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ABSTRACT

Advantageous moment distribution can be achieved by V- supported bridges.
The structural model is a continuous girder with alterrapans. The application of the
force method leads to a linear system of equations. The cigftimatrix of the system
is a periodic tridiagonal matrix with alternating elemeimshe codiagonals. After rear-
ranging the equations and the unknowns, the blocks of tleesevof the coefficient matrix
can be expressed by applying the Sherman-Morrison formtkelements of the Green-
matrix are obtained in an explicit form. This enables thecdption of the influence line
ordinates.

1. INTRODUCTION

"Selecting the openings is one of the most important facibtsidge economy.
We have to aspire to the minimum common (sub- and supenstedcost.”[2] This rule
— among others — has been guiding bridge engineers to find hapes of the bridge.
There was a tendency to reduce the spans of girder bridgkesuwtisignificant increase of
the expenses for the support.

The endeavour for a good solution was first all over the waddized in Hungary
[1]. The arrangement under appropriate clearance conditimder the bridge enables a
more advantageous moment distribution in the girder anthtively slender shape of the
supporting system (Fig. 1). The essence of the structurenttaghange if the rear leg of
the V-support is embedded in the slope (Fig. 2) [3]. The bidsia was spread in the world
and has found a wide range of applications in many countries.

The principle was adopted at different bridges. One dioactif the improvement
of the structure concluded in the application of V-shapgapsuts for multi-span contin-
uous bridges [6] (Fig. 3). Another version of concrete amnbus bridge superstructures
was implemented in case of tall piers, where Y-shaped stppeemed to be fit for the
same target [5] (Fig. 4).

In this study we shall only deal with the forces of the bridgeler under given
conditions. Otherwise the presented method is suitableadyze the internal forces for
several other superstructure shapes and arbitrary load.cas

In the following a matrix analysis will be presented for adéting the internal
forces in an explicit form.
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Figure 1: The world’s first Figure 2: Pedestrian bridge with embedded rear stalk of the
bridge with V-shaped sup- V-support
ports

Figure 4: Highway viaduct with continuous girder and Y-sba@gupports



2. BASIC ASSUMPTIONS

In the present analysis we shall suppose the following: thgeral of the super-
structure is linearly elastic, the stiffness of the girdeconstant (therefore thé.J value
doesn't play any role). The girder is continuous, the spaasaliernating, each second
span has the same length, the first and the last spans arentlee Bae supports allow
no vertical displacement but arbitrary horizontal slip @xcat a single (arbitrary) sup-
port. Fig. 5 gives the structural system. (N. B. it is indiffet in this calculation whether
a bearing allows a horizontal shift or this is possible beeaof the slenderness of the
columns.) No frame effect will be supposed.
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Figure 5: The structural system of the bridge girder
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Figure 6: The unit force acting at a long span

3. SOLUTION OF THE STATICALLY INDETERMINATE
STRUCTURE USING THE FORCE METHOD

The primary system for the force method is produced by ggtitinge above
all intermediate supports. This way the number of redunttames (moments above the
supports) isn, the number of bays is: + 1, i. e. the number of the shorter spar¥if
(m + 2)/2 and that of the longer one§ {s m/2. In order to distinguish the spassand!
(Fig. 6) the used numbering will be as follows: = 2n. As a consequence, the index of
the left side support of spanis an even numbeg®i, while that of the right side support
of sis2i+ 1, wherei =0,1,...,n.

The unit coefficients, i. e. the elements of the x 2n coefficient matrix in the
main diagonal are as seen in matAxn section 4.1., and the elements of the codiagonals
are alternating as seen there as well.

There are different forms of the load vectors depending erafiplication point of
the unit force: if the force is in a spdnthe load vector contains two non-zero elements.



If the load acts at a spatnthe load vector has two further forms. In the intermediatesba
there are two non-zero elements, in the case of an extremeriyapne. If the force is in
a spar thenx gives the unknown moments; if the force is in the baken the unknown
moments are the elementsxof

We deal with the influence lines. Therefore it is considered the unit concen-
trated load is acting at an arbitrary point of a bay as showxngn6. The values are given
in vectorb andb’ respectively (see section 4.1.).

4. THE SYSTEM OF EQUATIONS AND ITS SOLUTION

4.1. The coefficient matrix and the load vector

The force method leads to a system of linear equations

Ax = b
Ax' = b

(1)
(2)

The coefficient matrix of this is a tridiagonal marix:
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and the elements of the load vector= [b,] andb’ = [b,] ,respectively are

PA+p)ap fhk=2j-1
be =9 $P(1+a)af ifk=2j

0 otherwise

(14 p)ap ifk=2j
by=19 ¢*(1+a)af fhk=2j+1

0 otherwise

Here A is a2n by 2n matrix, b andb’ are vectors of sizén and; refers to the
loaded span. We will investigate the two cases in a parakgl W order to get a nicer
form we can mulitply the equations 6. Then the coefficient martix will be

[ 2(1+3) 1 T
L2204y
6 T2(1+9) 1




while on the right side in the first case we get

C A
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and in the second case

0
6y | (P0+8) | =2
lb_aﬁl (%)2(1+a) —27+1

4.2. The Green-matrix of the problem

Based on the analogy to the differential equations, thergavef the coefficient
matrix can be considered as the Green-matrix of the problem.

As it can be seen, the coefficient matrix is a periodic tridiza matrix. In order to
get the inverse of it, the rows and columns should be reaedhimgsuch a way that first the
odd numbered rows and columns, and afterwards the even madhbees should follow
each other. As a consequence, the periodic tridiagonabowailt be transformed into a
2 x 2 block matrix of the following form, where the permutationtma P corresponds to
the rearrangement of the rows and columns:

2 (PTAP) (PTx) = 0 (PTh)

where
[2(1+2) 0 0 1 0 0 l
0 2(14+%) 0 2 1 0
0 0 2(1+32) 0 s 1
A =9PTAP = 1 : 0 2(1+3) 0 0
1 2 0 2(1+2) 0
0 0 1 0 0 2(1+3%)




Since the rearrangement of the rows and columns corresgorals orthogonal
transformation byP, the unknowns and the elements of the load vector will beaeged
the same way. That means the vector of the unknowns, whickibe®n, becomes

[$2i—1]
Plx = a=1,2,...,n,

[M]
and the load vectors become
6

~ B (1+P)e;
b= 7PTb_aﬁl [ (1+a)e; } and

~ 6 ;L s\2 | (14 a)ejiq
b = TP = adl (7) [ 1+ B, }

where bye; we denote thgth unit vector. If the load vector is applied at the left arghti
side span respectively, the load vector is

~ 2
b = Opryr — afl (;) [ (1+a)e } and

l 0
~ 6 5\ 2 0
b/// — _PTb/// — l (_) )
l D) |+ Ben
If we introduce the notation
[0 1 0 0 0
0010 0
00 01 0
H= , ]
00 00 1
(0000 0

then we have

X [2(1+;)E E+§HT}

A= E+:H 2(1+3)E ®)

whereE denotes the by n identity matrix. N
Making use of the commutativity of the blocks of the matAx except for those
in the secondary diagonal, it is easy to verify that

[U V]_lzl_(U2—VW)_1U —(U2=VW) 'V @

W U (U2-WV)'W (U2-WV)'U

if VW #£ WYV (see [4]).

Now in order to solve our linear equations (1) and (2), we détermine the
inverse ofA by using the formula (4).We only have to check whether thim¥ghg two
conditions hold:



1. there exists the inverse df = [(2 (1+2) E)2 —(E+:H") (E+ fH)}

2. there exists the inverse M = [(2 (1+2) E)2 — (E+:H) (E+ %HT)} .

In order to calculate the above mentioned inverses, we reesiinple facts

[0 0 0 0
010 0
HH=|0 01 0 =E —eje;”,

(000 0 1

andHH” = E — e,e,”. We can write

N = (3+8;+3<§>2)E+ (;)29191T_§(H+HT)7

and similarly

s 5\ 2 5\ 2 s
M = <3+8Z+3(Z> )E+ (3) enen” = > (H+HT).
It can be seen thaN andM are tridiagonal matrices modified by one dyad. In
order to get their inverse, the Sherman-Morrison formulatwaapplied.
The well known fact that the elements of the inverse can beesspd by Cheby-
shev polynomials of second kind enables us to find an exjtiomula for the elements
of the Green-matrix (see e. g. [4]).

. I\ !
Let us introduce = [¢;;] = (—N) and2 coshy =8+ 3 (; + ;) . Then we
S
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[ [2coshy —1 0 0 (1] 17"
—1  2coshy -1 0 0

_ 0 1 2coshe) " +§ 0| [100---0]

o :
0 0 0 —12cosh® | 0]

We can apply the formula

[2coshy -1 0 0 . ,
-1  2coshy -1 0 sinh iy sinh(n + 1 — j)y if o<
0 —1 2coshvy . _ ) sinhv sinh(n + 1)¢ -
sinh j¢ sinh(n 4+ 1 — 7)) it >
SR swhy smh(n Dy
0 0 0 —1 2cosh ) |

]



Introducing the notatio$ = [s;;] = (2coshyE — (H+ HT))_1 and using the
Sherman-Morrison formula (see [4]) we get

S11
1 S21 Si1S14
J
Q=S- [311812"'51n:|: Sij —
1 1
St sn s T su
Snl

Substituting the corresponding hyperbolic functionssfoafter algebraic manipu-
lations we get

sinh(n + 1 — j)i Lsinhiy + sinh(i — 1)y

_ sinh ¢ Lsinh(n + 1)1 + sinhny

% = sinh(n + 1 — i)y £ sinh jy + sinh(j — 1)1
sinh ¢ Lsinh(n + 1)t + sinh ny

if i < j

if i >

S

-1
S ) S
(8 +3 (7 + ;)) E- (H+H")+ ZenenT]

are obtained in the form

sinhiy L sinh(n + 1 — j)i + sinh(n — j)y
sinh 1 Lsinh(n + 1)1 + sinh nap
sinh j4 Lsinh(n + 1 — i)y + sinh(n — i)y
sinh ¢ Lsinh(n + 1)t + sinh ne

- L\ .
In a similar way wheR = [r;;] = (—M) the elements of the inverse

R = [r;] =

if i <

Tz’j:

if i > j

Now that we know the inverse & andM, the solutions of the rearranged equa-
tions can easily be obtained. According to (3) the coefficieatrix can be considered as
a block matrix, therefore we can calculate its inverse ugiegormula (4):

i _[ 20+5HNT -NTE+HT) ][B! B2
| -MYE+3H) 201+3$M' |~ | B? B

where the blocks oA ! can be written as follows.
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4.3. The solution of the system of equations
Now we can calculate the solution of the equations (1) and (2)

afl ((1 + ) (BH)U +(1+a) (Blz)ij>
afl ((1 + ) (BZl)U +(1+a) (B22)ij>

|

oy | (14 ) B,y + (14 5) (B2),)
af <(1 +a) (B*), 4+ (1+5) (B22)m.>

where i = 1,2,...,n. (This notation also applies henceforth, but we will omit it
This means that if the loaded span is a longer one, i. é.span, then the vector

of the moments is the following:

X = afs ! L
’ {(2 (L+7) A+a)=(1+0)ri;— (L+B)irij-
wherej refers to the loaded span, and can have valugs. . ., n. If the loaded span is a
shorter one and it is not extreme, i.jehas value betweehandn — 1, then the moments

are given in the vector
5)2 [ (2 (1 + %) (1 + O‘) - %(1 + 5)) dij+1 — (1 + B)Qij:|
(2 (1 + ?) (1+0)—3(1+ a)) T — (L +a)rij |

- s
X = afls (l
Finally, if the loaded span is the first or the last short oaspectively, we have

~ L~ 2 s .
X" =AD" = (1+a)afs G) {2 (1 +Tl) q“} and
— 141
<" — A—lgm _ (1 + ﬁ)aﬁs (§>2 —lin
1) 12(0+%) g |
Let us remark here that the special case of equidistant pwdrere/ = s) can
be handled much more simply. In this case our equations @.2&nhave the following
coefficient matrix:
2 [—4 -1 T
-1 -4 -1
—1 -4 .
ol S
- |
S I -1
This case corresponds to the well known Clapeyron equat&inse thi2n by 2n matrix
is symmetric uniform tridiagonal, we can directly get itgense as follows:
N (= 1yt 81'nh i® smb(2n +1—7) iti<
N _ sinh¢ sinh(2n + 1)¢
! - . sinhjosinh(2n+1—14)¢ .. . _ .
(—1)"+ — : if i > j
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where2 cosh ¢ = 4. Our results naturally implicate this fact.
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Figure 7: Built up of an influence line ordinate from redundand primary system
moments

4.4. The influence lines

The ordinates of the moment influence lines for cross sestatiove supports
are given directly by the unknowns, =,. For cross section§' situated as seen in Fig. 7,
the ordinates can be written as follows.

If the unit force is acting off the bay containing the crosstge C, the ordinate is

ac
l

NMe = T2i-1—5 ;i +$zz
or

ac
NMe = Toi— + Toip1——
s S

respectively. If the unit force is in the bay containifiiganda < ., we have

Bc
NMMe = T2i—1—— ;i +$zz +0450l

l



or
C ac
NMe = $2i? + $2z’+1—8 + afes,

and ifa > a,

C ac
NMe = x2i—17 + «T2iT + acpl

and

C ac
NMe = $2z? + «T2i+1? + acfs.

Producing these data for all load positions along the cantiis girder, the influ-
ence line for moments at cross sectidis completed.

5. CONCLUSION

There are obvious advantages of alternating spans forrdirtiiges. The first V-
shaped support was applied in Hungary and this form was d@éaver the world. The
idea was extended to continuous superstructures applyiray Y-shape supports. Al-
though there are several numerical methods to produce timal forces, it is worthwile
to study the problem analytically.

To solve the problem the force method was used. The line&éesysf equations
has been solved by simultaneously rearranging the equsadioth the unknowns. The co-
efficient matrix is & x 2 block matrix. Each block in the main diagonal is a multiple of
the identity matrix, therefore the blocks of the Green-imaif the problem i. e. those of
the inverse of the coefficient matrix can easily be expresseithe blocks of the coeffi-
cient matrix. A short calculation has shown that these daculd be obtained by making
use of the Sherman-Morrison formula for the inverse of a matiodified by a one-rank
matrix. The elements are expressed by the Chebyshev poigisoai the second kind,
i. e. by applying hyperbolic functions containing the geatiof the alternating spans as
a parameter. The product of the Green-matrix and the loambvgields the moments in
explicit form.

Having the solution —the moments above the supports dus/toratioad position
— the ordinates of the moment influence line for an arbitraogs section of the girder
can be produced by elementary rules of theory of structures.
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