case when the assign-
ment may be a many-to-many matching [30, 4, 8]. Here we study an extension
of this problem, called Hospitals/Residents with Couples, where residents may
form couples, and thus have joint rankings over the hospitals. This extension
models a situation that arises in many real world applications [32, 31], and was
first introduced by Roth [29] who also discovered that a stable assignment need
not exist when couples are involved. Later, Ronn [28] proved that it is NP-hard
to decide whether a stable assignment exists in such a setting. Since then, various
approaches have been investigated to deal with the intractability of this prob-
lem, but most researchers examined different assumptions on the preferences of
couples that guarantee some kind of tractability [17, 5, 7, 25].

For the investigation of this problem, we use the framework of parameterized
complexity which has been developed by Downey and Fellows [6]. This approach
deals with hard problems, where polynomial-time algorithms are unlikely to ex-
ist. To do this, we define an integer parameter k for each problem instance, and
we try to find algorithms whose running time remains tractable if the param-
eter k is small. More precisely, we look for algorithms whose running time is
of the form f(k)nc, where n is the size of the instance having parameter k, f
is an arbitrary function, and c is a constant. Note that the running time may
depend exponentially or worse on the parameter k, but it yields a polynomial
of degree c for each fixed k. Problems admitting such an algorithm are called
fixed-parameter tractable or FPT.

Up to our knowledge, no version of the Hospitals/Residents problem has
been studied from the parameterized point of view. When considering Hospi-
tals/Residents with Couples, the number of couples in an instance can be a nat-
ural parameter. We prove the negative result of Theorem 8 stating that deciding
the existence of a stable assignment for the Hospitals/Residents with Couples
problem is not FPT, provided that W[1] 6= FPT holds (which is a standard
assumption of parameterized complexity theory).

Local search is a basic technique that has been widely applied in heuristics for
practical optimization problems for several decades [1]. However, investigations
considering the connection of local search and parameterized algorithms have
only been started a few years ago, and research in this area has been gaining
increasing attention lately [22]. The basic idea of local search is to find an optimal
solution by an iteration in which we improve the current solution step by step
through local modifications. Local search can become more efficient if we can
decide whether there exists a better solution S ′ that is ` modification steps away
from a given solution S. Typically, the `-neighborhood of a solution S can be
explored in nO(`) time by examining all possibilities to find those parts of S
that should be modified. (Here n is the input size.) However, in some cases
the dependency on ` can be improved by getting ` out of the exponent of n,
resulting in a running time of the form f(`)nc for some constant c, meaning that
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Task: Existence Maximum Local search algorithm
problem problem with FPT running time

Parameter: |C| ` (|C|, `)
Without P randomized FPT No permissive alg. Permissive alg.
preferences (trivial) (Theorem 1) (Theorem 7) (Theorem 1)

With No FPT alg. No FPT alg. No permissive alg. Strict alg.
preferences (Theorem 8) (Theorem 8) (Theorem 10) (Theorem 11)

Table 1. Summary of our results (assuming W[1] 6= FPT).

the neighborhood exploration problem is FPT. This question has already been
studied in connection with different optimization problems ([16, 18, 23, 9, 33]).

In Theorem 11, we give an algorithm for the following problem: given a stable
assignment S, find a stable assignment S ′ of greater size which can be obtained
from S by modifying the assignment for at most ` residents. The presented al-
gorithm guesses the structure of the modification needed to obtain the larger
stable assignment S′, and applies color-coding to localize this structure step by
step in the original instance, using only simple steps. The running time of this
algorithm for an instance of size n involving a set C of couples is f(`, |C|)nc for
some function f and constant c, so this yields an FPT algorithm with parame-
ters ` and |C|. In contrast, if we only regard ` as a parameter, then Theorem 10
shows that no FPT algorithm exists for this problem unless W[1] = FPT.

We also contribute to the framework of parameterized local search algorithms
by distinguishing between “strict” algorithms that perform the local search step
in some neighborhood of a solution as described above, and “permissive” algo-
rithms whose task is the following: given some problem with an initial solution S,
find any better solution, provided that a better solution exists in the local neigh-
borhood of S. Our motivation for this distinction is that finding an improved
solution in the neighborhood of a given solution may be hard, even for problems
where an optimal solution is easily found. We hope that this differentiation clar-
ifies the role of local search in such cases, helping the parameterized complexity
analysis of such problems.

Most of the questions examined here are also worth studying in a model that
does not involve preferences. This simplification leads to a matching problem
that we call Maximum Matching with Couples. Using a result by the first au-
thor concerning matroids from the parameterized view-point [24], we propose
a randomized algorithm in Theorem 1 that finds a matching of maximum size,
and runs in FPT time if the parameter is the number |C| of couples. Therefore,
this problem becomes easier without preferences. By contrast, the local search
problem still remains hard to solve (Theorem 7). For a summary of our results
see Table 1.

The paper is organized as follows. Section 2 covers our notation and the
preliminaries, and Section 3 introduces the formal definitions of the problems
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examined in the paper. In Section 4, we investigate the Matching with Couples
problem, and we present our results on the Hospitals/Residents with Couples
problem in Section 5. Finally, we give a short summary of our results in Section 6.

2 Preliminaries

For some integer k, we use [k] = {1, 2, . . . , k}, and
(

[k]
2

)
= {(i, j) | 1 ≤ i < j ≤ k}.

For a graph G, V (G) denotes its vertices and E(G) its edges. A matching in G
is a set M of edges such that no two edges in M share an endpoint. If x is an
endpoint of some edge in M , then x is covered by M . For some x covered by M ,
M(x) = y if xy ∈M .

A decision problem Q over some alphabet Σ is an arbitrary subset of Σ∗,
and an algorithm decides Q if for every x ∈ Σ∗, its output is ’Yes’ if and only
if x ∈ Q. With each instance of an optimization problem Q we associate a set of
solutions and an objective function which we want to maximize or minimize. In
this paper we consider only maximization problems.

Parameterized complexity. A parameterized problem is a pair (Q, κ) where
Q ⊆ Σ∗ is a decision problem over some alphabet Σ, and κ : Σ∗ → N is a pa-
rameterization of the problem, assigning a parameter to each instance of Q. An
algorithm is fixed-parameter tractable or FPT, if its running time is f(k)|I |c for
some computable function f , where I is the input, k is the parameter and c
is a constant. A parameterized problem is FPT, if there is an FPT algorithm
that decides it. Analogously to the classical complexity theory, the theory of
W[1]-hardness can be used to prove that some problem is not FPT, unless the
widely believed FPT ⊂ W [1] conjecture fails. Given two parameterized prob-
lems (Q1, κ1) and (Q2, κ2) over the alphabet Σ, an FPT reduction from (Q1, κ1)
to (Q2, κ2) is a function g : Σ∗ → Σ∗, computable by an FPT algorithm, such
that I ∈ Q1 if and only if g(I) ∈ Q2 and κ2(g(I)) ≤ f(κ1(I)) for some com-
putable function f , for every I ∈ Σ∗. To prove W[1]-hardness results, we use
that the class of W[1]-hard problems is closed under FPT reductions. The FPT
reductions in this paper are from the W[1]-hard parameterized problem Clique,
in which a graph G and a parameter k is given, and the task is to decide whether
there is a clique of size k in G. For further details on parameterized complexity,
see e.g. [6], [26], or [10].

Local search. To formalize the task of a local search algorithm, let Q be an
optimization problem with an objective function T which we want to maximize.
To define the concept of neighborhoods, we suppose there is some distance d(x, y)
defined for each pair (x, y) of solutions for some instance I of Q. We say that
x is `-close to y if d(x, y) ≤ `. The input of a local search algorithm for Q is
an instance I of Q, a solution S0 for I , and an integer `. A strict local search
algorithm for Q has the following task:

Strict local search for Q

Input: (I, S0, `) where I is an instance of Q, S0 is a solution for I , and ` ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ ` and T (S) >

T (S0), then output such an S.
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In contrast, a permissive local search algorithm for Q is allowed to output a
solution that is not close to S0, provided that it is better than S0. In local search
methods, such an algorithm is as useful as its strict version. Formally, its task is
as follows:

Permissive local search for Q

Input: (I, S0, `) where I is an instance of Q, S0 is a solution for I , and ` ∈ N.
Task: If there exists a solution S for I such that d(S, S0) ≤ ` and T (S) >

T (S0), then output any solution S ′ for I with T (S′) > T (S).

On the one hand, note that if an optimal solution can be found by some
algorithm, then this yields a permissive local search algorithm for the given
problem. On the other hand, finding a strict local search algorithm might be
hard even if an optimal solution is easily found. An example for such a case
is the Minimum Vertex Cover problem for bipartite graphs [18]. Besides,
proving that no permissive local search algorithm exists for some problem is
clearly more relevant than proving that no strict local search algorithm exists
for it (having a certain running time). We also present results of this kind.

We remark that the distinction between permissive and strict local search
algorithms cannot be maintained when addressing the standard decision ver-
sion of these problems. To see this, consider the following formulation of such
a local search problem: given an instance I of some optimization problem Q,
a solution S0 to I , and some ` ∈ N, decide whether there is a solution S for
I such that d(S, S0) ≤ ` and T (S) > T (S0). Clearly, the difference between
the strict and the permissive approach is no longer applicable in this defini-
tion. Consequently, instead of proving W[1]-hardness for problems considering
local search algorithms, our hardness results will be formulated as statements
that no (permissive) local search algorithm can run in FPT time with a certain
parameterization, assuming FPT6=W[1].

3 Problem definitions

In this section we give the formal descriptions of the different models that we
investigate.

Model without preferences. First, we define two versions of the Hospi-
tals/Residents problem that involve couples, but do not deal with preferences,
using only a notion of acceptability instead.

A couples’ market with acceptance, or cma for short, consists of a set S of
singles, a set C of couples, a set H of hospitals together with a capacity f(h)
for each hospital h, a set A(s) ⊆ H for each single s ∈ S representing acceptable

hospitals for s, and a set A(c) ⊆ H̃ for each couple c ∈ C representing acceptable

hospital pairs for c. Here H̃ = (H ∪ {�})× (H ∪ {�}) \ {(�,�)} where � is a
special symbol indicating that someone is unemployed. If f ≡ f0 for some f0 ∈ N,
then we say that the cma is f0-uniform. Each couple c is a pair (c(1), c(2)), and
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we call the elements of the set R =
⋃
c∈C{c(1), c(2)} ∪ S residents. The couples

are mutually disjoint, i.e. each resident appears in at most one couple.

An assignment for a cma (S,C,H, f, A) is a function M : R→ H ∪{�} such
that M(s) ∈ A(s) ∪ {�} for each s ∈ S, M(c) ∈ A(c) ∪ {(�,�)} for each c ∈ C,
and the number of residents assigned to a hospital h is at most its capacity f(h).
Here, M(c) denotes the pair (M(a),M(b)) for some couple c = (a, b), and the
set of residents assigned to h in M is the set {r | r ∈ R,M(r) = h}, denoted
by M(h). We say that an assignment M covers a resident r if M(r) 6= �, and
M covers a couple c, if it covers c(1) or c(2). We define the size of M , denoted
by |M |, to be the number of residents covered by M . The Maximum Matching
with Couples problem is an optimization problem, where given a cma I , the set
of solutions is the set of assignments for I , and the task is to find an assignment
for I of maximum size.

To consider the local search versions of the Maximum Matching with
Couples problem, we define the distance d(M,M ′) of two assignments M
and M ′ for some cma I as the number of residents r for which M(r) 6= M ′(r).
Using this, the task of a strict local search algorithm for Maximum Matching
with Couples is the following: given a cma I together with an assignment M
for I , and some integer `, find an assignment M ′ for I with d(M,M ′) ≤ ` that
has size greater than M . The input of a permissive local search algorithm for
Maximum Matching with Couples is the same, but in this case the task is
to find any assignment for I having size greater than M , if such an assignment
exists in the `-neighborhood of M .

Model with preferences. Next, let us define some versions of the Hospi-
tals/Residents problem, where couples are involved and preferences play an im-
portant role.

A couples’ market with preference, or cmp for short, consists of the sets S,C,
and H representing singles, couples, and hospitals, respectively, a capacity f(h)
for each h ∈ H , and a preference list L(a) for each a ∈ S ∪ C ∪ H . The set
A = S∪C ∪H is called the set of agents. The preference lists can be incomplete,
but cannot involve ties, so if s ∈ S then L(s) is a strictly ordered set of hospitals,

if c ∈ C then L(c) is a strictly ordered subset of H̃ , and if h ∈ H then L(h)

is a strictly ordered set of residents. Here, H̃ and the symbol � are defined the
same way as for the case without preferences, and we also adopt the notion of
f0-uniformity. The set of elements appearing in the list L(a) is AL(a), and we say
that x is acceptable for a if x ∈ AL(a). Clearly, we may assume that acceptance
is mutual, so h ∈ AL(s) holds if and only if s ∈ AL(h) for each s ∈ S and h ∈ H ,
and (h1, h2) ∈ AL(c) implies c(i) ∈ AL(hi) or hi = � for both i ∈ {1, 2}, for
each c ∈ C. For some x ∈ AL(a), the rank of x w.r.t. a, denoted by ρ(a, x), is
r ∈ N if x is the r-th element in L(a). If x /∈ AL(a), then we let ρ(a, x) =∞ for
all meaningful x.

Let I = (S,C,H, f, L) be a cmp. An assignment for I is an assignment for
the underlying cma (S,C,H, f, AL). We say that x is beneficial for the agent a
with respect to an assignment M if x ∈ AL(a) and one of the following cases
holds: (1) a ∈ S ∪ C and either a is not covered by M or ρ(a, x) < ρ(a,M(a)),

6



(2) a ∈ H and either |M(a)| < f(a) or there exists a resident r′ ∈ M(h) such
that ρ(a, x) < ρ(a, r′). A blocking pair for M can be of three types:

– it is either a pair formed by a single s and a hospital h such that both s
and h are beneficial for each other w.r.t. M ,

– or a pair formed by a couple c and a pair (h1, h2) with h1 6= h2 such that
(h1, h2) is beneficial for c w.r.t. M , and for both i ∈ {1, 2} it holds that if
hi 6= � then either c(i) is beneficial for hi w.r.t. M or c(i) ∈M(hi),

– or a pair formed by a couple c and a hospital h such that (h, h) is beneficial
for c w.r.t. M , and the couple c is beneficial for h. If h prefers c(1) to c(2),
this latter means that either |M(h)| ≤ f(h) − 2, or |M(h)| ≤ f(h) − 1
and ρ(h, c(1)) < ρ(h, r) for some r ∈ M(h), or ρ(h, c(1)) < ρ(h, r1) and
ρ(h, c(2)) < ρ(h, r2) for some r1 6= r2 in M(h). 3

An assignment M for I is stable if there is no blocking pair for M .
The input of the Hospitals/Residents with Couples problem is a cmp I ,

and the task is to determine a stable assignment for I , if such an assignment
exists. We denote by Maximum Hospitals/Residents with Couples the
optimization problem where the task is to determine a stable assignment of
maximum size for a given cmp. Another variant of this optimization problem
which we will address is the Increase Hospitals/Residents with Couples
problem. Here, the input is a cmp I and a stable assignment M0 for I , and the
task is to find a stable assignment with size at least |M0|+1.

4 Matching without preferences

In this section we investigate the parameterized complexity of the Maximum
Matching with Couples problem. In Subsection 4.1 we present a randomized
FPT algorithm for it, where the parameter is the number of couples. Then we
turn our attention to an application of this algorithm in the context of schedul-
ing problems in Subsection 4.2. We also examine the possibility of finding a
local search algorithm for the Maximum Matching with Couples problem
in Subsection 4.3.

4.1 Fixed-parameter tractability

Let us examine the complexity of the Maximum Matching with Couples
problem. Clearly, if there are no couples in a given instance, then the problem
is equivalent to finding a maximum matching in a bipartite graph, and can be
solved by standard techniques. If couples are involved, the problem becomes
hard. More precisely, the decision version of this problem is NP-complete [13,
3], even in the special case where each hospital has a capacity of 2, and the
acceptable hospital pairs for a couple are always of the form (h, h) for some h ∈
H . However, if the number of couples is small, which is a reasonable assumption
in many practical applications, Maximum Matching with Couples becomes
tractable, as shown by Theorem 1.

3 We thank David Manlove for pointing out this case.
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Theorem 1. Maximum Matching with Couples can be solved in random-
ized FPT time with parameter |C|.

We will use the following lemma to solve a special case of the Maximum
Matching with Couples problem.

Lemma 2. There exists an algorithm running in randomized FPT time with
parameter |C| that, given an instance of the 1-uniform Maximum Matching
with Couples problem and some integer n, finds an assignment covering at
least n singles and also each resident that is a member of some couple, if such
an assignment exists.

To prove Lemma 2, we need some results from [24] concerning matroids.
Although we only use basic concepts from matroid theory, here we give a

brief outline of the main definitions used. For some set U and collection I ⊆ 2U ,
the pair (U, I) is a matroid if the following hold: (1) ∅ ∈ I, (2) if X ∈ I and
X ′ ⊆ X then X ′ ∈ I, and (3) if X,Y ∈ I and |X | < |Y | then X ∪ {y} ∈ I
for some y ∈ Y \X . The elements of I are called independent sets. A matrix A
over a field F is a linear representation of a matroid ({ui | i ∈ [n]}, I), if for any
set J of indices in [n], the set of columns in A corresponding to the indices J
are independent over F if and only if {uj | j ∈ J} ∈ I. A matroid is linear
if it admits a linear representation. A maximal independent set of a matroid is
called a basis of the matroid. The dual of a matroid (U, I) with basis set B is the
matroid with ground set U whose basis set is {U \B | B ∈ B}. The k-truncation
of (U, I) is the matroid (U, I ′) where I ∈ I ′ if and only if I ∈ I and |I | ≤ k.
Given a bipartite graph G(A,B;E), its transversal matroid has ground set A,
and X is defined to be independent if there is a matching in G covering X .

Theorem 3 ([24]). Let M(U, I) be a linear matroid where the ground set U is
partitioned into blocks of size b. Given a linear representation A of M, it can be
determined in f(k, b) · ||A||O(1) randomized time whether there is an independent
set that is the union of k blocks. (||A|| denotes the length of A in the input.)

The following generalization of Theorem 3 will be convenient for our pur-
poses.

Corollary 4. Let M(U, I) be a linear matroid and let X = {X1, X2, . . .Xn}
be a collection of subsets of U , each of size b. Given a linear representation A
of M, it can be determined in f(k, b) · ||A||O(1) randomized time whether there
is an independent set that is the union of k disjoint sets in X .

Proof. First, let us make n(u) copies for each u ∈ U , where n(u) is the number
of sets in X containing u, i.e. let U ′ = {ui | u ∈ U, n(u) > 0, i ∈ [n(u)]}. Let
M′(U ′, I ′) be the matroid where I ′ contains those sets which can be obtained
from some set I ∈ I by replacing each u ∈ I with an arbitrary element from {ui |
i ∈ [n(u)]}. A representation A′ of M′ can be obtained from A by putting n(u)
copies of the column representing u into A′ for each u ∈ U . For each i ∈ [n], let
X ′i ⊆ U ′ be obtained by replacing each element u in Xi with uj if Xi is the j-th
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set in X containing u. Clearly, by letting X ′i be a block (having size b) for each
i ∈ [n], we get a partition of U ′.

The sets {Xij | j ∈ [k]} satisfy the requirements (being disjoint and having
an independent union in M) if and only if the sets {X ′ij | j ∈ [k]} are k blocks

whose union is independent inM′, and thus the algorithm of Theorem 3 provides
the solution. ut
Lemma 5 ([24]). (1) Given a representation A over a field F of a matroid M,
a representation of the dual matroid M∗ over F can be found in polynomial
time.
(2) Given a representation A over N of a matroid M and an integer k, a rep-
resentation of the k-truncation of Mk can be found in randomized polynomial
time.
(3) Given a bipartite graph G(A,B;E), a representation of its transversal ma-
troid over N can be constructed in randomized polynomial time.

Now, we are ready to prove Lemma 2.

Proof (of Lemma 2). Let (S,C,H, f, A) be the given cma with f ≡ 1 for which
we have to find an assignment covering at least n singles and each resident that
is a member of some couple in C. Clearly, we can assume A(c) ⊆ H ×H .

Let G(H,S;E) be the bipartite graph where a single s ∈ S is connected with
a hospital h ∈ H if and only if h ∈ A(s). We can assume w.l.o.g. that G has
a matching of size at least n as otherwise no solution may exist, and this case
can be detected easily in polynomial time. We defineM(H, I) to be the matroid
where a set X ⊆ H is independent if and only if there is a matching in G that
covers at least n singles but covers no hospitals from X . Observe that M is
exactly the dual of the n-truncation of the transversal matroid of G, and thus it
is indeed a matroid. By Lemma 5, we can find a linear representation A of M
in randomized polynomial time.

We define the matroid M′(U, I ′) with ground set U = H ∪ C such that
X ⊆ U is independent in M′ if X ∩ H is independent in M. A representation
of M′ can be obtained by appending a unit matrix of size k × k to A in the
intersection of k newly introduced rows and columns, each containing only zeros
in the remaining entries. Let X be the collection of the sets that are of the form
{c, h1, h2} where c ∈ C and (h1, h2) ∈ A(c).

Observe that if X1, X2, . . . , Xk are k disjoint sets in X whose union is in-
dependent in M′, then we can construct an assignment covering each resident
that is a member of some couple and at least n additional singles as follows. For
each {c, h1, h2} ∈ {X1, . . . , Xk} we choose M(c) from {(h1, h2), (h2, h1)} ∩ A(c)
arbitrarily. The disjointness of the sets X1, . . . , Xk guarantees that this way we
assign exactly one resident to each hospital in X =

⋃
i∈[k] Xi ∩ H . Now, let N

be a matching in G that covers at least n singles, but no hospitals from X . Such
a matching exists, as X is independent in M. Thus, letting M(s) be N(s) if
s is covered by N and � otherwise for each s ∈ S yields that M is an assign-
ment with the desired properties. Conversely, if M is an assignment covering
each member of the couples and n additional singles, then the sets {c, h1, h2} for
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each c ∈ C and M(c) = (h1, h2) form a collection of k disjoint sets in X whose
union is independent in M′. By Corollary 4, such a collection can be found in
randomized FPT time when k is the parameter, yielding a solution if exists. ut

Using Lemma 2, we can prove Theorem 1.

Proof. Let I = (S,C,H, f, A) be the given cma in the Maximum Matching
with Couples problem. We give an algorithm that decides whether there is an
assignment covering t residents in this instance.

First, we reduce the general problem to the 1-uniform case by “cloning” the
hospitals. To this end, substitute each h ∈ H with newly introduced hospi-
tals h1, . . . , hf(h); the set of acceptable residents will be A(h) for each of these
hospitals. Now, for each single s and for each hospital h acceptable for s, re-
place h with the elements h1, . . . , hf(h) in the set of acceptable hospitals for s.
Also, for each couple c and for each entry (ha, hb) in A(c), replace the entry
(ha, hb) in the set of of acceptable hospital pairs for c with the elements in
{(hia, hjb) | i ∈ [f(ha)], j ∈ [f(hb)]}. (The cases where ha = � or hb = � can be
handled similarly.)

It is easy to see that an assignment for I covering a certain set of residents can
be transformed into an assignment for the modified instance covering exactly the
same residents, and vice versa. Note that this modification increases the input
length of the instance by at most a factor of f 2

max, where fmax is the maximum
capacity of some hospital in H . Since we can assume fmax ≤ |S|+ 2|C| without
losing generality, this means that the input increases only by a polynomial factor.

Next, we show how to solve the 1-uniform Maximum Matching with Cou-
ples problem using the algorithm of Lemma 2. For each couple c ∈ C, we branch
into three cases, according to the cases where want to cover 0, 1, or 2 of the resi-
dents of the couple c. In the branch where we do not want to cover any member
of c, we simply delete c from the market. In the branch where we only want to
cover one member of the couple c, we can replace c with a new single sc that
finds exactly those hospitals h acceptable for which either (�, h) or (h,�) was
acceptable for c. (We also have to replace the members of c with sc in the ac-
ceptance lists of the hospitals.) After branching for each couple in C, we look
for an assignment that covers each resident in the remaining set C ′ of couples,
and also t − 2|C ′| additional singles. This task can be accomplished by using
the algorithm of Lemma 2. Notice that the branchings only increase the running
time by a factor of 3|C|.

Clearly, such an assignment yields an assignment of size t in the original
instance I . Conversely, if there is an assignment of size t in I , then at least one
branch will lead to such an assignment. ut

We remark that the main obstacle to derandomize the algorithm of Theo-
rem 1 is the fact that the proof of Theorem 3 makes use of the Zippel-Schwartz
Lemma in some issues connected to matroid representations, and hence is inher-
ently randomized (see also [24]).
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4.2 An application in scheduling

Lemma 2 can be generalized in a straightforward way to the case when there
are groups having some fixed size p ∈ N instead of couples of size 2 in the given
market. Then, in the proof of Lemma 2 we have to use blocks of size p+1 instead
of size 3, and hence we need to apply Corollary 4 with setting b = p + 1. The
running time of this more general version of the algorithm is randomized FPT,
if we regard both the number of groups and p as parameters. This has a useful
consequence in connection to the following scheduling problem.

We are given a set M of parallel machines and a set J of independent jobs.
With each job j ∈ J we associate a processing time pj and a processing set
Mj ⊆M of machines that can process j. The task is to find a scheduling where
each job j is (entirely) processed by a machine in Mj . Formally, a scheduling
in this setting is an assignment µ : J → M mapping each job j ∈ J to some
machine in its processing set Mj . The makespan of a scheduling µ is the value
maxm∈M

∑
µ(j)=m pj , which describes the latest completion time when some

machine in M finishes all the jobs assigned to it.
We consider the following problem in this context: given the set of jobs with

their processing times and processing sets, find a scheduling that minimizes
the makespan. In the standard three-field notation of the area of scheduling
algorithms, this problem is abbreviated as P |Mj |Cmax.

Similar scheduling problems have been widely studied by researchers, see
the recent survey of Leung and Li [19]. Due to the computational hardness of
these problems, most of the work in this area focuses on either approximation
or exponential-time algorithms. Also, researchers have extensively studied spe-
cial cases which are more likely to be tractable, such as scheduling with unit
length jobs, or cases where the job processing restrictions exhibit some specific
structure.

Here we complement this line of research by providing a randomized fixed-
parameter tractable algorithm for the special case of the P |Mj |Cmax problem
where k jobs have processing time p ∈ N and all other jobs have processing
time 1, and we regard k as a parameter. This problem was proved to be NP-
complete even if p = 2 (see [13, 3]), so investigating the parameterized complexity
of this problem might be of practical importance.

Theorem 6. There is a randomized FPT algorithm for the special case of the
P |Mj |Cmax problem where k jobs have processing time p ∈ N and all other jobs
have processing time 1, and we regard k and p as the parameter.

Proof. Let us be given some instance I of the P |Mj |Cmax problem where k
jobs have processing time p ∈ N and all other jobs have processing time 1. Let
J and M denote the set of jobs and machines, and let pj and Mj denote the
processing time and the processing set for some job j ∈ J , respectively.

To construct a minimum makespan scheduling, we will use the generalized
version of the algorithm presented in Lemma 2, dealing with case when there
are groups of some fixed size p instead of couples having size 2 in the market.
This algorithm runs in randomized FPT time, if both k and p are parameters.

11



We provide an algorithm that for any T ∈ N can construct a scheduling
for the given instance I with makespan at most T , if such a scheduling exists.
By applying a binary search on the value of T we can extend this to finding
a minimum makespan scheduling. For a given value T ∈ N, we construct a 1-
uniform cma as follows. Let z = bT/pc. For each machine m ∈ M we define T
hospitals h1

m, h
2
m, . . . , h

T
m (each with capacity 1). For each job j with processing

time 1, we add a corresponding single resident sj that finds exactly the hospitals
in {him | m ∈ Mj , i ∈ [T ]} acceptable. For each job j with processing time p, we
add a corresponding group gj consisting of p newly introduced residents, and we

let the acceptable p-tuple of hospitals for gj be {(h(i−1)p+1
m , h

(i−1)p+2
m , . . . , hipm) |

m ∈Mj , i ∈ [z]}. We apply the generalized version of the algorithm of Lemma 2
to find an assignment covering each resident in this instance.

Note that the number of groups is k (the number of jobs with processing
time p) and the number of singles is |J | − k (the number of remaining jobs). It
is also easy to see that the construction time is polynomial in T and the original
input length, observe that T ≤ p|J | can also be assumed. Thus, the presented
algorithm runs in randomized FPT time with parameters k and p.

It remains to show the correctness of the algorithm. First we prove that any
assignment covering each resident can be used to construct a scheduling µ for I
with makespan at most T as follows. If some single sj is assigned to some hospital
in him, then we let µ(j) = m; note that µ(j) ∈ Mj holds. Similarly, for each

group gj assigned to a p-tuple of hospitals (h
(i−1)p+1
m , . . . , hipm) for some m ∈Mj

and i ∈ [z], we let µ(j) = m. Clearly, this is a scheduling for I with makespan
at most T .

For the other direction, suppose that µ is a scheduling with makespan T . Let
Jm be the set of jobs assigned to some machine m, and suppose that Jm contains
the jobs jx1 , . . . , jxa with processing time p, and the jobs jy1 , . . . , jyb with pro-
cessing time 1. In this case, we assign each group gxi to the p-tuple of hospitals

(h
(i−1)p+1
m , . . . , hipm), and we assign each single syi to the hospital hpa+i

m . It is easy
to verify that this way we indeed obtain an assignment in the constructed cma
covering each resident. ut

4.3 Local search

Here, we investigate the applicability of the local search approach to handle the
intractability of the Maximum Matching with Couples problem.

Theorem 7. There is no permissive local search algorithm for the 2-uniform
Maximum Matching with Couples that runs in FPT time with parameter `
denoting the radius of the explored neighborhood, unless W[1] = FPT.

Proof. Let G be the input graph for the Clique problem and k be the parameter
given. We denote the vertices of G by v1, v2, . . . , vn. We claim that if there is a
permissive local search algorithm A for Maximum Matching with Couples
running in FPT time with parameter `, then we can use A to solve Clique in
FPT time. To prove this, we construct an input Λ = (I,M0, `) of A with the

12



following properties: every assignment for I with size at least |M0|+ 1 is `-close
to M0, and there is such an assignment for I if and only if G has a clique of
size k. Thus, G has a clique of size k if and only if A outputs an assignment for
I with size at least |M0|+ 1.

To construct Λ, we first define the cma I together with the assignment M0

for it. Let the set H of hospitals be the union of D = B ∪ ⋃{H i,j | i, j ∈ [k]},
D′ = B′ ∪ ⋃{H ′i,j | i, j ∈ [k]} and F = {fi | i ∈ [k]}, where B = {bi | i ∈
[2k− 1]}, H i,i = {hi,ij,j | j ∈ [n]} for each i ∈ [k], H i,j = {hi,jx,y | vxvy ∈ E(G)} for

each i 6= j, {i, j} ⊆ [k], and for each hospital h in B (H i,j , respectively) we also
define a hospital h′ to be in B′ (H ′i,j , respectively). For brevity, we will use the
notation H i,j

h,• = {h | ∃y :h = hi,jh,y ∈ H i,j} and H i,j
•,h = {h | ∃x :h = hi,jx,h ∈ H i,j}.

The capacity of each hospital is 2. For each hospital h ∈ D we define a couple
denoted by c(h), and for each h′ ∈ D′ we define two singles s1(h′) and s2(h′).
Let C = {c(h) | h ∈ D} and let S = {s0} ∪ {si(h′) | h′ ∈ D′, i ∈ {1, 2}}.

Before defining A(p) for each p ∈ S ∪ C, we define the assignment M0 for I ,
as this will not cause any confusion. Let M0(s0) = �, and let M0(p) = h
where either h ∈ D and p is a member of the couple c(h), or h ∈ D′ and
p ∈ {s1(h), s2(h)}. Now, for each p ∈ S ∪ C, we define the set of acceptable
hospitals or pairs of hospitals A(p) to be the union of {M0(p)} and the set A′(p)
of hospitals, defined below, that can be assigned to p besides M0(p). We define
A′(p) for each p ∈ S ∪ C as follows.

A′(c(h)) = {(h′, h′)} for each h ∈ D
A′(s0) = {b1}
A′(s1(b′i)) = H1,i for each i ∈ [k]
A′(s2(b′i)) = {bi+1} for each i ∈ [k]

A′(s1(b′k+i)) = H i,1 for each i ∈ [k − 1]
A′(s2(b′k+i)) = {bk+i+1} for each i ∈ [k − 2]

A′(s2(b′2k−1)) = Hk,1

A′(s1(h′i,jx,y)) = H i,j+1
x,• for each i ∈ [k], j ∈ [k− 1] and every possible x and y

A′(s1(h′i,kx,y )) = {fi} for each i ∈ [k] and every possible x and y

A′(s2(h′i,jx,y)) = H i+1,j
•,y for each i ∈ [k− 1], j ∈ [k] and every possible x and y

A′(s2(h′k,ix,y )) = {fi} for each i ∈ [k] and every possible x and y

This completes the definition of the cma I = (S,C,H, f, A). Observe that M0

indeed is an assignment for I . Finally, setting ` = 4k2 + 8k − 3 finishes the
definition of the instance Λ = (I,M0, `). Figure 1 shows an illustration.

First, suppose that M is an assignment for I such that |M | > |M0|. We do not
require M to be (4k2 +8k−3)-close to M0, but we will actually prove that this is
necessary. Observe that M0 covers each resident except for s0, so M must cover
all residents to satisfy |M | > |M0|. As A(s0) = {b1}, M must assign b1 to s0.
This implies M(c(b1)) = (b′1, b

′
1), and therefore we also have M(s2(b′1)) = b2,

implying M(c(b2)) = (b′2, b
′
2), and so on. Following this argument, it can be seen

that M(c(bi)) = (b′i, b
′
i) for every i ∈ [2k − 1], and M(s2(b′i)) = bi+1 for every

i ∈ [2k − 2].
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Fig. 1. A block diagram showing the hospitals in the proof of Theorem 7. For two sets
H1, H2 of hospitals, (H1, H2) is an arc if A′(s) ⊆ H2 for some s ∈ S with M0(s) ∈ H1.

We say that a single s enters H i,j ifM(s) ∈ H i,j butM0(s) /∈ H i,j , and leaves
H ′i,j if M0(s) ∈ H ′i,j but M(s) /∈ H ′i,j . A couple c moves from a hospital h if
M0(c) = (h, h) 6= M(c), and we say that c moves from a set J ⊆ H of hospitals if
it moves from a hospital in J . Observe that if c moves from H i,j , then two singles
leave H ′i,j , one of them entering H i+1,j if i 6= k, and the other entering H i,j+1

if j 6= k. If a single s leavesH ′i,j but does not enterH i+1,j orH i,j+1, thenM(s) ∈
F must hold, and therefore there can exist at most 2k such single s. Moreover, if
a set of m singles enter H i,j then at least dm/2e couples have to move from H i,j .
For each i ∈ [k], exactly one single from {s1(b′1), s1(b′2), . . . , s1(b′k)} enters H1,i,
and exactly one single from {s1(b′k+1), s1(b′k+2), . . . , s1(b′2k−1), s2(b′2k−1)} enters
H i,1. These altogether imply that exactly one couple moves from H i,j for each
i, j ∈ [k], and that if s and s′ enter H i,j then M(s) = M(s′) must hold.

Suppose that c moves from the hospital hi,jx,y. Observe that if j < k then a

couple must move from H i,j+1
x,• , and similarly, if i < k then a couple must move

from H i+1,j
•,y . For each i ∈ [k], letting σh(i) be x if for some j a couple moves

from H i,j
x,•, and σv(i) be y if for some j a couple moves from H j,i

•,y, we obtain
that σh(i) and σv(i) are well-defined. Observe that by the definition of H i,i we
get σh(i) = σv(i) := σ(i), and from the definition of H i,j we get that if σ(i) = x
and σ(j) = y for some i 6= j, then vxvy must be an edge in G. Thus, the set
{vσ(i) | i ∈ [k]} forms a clique of size k in G.

Remember that exactly one couple moves from H i,j for each i, j ∈ [k], which
(considering also the size of F ) forces exactly two singles to leave H ′i,j for each
i, j ∈ [k]. Taking into account the couples c(bi) and the singles s1(b′i), s2(b′i) for
each i ∈ [2k − 1] and the single s0, we get that M is 4k2 + 4(2k − 1) + 1 =
(4k2 + 8k − 3) = `-close to M0.
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Now, suppose vσ(1), vσ(2), . . . , vσ(k) form a clique in G. By defining M as
below, it is straightforward to verify that M is an assignment for (S,C,H, f, A)
which covers every resident, and is `-close to M0.

M(c(bi)) = (b′i, b
′
i) for each i ∈ [2k − 1]

M(c(hi,jσ(i),σ(j))) = (h′i,jσ(i),σ(j) , h
′i,j
σ(i),σ(j)) for each i, j ∈ [k]

M(s0) = b1
M(s1(b′i)) = h1,i

σ(1),σ(i) for each i ∈ [k]

M(s1(b′k+i)) = hi,1σ(i),σ(1) for each i ∈ [k − 1]

M(s2(b′2k−1)) = hk,1σ(k),σ(1)

M(s2(b′i)) = bi+1 for each i ∈ [2k − 2]

M(s1(h′i,jσ(i),σ(j))) = hi,j+1
σ(i),σ(j+1) for each i ∈ [k], j ∈ [k − 1]

M(s2(h′i,jσ(i),σ(j))) = hi+1,j
σ(i+1),σ(j) for each i ∈ [k − 1], j ∈ [k]

M(s1(h′i,kσ(i),σ(k))) = fi for each i ∈ [k]

M(s2(h′k,iσ(k),σ(i))) = fi for each i ∈ [k]

M(p) = M0(p) for every p ∈ S ∪ C where M(p) was not defined above.

ut

Let us now remark that the proof of Theorem 7 implicitly contains an FPT
reduction from Clique to the decision version of the local search problem for
the 2-uniform Maximum Matching with Couples. However, as discussed in
Section 2, the presented result is stronger than a W[1]-hardness proof.

5 Matching with preferences

In this section, we study the Hospitals/Residents with Couples problem
in detail. If no couples are involved, then a stable assignment for a given couples’
market with preferences can always be found in linear time with the Gale-Shapley
algorithm [11]. In the case when couples are present, a stable assignment may
not exist, as first proved by Roth [29]. Here we also give a simple example.

Let H = {h1, h2, h3}, S = ∅, C = {(a, b), (c, d)} and f ≡ 1. The preference
lists are defined below. It is straightforward to verify that no stable assignment
exists for this cmp which will be denoted by I0. For example, M(a) = h1,
M(b) = h2 and M(c) = M(d) = � is not stable, because (c, d) and (h1, h3) form
a blocking pair.

L((a, b)) : (h1, h2), (h2, h3), (h3, h1) L(h1) = L(h2) = L(h3) : c, a, b, d
L((c, d)) : (h1, h3), (h2, h1), (h3, h2)

Ronn proved that deciding whether a stable assignment exists for a cmp
is NP-complete [28]. As the following example shows, an instance of the Hos-
pitals/Residents with Couples problem may admit stable assignments of

15



different sizes. The example contains a single s, a couple c = (c1, c2) and hospi-
tals h1 and h2 with capacities f(h1) = 2 and f(h2) = 1. The preference lists are
the following:

L(s) : h2, h1 L(h1) : s, c1, c2
L(c) : (h1, h1), (�, h2) L(h2) : c2, s

In this instance, assigning s to h1 and c to (�, h2) yields a stable assignment of
size 2, whilst assigning s to h2 and c to (h1, h1) results in a stable assignment
of size 3. Note that Maximum Hospitals/Residents with Couples prob-
lem, where the task is to determine a stable assignment of maximum size for a
given cmp, is trivially NP-hard, as it contains the Hospitals/Residents with
Couples problem.

The parameterized complexity of Hospitals/Residents with Couples is
covered in Subsection 5.1. In Subsection 5.2, we present results concerning the
applicability of local search for the Maximum Hospitals/Residents with
Couples problem.

5.1 Fixed-parameter tractability

The main result of this subsection is Theorem 8, which shows the W[1]-hardness
of the Hospitals/Residents with Couples problem with parameter |C|.
As a consequence, the optimization problem Maximum Hospitals/Residents
with Couples is also W[1]-hard with parameter |C|.

However, supposing that a stable assignment has already been determined
by some method, it is a valid question whether we can increase its size. Given a
cmp I and a stable assignment M0 for I , the Increase Hospitals/Residents
with Couples problem asks for a stable assignment with size at least |M0|+1.
If no couples are involved, then all stable assignments for the instance have the
same size, so this problem is trivially polynomial-time solvable. Theorem 8 shows
that Increase Hospitals/Residents with Couples is also W[1]-hard with
parameter |C|.

Theorem 8. (1) The decision version of Hospitals/Residents with Cou-
ples is W[1]-hard with parameter |C|, even in the 1-uniform case.
(2) The decision version of Increase Hospitals/Residents with Couples
is W[1]-hard with parameter |C|, even in the 1-uniform case.

Before proving Theorem 8, we introduce a special construction that will
be very useful in the proof. For a graph G and an integer k, we construct a
cmp IG,k = (S,C,H, f, L) as follows. See Figure 2 for an illustration.

Let V (G) = {vi | i ∈ [n]}, |E(G)| = m and let ν be a bijection from [m] into
the set {(x, y) | vxvy ∈ E(G), x < y}. First, we construct a node gadget Gi for

each i ∈ [k] and an edge gadget Gi,j for each pair (i, j) ∈
(

[k]
2

)
. The node gadget

Gi contains hospitals H i∪Gi∪{f i}, singles Si∪T i and a couple ai. Analogously,
the edge gadget Gi,j contains hospitals H i,j ∪ Gi,j ∪ {f i,j}, singles Si,j ∪ T i,j
and a couple ai,j . Here T i = {tij | j ∈ [n − 1]} and T i,j = {ti,je | e ∈ [m − 1]},

16



PSfrag replacements

Gi,jGi GiHi T iSi

ai
f i

Gi,jHi,j T i,jSi,j

ai,j
f i,j

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1 1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

3

3

3

3

4

4

4

n m

n+1 m+1

di1

di2

din

Fig. 2. A node gadget and an edge gadget of IG,k. Hospitals are represented by rectan-
gles, singles by black circles, and members of couples by double circles. A hospital h is
connected to some resident r if r ∈ AL(h). The numbers on the edges represent ranks,
bold edges represent MG,k

0 from Lemma 9, and dix is for |Qix|+ 2.

H i = {hij | j ∈ [n]} and H i,j = {hi,je | e ∈ [m]}, and we define Gi, Si and

Gi,j , Si,j similarly to H i and H i,j . Observe that |C| = k +
(
k
2

)
.

We let f ≡ 1, so IG,k is 1-uniform. The precedence lists for each agent
in IG,k are defined below. The notation [X ] for some set X in a preference list
denotes an arbitrary ordering of the elements of X . We write Qix for the set
{si,je | i < j ≤ k, ∃y : ν(e) = (x, y)} ∪ {sj,ie | 1 ≤ j < i, ∃y : ν(e) = (y, x)} and
Qi,je for {hix, hjy} where ν(e) = (x, y). The indices in the precedence lists take all
possible values if not stated otherwise, and the symbol α can be any index in [k]

or a pair of indices in
(

[k]
2

)
. If α takes a value in [k] then N(α) = n, otherwise

N(α) = m. (This notation will be used again later on.)

L(gαx ) : tαx−1, a
α(2), tαx if 1 < x < N(α) L(hix) : ai(1), [Qix], six

L(gα1 ) : aα(2), tα1 L(hi,je ) : ai,j(1), si,je
L(gαN(α)) : tαN(α)−1, a

α(2), aα(1) L(six) : hix, f
i

L(tαx) : gαx , g
α
x+1 L(si,je ) : hi,je , [Q

i,j
e ], f i,j

L(fα) : sα1 , s
α
2 , . . . , s

α
N(α), a

α(2)

L(aα) : (gαN(α), f
α), (hα1 , g

α
N(α)), (h

α
2 , g

α
N(α)−1), . . . , (hαN(α), g

α
1 )

Lemma 9. For a graph G and k ∈ N, IG,k has a stable assignment MG,k
0 that

covers each resident. Moreover, statements (1), (2) and (3) are equivalent:

(1) There is a clique in G of size k.
(2) There is a stable assignment M for IG,k with the following property, which

we will call property π: M(f i,j) ⊆ Si,j for each (i, j) ∈
(

[k]
2

)
.

(3) There is a stable assignment for IG,k with property π covering each resident.

Proof. To see the first claim, we define an assignment M0 by letting M0(aα) =
(gαN(α), f

α), M0(tαx ) = gαx , and M0(sαx ) = hαx for all possible values of α and x.
As each single and couple is assigned to his or their best choice, M0 is stable
and covers each resident.
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To prove (2) ⇒ (1), suppose that IG,k has a stable assignment M with

property π. Let us define σ(i, j) for each (i, j) ∈
(

[k]
2

)
such that M(f i,j) =

{si,jσ(i,j)}. Since si,jσ(i,j) prefers hi,jσ(i,j) to f i,j , M(hi,jσ(i,j)) = {ai,j(1)} follows from

the stability of M . From this, we get that M(si,je ) = hi,je must hold for each
e ∈ [m] \ {σ(i, j)} since otherwise si,je and hi,je would form a blocking pair. Note
that each single in Si,j is assigned to a hospital in H i,j ∪{f i,j}. As this holds for

each (i, j) ∈
(

[k]
2

)
, we get that M(hix) ⊆ Si∪{ai(1)} holds for each i ∈ [k], x ∈ [n].

Let ν(σ(i, j)) = (x, y) for some (i, j) ∈
(

[k]
2

)
. Since si,jσ(i,j) prefers the hospitals

in Qi,jσ(i,j) = {hix, hjy} to f i,j , M can only be stable if both hix and hjy prefer their

partner in M to si,jσ(i,j). This implies M(hix) = {ai(1)} and M(hjy) = {aj(1)}.
Thus, by defining σ(i) to be x if M(ai) = (hix, g

i
n+1−x) for each i ∈ [k], we

obtain ν(σ(i, j)) = (σ(i), σ(j)). From the definition of ν, this implies that vσ(i)

and vσ(j) are adjacent in G. As this holds for every (i, j) ∈
(

[k]
2

)
, we get that

{vσ(i) | i ∈ [k]} is a clique in G.
Now we prove (1) ⇒ (3). If vσ(1), vσ(2), . . . , vσ(k) form a clique in G, then de-

fine σ(i, j) such that σ(i, j) = ν−1(σ(i), σ(j)). We define a stable assignment M
fulfilling property π and covering every resident as follows.

M(sασ(α)) = fα

M(sαx) = hαx if x ∈ [N(α)] \ {σ(α)}
M(aα) = (hασ(α), g

i
N(α)+1−σ(α))

M(tαx) = gαx if 1 ≤ x < N(α) + 1− σ(α)
M(tαx) = gαx+1 if N(α) + 1− σ(α) ≤ x < N(α)

It is not hard to verify the stability of M by simply checking all possibilities
to find a blocking pair. (We note that many of the agents are only contained
in IG,k to assure that a clique in G indeed implies a stable assignment with the
required properties.) As (3) ⇒ (2) is trivial, this finishes the proof. ut
Proof (of Theorem 8). Let G be an arbitrary graph and k ∈ N. We construct
two 1-uniform cmps I1 and I2, together with a stable assignment M2 for I2 such
that the following three statements are equivalent:

(a) G has a clique of size k,
(b) I1 has a stable assignment,
(c) I2 has a stable assignment of size greater than |M2|.
Furthermore, the construction will take FPT time, and there will be k + 3

(
k
2

)

couples in I1, and k+
(
k
2

)
+1 couples in I2. Thus, (a)⇐⇒ (b) yields an FPT reduc-

tion from Clique to Hospitals/Residents with Couples, and (a)⇐⇒ (c)
yields an FPT reduction from Clique to Increase Hospitals/Residents
with Couples.

To get I1, we simply combine the cmp I0 having no stable assignment with
the cmp IG,k. This is done by introducing new couples bi,j and ci,j , and new
hospitals f̄ i,j1 and f̄ i,j2 for each (i, j) ∈

(
[k]
2

)
, and adding these agents to IG,k. We

preserve the preference lists of IG,k, except for hospitals {f i,j | (i, j) ∈
(

[k]
2

)
},

and we give the missing preference lists below.
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Fig. 3. The path gadget P in I2. Bold edges represent M2.

L(bi,j) : (f i,j , f̄ i,j1 ), (f̄ i,j1 , f̄ i,j2 ), (f̄ i,j2 , f i,j)

L(ci,j) : (f i,j , f̄ i,j2 ), (f̄ i,j1 , f i,j), (f̄ i,j2 , f̄ i,j1 )

L(f̄ i,j1 ) = L(f̄ i,j2 ) : ci,j(1), bi,j(1), bi,j(2), ci,j(2)

L(f i,j) : si,j1 , si,j2 , . . . , si,jm , c
i,j(1), bi,j(1), bi,j(2), ci,j(2)

Observe that if we restrict I1 to contain only the hospitals f i,j , f̄ i,j1 and f̄ i,j2

and the couples bi,j and ci,j for some (i, j) ∈
(

[k]
2

)
, we obtain a cmp isomorphic

to I0, having no stable assignment. Therefore, any stable assignment M must
assign a single in Si,j to f i,j , for each (i, j) ∈

(
[k]
2

)
. The restriction of such an M

on the agents of IG,k must also be stable, because agents of IG,k cannot be
assigned by M to agents outside IG,k. Thus, by Lemma 9, G has a k-clique.

For the other direction, if there is a k-clique in G, then we can construct
a stable assignment M ′1 for I1 by setting M ′1(bi,j) = (f̄ i,j1 , f̄ i,j2 ), M ′1(ci,j) =

(�,�) for each (i, j) ∈
(

[k]
2

)
, and M ′1(r) = MG,k

π (r) for the residents in IG,k,
where Mπ(G, k) is the stable assignment for IG,k with property π, guaranteed
by Lemma 9. It is easy to see thatM ′1 is stable, by using the stability of Mπ(G, k).
This finishes the proof of the first claim.

To construct I2, we add a path gadget P to IG,k that contains the newly
introduced hospitals {pi | i ∈ [

(
k
2

)
+ 2]}, singles {qi | i ∈ [

(
k
2

)
]} and a couple b.

See Figure 3 for an illustration. As before, we only modify the preferences of the
hospitals {f i,j | (i, j) ∈

(
[k]
2

)
}, and we give the missing preference lists below.

The notation ρ used there denotes a bijection from [
(
k
2

)
] into

(
[k]
2

)
.

L(p1) : b(1), q1 L(pi) : qi−1, qi if 1 < i ≤
(
k
2

)

L(p(k2)+1) : q(k2)
, b(2) L(p(k2)+2) : b(2)

L(qi) : pi, f
ρ(i), pi+1 L(f i,j) : si,j1 , si,j2 , . . . , si,jm , qρ−1(i,j), a

i,j(2)
L(b) : (�, p(k2)+1), (p1, p(k2)+2)

We also let M2(qi) = pi for each i ∈ [
(
k
2

)
], M2(b) = (�, p(k2)+1), and M2(r) =

MG,k
0 (r) for the residents in IG,k, where MG,k

0 is the stable assignment for IG,k,
provided by Lemma 9. Note that M2 is indeed stable.

Suppose, there is a stable assignmentM for I2 with |M | > |M2|. Observe that
M2 covers each resident except for b(1), soM must cover every resident, implying
M(b) = (p1, p(k2)+2). Also, since M(h) cannot be empty for any hospital h, we
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Fig. 4. The modified node gadget in the proof of Theorem 10. Bold edges represent
M3.

get M(pi) = {qi−1} for each i =
(
k
2

)
+ 1,

(
k
2

)
, . . . , 2. Therefore, fρ(i) is beneficial

for qi for each i ∈ [
(
k
2

)
], so by the stability of M we obtain M(f i,j) ⊆ Si,j for

each (i, j) ∈
(

[k]
2

)
. Again, the restriction of M on the agents of IG,k must be

stable, and so Lemma 9 implies that G has a clique of size k.
Conversely, if there is a k-clique in G, then we can define a stable assign-

ment M ′2 for I2, covering each resident, as follows. We let M ′2(qi) = pi+1 for
each i ∈ [

(
k
2

)
], M ′2(b) = (p1, p(k2)+2), and M ′2(r) = MG,k

π (r) for the residents

in IG,k. Again M ′2 is stable, and has size greater than |M2|, proving the second
claim. ut

5.2 Local search

Here we investigate the applicability of the local search approach for the Maxi-
mum Hospitals/Residents with Couples problem. Theorem 10 shows that
no permissive local search algorithm is likely to exist for this problem running in
FPT time with parameter `, denoting the radius of the explored neighborhood.
However, if we regard the combined parameterization (`, |C|), then even a strict
local search algorithm with FPT running time can be given, as presented in
Theorem 11.

Theorem 10. There is no permissive local search algorithm for the 1-uniform
Maximum Hospitals/Residents with Couples that runs in FPT time with
parameter `, unless W[1] = FPT.

Proof. Let G be a graph and k an integer. First, recall the cmp I2 defined in the
proof of Theorem 8, and observe that the assignmentM2 and the assignmentM ′2,
constructed when a k-clique is present in G, may not be close to each other. Thus,
in order to present an FPT-reduction here, we need to modify the node- and
edge gadgets of I2. We are going to construct a cmp I3 together with a stable
assignment M3 for it such that the following statements are equivalent:
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(a) G has a clique of size k.
(b) There is a stable assignment for I3 with size at least |M3|+ 1.
(c) There is a stable assignment for I3 with size at least |M3|+ 1 that is `-close

to M3 where ` = 8
(
k
2

)
+ 7k + 2.

The construction will take FPT time, hence a permissive local search algorithm
for Maximum Hospitals/Residents with Couples that runs in FPT time
with parameter ` can be used to solve Clique in FPT time.

See Figure 4 for an illustration of the modifications applied to the instance I2

in order to get I3. For each node gadget and edge gadget Gα, we take new singles
{uαx | x ∈ [N(α)]} and the single tαN(α), new couples {cαx | x ∈ [N(α)]}, and new

hospitals
⋃
x∈[N(α)]{ḡαx , eαx , ēαx} ∪ {f̄α}. For most of the agents we preserve the

preferences originally defined for I2. The modifications and the preference lists
of the newly defined agents are as follows.

L(gαx ) : cαx (1), aα(2) L(tαx) : ḡαx , f̄
α

L(eαx) : uαx , c
α
x(1) L(uαx) : ēαx , e

α
x

L(ēαx) : cαx (2), uαx L(cαx) = (eαx , ḡ
α
x ), (gαx , ē

α
x)

L(ḡαx ) : cαx (2), tαx L(f̄α) : tα1 , t
α
2 , . . . , t

α
N(α), a

α(1)

L(aα) : (f̄α, fα), (hα1 , g
α
N(α)), (h

α
2 , g

α
N(α)−1), . . . , (hαN(α), g

α
1 )

We also define M3(aα) = (f̄α, fα), M3(cαx ) = (gαx , ē
α
x), M3(uαx) = eαx and

M3(tαx) = ḡαx for all possible values of α and x, and for each remaining resident r
let M3(r) = M2(r). It is easy to observe that M3 is stable, and covers each
resident except for b(1).

Supposing that there is a stable assignment M with size greater than |M3|
and using exactly the same arguments as in the proof of Theorem 8, we get
M(b) = (p1, p(k2)+2), M(qi) = (pi+1) for each i ∈ [

(
k
2

)
], and M(f i,j) ⊆ Si,j for

each (i, j) ∈
(

[k]
2

)
. By following the argument proving (2) ⇒ (1) in Lemma 9,

we again obtain that G must have a k-clique. (The modifications of the gadgets
in I3 to do not affect that reasoning.) This proves (b) ⇒ (a).

Clearly, (c) ⇒ (b) is trivial, so we only have to prove (a) ⇒ (c). Suppose
that G has a clique {vσ(i) | i ∈ [k]}. We again let σ(i, j) = ν−1(σ(i), σ(j)), and
we write σ′(α) for N(α) + 1− σ(α). We define a stable assignment M ′3 for I in
a very similar fashion as in the previous proofs:

M ′3(b) = (p1, p(k2)+2) M ′3(uασ′(α)) = ēασ′(α)

M ′3(qi) = pi+1 for each i ∈ [
(
k
2

)
] M ′3(sασ(α)) = fα

M ′3(aα) = (hασ(α), g
α
σ′(α)) M ′3(tασ′(α)) = f̄α

M ′3(cασ′(α)) = (eασ′(α), ḡ
α
σ′(α))

For each remaining resident r we let M ′3(r) = M3(r). It is straightforward to
verify that M ′3 is stable, and it is `-close to M0. ut

Before stating our last result, we describe the trick of cloning hospitals, al-
ready mentioned in Section 4, for the case involving preferences. For each hos-
pital h ∈ H in a given cmp, we take f(h) copies of h by replacing h with new
hospitals h1, . . . , hf(h), each having capacity 1. The preference lists of these hos-
pitals agree with the original preference list of h. For each single s containing
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h in its preference list, we replace h in the list L(s) by the series h1, . . . , hf(h).
For a couple c containing a pair (h, g) of two hospitals in L(c), we replace (h, g)
by a series formed by the elements of {(hi, gj) : i ∈ [f(h)], j ∈ [f(g)]} such that
(hi, gj) precedes (hi

′
, gj
′
) if i < i′, or i = i′ and j < j′. (We assume that the

cases h = � and g = � are also clear.)
Now, if M is an assignment for the original cmp I , then it defines an assign-

ment M c for the cmp Ic obtained by the above cloning process, as follows. If M
assigns r to h and there are i− 1 residents in M(h) that h prefers to r, then let
M c(r) = hi. If M(r) = � for some r, then we let M c(r) = � as well. Observe
that if M is stable then M c is also stable. Conversely, it is not hard to see that
a stable assignment for Ic can be transformed in the straightforward way to a
stable assignment for I .

Theorem 11. There is a strict local search algorithm for Maximum Hospi-
tals/Residents with Couples running in FPT time with combined parame-
ter (`, |C|).

Proof. Let I = (S,C,H, f, L) be given with the stable assignment M0 and the
integer `. W.l.o.g. we may assume that f ≡ 1, as otherwise we can apply the trick
of cloning the hospitals, as argued above. Thus, if M(r) = h for some resident r,
then we will write M(h) = r instead of M(h) = {r}.

Before describing the strict local search algorithm for Maximum Hospi-
tals/Residents with Couples, we introduce some notation to capture the
structure of the solution. The bipartite graph G underlying I has vertex set
H ∪ R and edge set E = {hr | h ∈ H, r ∈ AL(h)}. Clearly, an assignment M
for I determines a matching E(M) in G in the natural way: hr ∈ E(M) if and
only if M(r) = h for some resident r and hospital h. Suppose that M is a closest
solution, i.e. a stable assignment for I with |M | > |M0| and d(M,M0) ≤ ` that
is the closest to M0 among all such assignments. Let Aδ = {a ∈ R∪H |M(a) 6=
M0(a)}, and Eδ be the symmetric difference of E(M0) and E(M). Note that
Eδ covers exactly the vertices of Aδ, and Gδ = (Aδ , Eδ) is the union of paths
and cycles which contain edges from M0 and M in an alternating manner. It
is well-known that for a cmp not containing couples, every stable assignment
covers exactly the same agents [12]. Thus, it is easy to see that the stability of
M and M0 imply that if a component of Gδ does not contain any resident from
R \ S, then it must be a cycle. Let K0 denote the set of such cycles, and K1 the
set of the remaining components of Gδ . We write Cδ for (R \ S) ∩ Aδ , and we
define B(a) = {b | a is beneficial for b w.r.t. M0} for every a ∈ S ∪H . We also
let S+ = {s ∈ S | M(s) is beneficial for s w.r.t. M0}, and S− = {s ∈ S | M0(s)
is beneficial for s w.r.t. M}. Note that S+ ∪ S− = S ∩ Aδ . We define H+

and H− analogously. We call agents in A+ = S+ ∪ H+ winners and agents in
A− = S− ∪H− losers. For a simple illustration see Figure 5.

Now, we describe an algorithm that finds vertices of Aδ . The algorithm
first branches on guessing |Aδ | and a copy Ḡ of the graph Gδ. Let ϕ denote
an isomorphism from Ḡ to Gδ . The algorithm also guesses the vertex sets
ϕ−1(Cδ), ϕ−1(H+), ϕ−1(H−), ϕ−1(S+), ϕ−1(S−), and edge sets ĒM0 and ĒM
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denoting ϕ−1(E(M0) ∩Eδ) and ϕ−1(E(M) ∩Eδ), respectively. Since |Aδ | ≤ 2`,
it can be achieved by careful implementation that the algorithm branches into
at most (2`)62` directions in this phase.

Next, we apply the technique of color-coding [2], in order to help the local-
ization of Aδ. To this end, the algorithm colors the vertices of G with |Aδ | ≤ 2`
colors randomly with uniform and independent distribution; γ(a) denotes the
color of a. The coloring γ is nice, if γ(ϕ(a)) = Γ (a) for each a ∈ V (Ḡ), where Γ
is an arbitrary fixed ordering of V (Ḡ), i.e. a bijection from V (Ḡ) to [|Aδ |].
From now on, we suppose that γ is nice, which clearly holds with probabil-

ity |Aδ|−|Aδ | ≥ (2`)−2`.

Given a coloring, the algorithm grows a subset X ⊆ V (Ḡ) on which ϕ is
already known. It applies the following extension rules repeatedly, until none of
them is applicable. When Extension Rule 1 is applied, the algorithm branches
into at most 2|C| branches, but no other branchings are involved. We write
X̄ = V (Ḡ) \X . See Figure 6 for an illustration.

Extension Rule 1 [guessing a member of a couple]: applicable if c ∈
X̄ ∩ ϕ−1(Cδ). In this case we simply branch on the vertices of (R \ S) ∩ {a |
γ(a) = Γ (c)} to choose ϕ(c). Note that this means at most 2|C| branches.

Extension Rule 2 [finding pairs by M0]: applicable if x ∈ X, y ∈ X̄
and xy ∈ ĒM0 for some x and y. Clearly, we get ϕ(y) = M0(ϕ(x)), so we can
extend ϕ by adding y to X .

Extension Rule 3 [finding pairs by M for losers]: applicable if x ∈
X ∩ ϕ−1(A−), y ∈ X̄ ∩ ϕ−1(A+) and xy ∈ ĒM for some x and y. Let y∗ be the
first element in the preference list L(ϕ(x)) contained in the set B(ϕ(x)) having
color Γ (y). We claim y∗ = ϕ(y). Clearly, ϕ(y) ∈ B(ϕ(x)) holds because ϕ(y) is a
winner, and its color must be Γ (y) as γ is nice. Now, suppose for contradiction
that y∗ precedes ϕ(y) in L(ϕ(x)). Since the only vertex in Aδ having color Γ (y)
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is ϕ(y), we get M(y∗) = M0(y∗) implying that y∗ and ϕ(x) form a blocking pair
for M . Thus, ϕ(y) = y∗ can be found in linear time, so we can extend ϕ by
adding y to X .

Extension Rule 4 [finding pairs by M for couples with one winner
hospital]: applicable if c(i) ∈ Cδ ∩ ϕ(X), y ∈ ϕ−1(H+) ∩ X̄, ϕ−1(c(i))y ∈ ĒM ,
and M(c(i′)) is already known for some c ∈ C, i 6= i′ and y. W.l.o.g. we assume
i = 1. Let h be defined such that (h,M(c(2))) is the first element in L(c) for
which h ∈ B(c(1)) and h has color Γ (y). We claim ϕ(y) = h. Observe that
ϕ(y) ∈ B(c(1)) must hold because ϕ(y) is a winner. As γ is nice, ϕ(y) indeed
has color Γ (y). Thus, if h 6= ϕ(y) then (h,M(c(2))) precedes (ϕ(y),M(c(2)))
in L(c), but this implies that the couple c and (h,M(c(2))) form a blocking
pair for M . Therefore we get ϕ(y) = h, and we can extend ϕ in linear time by
adding y to X .

Extension Rule 5 [finding pairs by M for couples with two winner
hospitals]: applicable if c(i) ∈ Cδ∩ϕ(X), yi ∈ ϕ−1(H+)∩X̄ , and ϕ−1(c(i))yi ∈
ĒM holds for both i ∈ {1, 2}, for some c ∈ C, y1 and y2. We let (h1, h2) be the
first element in L(c) such that hi ∈ B(c(i)) and γ(hi) = Γ (yi) for both i ∈ {1, 2}.
Using the same arguments as in the previous case, we can argue that ϕ(y1) = h1

and ϕ(y2) = h2 hold. Thus, in this case we can extend ϕ in linear time by adding
both y1 and y2 to X .

Extension Rule 6 [dissolving a blocking pair]: applicable if M(a) ∈
ϕ(X) if and only if a ∈ ϕ(X) for all a ∈ Aδ , and xy is a blocking pair for the
actual assignment MX . We define MX by setting MX(a) = M0(a) if a /∈ ϕ(X)
and MX(a) = M(a) if a ∈ ϕ(X), for each agent a. Note that by our first
condition, MX is indeed an assignment. Now, as xy cannot be a blocking pair
for M or M0, either x ∈ ϕ(X) and y ∈ Aδ \ ϕ(X), or vice versa. W.l.o.g. we
suppose the former. By defining ȳ ∈ V (Ḡ) such that Γ (ȳ) = γ(y), it can be seen
that ϕ(ȳ) = y must hold because γ is nice. Thus, ϕ can be extended by adding ȳ
to X .

Lemma 12. If none of the extension rules is applicable, then ϕ(X) = Aδ.

Proof. First, ϕ(X) ⊇ Cδ is trivial, as Extension Rule 1 is not applicable.
Claim 1: ϕ(X) ⊇ (H−∪S+)∩V (K1). Suppose a ∈ (H−∪S+)∩V (K1)\ϕ(X)

is chosen such that the distance dC(a) is minimal, where dC(a) is the minimum
length of a path P in Gδ from a to some c ∈ Cδ such that the first edge of P is
in E(M0) if a ∈ H and it is in E(M) if a ∈ S. If no such path exists then let
dC(a) =∞.

First, if a is a winner single, then M(a) 6= �, and since a and M(a) cannot
be a blocking pair for M0, M(a) must be a loser hospital. Now, if M(a) ∈ ϕ(X)
then Extension Rule 3 is applicable, a contradiction. Thus M(a) /∈ ϕ(X), but
as M(a) is on the path defining dC(a), we get dC(M(a)) < dC(a) contradicting
to the choice of a. (Note that dC(a) 6= ∞ as a ∈ V (K1).) Second, if a is a
loser hospital, then M0(a) 6= �. Observe that if M0(a) ∈ ϕ(X) then Extension
Rule 2 is applicable, which cannot be the case, so M0(a) can only be a single in
S \ ϕ(X). If M0(a) were a loser, then a and M0(a) would form a blocking pair
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for M , so we obtain M0(a) ∈ S+ \ ϕ(X). But this implies dC(M0(a)) < dC(a),
a contradiction. Thus, ϕ(X) indeed contains (H− ∪ S+) ∩ V (K1).

Claim 2: ϕ(X) ⊇ V (K1). By the statement of Claim 1, we only have to
prove that (H+ ∪ S−) ∩ V (K1) \ ϕ(X) is empty. Analogously as in Claim 1, we
choose a ∈ (H+ ∪S−)∩V (K1) \ϕ(X) such that the distance d′C(a) is minimal,
where d′C(a) is the minimum length of a path P in Gδ from a to some c ∈ Cδ
such that the first edge of P is in E(M) if a ∈ H and it is in E(M0) if a ∈ S. If no
such path exists then let d′C(a) =∞. Note that d′C 6= dC , as the requirements
for the first edge of the path P are different.

First, if a is a loser single, then M0(a) 6= �, and since a and M0(a) cannot be
a blocking pair for M , M0(a) must be a winner hospital. Now, if M0(a) ∈ ϕ(X)
then Extension Rule 2 is applicable, a contradiction. Thus M0(a) /∈ ϕ(X), but as
M0(a) is on the path defining d′C(a), we get d′C(M0(a)) < d′C(a) contradicting
to the choice of a. Again, d′C(a) 6=∞ as a ∈ V (K1).

Second, if a is a winner hospital, then M(a) 6= �. Observe that if M(a) is
a member of some couple c, then if M(c(i)) is not known for some i ∈ {1, 2},
then M(c(i)) can only be a winner hospital by Claim 1, so Extension Rule 4
or 5 is applicable. If M(a) were a winner single, then a and M(a) would form a
blocking pair for M0, so we obtain M(a) ∈ S−. Now, if M(a) ∈ S− ∩ϕ(X) then
Extension Rule 3 is applicable. Thus, only M(a) ∈ S− \ ϕ(X) is possible. But
this implies d′C(M(a)) < d′C(a), which is a contradiction proving Claim 2.

Claim 3: ϕ(X) ⊇ V (K0). As already mentioned, each component of K0 is
a cycle, and it easy to see that it must contain vertices from A+ and A− in an
alternating manner. Thus, if neither of Extension Rule 2 and 3 is applicable,
then each component of K0 is totally contained in either Aδ \ ϕ(X) or in ϕ(X).
Thus, the first condition of Extension Rule 6 must hold. Now, if ϕ(X) 6= Aδ then
clearly MX 6= M . As MX is closer to M0 than M , and M is a closest solution,
MX cannot be stable. Thus Extension Rule 6 is applicable, a contradiction.

Now, Claims 1, 2, and 3 together imply the lemma. ut
If no extension rule is applicable, then we can easily obtain the solution M by

Lemma 12. Each step takes linear time, the number of steps is at most 2`, and the
algorithm branches into at most (2`)62`(2|C|)` branches in total, thus the overall
running time is O(`(72|C|)`|I |). The output is correct if the coloring γ is nice,
which holds with probability at least (2`)−2`. To derandomize the algorithm, we
can use the standard method of k-perfect hash functions [2] instead of randomly
coloring the vertices of G. This yields a running time of O(`O(`)|C|`|I | log |I |).

ut

6 Summary

We addressed the parameterized complexity of different assignment problems in
models where couples can be present in the market, considering them also in the
context of local search.

First, we investigated the extension of standard matching problems to the
case where couples are involved. We obtained a randomized fixed-parameter
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tractable algorithm for the Maximum Matching with Couples problem in
the case where the parameter is the number of couples (Theorem 1). We ap-
plied the presented algorithm for a problem arising in the area of scheduling,
where the task is to find a minimum makespan scheduling of jobs with process-
ing restrictions, assuming that the job length are in {1, p} for some integer p
(Theorem 6).

We also examined the applicability of local search algorithms for Maximum
Matching with Couples, and we obtained that no permissive algorithm can
run in FPT time if the parameter is the radius of the explored neighborhood,
even if all hospitals have capacity 2, unless W[1]=FPT (Theorem 7).

Next, we studied the parameterized complexity of stable assignment prob-
lems, modeling situations where the agents of the market have preferences and
may form couples. We obtained that the Hospitals/Residents with Cou-
ples problem is W[1]-hard, if the parameter is the number of couples (Theo-
rem 8). On the one hand, we showed that no permissive algorithm for Hos-
pitals/Residents with Couples runs in FPT time if the parameter is the
radius of the explored neighborhood, even if all hospitals have capacity 1, unless
W[1]=FPT (Theorem 10). On the other hand, we presented a strict local search
algorithm for this problem, if both the radius of the explored neighborhood and
also the number of couples are parameters (Theorem 11).
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