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Abstract. Approval-like voting rules, such as Sincere-Strategy Prefe-
rence-Based Approval voting (SP-AV), the Bucklin rule (an adaptive
variant of k-Approval voting), and the Fallback rule (a hybrid of the
Bucklin rule and SP-AV) have many desirable properties: for example,
they are easy to understand and encourage the candidates to choose elec-
toral platforms that have a broad appeal. In this paper, we investigate
both classic and parameterized computational complexity of electoral
campaign management under such rules. We focus on two methods that
can be used to promote a given candidate: asking voters to move this
candidate upwards in their preference order or asking them to change the
number of candidates they approve of. We show that finding an optimal
campaign management strategy of the first type is easy for both Bucklin
and Fallback. In contrast, the second method is computationally hard
even if the degree to which we need to affect the votes is small. Never-
theless, we identify a large class of scenarios that admit fixed-parameter
tractable algorithms.

Keywords: approval voting; Bucklin voting; fallback voting; campaign
management; bribery; parameterized complexity.

1 Introduction

Approval voting—a voting rule that asks each voter to report which candi-
dates she approves of and outputs the candidates with the largest number of
approvals—is one of the very few election systems that have a real chance of
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replacing Plurality voting in political elections. It has many attractive theoret-
ical properties, and its practical usefulness is supported by the experimental
results of Laslier and Van der Straeten [36] and Van der Straeten et al. [41].
Some professional organizations, such as, e.g., the Mathematical Association of
America (MAA), Institute for Operations Research and Management Sciences
(INFORMS), or Institute of Electrical and Electronics Engineers (IEEE), em-
ploy Approval voting to select their leaders. One of the major attractions of
Approval voting is that, in contrast to the more standard Plurality voting, un-
der Approval voting the candidates can benefit from running their campaigns in
a consensus-building fashion, i.e., by choosing a platform that appeals to a large
number of voters.

Nonetheless, Approval voting has certain disadvantages as well. Perhaps the
most significant of them is its limited expressivity. Indeed, even a voter that ap-
proves of several candidates may like some of them more than others; however,
Approval voting does not allow her to express this. Therefore, it is desirable to
have a voting rule that operates similarly to Approval, yet takes voters’ prefer-
ence orders into account.

Several such voting rules have been proposed. For instance, the Bucklin rule
(also known as the majoritarian compromise) asks the voters to gradually in-
crease the number of candidates they approve of, until some candidate is ap-
proved by a majority of the voters. The winners are the candidates that receive
the largest number of approvals at this point. In a simplified version of this
rule, which is popular in the computational social choice literature [46, 45, 19],
the winners are all candidates that are approved by a majority of the voters in
the last round. Under both variants of the Bucklin rule, the common approval
threshold is lowered gradually, thus reflecting the voters’ preferences. However,
this common threshold may move past an individual voter’s personal approval
threshold, forcing this voter to grant approval to a candidate that she does not
approve of. To alleviate this problem, Brams and Sanver [7] have recently in-
troduced a new election system, which they call Fallback voting. This system
works similarly to the Bucklin rule, but allows each voter to only approve of a
limited number of candidates; its simplified version can be defined similarly to
simplified Bucklin voting.

With variants of Approval voting gaining wider acceptance, it becomes im-
portant to understand whether various activities associated with running an
approval-based electoral campaign are computationally tractable. Such activities
can be roughly classified into benign, such as winner determination, and mali-
cious, such as manipulation and control; an ideal voting rule admits polynomial-
time algorithms for the benign activities, but not for the malicious ones. How-
ever, there is an election-related activity that defies such classification, namely,
bribery, or campaign management [25, 17, 16, 4, 9]. Both of these terms are used
for actions that aim to make a given candidate an election winner by means of
spending money on individual voters so as to change their preference rankings;
these actions can be benign if the money is spent on legitimate activities, such
as advertising, or malicious, if the voters are paid to vote non-truthfully.



Now, winner determination for all approval-based rules listed above is clearly
easy, and the complexity of manipulation and especially control under such rules
is well understood [34, 3, 23, 38, 20, 21, 28, 30]; see also a recent survey by Fal-
iszewski and Rothe [31]. Thus, in this paper we focus on algorithmic aspects of
electoral campaign management. Following Elkind, Faliszewski, and Slinko [17]
and Elkind and Faliszewski [16] (see also [13, 9]) who study this problem for a
variety of preference-based voting rules, we model the campaign management
setting using the framework of shift bribery. Under this framework, each voter v
is associated with a cost function π, which indicates, for each k > 0, how much
it would cost to convince v to promote the target candidate p by k positions in
her vote. The briber (campaign manager) wants to make p a winner by spend-
ing as little as possible. This framework can be used to model a wide variety
of campaign management activities, ranging from one-on-one meetings to phone
campaigns to direct mailing, each of which has a per-voter cost that may vary
from one voter to another.

Note, however, that in the context of approval-based voting rules, we can
campaign in favor of a candidate p even without changing the preference order
of any voter. Specifically, if some voter v ranks p in position k and currently
approves of k − 1 candidates, we can try to convince v to lower her approval
threshold so that she approves of p as well. Similarly, we can try to convince a
voter to be more stringent and withdraw her approval from her least preferred
approved candidate; this may be useful if that candidate is p’s direct competitor.
Arguably, a voter may be more willing to change her approval threshold than
to alter her ranking of the candidates. Therefore, such campaign management
tactics may be within the campaign manager’s budget, even when she cannot
afford the more direct approach discussed in the previous paragraph. We will
refer to this campaign management technique as “support bribery”; a variant of
this model has been considered by Elkind, Faliszewski, and Slinko [17] (a similar,
but somewhat different, variant of this model, namely, extension bribery, was
studied by Baumeister et al. [4]).

In this paper, we investigate both campaign management activities discussed
above, i.e., shift bribery and support bribery, from an algorithmic perspective.
We consider five approval-based voting rules, namely, SP-AV (as introduced
by Brams and Sanver [6]; see also [3]), Bucklin (both classic and simplified),
and Fallback (both classic and simplified). We show that shift bribery is easy
with respect to both variants of the Bucklin rule, as well as both variants of
the Fallback rule. The argument for the simplified version of both rules relies
on dynamic programming, while for the classic version of these rules we use
a more involved flow-based approach. In contrast, support bribery tends to be
hard; this holds even if we parameterize this problem by the number of voters
to be bribed or the total change in the approval counts, and use very simple
bribery cost functions. Nevertheless, we identify a natural class of bribery cost
functions for which support bribery is fixed-parameter tractable (FPT) with
respect to the latter parameter. Interestingly, some of our hardness results hold
even for the case of single-peaked profiles, where one often—though certainly



not always—expects tractability [43, 11, 29, 8, 27]. On the other hand, some of
the problems considered in this paper do become easy when the input election
can be assumed to be single-peaked: in particular, we describe a good (FPT)
approximation algorithm for support bribery under SP-AV for the single-peaked
domain.

The rest of this paper is organized as follows. In the next section we formally
define our model of elections and the voting systems we study, as well as pro-
vide the necessary background on (parameterized) computational complexity.
We then present our algorithms for shift bribery (Section 3), followed by hard-
ness results (classic and parameterized) and FPT algorithms for support bribery
(Section 4). Section 5 contains our results on support bribery for single-peaked
elections. We conclude the paper by presenting directions for future research.

2 Preliminaries

We denote the set of all non-negative integers by Z+. An election is a pair
E = (C, V ), where C = {c1, . . . , cm} is the set of candidates and V = (v1, . . . , vn)
is the list of voters. Each voter vi is associated with a preference order �i, which
is a total order over C, and an approval count `i ∈ {0, . . . , |C|}; voter vi is said to
approve of the top `i candidates in her preference order. We denote by rank(c, v)
the position of candidate c in the preference order of voter v: v’s most preferred
candidate has rank 1 and her least preferred candidate has rank |C|. A voting
rule is a mapping that given an election E = (C, V ) outputs a set W ⊆ C of
election winners.

We say that an election (C, V ) is single-peaked if there is an order . of the
candidates (called the societal axis) such that each voter’s preference order �i
satisfies the following condition: for every triple of candidates (a, b, c), if a . b . c
or c . b . a, then a �i b implies b �i c. Equivalently, an election is single-peaked
if there is an order . over the set of candidates such that for each prefix of
each vote, the set of candidates included in this prefix forms an interval with
respect to .. Given an election, it is easy to verify if it is single-peaked and,
if so, to compute one of the societal axes for it in polynomial time [2, 12, 24].
(Interestingly, deciding if a profile is in some sense close to being single-peaked
is typically an NP-hard task [22, 10], unless we know the axis with respect to
which we measure the closeness [27]). Intuitively, the notion of single-peakedness
captures scenarios where the electorate is focused on a single one-dimensional
issue such as, e.g., the left-to-right political spectrum or the military spending.

Voting Rules We now describe the voting rules that will be considered in this
paper. In what follows, we denote the number of voters by n. Under k-Approval
each candidate gets one point from each voter that ranks her in top k positions.
The k-Approval score sk(c) of a candidate c ∈ C is the total number of points
that she gets, and the winners are the candidates with the highest score. The
Bucklin rule, which can be thought of as an adaptive version of k-Approval, is
defined as follows. Given a candidate c ∈ C, let sB(c) denote the smallest value of
k such that at least bn2 c+1 voters rank c in the top k positions; we say that c wins



in round sB(c). The quantity kB = minc∈C sB(c) is called the Bucklin winning
round. Observe that no candidate wins in any of the rounds ` < kB and at least
one candidate wins in round kB . The Bucklin winners are the candidates with
the highest kB-Approval score. Under the simplified Bucklin rule, the winners are
the candidates whose kB-Approval score is at least bn2 c+ 1; all Bucklin winners
are simplified Bucklin winners, but the converse is not necessarily true.

We observe that k-Approval, despite its name, ignores the approval counts
entirely: a candidate c may fail to get a point from a voter vi who approves of her
(if `i ≥ rank(c, vi) > k), or obtain a point from a voter vj who does not approve
of her (if `j < rank(c, vj) ≤ k). Similarly, neither version of the Bucklin rule uses
the information provided by the approval counts. In contrast, the SP-AV rule [6]
relies heavily on the approval counts: we define a candidate’s approval score to be
the number of voters that approve of her, and the winners under SP-AV are the
candidates with the highest approval score. Finally, Fallback voting [7] makes use
of both the preference orders and the approval counts. Specifically, under this rule
we apply the Bucklin rule to the election obtained by deleting each voter’s non-
approved candidates from her preference ranking. Since the preference orders
are truncated, it may happen that no candidate is ranked by more than half
of the voters, in which case the candidates with the highest approval score are
elected. We can replace the Bucklin rule with the simplified Bucklin rule in this
construction; we will refer to the resulting rule as the simplified Fallback rule.

Parameterized Complexity The framework of parameterized complexity
deals with computationally hard problems. In a parameterized problem, each
input instance I is associated with an integer k called the parameter, and the
aim is to design algorithms that are efficient if the value of the parameter is small.
Formally, a problem is said to be fixed-parameter tractable (FPT) with respect
to parameter k if it admits an algorithm whose running time on input (I, k) is
f(k)|I|O(1) for some computable function f , where |I| is the description size of
I; note that the exponent of |I| does not depend on k. Though f is typically
an exponential function, such an algorithm is usually more efficient than, for
example, one that runs in time Θ(|I|k).

Parameterized complexity also has a hardness theory, which relies on param-
eterized reductions. Given two parameterized problems Q and Q′, we say that
Q admits a parameterized reduction to Q′ if there is an FPT-computable func-
tion f such that for each input (x, k) it holds that (x, k) ∈ Q if and only if
f(x, k) = (x′, k′) ∈ Q′ and, moreover, k′ = g(k) for some function g. That is,
the parameter of the transformed instance only depends on the parameter of the
original instance. We call f a parameterized reduction from Q to Q′.

An analog of the class NP in the parameterized hierarchy is W[1]: a pa-
rameterized problem is in W[1] if it admits a parameterized reduction to the
problem of deciding whether a given Turing machine accepts a given input word
in at most k steps. The class W[2] is the next class in the parameterized hier-
archy, and we have FPT ⊆ W[1] ⊆ W[2]. A problem is said to be W[1]-hard
(respectively, W[2]-hard), if all problems in W[1] (respectively, W[2]) can be re-
duced to it by a parameterized reduction. It is conjectured that FPT 6= W[1].



Just as NP-hardness of a problem indicates that this problem is unlikely to be
polynomial-time solvable, a W[1]-hardness (or, worse yet, W[2]-hardness) result
means that the problem (with the given parameterization) is unlikely to admit
an FPT algorithm.

To prove W[1]-hardness (or W[2]-hardness) of a parameterized problem Q,
it suffices to show a parameterized reduction from some parameterized problem
already known to be W[1]-hard (respectively, W[2]-hard). In our hardness proofs,
we will use the W[1]-hard multicolored clique problem [32] and the W[2]-
hard dominating set problem [14].

Definition 1. In the multicolored clique problem we are given a graph
G = (V, E), an integer k, and a partition of the vertex set V into k independent
sets V1, . . . ,Vk. We ask if G contains a k-clique. We take k to be the parameter.

Definition 2. In the dominating set problem we are given a graph G and a
positive integer k. We ask if G has a dominating set of size at most k, that is, if
there exists a subset S of G’s vertices such that (a) |S| ≤ k, and (b) each vertex
not in S has a neighbor in S. We take k to be the parameter.

For a more extensive treatment of parameterized complexity, we refer the reader
to the excellent textbooks on this subject [14, 40, 33].

Campaign Management The following definition is adapted from the work
of Elkind and Faliszewski [16], which builds on the ideas of Elkind, Faliszewski,
and Slinko [17].

Definition 3. Let R be a voting rule. An instance of R-shift bribery is a
tuple I = (C, V,Π, p), where C = {p, c1, . . . , cm−1} is a set of candidates, V =
(v1, . . . , vn) is a list of voters together with their preference orders over C (and
approval counts, if R uses them), Π = (π1, . . . , πn) is a family of cost functions,
where each πi is a non-decreasing function from {0, . . . , |C|} to Z+∪{+∞} that
satisfies πi(0) = 0 (each function πi is specified by listing its values at 0, . . . , |C|),
and p ∈ C is a designated candidate. The goal is to find a vector t = (t1, . . . , tn) ∈
(Z+)n with the following properties: (a) if for each i = 1, . . . , n we shift p upwards
in the i-th vote by ti positions, then p becomes an R-winner of the resulting
election, and (b) for all s = (s1, . . . , sn) ∈ (Z+)n that satisfy condition (a) it
holds that

∑n
i=1 π

i(ti) ≤
∑n
i=1 π

i(si). We set opt(I) =
∑n
i=1 π

i(ti).

In words, πi(k) is the cost of shifting the preferred candidate p upwards by k
positions in the preferences of the i-th voter. A vector t = (t1, . . . , tn) ∈ (Z+)n is
called a shift action or simply a (shift) bribery. For any such vector, we denote by
shf (C, V, t) (or by shf (E, t)) the election obtained from E = (C, V ) by shifting p
upwards by ti positions in the i-th vote, for each i = 1, . . . , n. If rank(p, vi) = k,
but a shift action prescribes shifting p by k′ ≥ k positions in vi, we simply place
p on top of vi. Also, we write Π(t) =

∑n
i=1 π

i(ti) to denote the cost of a shift
action t.

We say that a shift action t = (t1, . . . , tn) is minimal for I, if Π(t) = opt(I),
p is a winner in shf (C, V, t), but for every shift action s 6= t such that si ≤ ti



for all i = 1, . . . , n it holds that p is not a winner in shf (C, V, s). Note that an
optimal shift action is not necessarily minimal, as it may include some shifts of
cost zero that are not needed to make p a winner.

Shift bribery does not change the voters’ approval counts. A more general
notion of bribery, which is relevant for SP-AV and (simplified) Fallback voting,
was proposed by Elkind, Faliszewski, and Slinko [17] in the technical report
version of their paper [18]. Specifically, they defined mixed bribery for SP-AV,
where the briber can both shift the preferred candidate and change the voters’
approval counts. In this work, we find it more convenient to separate these two
types of bribery. Thus, we will now define support bribery, which focuses on
changing the number of approved candidates.

To define support bribery, we need to be able to specify the costs of increas-
ing/decreasing approval counts for the voters. Formally, we assume that each
voter vi has a support bribery cost function σi : Z → Z+ ∪ {+∞}, which satis-
fies (a) σi(0) = 0, and (b) for each k > 0 it holds that σi(k) ≤ σi(k + 1) and
σi(−k) ≤ σi(−k − 1). For a given k ∈ Z, we interpret σi(k) as the cost of con-
vincing vi to approve of `i + k candidates. By construction, it suffices to define
σi on {−`i, . . . , |C| − `i}, where `i is the approval count of vi.

Definition 4. Let R be a voting rule. An instance of R-support bribery is
a tuple I = (C, V,Σ, p), where C = {p, c1, . . . , cm−1} is a set of candidates,
V = (v1, . . . , vn) is a list of voters, where each voter vi is represented by her
preference order �i and her approval count `i, and Σ = (σ1, . . . , σn) is a family
of support bribery cost functions (each function σi is represented by listing its
values on {−`i, . . . , |C| − `i}). The goal is to find a vector t = (t1, . . . , tn) ∈ Zn
with the following properties: (a) if for each i = 1, . . . , n voter vi changes her
approval count from `i to `i+ ti, then p is an R-winner of the resulting election,
and (b) for all s = (s1, . . . , sn) ∈ Zn that satisfy condition (a) it holds that∑n
i=1 σ

i(ti) ≤
∑n
i=1 σ

i(si). We set opt(I) =
∑n
i=1 σ

i(ti).

A vector t = (t1, . . . , tn) ∈ Zn is called a push action or a (support) bribery.
For any such vector, we denote by psh(C, V, t) (or by psh(E, t)) the election
obtained from election E = (C, V ) by setting, for each i, the approval count of
the i-th voter to be `i + ti. If `i + ti < 0 or `i + ti > m, then we set the approval
count of the i-th voter to be 0 or m, respectively. We set Σ(t) =

∑n
i=1 σ

i(ti).
We say that a push action t = (t1, . . . , tn) is minimal for I if Σ(t) = opt(I), p

is a winner in psh(C, V, t), and for every push action s 6= t such that 0 ≤ si ≤ ti
or ti ≤ si ≤ 0 for all i = 1, . . . , n it holds that p is not a winner in psh(C, V, s).
Note that, as in the case of shift bribery, an optimal push action is not necessarily
minimal because it may perform unnecessary zero-cost pushes.

We also consider two natural special types of support bribery cost functions.
We say that a support bribery cost function σ is positive if σ(k) = +∞ for
each k < 0, and we say that it is negative if σ(k) = +∞ for each k > 0. The
support bribery problem with positive cost functions corresponds to the setting
where the campaign manager can only increase the voters’ approval counts, and
can be viewed as a fine-grained version of control by adding voters; similarly,



the support bribery with negative cost functions can be viewed as a refinement
of control by deleting voters (see the surveys of Faliszewski, Hemaspaandra,
and Hemaspaandra [26] and Faliszewski and Rothe [31] for a discussion of the
complexity of election control and for further references).

To conclude this section, we observe that we have defined shift bribery
and support bribery as function problems. However, when talking about NP-
completeness, we consider the decision variants of these problems, where we ask
if there exists a successful bribery whose total cost does not exceed a given value
b—the bribery budget.

3 Shift Bribery

In this section, we present our results for shift bribery under the Bucklin rule
and the Fallback rule. We start by describing our algorithm for the simplified
version of the Bucklin rule; this algorithm can be modified to work for the
simplified version of the Fallback rule.

Theorem 1. Simplified Bucklin-shift bribery is in P.

Proof. Given an instance I = (C, V,Π, p) of Simplified Bucklin-shift bribery,
let m = |C|, n = |V |, and let k be the Bucklin winning round for (C, V ). Let
W ⊆ C be the set of the simplified Bucklin winners in (C, V ). We can assume
that p 6∈W .

Let t = (t1, . . . , tn) be a minimal shift action for I. Let ` be the Bucklin
winning round in shf (C, V, t). We claim that ` ∈ {k, k + 1}. Indeed, any shift
action moves every candidate in W by at most one position downwards in each
vote. Therefore, in shf (C, V, t) all candidates in W win in round k + 1, and
hence ` ≤ k + 1. Now, suppose that ` < k. In (C, V ) the `-Approval score of
every candidate is at most bn2 c, so the only candidate that can win in round
` in shf (C, V, t) is p, and for that she has to be moved into position ` in some
voters’ preferences. However, moving p into position k in those voters’ preferences
suffices to make p a winner in round k (and thus an election winner), and we
have assumed that t is minimal. This contradiction shows that ` ≥ k. Hence,
to find an optimal shift bribery, it suffices to (a) compute a minimum-cost shift
action that makes p a winner in round k, (b) compute a minimum-cost shift
action that makes p a winner in round k+1 and ensures that no other candidate
wins in round k, and (c) output the cheaper of the two, breaking a tie arbitrarily.

To win in round k, p needs to obtain bn2 c+ 1− sk(p) additional k-Approval
points. Thus, to find a minimum-cost shift bribery that makes p win in round
k, we consider all votes in which p is not ranked in top k positions, order them
by the cost of moving p into the k-th position (from lowest to highest), and pick
the first bn2 c+ 1− sk(p) of these votes. Let s denote the shift action that moves
p into position k in each of those votes.

Computing a shift action that ensures p’s victory in the (k + 1)-st round is
somewhat more difficult. In this case we need to ensure that (a) each candidate
in W is demoted from position k to position k+ 1 enough times that it does not



win in round k, and (b) p’s (k + 1)-Approval score is at least bn2 c+ 1. Thus, we
need to find an optimal balance between bribing several groups of voters.

For each c ∈ C \ {p}, let Vc denote the set of all voters that rank c in the
k-th position and rank p below c; note that c 6= c′ implies Vc∩Vc′ = ∅. Let us fix
a candidate c in C \ {p}. The only way to ensure that c does not win in round
k is to shift p into position k in at least n(c) = max{0, sk(c) − bn2 c} votes in
Vc. Note that n(c) > 0 if and only if c ∈ W . Thus, if for some c ∈ W we have
|Vc| < n(c), there is no way to ensure that c does not win in round k, so in this
case we output s and stop.

Otherwise, we proceed as follows. Let Ac be the set of all voters in Vc that
rank p in position k + 1, and let Bc = Vc \ Ac. Note that for each vote in Ac,
shifting p into the k-th position does not change the (k+ 1)-Approval score of p,
while doing the same for a vote in Bc increases the (k + 1)-Approval score of p
by one. For each i = 0, . . . , |Bc|, let b(c, i) be the minimum cost of a shift action
that (a) shifts p into position k+ 1 or above in i votes from Bc, and (b) shifts p
into position k in at least n(c) votes from Ac ∪Bc.

We can compute the numbers b(c, i) for all c ∈ C \ {p} and all i = 0, . . . , |Bc|
using dynamic programming, as follows. Fix a candidate c ∈ C \ {p}. Reorder
the voters so that the voters in Bc appear first, ordered according to their cost
of moving p into the (k+ 1)-st position (from lowest to highest), followed by the
voters in Ac, ordered according to their cost of moving p into the k-th position
(from lowest to highest). After this step the j-th voter in Bc is vj . For each i
and j, 0 ≤ i ≤ j ≤ |Bc|, and each h = 0, . . . , n(c), we define b(c, i, j, h) to be the
cost of a minimum-cost shift action that only involves the voters in Ac and the
first j voters in Bc and that (a) shifts p into position k + 1 or above in i votes
from Bc, and (b) shifts p into position k in at least h votes from Ac∪Bc. If there
is no such shift action, we set b(c, i, j, h) = +∞.

We can compute b(c, 0, j, h) for all j = 0, . . . , |Bc| and all h = 0, . . . , n(c)
by bribing the first h voters in Ac to shift p into position k. Similarly, we can
compute b(c, i, j, 0) for all 0 ≤ i ≤ j ≤ |Bc| by bribing the first i voters in Bc to
shift p into position k + 1. For all the remaining cases, we compute b(c, i, j, h)
using the following formula:

b(c, i, j, h) = min

 b(c, i− 1, j − 1, h) + πj(rank(p, vj)− (k + 1)),
b(c, i− 1, j − 1, h− 1) + πj(rank(p, vj)− k),
b(c, i, j − 1, h)

 . (1)

The first two lines of this formula correspond to the cases where the j-th voter
in Bc is bribed to shift candidate p into positions k+ 1 and k, respectively. The
third line deals with the case where this voter is not bribed. It is immediate
that this method correctly computes the desired values. By definition, we have
b(c, i) = b(c, i, |Bc|, n(c)). For each candidate c ∈ C\{p} and each i = 0, . . . , |Bc|,
we define r(c, i) to be the shift action corresponding to the value b(c, i); this shift
action can be extracted from the dynamic programming computation of b(c, i)
using standard techniques.

Let Vp = V \
⋃
c∈C\p Vc; the set Vp consists of all voters who rank p in their top

k positions. Note that in any minimal shift action, voters in Vp are not bribed.



Now, for every j = 1, . . . ,m−1 and every i = 0, . . . , bn2 c+1−sk+1(p), let β(j, i)

be the minimum cost of a shift action that (i) only involves voters in ∪j`=1Vcj , (ii)
ensures that candidates c1, . . . , cj do not win in round k, and (iii) ensures that p’s
(k+1)-Approval score is at least sk+1(p)+ i; we set β(j, i) = +∞ if no such shift
action exists. The numbers β(j, i), j = 1, . . . ,m−1, i = 0, . . . , bn2 c+1−sk+1(p),
can be computed by dynamic programming as follows. We have

β(1, i) =

{
b(c1, i) for i = 0, . . . , n(c1),

+∞ for i = n(c1) + 1, . . . , bn2 c+ 1− sk+1(p).

Further, for every j > 1 and all i = 0, . . . , bn2 c+ 1− sk+1(p) we have

β(j, i) = min {β(j − 1, i− `) + b(cj , `) | ` = 0, . . . ,min(i, n(cj))} .

By construction, β(m − 1, bn2 c + 1 − sk+1(p)) is the minimum cost of a shift
action ensuring that p wins in round k + 1 and no other candidate wins in
round k. A shift action r that has this cost can be extracted from the dynamic
programming computation of β(m− 1, bn2 c+ 1− sk+1(p)); it is the sum of shift
actions {r(cj , ij)}cj∈C\p for appropriate values of i1, . . . , im−1.

We output the cheaper of s and r, breaking a tie arbitrarily. This algorithm
runs in polynomial time, and our argument shows that it produces an optimal
shift action for I. ut

Theorem 2. Simplified Fallback-shift bribery is in P.

Proof. Given an instance I = (C, V,Π, p) of Simplified Fallback-shift bribery,
let m = |C| and n = |V |. Further, let �i be the preference order of voter vi, and
let `i be her approval count. Set L = maxi=1,...,n `

i.
Our algorithm proceeds in two stages. First, it computes a shift action s

of minimum cost that (after deleting the non-approved candidates from each
voter’s preference list) ensures that there is no winner according to the simpli-
fied Bucklin rule and that no candidate has more approvals in total than the
preferred candidate p. Second, for each ` = 1, . . . , L it computes a shift action r`

of minimum cost ensuring that p wins under simplified Bucklin in round ` (that
is, the Bucklin winning round is `, and p is an `-Approval winner). Finally, we
output the cheapest among s and r`, ` = 1, . . . , L, breaking a tie arbitrarily.

In what follows, we say that p can exclude c from round ` in a vote vi if
c �i p and rank(c, v) = min(`i, `). We say that p can exclude c from approval if
c �i p and rank(c, v) = `i.

To obtain s, it suffices to find, for each t = 1, . . . , bn/2c, a minimum-cost
shift action st ensuring that p receives t approvals, and everybody else receives
at most t approvals. This can be done greedily, as follows. For each candidate
c ∈ C \ {p}, let Vc be the set of votes where p can exclude c from approval. For
each c ∈ C \ {p} with s(c) > t, we order the votes in Vc according to their cost
πi(rank(p, vi)−rank(c, vi)), and bribe the cheapest s(c)−t voters in Vc, breaking
ties arbitrarily (if |Vc| < s(c) − t for some such c, then st remains undefined).
If after this stage p has t′ < t approvals, we bribe the cheapest t − t′ voters in



⋃
C\{p} Vc that have not been bribed yet, breaking ties arbitrarily (again, if the

number of such voters is less than t − t′, then st remains undefined). We then
set s to be the cheapest among s1, . . . , sbn/2c, breaking ties arbitrarily (where
the cost of an undefined shift action is taken to be +∞).

The computation of r1 is easy: we just have to make sure that p receives at
least bn/2c+ 1 points in the first round, so we can sort the voters according to
the cost of shifting p into the top position (from lowest to highest), and bribe
the first bn/2c + 1 − s1(p) voters. To compute r` for ` = 2, . . . , L, we employ
the algorithm used for computing the shift action r in the proof of Theorem 1,
with a few modifications. Specifically, for each c ∈ C \ {p} we let Vc contain the
votes in which p can exclude c from round ` − 1. We partition Vc into Ac and
Bc by setting Ac = {vi ∈ Vc | rank(c, vi) = ` − 1, rank(p, vi) = ` ≤ `i} and
Bc = Vc \ Ac. For i = 1, . . . , n, j = 1, . . . ,m we say that position j in vote vi

is `-good if j ≤ min(`i, `). We then proceed as in the proof of Theorem 1: to
determine r`, we compute for each i = 0, . . . , |Bc| a minimum-cost shift action
that shifts p into an `-good position in i votes from Bc and excludes c from
round `−1 in at least s`−1(c)−bn/2c votes from Ac∪Bc, and then use dynamic
programming to decide how many voters from each set Vc, c ∈ C \ {p}, we want
to bribe. ut

Shift bribery also admits a polynomial-time algorithm for the regular version
of the Bucklin rule; however, the proof becomes more involved.

Theorem 3. Bucklin-shift bribery is in P.

Proof. Let m = |C|, n = |V |, and let k be the Bucklin winning round for (C, V ).
Let W denote the set of Bucklin winners in (C, V ).

Let t = (t1, . . . , tn) be a minimal shift action for I, and let ` be the Bucklin
winning round in shf (C, V, t). We have ` ∈ {k−1, k, k+1}. Indeed, the argument
in the proof of Theorem 1 shows that ` ≤ k+1. Now, suppose that ` < k−1. This
means that in shf (C, V, t) our preferred candidate p wins in round `. Consider
the set of all voters that were requested to shift p into position ` or higher under
t; this set must be non-empty since prior to the bribery p did not win in round
`. If we now demote p into position k − 1 in those votes, she would still win
in round k − 1. Moreover, since no other candidate wins in round k − 1 in the
original election, p is now the unique winner in round k−1 and hence the Bucklin
winner, a contradiction with t being a minimal shift action.

We will now find (a) a minimum-cost shift action that makes p a winner in
round k − 1, (b) a minimum-cost shift action that makes p a winner in round
k and ensures that no candidate has a higher k-Approval score than p, and (c)
a minimum-cost shift action that makes p a winner in round k + 1 and ensures
that no other candidate wins in round k or has a higher (k + 1)-Approval score
than p. We will then output the cheapest of these three shift actions, breaking
ties arbitrarily.

The first step is straightforward: we order all voters that do not rank p in
the first k−1 positions by the cost of shifting p into position k−1 in their votes



(from the lowest to the highest), and bribe the first bn2 c + 1 − sk−1(p) of them
to move p into position k − 1 in their votes. Denote this shift action by s.

The second step is somewhat more difficult. Namely, for each i = bn2 c +
1, . . . , n, let ri be a minimum-cost shift action that ensures that p’s k-Approval
score is at least i, and the k-Approval score of any other candidate is at most i.
We can compute ri as follows.

Recall that W is the set of Bucklin winners in election (C, V ). For each
candidate c ∈ W , let Vc denote the set of all voters that rank c in the k-th
position and rank p below c. To ensure that c’s k-Approval score is at most i,
we need to shift p into position k in at least sk(c) − i such votes. Thus if for
some c ∈ W we have |Vc| < sk(c) − i then we record that for this value of i
the shift action ri is undefined and we set its cost to +∞. Otherwise, we order
the votes in each Vc by the cost of moving p into the k-th position in this vote
(from lowest to highest), and bribe the first sk(c)− i voters in each set to move
p in the k-th position in their votes; denote the corresponding shift action by
ri,1. In the resulting election shf (C, V, ri,1), no candidate other than p gets more
than i k-Approval points. Let s′k be p’s k-Approval score in shf (C, V, ri,1). If
s′k ≥ i, we set ri = ri,1. Otherwise, we order the voters that rank p in position
k + 1 or lower in shf (C, V, ri,1) by the cost of moving p into position k in their
preferences (from lowest to highest), and bribe the first i− s′k of them to move p
into position k in their votes. Denote this bribery by ri,2, and set ri = ri,1 +ri,2.
Finally, let r be a cheapest shift action among rb

n
2 c+1, . . . , rn.

Now, finding a minimum-cost shift action that makes p win in round k + 1
and ensures that no other candidate wins in an earlier round or has more (k+1)-
Approval points than p is yet more difficult. Indeed, we must balance the need
to demote the candidates that may win in round k against the need to demote
the candidates that may beat p in round k + 1. Note also that we may need to
shift p into position k in some votes in order to lower the k-Approval score of its
competitors.

We deal with these issues by reducing our problem to that of finding a
minimum-cost circulation. Recall that an instance of a minimum-cost circulation
problem is given by a directed graph G = (V, E), and, for each (v, w) ∈ E , a lower
bound l(v, w) on the flow from v to w, an upper bound u(v, w) on the flow from
v to w and the cost c(v, w) of a unit of flow from v to w. A solution is a feasible
flow, i.e., a vector (f(v, w))(v,w)∈E that satisfies (a) l(v, w) ≤ f(v, w) ≤ u(v, w)
for all (v, w) ∈ E and (b)

∑
(z,v)∈E f(z, v) =

∑
(v,w)∈E f(v, w) for any v ∈ V. The

cost of a feasible solution is given by∑
(v,w)∈E

c(v, w)f(v, w).

An optimal solution is one that minimizes the cost among all feasible solutions.
It is well-known that when all costs and capacities are integers, an optimal
circulation is integer and can be found in polynomial time (see, e.g., [15, 42]).

Given an instance of our problem, we construct a family of instances of
minimum-cost circulation, one for each i = max{0, bn2 c+ 1− sk+1(p)}, . . . , n as



follows (see Figure 1). For each i, our graph Gi models the situation where we
bribe exactly i voters ranking p in position k+2 or lower. We let Gi consist of six
“layers”. The first layer consists of a single vertex S, and the second layer consists
of a single vertex S′. In the third layer, we have a vertex Uh for each candidate
ch ∈ C \ {p}. In the fourth layer, we have a vertex Wj for each j = 1, . . . , n. In
the fifth layer, we have a vertex Zh for each candidate ch ∈ C \ {p}. The sixth
layer consists of a vertex T .

S S′

U1

Uµ

W1

Wi

Wj

Wn

Z1

Zµ

T

Fig. 1. Graph Gi. For readability, we set µ = m− 1. The bold arcs are unconstrained,
the dashed arcs have a lower bound on the size of the flow, and the regular arcs can carry
at most one unit of flow. The graph corresponds to an instance where the voters’ pref-
erences are such that rank(p, v1) = rank(c1, v

i) = rank(cm−1, v
j) = rank(cm−1, v

n) =
k + 1, and moreover, rank(cm−1, v

1) = rank(cm−1, v
i) = rank(c1, v

j) = rank(c1, v
n) =

k.

The costs and capacities of the arcs depend on the value of i. We will now
describe them layer-by-layer. In our description, we will say that an arc (v, w)
is unconstrained if it satisfies l(v, w) = 0, u(v, w) = +∞ and c(v, w) = 0.

There is an arc (S, S′) with l(S, S′) = u(S, S′) = i and c(S, S′) = 0.
Also, for each ch ∈ C \ {p}, there is an arc from S′ to Uh with l(S′, Uh) =
max{0, sk+1(ch)− sk+1(p)− i}, u(S′, Uh) = +∞ and c(S′, Uh) = 0.

Each vertex Wj , j = 1, . . . , n, in the fourth layer has one incoming arc if vj

ranks p in position k+1 or lower, and no incoming arcs otherwise. Specifically, if
vj ranks some ch ∈ C\{p} in position k+1, and ranks p in position k+2 or lower,
then the graph contains an arc (Uh,Wj) with l(Uh,Wj) = 0 and u(Uh,Wj) = 1.
We set c(Uh,Wj) to be equal to the cost of shifting p into position k + 1 in vj .
If vj ranks p in position k + 1, there is an unconstrained arc from S to Wj .

There are two types of arcs leaving the vertices in the fourth layer. First,
for each j = 1, . . . , n, there is an unconstrained arc (Wj , T ). Second, there is
an arc (Wj , Zh) if and only if vj ranks candidate p in position k + 1 or lower,
and ch is ranked in position k. We set l(Wj , Zh) = 0, u(Wj , Zh) = 1, and let



c(Wj , Zh) to be equal to the cost of shifting p from position k + 1 into position
k in the preferences of the j-th voter, i.e., c(Wj , Zh) = πj(rank(p, vj) − k) −
πj(rank(p, vj)− (k + 1)).

For each vertex Zh in the fifth layer, there is an arc from this vertex to T
that satisfies l(Zh, T ) = max{0, sk(ch)−bn2 c}, u(Zh, T ) = +∞ and c(Zh, T ) = 0.
Finally, there is an unconstrained arc (T, S).

In this construction, the flow value on the arc (T, S) corresponds to the
number of voters bribed. Specifically, the flow from S to S′ reflects the number
of voters that rank p in position k + 2 or lower that were bribed to shift p into
position k + 1 or higher, while the flow going directly from S to the vertices in
the fourth layer reflects the number of voters that ranked p in position k+1 and
were bribed to shift p into position k. Now, sending x units of flow from S′ to
Uh corresponds to shifting p into the (k + 1)-st position in x votes that rank ch
in the (k+ 1)-st position. The lower bound on the flow ensures that we bribe at
least sk+1(ch)−sk+1(p)− i such voters to move p in position k+1 or higher, and
hence after the bribery ch’s (k + 1)-Approval score is at most sk+1(p) + i. Note
that if we bribe exactly i voters that do not rank p in the top k+ 1 positions to
shift p into position k + 1 or higher, p’s (k + 1)-Approval score becomes exactly
sk+1(p)+ i, so these arcs ensure that no candidate has a higher (k+1)-Approval
score than p.

The arcs between the third and the fourth layer ensure that such a bribery
can actually be implemented (i.e., for each ch ∈ C \ {p}, there are sufficiently
many voters that rank ch in the (k + 1)-st position and rank p below ch); their
cost reflects the cost of moving p into position k + 1 in the preferences of the
bribed voters.

The flow leaving the fourth layer and going directly into T corresponds to
the voters bribed to shift p into position k + 1 only, while the flow between the
fourth and the fifth layer corresponds to the voters that were bribed to move
p into position k. The cost of the arcs between the fourth and the fifth layer
corresponds to the cost of shifting from position k + 1 to position k; note that
the cost of shifting p into position k+ 1 in that vote has already been accounted
for.

The arcs between the fifth and the sixth layer ensure that no candidate wins
in round k: the flow of size t from Zh to T signifies that t voters that rank ch in
position k have been bribed to move p into position k (and therefore demote ch
into position k + 1). Thus, by satisfying all flow constraints, we ensure that the
k-Approval score of each candidate in C \ {p} is at most bn2 c.

The argument above implies that every valid circulation in the graph Gi,
i = max{0, bn2 c + 1 − sk+1(p)}, . . . , n, corresponds to a successful shift bribery
in which exactly i voters that rank p in position k + 2 or lower were bribed to
shift p into position k + 1 or higher, and the cost of the circulation is equal to
the cost of this bribery. Moreover, the corresponding shift action can be easily
computed given the circulation. The converse is also true: if there is a successful
shift action of cost X that bribes exactly i voters that rank p in position k + 2
or lower, there is also a valid circulation of size i that has the same cost.



For each i = max{0, bn2 c+ 1− sk+1(p)}, . . . , n, let qi denote the shift action
that corresponds to an optimal circulation in Gi if one exists; if there is no valid
circulation in Gi, we leave qi undefined and set its cost to +∞. Now, let q be
a minimum-cost shift action among qi, i = max{0, bn2 c + 1 − sk+1(p)}, . . . , n;
if all qi are undefined, q remains undefined as well, and its cost is set to +∞.
By construction, q is a minimum-cost shift action that makes p a winner in the
(k + 1)-st round and ensures that no candidate wins in the k-th round or has
more (k + 1)-Approval points than p.

Finally, consider the shift actions s, r, and q, and output one with the mini-
mum cost. This algorithm runs in polynomial time, and outputs a minimum-cost
shift action that makes p a winner. ut

A similar approach works for the Fallback rule.

Theorem 4. Fallback-shift bribery is in P.

Proof. The proof is very similar to that of Theorem 3. We use essentially the
same algorithm, but make the following modification. As in the proof of Theo-
rem 2, we compute the cost of a shift bribery that ensures that no candidate is
approved by more than half of the voters and our candidate p wins by approval
count (if such a shift bribery exists). Then, we apply the algorithm from Theo-
rem 3, taking into account that under Fallback voting it is sometimes possible
to ensure that some candidate c becomes disapproved after p is shifted into her
position. Modifying the algorithm from Theorem 3 to take advantage of this
possibility is straightforward, and we omit a detailed argument. ut

We remark that Theorem 1 is not a direct consequence of Theorem 3. Indeed,
it may be the case that I is a “no”-instance of Bucklin-shift bribery, but a
“yes”-instance of Simplified Bucklin-shift bribery (i.e., there is a shift action
of cost at most b that makes p a winner under Simplified Bucklin, but not under
Bucklin). In this case, running an algorithm for Bucklin-shift bribery on I
would output “no” instead of identifying a successful shift action of cost at
most b with respect to Simplified Bucklin. Similarly, Theorem 2 is not a direct
corollary of Theorem 4.

4 Support Bribery

In the technical report version of their work, Elkind et al. [18] prove an NP-
completeness result for mixed bribery under SP-AV. Their proof does not rely on
shifting the preferred candidate in the voters’ preferences, and therefore applies
to support bribery as well, showing that the decision version of SP-AV-support
bribery is NP-complete. In this section we extend this result to Fallback voting,
and explore the parameterized complexity of support bribery under both the
simplified and the classic variant of this rule.

Each instance I of support bribery can be associated with the following pa-
rameters. First, let α(I) denote the maximum number of bribed voters over all



minimal briberies that solve I optimally. Second, let β(I) and β′(I) denote, re-
spectively, the maximum and the minimum of

∑n
i=1 |ti| over all minimal briberies

(t1, . . . , tn) that solve I optimally; these parameters describe the total change
in the approval counts. Observe that β(I) ≥ β′(I) and β(I) ≥ α(I) for every
instance I.

We will now demonstrate that support bribery under Fallback voting is com-
putationally hard, even in very special cases. These results, while somewhat
disappointing from the campaign management perspective, are hardly surpris-
ing. Indeed, we have argued that support bribery can be viewed as a fine-grained
version of control by adding/deleting voters, and both of these control problems
are NP-hard for Fallback voting [20]. In fact, since Fallback voting defaults to
Approval voting if no candidate is approved by a majority of voters, by introduc-
ing appropriate dummy candidates and voters we can easily reduce the problem
of control by adding voters under Approval to the problem of support bribery
under Fallback voting.

Our next result shows that support bribery is NP-hard for both simplified
Fallback voting and regular Fallback voting, even under very strong restrictions
on the cost function; moreover, these problems remain intractable even for in-
stances with a small value of α. Thus, bribing even a few voters can be a hard
task.

Theorem 5. Both Fallback-support bribery and simplified Fallback-support
bribery are NP-complete, and also W[2]-hard with respect to parameter α (the
maximum number of voters to be bribed), even in the special case where each cost
is either +∞ or 0, and either all cost functions are positive or all cost functions
are negative.

Proof. For both types of cost functions (all-positive and all-negative), we give a
polynomial-time computable parameterized reduction from the W[2]-hard dom-
inating set problem; the reductions are inspired by those given by Erdélyi et
al. [20] in their proof of W[2]-hardness of control by adding/deleting voters in
Fallback voting.

We start by considering negative cost functions. Let G = (V, E) and k be
the given input for dominating set. We assume V = {v1, . . . , vn} and we write
N [vi] to denote the closed neighborhood of vertex vi in G, i.e., the set that
contains vi and all of its neighbors. We then construct an election E as follows.
Our set of candidates is V ∪ {a, b, p} ∪ D, where p is the preferred candidate
and D is a set of dummy candidates, |D| = 6n(n + 2). There are 6n voters,
and each of them approves n + 3 candidates. Specifically, for each vi ∈ V, we
construct two voters, xi and x̄i, and we construct additional 4n voters in order to
adjust the scores. The preferences of the voters are shown below. We use dots to
denote dummies, and we use sets in the lists when their elements can be ordered
arbitrarily. We require that each dummy candidate is approved by at most one
voter; the size of D is chosen so as to make this possible. The sign | indicates
the approval count; non-approved candidates are not listed.

voter xi: a � N [vi] � . . . � p � b |



voter x̄i: a � V \N [vi] � . . . � p � b |
2n+ 1 voters: V � . . . � b |
n+ k voters: a � . . . � p � b |
1 voter: . . . � p � b |
n− k − 2 voters: . . . � b |

The cost of decreasing the approval count arbitrarily is 0 for each of the
votes in X = {x1, . . . , xn}, and is +∞ for all other votes; our budget is 0.
Note that in election E we have s1(a) = 3n + k, sn+1(vi) = 3n + 1 for each i,
sn+2(p) = 3n+ k + 1, and sn+3(b) = 6n.

Let t be some minimal push bribery for I. Note that applying t must decrease
a’s first-round score by at least k; otherwise a would be the unique winner of
election psh(E, t) under Fallback as well as under simplified Fallback. Thus,
applying t sets the approval count to 0 in at least k votes in X. This decreases
p’s score in round n + 2 by at least k points as well, so p can have at most
3n + 1 points in round n + 2 in psh(E, t). On the other hand, in round n + 3
candidate b will have more approvals than p under any bribery of cost 0, so p
can become a winner only if it wins in round n+ 2. Therefore, p’s score in round
n + 2 must remain at least 3n + 1 in psh(E, t), which means that t must set
the approval count to 0 in exactly k votes from X. Let S be the set of these
votes, and let {s1, . . . , sk} be the corresponding vertices of G. As only voters in
X can be bribed within the budget and t is a minimal push action, it follows
that voters not in S are not bribed. Consequently, we have α(I) = k.

Now, observe that no matter how S is chosen, a does not win in the first
n + 1 rounds in psh(E, t), and p gets a strict majority of votes in round n + 2.
Therefore, p wins in psh(E, t) if and only if none of the candidates in V gets
3n+1 points in round n+1. This happens if and only if each vertex loses at least
one point as a result of the push action t, meaning that the sets N [s1], . . . , N [sk]
cover V. Since this occurs if and only if the vertices s1, . . . , sk form a dominating
set, we have proved the correctness of the reduction.

We will now consider positive cost functions. Again, the reduction is from
dominating set. Let G = (V, E) and k be the input instance; we use the nota-
tion defined above. Assume without loss of generality that k ≥ 2. We construct
an election E with candidate set V ∪{a, b, p}, where p is the preferred candidate.
The set of voters is of size 2n+2, including a voter xi for each vi ∈ V. Preferences
and approval counts are shown below; we omit the non-approved candidates in
the last n+ 2 votes.

voter xi with 0 approvals: | V \N [vi] � b � p � a � N [vi]
k voters with 1 approval: a |
1 voter with n approvals: V |
n+ 1− k voters with n+ 3 approvals: a � b � p � V |

The cost of increasing the approval count arbitrarily is 0 in any of the votes
in X = {x1, . . . , xn}, and is +∞ in all other votes; our budget is 0. Observe
that in E we have s1(a) = n + 1, s2(b) = n + 1 − k, s3(p) = n + 1 − k, and
sn+3(vi) = n+ 2− k for each i. Thus, no candidate has strict majority (that is,



n + 2 points) in any round, so the winner is candidate a, who has the largest
number of approvals.

Let t be some minimal push action for I. Observe that since we can only
increase the approval counts, s1(a) is n+ 1 in psh(E, t) as well. Hence, applying
t must increase p’s score by at least k in order for p to beat a in some round.
To achieve this, t must increase the approval count in at least k votes in X. On
the other hand, suppose that we bribe more than k voters in X to approve p.
Then b gets at least n + 2 points in some round of the resulting election; let j
be the first such round. As all voters prefer b to p, it cannot be the case that p
gets n + 2 points in round j, so this bribery is not successful. Hence, applying
t must increase p’s approval count by exactly k, via bribing a subset of voters
S ⊆ X of size k. Note that this implies α(I) = k as well. Let S = {s1, . . . , sk}.

Now, looking at the scores of the candidates in V, one can see that a support
bribery that bribes voters in S to increase p’s score is successful if and only
if each vi ∈ V receives at most k − 1 additional points from the voters in S.
This holds if and only if each vertex is missing from at least one of the sets
V \N [s1], . . . ,V \N [sk]. This is equivalent to s1, . . . , sk being a dominating set.
Thus, the proof is complete. ut

Since the hardness result of Theorem 5 for Fallback-support bribery holds
even if all bribery costs are either 0 or +∞, it follows that this problem does
not admit an approximation algorithm with a bounded approximation ratio.

Theorem 5 shows that Fallback-support bribery is W[2]-hard with respect
to the parameter α. Given that we have β(I) ≥ α(I) for each instance I, it is
natural to ask whether Fallback-support bribery remains hard if even β is
small, i.e., every minimal push action only makes small changes to the approval
counts. In Section 5, we will see that even a very restricted version of this problem
remains hard. More precisely, in Theorem 7 we will prove that support bribery
for each of SP-AV, simplified Fallback voting, and Fallback voting remains NP-
hard and also W[1]-hard with respect to parameter β, even for single-peaked
electorates and unit costs, i.e., when σi(k) = |k| for each k and each i = 1, . . . , n.

However, the hardness proof in Theorem 7 (see Section 5) heavily relies on the
fact that unit cost functions allow us to increase approval counts in some of the
votes while decreasing them in some other votes. In contrast, we will now prove
that if all cost functions are positive or all cost functions are negative, (simplified)
Fallback-support bribery is fixed-parameter tractable with respect to β′ (and
hence also with respect to β).

Theorem 6. support bribery for SP-AV, simplified Fallback voting, and Fall-
back voting is FPT with respect to parameter β′ (the minimum total change in
approval counts over all optimal briberies), as long as either all bribery cost
functions are positive or all bribery cost functions are negative.

Proof. Suppose we are given an instance I = (C, V,Σ, p) of support bribery
with |V | = n. It will be convenient to assume that we also given β′ = β′(I);
if this is not the case, we can try each possible value of β′ in an increasing
fashion. We will present an algorithm that works for both the simplified and the



classic variant of Fallback voting; the algorithm can easily be modified (indeed,
simplified) for SP-AV.

Under the Fallback rule, a candidate can win by either (a) having the highest
number of approvals in the Bucklin winning round or (b) having the highest
number of approvals when there is no Bucklin winning round; for simplified
Fallback rule, condition (a) changes to (a′) obtaining a majority of approvals in
the Bucklin winning round. To take into account briberies that ensure p’s victory
via case (b), we view this case as an “extra round” in which the candidates with
the highest number of approvals win. This way we can treat all cases in a uniform
manner (it will be clear how to handle minor differences hidden by this notation).

A bribery t = (t1, . . . , tn) with
∑n
i=1 |ti| ≤ β′ has the following two proper-

ties, which will be used by our algorithms:

(1) t can change the approval scores of at most β′ candidates, and
(2) t can change the approval score of each candidate by at most β′.

If t makes p win in round ` of the election psh(C, V, t) while changing its approval
score by δ(p), then we say that t is an (`, δ(p))-bribery ; here ` may also refer to
the extra round. As argued above, we can restrict ourselves to (`, δ(p))-briberies
with 0 ≤ δ(p) ≤ β′.

Negative cost functions. Suppose first that each cost function is negative; in
this case any bribery can only decrease a candidate’s score.

We use a bounded search tree approach. By “guessing” an answer to a ques-
tion, we always mean branching in the search tree according to all the possible
ways of answering this question. Our algorithm will branch at most f(β′) = β′+2
times, and in each case it will branch into at most g(β′) = 3β

′+1 directions. More-
over, our algorithm will make at most a linear number of steps until reaching
a leaf of the search tree. This ensures that its running time can be bounded by
O(g(k)f(k)|I|) = 3O(β′2)|I|, and hence our problem is fixed-parameter tractable
with respect to β′.

We first make some observations regarding our input instance. If p is approved
by at most bn/2c voters in (C, V ), then its only chance to win in psh(C, V, t) is
to have the highest number of approvals in the extra round. On the other hand,
suppose that p is approved by at least bn/2c + 1 voters in (C, V ). It may then
be beneficial to bribe some of the voters who approve p in order to prevent some
other candidates from winning in an earlier round. Let `0 be the earliest round in
which p receives bn/2c+1 approvals, let `1, . . . , `q denote the subsequent rounds
where p receives additional approval points, and let `q+1 denote the extra round;
naturally, `0 < `1 < · · · < `q ≤ `q+1. Now, suppose that there is a bribery t that
makes p a winner in psh(C, V, t). If t does not decrease the number of approvals
that p has, then p wins in round `0 in psh(C, V, t). If t bribes some of the voters
who approve p, p wins in some round `q′ with q′ ∈ {0, 1, . . . , q, q + 1}. We will
now argue that q′ ≤ β′.

To see why this is the case, suppose that under t we bribe x voters who
approve p and rank her in top `0 positions and y voters who approve p and
rank her in position `1 or lower; note that x + y ≤ β′. Let L = {`i1 , . . . , `ir} ⊆



{`1, . . . , `q} be the list of rounds such that for each ` ∈ L it holds that p receives
one or more approval points in round ` in (C, V ), but not in psh(C, V, t) (i.e., in
t all voters who approve p and rank it in position ` are bribed not to approve
p). By construction, we have |L| ≤ y. Renumber the elements of {`1, . . . , `q} \L
as `j1 , . . . , `js . In psh(C, V, t) candidate p has at least bn/2c + 1 − x approvals
in round `0, and it gains at least one approval point in each of the rounds
`j1 , . . . , `js , so it is approved by a strict majority of voters in round `jx . Since
|L| ≤ y, we have jx ≤ x+ y ≤ β′. Hence, if p is approved by at least bn/2c+ 1
voters in (C, V ) and t is a successful bribery, then p wins in psh(C, V, t) in one
of the rounds `0, . . . , `q′ , where q′ = min{β′, q + 1}.

We now describe our algorithm. First, the algorithm guesses the round ` in
which p wins in psh(C, V, t) and the number δ(p) of approvals that p loses until
this round; in other words, we guess (`, δ(p)) for which t is an (`, δ(p))-bribery.
By our previous observations, there are β′ + 1 choices of ` and β′ + 1 choices of
δ(p).

The algorithm then computes the set of candidates that have to lose at least
one point as a result of t (this computation depends on whether we consider
classic or simplified Fallback voting). Let R be the set that consists of these
candidates as well as candidate p; we say that the candidates in R are relevant.
By Observation (1), if I is solvable and we guessed ` and δ(p) correctly, the
set R contains at most β′ + 1 candidates. The algorithm also computes integers
δ`−1(c) and δ`(c) for each c ∈ R \ {p} such that:

(3) an (`, δ(p))-bribery makes p a winner if and only if each candidate c ∈ R\{p}
loses at least δ`−1(c) points until round `− 1, and at least δ`(c) points until
round `.

The procedure for computing these integers depends on whether we consider
classic or simplified Fallback voting. In particular, we always have δ`−1(c) ≤ δ`(c)
and under simplified Fallback voting we have δ`−1(c) = δ`(c). We set δ`−1(c) = 0
if ` = 1.

Next, the algorithm partitions the set {(v, t) | v ∈ V, 1 ≤ t ≤ β′} into equiv-
alence classes. By applying a pair (vi, t) we mean bribing voter vi to decrease
her approval count from `i to `i− t. We say that (v, t) and (v′, t′) are equivalent
if for each cr ∈ R it holds that applying (v, t) has the same effect on cr as ap-
plying (v′, t′). More formally, (v, t) and (v′, t′) are equivalent if for each cr ∈ R
it holds that (i) (v, t) and (v′, t′) decrease the number of approvals cr gets until
round `− 1 by the same amount and (ii) (v, t) and (v′, t′) decrease the number
of approvals cr gets until round ` by the same amount. A pair (v, t) can behave
in three possible ways with respect to cr: it can leave its approval count until
round ` (and hence also its approval count until round `− 1) unchanged, it can
decrease by one its approval count in round ` (but not in earlier rounds), or it
can decrease by one its approval count until round ` − 1, thereby also decreas-
ing its approval count until round `. Therefore, there are at most 3|R| ≤ 3β

′+1

equivalence classes. Note that applying some pair (v, t) instead of another pair
that is equivalent to it does not change whether a given push action is successful
or not.



Finally, the algorithm proceeds as follows: it guesses an equivalence class,
picks a cheapest pair (vi, t) from this class that has not been applied so far
(breaking ties arbitrarily), and applies it. By construction, in some of the at
most 3|R| branches the algorithm will choose a pair that can be extended to an
optimal bribery, if there exists one. It repeats this step until it reaches the bound
β′ on the total approval count modification; this means at most β′ branchings.
By the arguments above, a minimum-cost solution for I can be obtained by
taking a minimum-cost bribery among all the successful briberies (that is, ones
that ensure p’s victory) considered.

Positive cost functions. Let us now focus on the case of positive cost functions,
where each bribery can only increase a candidate’s number of approvals.

For each possible ` and δ(p), the algorithm tries to find a minimal (`, δ(p))-
bribery t. This means considering at most |C|+ 1 possibilities for `, and, by (2),
at most β′ + 1 possibilities for δ(p). Note that under positive cost functions a
minimal bribery always bribes voters so that in each modified vote the approval
count is equal to the rank of p. Consequently, the number of bribed voters in
a minimal (`, δ(p))-bribery is δ(p), and no other candidate receives additional
approvals in round `.

Having picked ` and δ(p), the algorithm tries all possible ways of choosing
a (multi)set of positive integers {t[1], . . . , t[δ(p)]} with t[1] + · · · + t[δ(p)] = β′,
corresponding to the increase of the approval counts of the bribed voters. In
other words, it guesses the non-zero elements of t (but not their positions in t).
There are at most β′δ(p) ≤ β′β′ possibilities.

Then, the algorithm computes integers δ(c), c ∈ C \ {p}, such that

(3’) an (`, δ(p))-bribery makes p a winner if and only if each candidate c ∈ C\{p}
gains at most δ(c) points until round `−1 (and hence until round ` as well),
assuming that p does not get a majority of votes in round ` − 1 or earlier
and gains exactly δ(p) points until round `.

The procedure for computing δ(c) depends on whether we consider simplified or
classic Fallback voting, and is polynomial-time implementable in either case.

The next step of the algorithm uses the color-coding technique of Alon,
Yuster, and Zwick [1]. This results in a randomized algorithm with one-sided
error, which produces a correct output with probability at least 2−δ(p)β

′
; this

algorithm can then be derandomized using standard methods.
We associate a color with each bribed voter. Colors are denoted by integers

between 1 and δ(p); recall that t bribes exactly δ(p) voters, and we have δ(p) ≤
β′. We construct a coloringA : C → 2{1,...,δ(p)} by assigning each candidate c ∈ C
a random subset A(c) of colors chosen uniformly and independently. Intuitively,
for a candidate c ∈ C \ {p} that obtains additional approvals as a result of the
bribery t, the set A(c) corresponds to the set of bribed voters in psh(C, V, t) who
grant an additional approval to c. For candidate p, the set A(p) corresponds to
the set of bribed voters that grant an additional approval to p until round `− 1.
We say that A is valid for a candidate c ∈ C \ {p} if |A(c)| ≤ δ(c); it is valid
for p if |A(p)| ≤ bn/2c − s′`−1(p), where s′`−1(p) denotes the number of approval



points p gets in the original election until round ` − 1. A coloring is valid if it
is valid for all candidates in C. The concept of validity reflects the fact that we
have to fulfill condition (3’).

Given a valid coloring of the candidates A, the algorithm computes the set
of admissible colors for each voter vi ∈ V . A color x ∈ {1, . . . , δ(p)} is admissible
for vi if the following holds:

(a) rank(p, vi) = `i+t[x] and t[x] ≤ `−`i, i.e., in order to give an extra approval
to p in vi (in round ` or earlier), the approval count has to be increased by
exactly t[x];

(b) if rank(p, vi) < `, then x ∈ A(p);
(c) for each candidate c with `i < rank(c, vi) < rank(p, vi), we have x ∈ A(c).

We say that a collection vi1 , . . . , viδ(p) of voters is proper if for each x, 1 ≤ x ≤
δ(p), the color x is admissible for voter vix .

Finally, the algorithm computes a proper collection of voters vi1 , . . . , viδ(p)

that minimizes the cost of a bribery where we bribe each voter vix to increase his
approval count by t[x]. To do this, it finds a minimum-weight maximal matching
in the bipartite graph where we have the set of voters who do not approve p
on one side, δ(p) colors on the other side, there is an edge from each voter to
all colors that are admissible for him, and the weight of each edge corresponds
to the cost of bribing the respective voter to shift his approval threshold so as
to approve p. Note that a matching of size δ(p) in this graph corresponds to a
proper collection of voters; if there is no such matching in the graph, then the
algorithm does not output anything.

The correctness of our algorithm is based on the following key observation: if
a collection of voters vi1 , . . . , viδ(p) is proper, then increasing the approval count
of vix by t[x] for each x = 1, . . . , δ(p) makes p a winner in round `. To see this,
note that condition (3’) is satisfied if we apply such a bribery. Indeed, condition
(a) ensures that p gains the necessary δ(p) points until round `, condition (b)
together with the definition of validity for p ensures that p does not win before
round `, and condition (c) and the definition of validity for candidates in C \{p}
that are affected by the bribery ensures that no candidate gains more extra
approvals than it is allowed to.

To complete the proof of correctness, it remains to show that if there exists
an (`, δ(p))-bribery t of cost at most B that increases the approval counts of
voters vi1 , . . . , viδ(p) by t[1], . . . , t[δ(p)], then our algorithm outputs a bribery
of cost at most B with probability at least 2−δ(p)β

′
. To see this, consider the

event that the candidates affected by t are colored “as expected”, meaning that
each candidate whose additional approvals under t come from voters in the set
{vix | x ∈ X} for some X ⊆ {1, . . . , δ(p)} receives the set X of colors during
the coloring process. For each such candidate this holds with probability 2−δ(p).
Since there are at most β′ candidates that receive additional approvals as a result
of the bribery t, it follows that with probability at least 2−δ(p)β

′
it holds that

for each x, the color x will be admissible for voter vix . Whenever this holds,
the algorithm will consider t when searching for a cheapest proper collection of
voters, and hence the output will be a (successful) bribery of cost at most B.



Consequently, the algorithm indeed produces a correct output with probability
at least 2−δ(p)β

′ ≥ 2−β
′2

.
Let us now analyze the running time of our algorithm. After choosing `,

δ(p), and the integers t[1], . . . , t[δ(p)], the coloring process and the computation
of admissible colors for each of the voters can be implemented in linear time.
A minimum-weight matching can be identified in polynomial time by, e.g., the
Hungarian method [35]. The branchings in the beginning of the algorithm con-
tribute a factor of β′β

′ |C| to the running time, yielding an overall running time
of O(β′β

′ |I|O(1)).
To derandomize the algorithm, one can use (β′|C|, β′2)-universal sets [39];

the resulting algorithm is still in FPT with respect to the parameter β′. ut

5 Support Bribery for Single-Peaked Electorates

One possible way to circumvent the hardness results of Section 4 is to study the
complexity of support bribery under restricted preferences. Recent work [5,
8, 11, 29] shows that many hard problems in computational social choice become
easy if the voters’ preferences can be assumed to be single-peaked. In the next
theorem we show that this is not the case for support bribery, as this problem
remains NP-hard (and also W[1]-hard with parameter β) even for single-peaked
electorates, for each of the voting rules considered in this paper.

Theorem 7. support bribery under single-peaked preferences is NP-hard and
W[1]-hard with respect to parameter β for each of SP-AV, Fallback and simplified
Fallback, even if σi(k) = |k| for each k and each i = 1, . . . , n.

Proof. We present a parameterized reduction from the W[1]-hard multicol-
ored clique problem [32]; the same reduction works for SP-AV, Fallback, and
simplified Fallback. Consider an instance of multicolored clique given by an
integer k and a graph G = (V, E) with the vertex set V = {ν1, . . . , νN} parti-
tioned into k independent sets V1, . . . ,Vk. Without loss of generality we assume
that ν1 ∈ V1 and νN ∈ Vk.

We will construct an instance I of support bribery with unit costs for a
single-peaked election. We will set the budget B = 2k3 − k and ensure that an
optimal bribery has cost B if and only if G contains a k-clique, and that there
always is a successful bribery of cost at most B + 1. Since I has unit costs, this
would imply B ≤ β(I) ≤ β′(I) ≤ B + 1.

We form an election (C, V ) contained in I as follows. For each i = 1, . . . , k
and each vertex νa ∈ Vi, we introduce a candidate set C(νa) = {cja | 1 ≤ j ≤
k, j 6= i}, and we set CV =

⋃
ν∈V C(ν). We then set C = CV ∪ {p, q} ∪D, where

p is our preferred candidate and D is a set of dummies (see the next paragraph).
We define a linear order C on the set of candidates as follows. The first

candidate in this order is q, the last one is p, and candidate cia precedes cjb if either
a < b, or a = b but i < j. The dummy candidates are placed between candidates
that are adjacent in the sequence q, c21, c

3
1, . . . , c

k−2
N , ck−1N , p. Specifically, we place

2B dummies between q and c21, as well as between ck−1N and p, and we place two



dummies between every pair of adjacent candidates in CV . The linear order C
is illustrated below (� signs stand for the dummies).

q

2B dummies︷ ︸︸ ︷
� · · · · · · �

C(ν1) plus 2(k − 2) dummies︷ ︸︸ ︷
c21 � � c31 � � · · · � � ck−1

1 � � ck1 · · ·

C(νN ) plus 2(k − 2) dummies︷ ︸︸ ︷
c1N � � c2N � � · · · � � ck−2

N � � ck−1
N

2B dummies︷ ︸︸ ︷
� · · · · · · � p

For each vertex νa ∈ V, we introduce a voter wa, and for each edge {νa, νb} ∈
E , we introduce a voter w{a,b}. We let WV = {wa | νa ∈ V} and WE = {w{a,b} |
{νa, νb} ∈ E}. To define the preferences of these voters, we need additional
notation. For each candidate c and each integer i, we denote by preci(c) the i-th
candidate before c in C, and we denote by succi(c) the i-th candidate after c in C.
We sometimes write succ(c) instead of succ1(c) and prec(c) instead of prec1(c).
If c precedes c′ in C, we denote by c · · · c′ the sequence of candidates from c to
c′ (inclusively) with respect to C; the same sequence in reverse is denoted by
c′ · · · c. The preference orders and approval counts of voters wa and w{a,b}, where
νa ∈ Vi, νb ∈ Vj , (νa, νb) ∈ E , and a < b, are given below (to simplify notation,
we assume i, j /∈ {1, k}; it is easy to modify the construction for the case i = 1
or j = k). In what follows, the order of the non-approved candidates not shown
in the preference lists can be defined in any way that results in preferences that
are single-peaked with respect to C.

wa: succ(cka) · · · prec2k2−5k+6(p) | cka · · · c1a � prec2k2−5k+5(p) · · · p
w{a,b}: succ(cja) · · · prec(cib) � cja � cib � prec(cja) � succ(cib) |

We will now add extra votes to ensure that each candidate c ∈ CV ∪ {q} re-
ceives L approvals, each dummy receives fewer than L approvals, while p receives
L− k approvals in (C, V ) for some sufficiently large integer L.

To do so, we first make sure that all candidates in CV have the same number
of approvals. To this end, if some candidate c ∈ CV has fewer approvals than an-
other candidate in CV , we add a vote c · · · precB(c21) | and a vote c · · · succB(ck−1N ) |
to V . These two votes provide one extra approval point to each candidate in
CV \ {c} and two extra approval points to c. Thus, by adding such pairs of votes
iteratively, we can ensure that each candidate in CV has the same score. Af-
ter equalizing the scores of all candidates in CV in this manner, we introduce
|V|+ |E|+B+ 1 additional pairs of such votes for each c ∈ CV ; this ensures that
at this point each dummy receives strictly fewer approvals than candidates in
CV . Let the resulting score of the candidates in CV be L; note that L > 2B+ k.
To obtain the required scores for p and q, we add L− k voters approving p only
and L voters with preferences of the form q · · · succB(q) |. We denote by Vinit
the set of voters added to adjust the initial scores; we let V = WV ∪WE ∪ Vinit .

This completes the construction, which is clearly polynomial in size. Note
that the total approval score of each candidate is as required. Also, it is straight-
forward to check that the preferences of all voters are single-peaked with respect
to the linear order C.

It remains to show the correctness of the reduction. Note that the total
number of voters in V is at least 3L − k, while every candidate has at most



L approvals. As L > k, it follows that no candidate is approved by a strict
majority of voters in (C, V ). Moreover, since L > 2B + k = 4k3 − k, after any
bribery that does not exceed the budget the score of each candidate is at most
L + B < (3L − k)/2 < b|V |/2c + 1, and hence no candidate is approved by a
majority of voters after any such bribery. Thus p can be made a winner under
each of SP-AV, Fallback, and simplified Fallback if and only if p obtains the
maximum number of approvals after some bribery. Thus, from now on, when we
speak of a score of a candidate or a candidate’s number of points, we refer to
this candidate’s number of approvals. To follow our arguments, the reader may
find it useful to keep Figure 2 in mind.

q · · · · · · c1a � � · · · � � cka

candidates approved by wa︷ ︸︸ ︷
� � c1a+1 � � · · · � � ck−1

N · · ·

2k2 − 5k + 5
dummies︷ ︸︸ ︷
· · · · · · · · · p︸ ︷︷ ︸

candidates approved by wa when
the approval count is increased by 2k2 − 2k + 1

q · · · · · · cj−1
a �

candidates approved by w{a,b}︷ ︸︸ ︷
� cja � � cj+1

a � � · · · · · · · · · � � ci−1
b � �︸ ︷︷ ︸

candidates approved by w{a,b} when
the approval count is decreased by 4

cib� � ci+1
b · · · · · · p

Fig. 2. Preferences of voters wa and w{a,b} with respect to C.

First, suppose that there is a minimal support bribery t of cost at most B.
Observe that lowering the approval counts in any of the votes q · · · succB(q) | in
order to decrease q’s score would have a cost of B + 1. Thus, t cannot decrease
q’s score, and hence it must increase p’s score by at least k points. Since p is
preceded by B dummies in C, it follows that in t the bribed voters form a subset
of WV .

Note that increasing the approval count of a voter wa ∈WV so that p obtains
an additional point has cost (3k − 5) + (2k2 − 5k + 5) + 1 = 2k2 − 2k + 1. Since
(k+ 1)(2k2 − 2k+ 1) = 2k3 − k+ 1 > B, at most k voters can be bribed in this
way without exceeding the budget. Note also that bribing k+ 1 voters from WV
in this manner would make p a winner at the cost of 2k3− k+ 1 = B+ 1, which
shows that β(I) ≤ B + 1.

Since p’s score needs to be increased by at least k, we can conclude that t
must bribe exactly k voters from the set WV , while increasing p’s score by exactly
k. Let ws1 , ws2 , . . . , wsk denote these bribed voters. We are going to show that
the vertex set S = {νs1 , . . . , νsk} is a solution of the multicolored clique
instance.

Observe that when voters ws1 , ws2 , . . . , wsk are bribed, each of the k(k − 1)

candidates in C∗ =
⋃k
i=1 C(νsi) receives one additional point. Since each of these

candidates has L approvals in the original election (C, V ), and the final score of



p in psh(C, V, t) is L, t must bribe some additional voters to lower their approval
count so that each candidate in C∗ loses at least one point. Bribing a voter in
Vinit ∪ WV to decrease the score of any candidate in CV costs more than B.
Thus, to prevent the candidates in C∗ from beating p, t must bribe some voters
in WE ; let W ∗E denote the set of these voters.

Bribing a voter w{a,b} ∈W ∗E may:

(i) decrease the score of exactly one candidate in CV at a cost of 3, or
(ii) decrease the score of exactly two candidates in CV at a cost of 4, or
(iii) decrease the score of ` candidates in CV for some ` ≥ 3 at a cost of 3(`−2)+4.

Thus, decreasing the score of any candidate in C∗ has a cost of at least 2 per
candidate; moreover, equality can only be achieved if case (ii) holds for each of
the bribed voters. Hence, in order to decrease the approval score by one for each
of the k(k − 1) candidates in C∗, the briber needs to spend at least 2k(k − 1).
We have argued that the briber has to spend k(2k2−2k+1) on bribing voters in
WV . Thus, her remaining budget is B− k(2k2− 2k+ 1) = 2k(k− 1), i.e., t must
bribe exactly

(
k
2

)
voters from WE , lowering the approval counts of each voter in

W ∗E by exactly 4; moreover, both non-dummy candidates who lose points as a
result of this bribery should be members of C∗.

Now, fix some vertex νx ∈ S, and let i be the index for which νx ∈ Vi. By
the definition of C∗ and S, we have C(νx) ⊆ C∗. Therefore, for each j with
1 ≤ j ≤ k, j 6= i, the candidate cjx ∈ C∗ must be among the last four approved
candidates of some voter in W ∗E . By construction of WE , this voter must be
w{x,y} for some y where {νx, νy} ∈ E and νy ∈ Vj . As argued in the previous
paragraph, this means that ciy ∈ C∗ and hence νy ∈ S. Thus, for every vertex νx
in the set S, we can conclude that each class Vj with νx 6∈ Vj contains a vertex
in S ∩ Vj that is adjacent to νx. As this holds for each νx ∈ S, it follows that S
forms a clique of size k in G.

For the converse direction, suppose that vertices νs1 , . . . , νsk form a clique of
size k in G. It can be easily verified that lowering the approval counts of each of
the voters w{si,sj} with 1 ≤ i < j ≤ k by 4 and increasing the approval counts
of each of the voters wsi with 1 ≤ i ≤ k by 2k2 − 2k + 1 results in a successful
bribery of cost 4

(
k
2

)
+ (2k2 − 2k + 1)k = B. ut

In Theorem 7 we proved that, even for single-peaked preferences and unit
costs functions, SP-AV-Support Bribery does not admit an FPT algorithm
with respect to parameter β unless FPT = W[1]. Naturally, this hardness result
also holds for the smaller parameter β′. In contrast, we will now describe an
algorithm that is FPT with respect to parameter β′ and for any fixed ε > 0
outputs an (1 + ε)-approximation for this variant of Support Bribery.

Theorem 8. For any fixed ε > 0, SP-AV-support bribery for single-peaked
preferences can be (1+ε)-approximated by an algorithm that is FPT with respect
to β′, as long as σi(k) ≥ 1 for each k and each i = 1, . . . , n.

Proof. Fix a positive constant ε. Let I = (C, V,Σ, p) be our input instance of
SP-AV-support bribery with parameter β′. Just as in the proof of Theorem 6,



we can assume that the parameter β′ is given as part of the input; otherwise, we
can simply run our algorithm with increasing values of the parameter starting
from 1. Set n = |V |. For each i = 1, . . . , n, we let vi and `i denote the i-th voter in
V and her approval count. Suppose that all voters’ preferences are single-peaked
with respect to a linear order C. Let B be our bribery budget.

Let t = (t1, . . . , tn) be some minimal bribery such that β′ =
∑n
i=1 |ti|. Also,

let V + = {vi ∈ V | ti > 0} and V − = {vi ∈ V | ti < 0}.
Since t is a minimal bribery, each voter vi ∈ V + ranks p in position `i + ti.

Thus, given a voter vi who does not approve of p, we will refer to the act of
increasing vi’s approval count by rank(p, vi)− `i as buying vi. The price of vi is
the cost of buying her.

Note that since the election is single-peaked, for any voter vi ∈ V it holds
that the set of candidates that vi ranks in top `i positions is a contiguous interval
of the order C. Also, the set of candidates that vi ranks in top `i + ti positions
is a (larger) contiguous interval of C. Hence, the set of candidates that vi ranks
in positions `i + 1, . . . , `i + ti consists of two intervals of C; one of them has p as
its endpoint and the other may be empty. We write B(vi) and S(vi) to denote
the two sets of candidates associated with these two intervals, where B(vi) is
the one containing p; we refer to B(vi) and S(vi) as the base and the shadow
of vi.

Guessing expensive voters in V +. Our algorithm starts by guessing the set of
voters V +

1 ⊆ V + whose price is at least εB. Since the price of each voter is at
least 1, we have |V +

1 | ≤ 1/ε. Therefore, the algorithm has to try at most nb1/εc

possibilities; for constant ε, this quantity is polynomial in the input size. (Note
also that |V +

1 | ≤ |V +| ≤ β′, so the number of possibilities to be considered at

this stage can be bounded as nmin{b1/εc,β′}).

Guessing structural properties of t. Next, the algorithm guesses the following
information about t:

1. the total score s∗ with which p wins in psh(C, V, t);
2. the size k of the set W = V + \ V +

1 (we will refer to the voters in W as
w1, . . . , wk);

3. the base B(wi) for each voter wi ∈W (note that the algorithm does not try
to guess the set W itself);

4. the size |S(wi)| of the shadow for each voter wi ∈W .

Since we have 0 ≤ k ≤ β′, there are at most β′+1 possible values of k. There are
also at most 2β′ + 1 possible choices for s∗ and at most β′ + 1 possible choices
for the size of each shadow. The base of each voter wi ∈W is a set of candidates
that is represented by a contiguous interval of C of length at most β′ whose
left or right endpoint is p. This yields 2β′ − 1 possible choices for each B(wi).
Thus, the total number of possible choices in this guessing step does not exceed
(2β′ + 1)(β′ + 1)β

′+1(2β′ − 1)β
′
.

Color-coding step. We will now use color-coding [1]; while this results in a ran-
domized algorithm, we will later explain how to derandomize it. Specifically, we



associate a color i with each voter wi ∈ W . Given a voter v who does not ap-
prove p, we say that color i is suitable for v if it holds that B(v) = B(wi) and
|S(v)| = |S(wi)|. The color-coding step of the algorithm assigns colors to some
of the voters in V as follows: for each voter v ∈ V \V +

1 that does not approve p,
it chooses uniformly between coloring v with one of the colors suitable for him
and leaving v uncolored. Recall that the algorithm does not know the voters
w1, . . . , wk, but it has already guessed their bases and the sizes of their shadows,
which suffices to compute the set of suitable colors for each voter.

We say that the coloring is successful for a voter wi ∈W if wi is colored with
his own color i; it is successful for a voter v ∈ V − if it leaves him uncolored. A
coloring is successful if it is successful for all voters in W ∪ V −. For each of the
voters in W ∪ V −, the probability that our coloring is successful for him is at
least 1/(k + 1), so with probability at least (k + 1)−β

′
the color-coding process

results in a successful coloring. Note also that if k = β′ then V − = ∅, and we can
simply color each voter with a suitable color (without leaving voters uncolored)
and obtain a successful coloring with probability at least β′−β

′
. From now on,

we assume that we are given a successful coloring.

Guessing additional voters in V +. Observe that if two voters, v and v′, have
the same base and the same shadow, then buying either of these voters has
exactly the same effect on each candidate. Hence, when looking for an optimal
bribery, we should choose among such voters based on their price. Based on this
observation, for each color i, i = 1, . . . , k, we will define a set Ri of relevant
voters, using the following procedure. Let r = β′2 + 1. We start with Ri = ∅,
consider the voters with color i in order of non-decreasing prices, and place a
voter v into Ri if and only if no other voter in Ri has the same shadow as v.
We stop when |Ri| = r or when we have considered all voters with color i. Let
pi denote the maximum price of a voter in Ri. By construction, we can assume
without loss of generality that wi ∈ Ri or the price of wi is at least pi (in which
case |Ri| = r).

Now, our algorithm makes some further guesses. For each color i, i = 1, . . . , k,
it guesses whether wi ∈ Ri; if its guess is “yes”, it also guesses which voter in
Ri is wi. For each color such a guess can have at most r + 1 outcomes, so the
algorithm has to try at most (r+ 1)k ≤ (β′2 + 1)β

′
possibilities at this step. Let

V +
2 be the set of voters guessed at this step. Set M = {i | wi /∈ Ri}; we refer to

colors in M as missing colors. Note that for each i ∈ M we have |Ri| = r; this
observation will prove useful in our analysis.

Dynamic programming step. Next, the algorithm performs the following calcu-
lation for each candidate c ∈ C \ {p}. It computes the score that c would obtain
if we were to buy all voters in V +

1 and V +
2 . It then adds one extra point for each

candidate in B(wi) for each missing color i. We denote the resulting quantity
by s∗(c). Observe that, if we were to buy all voters in V +, then the score of c
would be at least s∗(c). Let C∗ = {c ∈ C | s∗(c) > s∗}. Note that bribery t
buys all voters in V + and therefore it has to decrease the score of each candidate
c ∈ C∗ by at least s∗(c)− s∗ in order to prevent these candidates from beating



p. Clearly, t achieves this through decreasing the approval counts of the voters
in V −.

Instead of trying to find the set V −, our algorithm simply computes a
minimum-cost bribery t∗ that decreases the score of each c ∈ C∗ by at least
s∗(c)− s∗ while bribing only uncolored votes. As we assume that we have a suc-
cessful coloring, bribing each voter in V − according to t constitutes a feasible
solution to this problem, and therefore the cost Σ(t∗) does not exceed the cost
of changing the approval count by ti in each vote vi ∈ V −.

The algorithm computes t∗ by dynamic programming. We fix an ordering
on C∗ and on the set of uncolored voters. Suppose we have U uncolored voters;
clearly, U ≤ n. Let m∗ = |C∗|. Then for j ∈ {1, . . . , U} and s1, . . . , sm∗ ∈
{0, . . . , β′}, we define f(j, s1, . . . , sm∗) to be the minimum cost of a bribery
that bribes a subset of the first j uncolored voters and for each i = 1, . . . ,m∗

decreases the number of approvals of the i-th candidate in C∗ by at least si.
We can compute f(j, s1, . . . , sm∗) given the values of f(j− 1, s′1, . . . , s

′
m∗) for all

s′1, . . . , s
′
m∗ ∈ {0, . . . , β′} in time O(|I|). As |C∗| ≤ β′, this means that all values

f(j, s1, . . . , s|C∗|) and the bribery t∗ itself can be computed in O(β′β
′ |I|2) time.

Greedy phase. In the last step, the algorithm iteratively constructs a set V +
3 using

the following greedy procedure. We say that a voter is available if his shadow
does not intersect the shadow of any of the voters already in V +

3 . Initially, the
algorithm sets V +

3 = ∅. It then considers the missing colors one by one (in any
order), and for each i ∈M it places any of the available voters from Ri into V +

3 .
As a final step, the algorithm picks one extra available vote, denoted by vextra ,
from R|M |. At the end of this procedure, the set V +

3 contains exactly one vote
from Ri for each missing color i, i 6= |M |, and exactly two votes from R|M |, and

has the property that the shadows of the voters in V +
3 are pairwise disjoint. We

will now explain why it is possible to pick |M |+ 1 voters in this manner.
Briefly, the feasibility of our greedy procedure is implied by our choice of r.

In more detail, observe that, whenever the algorithm has to pick the next voter
to add to V +

3 , the total size of the shadows of the voters already in V +
3 does not

exceed β′; this is because each voter in Ri has the same shadow size as wi, and,
by definition, we have

∑k
i=1 |S(wi)| ≤ β′. Now, as the shadow of each voter in

Ri is a contiguous interval of length |S(wi)| in the order C, there can be at most
|S(wi)| voters in Ri whose shadows contain a certain candidate. Thus there can
be at most β′|S(wi)| ≤ β′2 voters whose shadows contain any of the candidates
in
⋃
v∈V +

3
S(v) and who are, hence, not available. Since |Ri| = r for each i ∈M ,

this means that for r = β′2 + 1 the algorithm can always choose an available
voter.

We are now ready to define the output tout of the algorithm: this is the
bribery obtained by buying each voter in V +

1 ∪V
+
2 ∪V

+
3 , and then applying the

bribery t∗. The running time of this algorithm is O(β′O(β′)nb1/εc|I|2). We will
now prove that it outputs a successful bribery of cost at most (1 + ε)B with
probability at least β′−β

′
.

To see that the cost of tout does not exceed (1 + ε)B, observe first that in
the branch of the algorithm that performs all the guesses correctly, the voters in



V +
1 ∪ V

+
2 are exactly the voters in V + \ {wi | i ∈ M}. These voters are bought

by t, and therefore their price is present in the cost of t as well. Now, consider a
voter v ∈ V +

3 . If his color is i, then his price does not exceed that of wi. Hence,
the total price of the voters in V +

3 \ {vextra} does not exceed the price of the
voters {wi | i ∈ M}, which is also included in the cost of t. The cost of the
bribery t∗, which only decreases approval counts, is no greater than the amount
spent by t on bribing the voters in V −. Thus, we can conclude that the cost of
tout is at most the cost of t plus the price of vextra . However, as w|M | ∈ V + \V +

1 ,
we know that the price of w|M |—and hence the price of vextra—is less than εB.
This implies that the cost of tout is at most (1 + ε)B.

To complete the proof, we need to show that tout succeeds in making p a
winner. Observe that, while the bribery t increases p’s score by |V +|, the bribery
tout increases p’s score by |V +|+ 1 because of the vote vextra . This means that
the total approval score of p in psh(C, V, tout) is s∗ + 1.

Let us fix a candidate c ∈ C \ {p}. First, assume that c is not contained in
the shadow of any of the voters in V +

3 . Then, by our definition of s∗(c), after we
buy the voters in V +

1 ∪ V
+
2 ∪ V

+
3 , the score of c is exactly s∗(c). Therefore, once

we apply t∗, the final score of c in psh(C, V, tout) is at most s∗. Now, assume
that c is contained in the shadow of some voter in V +

3 . Since the shadows of
the voters in V +

3 are pairwise disjoint, there is exactly one voter in V +
3 whose

shadow contains c. This means that, after we buy the voters in V +
1 ∪ V

+
2 ∪ V

+
3 ,

the score of candidate c is exactly s∗(c) + 1, which implies that c’s final score in
psh(C, V, tout) is at most s∗+ 1. Hence, the score of every candidate c ∈ C \ {p}
in psh(C, V, tout) is at most s∗+ 1. It follows that tout indeed makes p a winner.

To derandomize the algorithm, we can use standard techniques relying on
families of perfect hash functions, see [1]; note that randomization only occurs
at the color-coding step. ut

6 Conclusions and Future Work

Our results show that shift bribery tends to be computationally easier than
support bribery. However, in general, the power of these campaign management
strategies is incomparable: one can construct examples of, e.g., Fallback elections
where it is impossible to make someone a winner within a finite budget by shift
bribery, but it is possible to do so by support bribery, or vice versa. Thus, both
shift bribery and support bribery deserve to be studied in more detail.

An important contribution of this paper is the study of the parameterized
version of support bribery, where the parameter is the total change in the ap-
proval counts. This natural parameterization leads to FPT algorithms for sup-
port bribery under two variants of the Fallback rule, as well as for SP-AV, for a
large class of bribery cost functions. Also, we presented an approximation algo-
rithm for the case of single-peaked preferences and unit costs that runs in FPT
time with this parameterization. Finding other tractable parameterizations, or
more generally, identifying further tractable cases (either in the classical, or
in the parameterized sense) is an interesting direction for future research. The



reader may wonder if it would make sense to study parameterized complexity
of shift bribery. While for the voting rules considered in this paper shift bribery
is polynomial-time solvable, for other rules it often is NP-complete [17]. Very
recently, Bredereck et al. [9] gave a detailed parameterized study of shift bribery
for several such voting rules.
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A Destructive Support Bribery

In this appendix, we briefly discuss destructive support bribery. In the destruc-
tive variant of the problem, the goal is not to ensure a preferred candidate’s
victory, but to prevent a despised candidate from winning. In contrast to our
hardness results for constructive support bribery, we can show that destruc-
tive support bribery is easy for SP-AV, simplified Fallback voting, and Fallback
voting.

Theorem 9. destructive support bribery is in P for each of SP-AV, sim-
plified Fallback voting, and Fallback voting.

Proof. For of each of SP-AV, simplified Fallback voting, and Fallback voting,
we use the same strategy and compute certain functions defined below using
dynamic programming.



Let E = (C, V ) be an election, where C = {d, c1, . . . , cm−1} and V =
(v1, . . . , vn) is a collection of voters (each voter vi has preference order �i
and approval count `i). We are also given support bribery cost functions Σ =
(σ1, . . . , σn) for all voters. The outline of our algorithm, same for each of our
voting rules, is as follows:

1. For each candidate c ∈ C \ {d} compute the lowest cost of ensuring that c
prevents d from being a winner.

2. Output the minimum of the costs computed in the previous step.

Naturally, the exact meaning of “c prevents d from being a winner” is different
for each of our voting rules. For SP-AV it means that (a) c has more approvals
in total than d has. For simplified Fallback voting it means that either (a′) c has
more approvals in total than d and d does not win in any round, or (b) c wins
in some round t and d does not win in round t. In case of Fallback voting, we
need either (a′) or (b′) c wins in some round t, d does not win in round t − 1,
and c has more t-approval points than d.

Let us fix a candidate c ∈ C\{d}. To describe algorithms computing a lowest-
cost support bribery for each of the above conditions, for each k, i, j in {0, . . . , n}
and for each t in {1, . . . ,m} we define ft(k, i, j) to be the cost of a minimum-cost
support bribery ensuring that exactly i voters in Vk = {v1, . . . , vk} approve c
and rank her in top t positions and exactly j voters in Vk approve d and rank her
in top t positions. It is easy to verify that for each t and each k, i, j in this range
we can easily compute ft(k, i, j) in polynomial time using standard dynamic
programming techniques.

Now, it is easy to see that the lowest cost of ensuring that c has more ap-
provals than d (condition (a)) is exactly min{fm(n, i, j) | i > j}. Similarly, the
minimum cost of ensuring that condition (a′) holds is min{fm(n, i, j) | i > j, j <⌊
n
2

⌋
+ 1}. The lowest cost of ensuring that either c wins in an earlier round than

d or c wins in some round but d does not (condition (b)) is

min
{
ft(n, i, j) | i ≥

⌊n
2

⌋
+ 1, j <

⌊n
2

⌋
+ 1, 1 ≤ t ≤ m

}
.

To deal with the case of classic Fallback voting and compute the lowest cost of
ensuring condition (b′), we have to modify our family of functions ft a little. For
each k, i, j, r in {0, . . . , n} and each t in {1, . . . ,m}, let f ′t(k, i, j, r) be the cost of
a lowest-cost support bribery ensuring that exactly i voters in Vk = {v1, . . . , vk}
approve c and rank her in top t positions, exactly j voters in Vk approve d and
rank her in top t positions, and exactly r voters in Vk approve d and rank her in
top t−1 positions. By construction, each function f ′t is computable in polynomial
time using standard dynamic programming techniques. Using these functions,
we can compute the lowest cost of making c win in some round where she has
more approvals than d does, while also making sure that d does not win in the
previous round (condition (b′)):

min
{
f ′t(n, i, j, r) | i ≥

⌊n
2

⌋
+ 1, i > j, r <

⌊n
2

⌋
+ 1, 1 ≤ t ≤ m

}
.



These observations show that destructive support bribery is in P for each of
SP-AV, simplified Fallback voting, and Fallback voting. ut

Not much is known about destructive shift bribery, where the briber can
ask the voters to demote the despised candidate d in order to prevent her from
winning the elections; we propose algorithmic analysis of this form of bribery
as a topic for future work. Additional motivation for the study of destructive
shift bribery is provided by recent work that suggests some very interesting
applications of this concept [37, 44].


