
Parameterized Complexity of the Arc-Preserving

Subsequence Problem

Dániel Marx1 and Ildikó Schlotter2

1 Tel Aviv University, Israel
2 Budapest University of Technology and Economics, Hungary

{dmarx,ildi}@cs.bme.hu

Abstract. We study the Arc-Preserving Subsequence (APS) prob-
lem with unlimited annotations. Given two arc-annotated sequences P

and T , this problem asks if it is possible to delete characters from T to
obtain P . Since even the unary version of APS is NP-hard, we used the
framework of parameterized complexity, focusing on a parameterization
of this problem where the parameter is the number of deletions we can
make. We present a linear-time FPT algorithm for a generalization of
APS, applying techniques originally designed to give an FPT algorithm
for Induced Subgraph Isomorphism on interval graphs [12].

1 Introduction

Many important problems in computational biology are related to pattern match-
ing in strings. The reason for this is that DNA, RNA, or protein molecules can
be viewed as sequences of nucleotides or amino acids. To gain information about
the behavior of such molecules, we often need to compare two sequences and
somehow measure their similarity.

Given two sequences S1 and S2 over some alphabet, the task of the Longest

Common Subsequence (LCS) problem is to find the longest possible sequence
that is the subsequence of both S1 and S2. In other words, we are looking for a
sequence C that can be obtained both from S1 and from S2 by deleting charac-
ters. This problem arises in many applications, like deciding if two species are
biologically related, or whether two proteins are likely to exhibit similar function-
alities related to three-dimensional structure (protein folding). Another classical
problem, Subsequence, asks if a sequence is the subsequence of another.

If we only want to deal with character sequences, LCS can be solved effi-
ciently using dynamic programming. However, recent biological research suggests
that we might loose relevant information if we model DNA, RNA, or protein
molecules simply as sequences. The reason for this is that in such molecules, the
shape and hence the functionality is greatly affected by chemical bonds between
elements that might be far apart from each other in the sequence. Arc-annotated
sequences are widely used to represent such bonds. In this model, any two ele-
ments (or bases) of a sequence can be connected to each other through an arc.

For two arc-annotated sequences S1 and S2, the Longest Arc-Preserving

Common Subsequence or LAPCS asks for an arc-annotated sequence C of

maximum length that can be obtained both from S1 and from S2 by deleting
bases together with all arcs incident to them. Since LAPCS is NP-complete
even if the arc structures are highly restricted [5, 6, 10], researchers focused on
polynomial-time solvable cases and approximation algorithms [5, 10, 9, 11].

Another direction of research is to use the parameterized complexity frame-
work [4, 7]. This area deals with NP-hard problems by giving algorithms that
have an acceptable running time on many relevant instances. An algorithm is
fixed-parameter tractable (FPT) if its running time is bounded by f(k)nO(1) for
some function f , where n is the input size and k is the parameter associated
with the input. The idea behind this definition is that the running time of an
FPT algorithm remains tractable provided that the parameter has small value.

Parameterized complexity of LAPCS has already been studied, and FPT
algorithms were presented for various parameterizations [1, 6]. An interesting
parameterization is where the parameter is the number of deletions we are al-
lowed to make in order to construct the common subsequence. This models a
situation where we compare two sequences which are similar. An FPT algorithm
was given in [1] with this parameter, but it only applies for a restricted case.

Unlike most previous results, we considered unlimited annotations where any
two bases of a sequence can be connected by arcs. Though we could not give an
FPT algorithm for this version of LAPCS, we were able to deal with the more
simple Arc-Preserving Subsequence problem (APS), the annotated analog
of Subsequence. Given two arc-annotated sequences P and T , the task of APS

is to find out whether the pattern sequence P can be obtained by deleting some
bases of the target sequence T , together with all the arcs incident to them. We
remark that APS on its own is an interesting problem in computation biology,
and has been widely studied in the literature. Its NP-hardness has been proved
for numerous restricted cases [2], and polynomial-time algorithms have been
presented [8, 3] for limited arc structures.

Here, we present an FPT algorithm for the unlimited APS, where the pa-
rameter is the number k of deletions allowed. Our algorithm runs in f(k)n time
for some function f depending only on k, where n is the input size. In fact, we
solve a generalization of APS where a few arcs can be deleted additionally. We
mention that APS is W[1]-hard if the parameter is the length of the pattern [5].

The ideas and techniques applied here originate from an FPT algorithm
solving a seemingly unrelated problem on interval graphs [12]. This algorithm
answers the Induced Subgraph Isomorphism in FPT time: given two interval
graphs G and H and a parameter k, is it possible to delete k vertices from G to
obtains a graph isomorphic to H? Our work shows that research connected to
interval graphs can be useful for arc-annotated sequences as well.

2 Problem definition and notation

We denote {1, . . . , n} by [n]. We refer to the elements of a sequence S over an
alphabet Σ as bases. We use S[i] to denote the i-th base of S, and |S| is the
length of S.

2

Let SP and ST be two sequences over Σ. Let |SP | = nP and |ST | = nT ,
assume nP ≤ nT . We say that SP is a subsequence of ST if SP can be obtained
by deleting bases from ST , or equivalently, if there is a bijective mapping ϕ from
[nP] into a subset of [nT] such that ϕ(i1) < ϕ(i2) for each 1 ≤ i1 < i2 ≤ nP , and
SP [i] = ST [ϕ(i)] for each i ∈ [nP]. We call such a ϕ an alignment of (SP ;ST).
We write Sdel(ϕ) to denote the set of bases that have to be deleted from ST

according to ϕ, i.e. Sdel(ϕ) = [nT] \
⋃

i∈[nP] ϕ(i).
An arc-annotation A of a sequence S of length n is a multiset of pairs of

integers from [n], where each pair (i1, i2) ∈ A satisfies i1 < i2. An arc-annotated
sequence (S,A) is a sequence S together with an arc-annotation A for S. We say
that an arc (i1, i2) starts at i1, ends at i2, and connects the positions i1 and i2
incident to it. We write A(i1, i2) for the multiplicity of the pair (i1, i2) in A, and
we write A+(i) and A−(i) for the set of arcs starting or ending at i, respectively.
Also, we let astart and aend to denote the starting and ending position of an arc
a. We use |(S,A)| to denote the size of (S,A) in binary encoding.

Given two arc-annotated sequences (SP , AP) and (ST , AT), we say that
(SP , AP) is an arc-preserving subsequence of (ST , AT) if it can be obtained from
(ST , AT) by deleting bases from it, i.e. there is an alignment ϕ of (SP ;ST) such
that AP (i, j) = AT (ϕ(i), ϕ(j)) for any 1 ≤ i < j ≤ |SP |. Such an alignment is
an arc-preserving alignment of (SP , AP ;ST , AT). Note that by deleting a base,
we also mean the deletion of the arcs incident to it. Given two arc-annotated
sequence P and T , the Arc-Preserving Subsequence problem (APS) asks
whether P is an arc-preserving subsequence of T .

We will deal with the following generalization of APS, which we call Almost

APS or AAPS: given two arc-annotated sequences (SP , AP) and (ST , AT) and
some ka ∈ Z, we ask if we can delete some bases from ST (together with their
incident arcs) and at most ka arcs in addition to obtain (SP , AP). Formally, we
have to decide if there is a set Adel of at most ka arcs in AT such that (SP , AP)
is an arc-preserving subsequence of (ST , AT \ Adel). We call ϕ a ka-alignment
for (SP , AP ;ST , AT) if ϕ is an arc-preserving alignment of (SP , AP ;ST , AT \A∗)
for some set A∗ with |A∗| ≤ ka. Also, we let Adel(ϕ) to denote such an A∗.

Given a sequence S, let Srev denote the reverse of S. For a position i of S,
we will use irev to denote the position |S| − i+ 1 of Srev corresponding to i. If A
is an arc-annotation of S, then let Arev denote the corresponding arc-annotation
of Srev, meaning Arev(i1, i2) = A(irev2 , irev1). We also let Xrev = {irev | i ∈ X}
for any set X of positions in S.

If ϕ is a ka-alignment for (SP , AP ;ST , AT), then ϕrev is the corresponding
ka-alignment for (Srev

P , Arev
P ;Srev

T , Arev
T), i.e. ϕrev(i) = (ϕ(irev))rev for each i.

Due to lack of space, we omit several proofs, see the Appendix for them.

3 Fixed-parameter tractability of APS

In this section we present an FPT algorithm for AAPS, a generalization of
APS, with the parameterization where the parameters are the number of bases
to delete and the number of arcs that can be deleted additionally.

3

Almost Arc-Preserving Subsequence

Input: Two arc-annotated sequences (SP , AP) and (ST , AT), and ka ∈ Z.
Parameters: ka and kb = |ST | − |SP |.
Task: decide whether (SP , AP) can be obtained from (ST , AT) by deleting
kb bases (together with their incident arcs) and ka arcs in addition, i.e.
whether there is a ka-alignment ϕ for (SP , AP ;ST , AT).

Our aim is to prove the main result of the paper stated by Theorem 1.

Theorem 1. There is an algorithm that solves any instance (SP , AP ;ST , AT ; ka)
of the Almost Arc-Preserving Subsequence problem and runs in time

k
O(k3

b
+kbka)

b |(ST , AT)| where kb = |ST | − |SP |.

3.1 Outline of the algorithm

To prove Theorem 1, we present an algorithm that uses a bounded search tree
technique in order to construct a ka-alignment step by step. In certain situations,
the algorithm might branch on a bounded number of possibilities to proceed
with. Since both the number of such branchings and the possible directions of a
branching will be bounded in terms of ka and kb, the size of the resulting search
tree will be bounded by a function of ka and kb.

Actually, the algorithm described here has the following behavior: given an in-
stance of APS, consisting of the arc-annotated sequences (SP , AP) and (ST , AT),
and an integer ka, it tries to construct a ka-alignment ϕ for (SP , AP ;ST , AT).
To do so, it fixes such a hypothetical solution ϕ, and looks for bases in Sdel(ϕ)
and arcs in Adel(ϕ), which we will call removable bases and removable arcs of ϕ,
resp. More precisely, our algorithm does one of the followings in linear time:

– it produces an arc-preserving alignment ψ for (SP , AP ;ST , AT) (note
that ψ is a ka-alignment for (SP , AP ;ST , AT) as well),

– it correctly rejects the instance, or
– it produces a removable base or a removable arc of ϕ.

In the last case, we can delete the given base or arc, and apply the algorithm to
the obtained instance. Notice that one of the parameters ka and kb = |ST |−|SP |
is decreased in the new instance. The presented algorithm will be shown to run in
f(ka, kb)|(ST , AT)| time for some functions f , which therefore implies Theorem 1
by proving that AAPS can be solved in (ka + kb)f(ka, kb)|(ST , AT)| time.

Our algorithm might branch several times before producing an output as
described above. Each such branch will be caused by guessing the answer to a
question of the following form: given some position p in SP , what is the value
of the position ϕ(p)?3 We interpret these branchings in the usual framework
of bounded search trees: a branching happens when we do not know the exact
value of a certain variable (such as the value of ϕ(p) in the above example),

3 In a few cases we will also need some additional branchings, described later on.

4

and thus we have to investigate every possible value. A certain branch examines
one possible value of the variable, and it produces a correct output if the given
variable indeed has the value associated with this branch. Since the examined
cases always cover every possibilities, this implies that the output will be correct
in at least one of the branches.

Although our algorithm seems to be a straightforward application of the
bounded search tree methodology used frequently in parameterized algorithms,
we had to overcome many difficulties to avoid any possibility of using an un-
bounded number of such guesses. The presented algorithm will apply consider-
ably sophisticated methods to keep the search tree bounded.

3.2 Fragmentations and related concepts.

Fragmentation. To describe our knowledge of the partially constructed ka-
alignment we have, we introduce a data structure called fragmentation. By it-
eratively refining the fragmentation, we can get closer and closer to actually
determine a ka-alignment. We write |SP | = nP and |ST | = nT .

Recall that ϕ is a fixed ka-alignment for (SP , AP ;ST , AT). For some 1 ≤ i1 ≤
i2 ≤ nP , we define the block [i1, i2] in SP to be the set of positions i1, i1+1, . . . , i2,
and we define blocks in ST similarly. Given a set of f disjoint blocks {[ph

1 , p
h
2] |

h ∈ [f]} in SP and a set of f disjoint blocks {[th1 , t
h
2] | h ∈ [f]} in ST , we let

Fh = ([ph
1 , p

h
2], [th1 , t

h
2]). We say that {Fh | h ∈ [f]} is a fragmentation for ϕ, if

– th1 ≤ ϕ(ph
1) and ϕ(ph

2) ≤ th2 for each h ∈ [f], and
– ph+1

1 = ph
2 + 1 and th+1

1 = th2 + 1 for each h ∈ [f − 1].

We will call the element Fh for some h ∈ [f] a fragment. We define σ(Fh) =
(th2 − th1) − (ph

2 − ph
1) and δ(Fh) = th1 − ph

1 , which are both clearly non-negative
integers. Note that δ(Fh+1) = δ(Fh) + σ(Fh) holds for each h ∈ [f − 1]. We say
that a position i ∈ [nP] of SP is contained in the fragment Fh, if ph

1 ≤ i ≤ ph
2 .

We will say that a fragment F is trivial if σ(F) is zero, and non-trivial
otherwise. We also call a position of SP trivial (or non-trivial) in a fragmentation,
if the fragment containing it is trivial (or non-trivial, resp). Given fragmentation
for ϕ and a position i in SP , we will use the notation ileft = i + δ(F) and
iright = i+ δ(F) + σ(F), where F is the fragment containing i. Observe that

ileft ≤ ϕ(i) ≤ iright

always holds. We will classify a position i of SP as follows:

– If ϕ(i) = ileft, then i is left-aligned.
– If ϕ(i) = iright, then i is right-aligned.
– If ϕ(i) = j such that ileft < j < iright, then i is skew.

If i is trivial, then only ϕ(i) = ileft = iright is possible. Thus, each trivial position
must be both left- and right-aligned.

Notice that each fragment F must contain exactly σ(F) positions that are
contained in Sdel(ϕ). This implies the following bounds.

5

Proposition 2. If F is a fragmentation for ϕ, then
∑

F∈F σ(F) = kb. In par-
ticular, F can have at most kb non-trivial fragments.

A marked fragmentation for ϕ is a pair (F ,M) formed by a fragmentation F
for ϕ and a set M of positions in SP such that each m ∈M is a trivial position
in F . We say that the trivial positions contained in M are marked.

For a fragment F = ([p1, p2], [t1, t2]) we let F rev = ([prev
2 , prev

1], [trev2 , trev1]),
hence a fragmentation F for ϕ clearly yields a fragmentation F rev = {F rev|F ∈
F} for ϕrev as well. Note that if a position i of SP is left-aligned (right-aligned)
in F , then the position irev is right-aligned (left-aligned, resp.) in F rev.

Pairing arcs. Given a position i in SP , let us order the arcs c in A+
P (i)

increasingly according to their right endpoint cend. Similarly, we order the arcs
in A−

P (i) increasingly according their left endpoint. In both cases, we break ties
arbitrarily. Also, we order the arcs in A+

T (j) and A−
T (j) in the same way for

each position j in ST . Now, we “pair” arcs in A+
P (i) with arcs in A+

T (ileft),
and also arcs in A−

P (i) with arcs in A−
T (ileft) according to their ranking in this

ordering. To this end, we construct the sets R+
left(i) ⊆ A+

P (i) × A+
T (ileft) and

R−
left(i) ⊆ A−

P (i)×A−
T (ileft) in the following way. We put a pair (c, d) into R+

left(i),
if c ∈ A+

P (i), d ∈ A+
T (ileft), and c has the same rank (according to the above

ordering) in A+
P (i) as the rank of d in A+

T (ileft). Similarly, we put a pair (c, d) into
R−

left(i), if c ∈ A−
P (i), d ∈ A−

T (ileft), and c has the same rank in A−
P (i) as the rank

of d inA−
T (ileft). In addition, we define the setsR+

right(i) andR−
right(i) analogously,

by substituting iright for ileft in the above definitions. The key properties of these
sets are summarized below.

Lemma 3. We know ϕ(cend) = dend and ϕ(cstart) = dstart in the following
cases:
(1) If (c, d) ∈ R+

left(i) and |A+
P (i)| = |A+

T (ileft)| for some left-aligned i.
(2) If (c, d) ∈ R−

left(i) and |A−
P (i)| = |A−

T (ileft)| for some left-aligned i.
(3) If (c, d) ∈ R+

right(i) and |A+
P (i)| = |A+

T (iright)| for some right-aligned i.

(4) If (c, d) ∈ R−
right(i) and |A−

P (i)| = |A−
T (iright)| for some right-aligned i.

Arcs connecting two non-trivial fragments. Given two non-trivial frag-
ments F and H of a fragmentation with F preceding H , we define three disjoint
subsets of those arcs of AP that start in a position of F and end in a posi-
tion of H . These sets will be denoted by L(F,H), R(F,H), and X (F,H), and
we construct them as follows. Suppose that c = (f, h) ∈ AP for some f and
h contained in F and H , respectively. We put c in exactly one of these three
sets, if (c, d) ∈ R−

left(h) for some arc d ∈ AT such that fleft ≤ dstart ≤ fright. If
dstart = fleft then we put c into L(F,H), if dstart = fright then we put c into
R(F,H), and if fleft < dstart < fright then we put c into X (F,H).

By Lemma 3, if the positions in H are left-aligned, then the left endpoints
of the arcs in R(F,H) must be right-aligned. Similarly, the left endpoints of
the arcs in X (F,H) must be skew in such a case. Proposition 4 states these
observations in a precise manner. Since we would like to ensure each position to
be left-aligned, we will try to get rid of the arcs in R(F,H) and X (F,H).

6

Proposition 4. Let i be left-aligned, |A−
P (i)| = |A−

T (ileft)|, and c ∈ A−
P (i).

(1) If c ∈ L(F,H), then cstart is left-aligned.
(2) If c ∈ R(F,H), then cstart is right-aligned.
(3) If c ∈ X (F,H), then cstart is skew.

We say that two positions f1, f2 ∈ [nP] are conflicting for (F,H), if f1 ≤ f2,
A+

P (f1)∩R(F,H) 6= ∅ and A+
P (f2)∩L(F,H) 6= ∅. In such a case, we say that any

h ≥ max{h1, h2} in H is conflict-inducing for (F,H) (and for the conflicting pair
(f1, f2)), where h1 denotes the minimal position for which (f1, h1) ∈ R(F,H),
and h2 denotes the minimal position for which (f2, h2) ∈ L(F,H). Notice that
if such a conflict-inducing h is left-aligned, then both h1 and h2 are left-aligned.
By Proposition 4, this implies that f1 is right-aligned and f2 is left-aligned. But
since f1 precedes f2, this cannot happen. This implies the following observation.

Proposition 5. If a position h is conflict-inducing for (F,H) in a given frag-
mentation, then h cannot be left-aligned.

In addition, if L(F,H) 6= ∅, then let Lmax(F,H) denote the largest position
f in F for which A+

P (f) ∩ L(F,H) 6= ∅. Let the L-critical position for (F,H)
be the smallest position h contained in H for which (Lmax(F,H), h) ∈ L(F,H).
Similarly, if R(F,H) 6= ∅, then let Rmin(F,H) denote the smallest position f in
F for which A+

P (f)∩R(F,H) 6= ∅. Also, let the R-critical position for (F,H) be
the smallest position h in H for which (Rmin(F,H), h) ∈ R(F,H).

Now, a position h in H is LR-critical for (F,H), if either h is the R-critical
position for (F,H) and L(F,H) = ∅, or h = max{hL, hR} where hL is the L-
critical and hR is the R-critical position for (F,H). Note that both cases require
R(F,H) 6= ∅. Moreover, H contains an LR-critical position for (F,H), if and
only if R(F,H) 6= ∅. Intuitively, if an LR-critical position in H is left-aligned,
then this implies that some position in F is right-aligned.

Note that the definitions of the sets L(F,H),R(F,H), and X (F,H) together
with the definitions connected to them as described above depend on the given
fragmentation, so whenever the fragmentation changes, these must be adjusted
appropriately as well. (In particular, arcs in L(F,H),R(F,H), and X (F,H)
must start and end in two different non-trivial fragments.)

Properties 1-9. Let (F ,M) be a marked fragmentation for ϕ. Our aim is
to ensure that the properties given below hold for each position in SP . Intu-
itively, these properties mirror the expectation that every position should be
left-aligned. Note that although we cannot decide whether (F ,M) is a correct
marked fragmentation without knowing the ka-alignment ϕ, we are able to check
whether these properties hold for some position i in (F ,M).

Property 1: SP [i] = ST [ileft].
Property 2: If i is non-trivial, then |A+

P (i)| = |A+
T (ileft)| and |A−

P (i)| = |A−
T (ileft)|.

Property 3: If i is non-trivial, then AP (y, i) = AT (yleft, ileft) for any y < i
contained in the same fragment as i.

Property 4: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such that cend = y

is non-trivial, yleft ≤ dend ≤ yright holds. Also, for every (c, d) ∈ R−
left(i) such

that cstart = y is non-trivial, yleft ≤ dstart ≤ yright holds.

7

Property 5: No arc in X (F,H) for some (F,H) ends at i.

Property 6: i is not conflict-inducing for any (F,H).

Property 7: i is not LR-critical for any (F,H).

Property 8: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such that cend

= y is non-trivial, dend = yleft holds. Also, for every (c, d) ∈ R−
left(i) such

that cstart = y is non-trivial, dstart = yleft holds.

Property 9: If i is non-trivial, then for each marked positionm ∈M ,AP (i,m) =
AT (ileft,mleft) holds if m > i, and AP (m, i) = AT (mleft, ileft) holds if m < i.

Observe that each of these properties depend on the fragmentation F , and Prop-
erty 9 depends on the set of marked positions M as well. Also, if some property
holds for a position i in (F ,M), then this does not imply that the property
holds for irev in (F rev,M rev), as most of these properties are not symmetric. For
example, ileft and iright both have a different meaning in the fragmentation F
and in F rev. We say that a position i ∈ [nP] violates Property ` (1 ≤ ` ≤ 9) in
a marked fragmentation (F ,M), if Property ` does not hold for i in (F ,M).

If the first eight properties hold for each position both in (F ,M) and in
(F rev,M rev), then we say that (F ,M) is 8-proper. We say that (F ,M) is proper,
if it is 8-proper and Property 9 holds hold for each position of SP in (F ,M). Note
that we do not care whether Property 9 holds for the positions in the reversed
instance, so (F ,M) is proper even if Property 9 does not hold in (F rev,M rev).

3.3 Description of the algorithm

We start with a marked fragmentation where M = ∅ and the fragmentation con-
tains only the unique fragment ([1, nP], [1, nT]), which is non-trivial if kb > 0.
Given a marked fragmentation (F ,M), we do the following: if one of Proper-
ties 1, 2, . . . , 9 does not hold for some position i in (F ,M) or one of the first
eight properties does not hold for some i in the reversed marked fragmentation
(F rev,M rev), then we will either reject the instance, output a removable base

of ϕ, or modify the given marked fragmentation. If the given marked fragmen-
tation is proper, the algorithm returns an output using Lemmas 9 and 10.

To do this, in each step we choose the first property violated by a position
either in (F ,M) or in (F rev,M rev). Observe that we can assume w.l.o.g. that
there is an ` (1 ≤ ` ≤ 9) such that Properties 1, . . . , `− 1 hold for each position
both in (F ,M) and in (F rev,M rev), but Property ` is violated by a position in
SP in (F ,M), otherwise we simply reverse the instance. (We only reverse it if
this condition is not true.)

Given `, the algorithm takes the first position i violating Property `, and
branches on choosing ϕ(i) according to ileft ≤ ϕ(i) ≤ iright. By Proposition 2,
this results in at most kb + 1 directions. Next, the algorithm handles each of
the cases in a different manner, according to whether i turns out to be left-
aligned, right-aligned, or skew. We consider these cases in a general way that is
essentially independent from `, and mainly relies on the type of i. We suppose
that i is contained in a fragment F i = ([p1, p2], [t1, t2]).

8

Extremal cases. Assume that i = p1 and i is skew or right-aligned, or i = p2

and i is skew or left-aligned. In these cases, we can find at least one removable

base of ϕ. First, if i = p1 and i is skew or right-aligned, then each base ST [j]
must be deleted for each j where t1 ≤ j < ϕ(i). Second, if i = p2 and i is skew
or left-aligned, then ST [j] must be deleted for each j where ϕ(i) < j ≤ t2.

Skew position. Suppose that i > p1 and j is skew, meaning that ϕ(i) = j
for some j with ileft < j < iright. In this case, we can divide the fragment F i,
or more precisely, we can delete F i from the fragmentation F and add the new
fragments ([p1, i−1], [t1, j−1]) and ([i, p2], [j, t2]). Note that the newly introduced
fragments are non-trivial by the bounds on j. We also modify M by declaring
every trivial position of the fragmentation to be marked (no matter whether it
was marked or not before). Observe that the number of non-trivial fragments
increases in this step. By Proposition 2, this can happen at most kb − 1 times.

Left-aligned position. Lemma 6 summarizes our results that show how to
deal with the case when i is left-aligned and i < p2. The proof of this lemma is
essential in the correctness of our algorithm.

Lemma 6. Suppose that Property ` (1 ≤ ` ≤ 9) does not hold for some i ∈ [nP]
in the marked fragmentation (F ,M), but all the previous properties hold for each
position both in (F ,M) and in (F rev,M rev). If i is left-aligned, then depending
on `, we can do one of the followings in linear time (without any branchings):

A) reject correctly,
B) output a removable arc of ϕ,
C) find that i is incident to a removable arc of ϕ (this only happens if ` = 2),
D) produce a skew position i′, or
E) produce a set N of at most 2kb−1 positions in ST such that N∩Sdel(ϕ) 6= ∅.

In Case A or B, we reject or output a removable arc of ϕ.
In Case C, we put the non-trivial position i in a set W , which will only

store positions in ST that are incident to a removable arc of ϕ. (We set W = ∅
initially.) Whenever Case C happens, we examine whether |W | ≤ 2ka. If not,
then we reject the input. This is correct, since there can be at most ka removable
arcs of ϕ, and each such arc is incident to two bases.

If |W | ≤ 2ka holds, then we modify the given fragmentation, replacing F i

by new fragments F1 = ([p1, i], [t1, ileft]) and F2 = ([i + 1, p2], [ileft + 1, t2]). By
ϕ(i) = ileft, this yields a fragmentation for ϕ. Note that F1 is trivial and F2 is
non-trivial. We mark each position of F2, putting them into M . We refer to this
operation as a left split at i. Since i becomes trivial in F1, each position can
be placed into W at most once. Thus, Case C can happen at most 2ka times
without rejecting.

In Cases D and E, we might branch into a bounded number of additional
branches. In Case D, we branch on those choices of ϕ(i′) where i′ is indeed skew,
which means σ(F i)−1 ≤ kb−1 directions, and we handle each branch according
to the way described above (dividing one fragment at the skew position i′). In
Case E, we branch into at most 2kb − 1 directions on choosing a removable

base of ϕ from N and outputting it.

9

Note that Case D or E can happen at most kb times, by our observation that
a skew position can only be found at most kb − 1 times.

We remark that if i is trivial, then we treat it as left-aligned.
Right-aligned position. Suppose that i > p1 and i is right-aligned. In

this case, we replace F i by new fragments F1 = ([p1, i − 1], [t1, iright − 1]) and
F2 = ([i, p2], [iright, t2]). This yields a fragmentation where F1 is non-trivial and
F2 is trivial. We refer to this operation as performing a right split at j. If this
happens because i violated Property ` for some ` ≤ 8, then we mark every trivial
position (including those contained in F2), by putting them into M . If ` = 9,
then we do not modify M , so the trivial positions of F2 will not be marked.

The above process either produces a removable base of ϕ, rejects correctly,
or ends by providing a marked fragmentation that is proper. In the remaining
steps of the algorithm, the set M will never be modified, and the only possible
modification of the actual fragmentation will be to perform a right split.

Given a proper marked fragmentation (F ,M), we make use of Lemma 9
below. This lemma gives sufficient conditions to do one of the followings.

– Find out that some non-trivial position i is right-aligned. In this case, we
perform a right split at i in the actual fragmentation.

– Find a removable arc of ϕ.
– Reject correctly.

Our algorithm applies Lemma 9 repeatedly, until it either stops (by reject-
ing or outputting a removable arc of ϕ), or finds that none of the conditions
of Lemma 9 apply. Before stating this lemma, we need two more important
observations. First, Lemma 7 shows that the repeated application of Lemma 9
results in a proper fragmentation. Second, Lemma 8 states some useful invariants
that hold for each fragmentation obtained by us after a proper fragmentation is
achieved.

Lemma 7. If (F ,M) is proper and F ′ is obtained by applying an arbitrary
number of right splits to F , then (F ′,M) is proper as well.

Lemma 8. Let (F ,M) be a 8-proper marked fragmentation whose trivial posi-
tions are all marked. Suppose that F ′ is obtained by applying an arbitrary number
of right splits to the fragmentation F .
(1) For each i that is not marked (i ∈ [nP] \M), both A+

P (i) = A+
T (iright) and

A−
P (i) = A−

T (iright) hold in (F ′,M).
(2) Suppose that neither i nor j is marked (i, j ∈ [nP] \M) and c = (i, j) ∈ AP .
If (c, d) ∈ R+

right(i) for some d ∈ A+
T (iright), then dend = jright. Similarly, if

(c, d) ∈ R−
right(j) for some d ∈ A−

T (jright), then dstart = iright.

Now, we can state Lemma 9.

Lemma 9. Let (F ,M) be a proper marked fragmentation for ϕ obtained by our
algorithm, and let a, b ∈ [nP].
(i) Suppose that a is trivial but not marked and b is non-trivial. If (a, b) ∈ AP

10

or (b, a) ∈ AP , then b is right-aligned.
(ii) If a and b are trivial, a < b and AP (a, b) 6= AT (aleft, bleft), then we can either
reject or output a removable arc of ϕ.

After applying Lemma 9 repeatedly, the algorithm either stops by rejecting or
outputting a removable arc of ϕ, or it finds that neither of the conditions (i) and
(ii) of Lemma 9 holds. Let (F ,M) be the final marked fragmentation obtained.
Note that the algorithm does not modify the set M of marked trivial positions
when applying Lemma 9, and it can only modify the actual fragmentation by
performing a right split. Hence, Lemma 7 yields that (F ,M) is proper.

Using (F ,M), Lemma 10 claims that we can find an arc-preserving align-
ment for (SP , AP ;ST , AT) in linear time. Hence, the final step of our algorithm,
finishing its description, is to output this arc-preserving alignment.

Lemma 10. Let (F ,M) be a proper marked fragmentation for ϕ obtained by
the algorithm. If none of the conditions of Lemma 9 holds, then we can produce
an arc-preserving alignment ψ for (SP , AP ;ST , AT) in linear time.

Proof. We show that defining ψ(i) = ileft for each position i ∈ [nP] fulfills
the requirements. For this, we have to prove SP [i] = ST [ileft] for each position
i ∈ [nP], and AP (i, j) = AT (ileft, jleft) for each two positions i 6= j ∈ [nP].

First, as Property 1 holds for each position in F , we know SP [i] = ST [ileft] for
each i ∈ [nP]. It remains to show AP (i, j) = AT (ileft, jleft) for each i 6= j ∈ [nP].
If both i and j are trivial positions, then this is true because the conditions of
(ii) in Lemma 9 do not apply. If both i and j are non-trivial, then AP (i, j) =
AT (ileft, jleft) again holds, by Properties 2 and 8 for j. Now, if i is non-trivial
but j is trivial and marked (or vice versa), then Property 9 implies the required
equality. Finally, if one of i and j is non-trivial and the other one is trivial but
not marked, then AP (i, j) = 0 holds, since (i) of Lemma 9 is not applicable. ut

3.4 Analysis of the algorithm

In this section, we give some hints how to analyse the running time of the
presented algorithm. The following lemma, stating the key properties of the our
algorithm, proves Theorem 1.

Lemma 11. Let (SP , AP , ST , AT , ka) be the given instance of APS. The pre-
sented algorithm branches into at most f(ka, kb) directions in total for some
function f such that in each branch it does one of the followings (supposing that
the conditions of the given branch do hold):

– it gives an arc-preserving alignment ψ of (SP , AP ;ST , AT),
– it correctly rejects the instance, or
– it outputs a removable base or a removable arc of ϕ.

Moreover, each branch takes linear time in the size of the input.

11

Although we do not prove Lemma 11 due to lack of space, we give the most
important definitions used in the proof.

Given a fragmentation F for ϕ, a fragment F ∈ F , and some ` (1 ≤ ` ≤ 8),
let π(F , F, `) be 1 if Property ` holds for each position i in F , and 0 otherwise.
Let N(F) denote the set of non-trivial fragments in F . We define the measure
µ(F) of a given fragmentation F for ϕ as follows:

µ(F) =
∑

1≤`≤8

(

∑

F∈N(F)

π(F , F, `) +
∑

F∈N(Frev)

π(F rev, F, `)

)

.

Note that µ(F) = µ(F rev) is trivial, so reversing a fragmentation does not change
its measure. The importance of this definition is shown by Lemma 12.

Lemma 12. Let F1, . . . ,Ft,Ft+1 be a series a fragmentations such that for each
i ∈ [t] the algorithm obtains Fi+1 from Fi by applying a left or a right split at
a position ji violating Property `i in Fi. Then (1) µ(Fi+1) ≥ µ(Fi) for each
i ∈ [t], and (2) if µ(F1) = µ(Ft), then t ≤ kb holds.

Acknowledgement. Supported by the OTKA grant 67651.

References

1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of two
sequences with nested arc annotations. Theor. Comput. Sci., 312:337–358, 2004.

2. G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What Makes the Arc-Preserving
Subsequence Problem Hard?, 2005.

3. P. Damaschke. A remark on the subsequence problem for arc-annotated sequences
with pairwise nested arcs. Inf. Process. Lett., 100(2):64–68, 2006.

4. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

5. P. A. Evans. Algorithms and complexity for annotated sequence analysis. PhD
thesis, University of Victoria, Canada, 1999.

6. P. A. Evans. Finding common subsequences with arcs and pseudoknots. In CPM

’99: Proceedings of the 10th Annual Symposium on Combinatorial Pattern Match-

ing, pages 270–280, London, UK, 1999. Springer-Verlag.
7. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer-Verlag, New York, 2006.
8. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated se-

quences. ACM Trans. Algorithms, 2(1):44–65, 2006.
9. T. Jiang, G. Lin, B. Ma, and K. Zhang. The longest common subsequence problem

for arc-annotated sequences. J. Discrete Algorithms, 2(2):257–270, 2004.
10. G. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence prob-

lem for sequences with nested arc annotations. J. Comput. Syst. Sci., 65(3):465–
480, 2002.

11. B. Ma, L. Wang, and K. Zhang. Computing similarity between rna structures.
Theor. Comput. Sci., 276(1-2):111–132, 2002.

12. D. Marx and I. Schlotter. Cleaning interval graphs. CoRR, abs/1003.1260, 2010.
arXiv:1003.1260 [cs.DS].

12

Appendix

A. The proof of Lemma 6

Let us prove Lemma 6. Suppose that Property ` (1 ≤ ` ≤ 9) does not hold
for some i ∈ [nP] in the marked fragmentation (F ,M), but all the previous
properties hold for each position both in (F ,M) and in (F rev,M rev). Suppose
also that i is left-aligned, i.e. ϕ(i) = ileft. Below we describe the detailed steps
of our algorithm depending on the property that is violated by i.

Property 1: SP [i] = ST [ileft].

If i violates Property 1, then SP [i] 6= ST [ileft]. But since ϕ is a ka-alignment of
(SP , AP ;ST , AT), this contradicts ϕ(i) = ileft. Thus, we can reject.

Property 2: If i is non-trivial, then |A+
P (i)| = |A+

T (ileft)| and |A−
P (i)| =

|A−
T (ileft)|.

By ϕ(i) = ileft and since ϕ is a ka-alignment, the number of arcs in AT starting
(or ending) at ileft must be at least the number of arcs in AP starting (or ending,
resp.) in i. Thus, if |A+

P (i)| > |A+
T (ileft)| or |A−

P (i)| > |A−
T (ileft)|, then we can

reject. If |A+
P (i)| < |A+

T (ileft)| or |A−
P (i)| < |A−

T (ileft)|, then we know that at
least one arc starting or ending in i must be contained in Adel(ϕ), although we
do not know which one. In this case, we provide i as a position incident to a
removable arc of ϕ.

Property 3: If i is non-trivial, then AP (y, i) = AT (yleft, ileft) for any
y < i contained in the same fragment as i.

As ϕ(i) = ileft and y is contained in the same fragment as i, we also get ϕ(y) =
yleft. Thus, AP (y, i) > AT (yleft, ileft) means that we can reject, and AP (y, i) <
AT (yleft, ileft) means that at least one arc (yleft, ileft) is a removable arc.

Property 4: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such

that cend = y is non-trivial, yleft ≤ dend ≤ yright holds. Also, for every
(c, d) ∈ R−

left(i) such that cstart = y is non-trivial, yleft ≤ dstart ≤ yright

holds.

Suppose that i violates Property 4, because (c, d) ∈ R+
left(i) such that cend = y is

non-trivial, but yleft ≤ dend ≤ yright does not hold. We show that we can reject
in this case. As Property 2 holds for i, |A+

P (i)| = |A+
T (ileft)|. As i is left-aligned,

we get ϕ(cend) = ϕ(y) = dend by Lemma 3. By yleft ≤ ϕ(y) ≤ yright we get a
contradiction. Supposing the other case leads to the same result, hence we can
reject in both cases.

Property 5: No arc in X (F,H) for some (F,H) ends at i.

Suppose that Property 5 does not hold for i, so there is an arc (y, i) ∈ X (F,H)
for some y < i. As i is left-aligned, Proposition 4 implies that y is skew, so we
can return y as a skew position.

13

Property 6: i is not conflict-inducing for any (F,H).

Suppose that i violates Property 6 because it is conflict-inducing for some (F,H)
and for some conflicting pair of positions (y1, y2). Let j1 be the minimal position
for which there is an arc (y1, j1) ∈ R(F,H) 6= ∅, and let j2 be the minimal
position for which there is an arc (y2, j2)∩L(F,H) 6= ∅. Since i ≥ max{j1, j2} is
in the same fragment as j1 and j2 and i is left-aligned, we know that both j1 and
j2 are left-aligned as well. By Proposition 4, this implies that y1 is right-aligned
and y2 is left-aligned. But since y1 ≤ y2 (because (y1, y2) is conflicting), this is
a contradiction, so we can reject.

Property 7: i is not LR-critical for any (F,H).

Suppose that i is LR-critical for some (F,H). In this case, Rmin(F,H) = yR is a
position contained in F . Since i is left-aligned, the R-critical position for (F,H)
is also left-aligned, hence Proposition 4 yields that yR is right-aligned. Let p1

be the first position of [nP] contained in F , and let t1 = (p1)left. We claim that
one of the bases of ST in the block [max(t1, y

R
left − σ(F) + 1), yR

right − 1] must
be a removable base. If this is true, then we can return the set of these at most
2σ(F) − 1 ≤ 2kb − 1 bases.

First, if yR < p1 + σ(F), we get max(t1, y
R

left − σ(F) + 1) = t1 by yR
left −

σ(F) < (p1)left = t1. Using ϕ(p1) ≥ t1 and ϕ(yR) = yR
right, the pigeonhole

principle yields that some position in [t1, y
R

right−1] must be contained in Sdel(ϕ),
which proves our claim.

Second, suppose yR ≥ p1 + σ(F). In this case, there exists a position j for
which jright = yR

left. By Properties 2 and 4 for yR, we know that there is an arc
in A+

T (yR
left) that ends in the fragment H . Using Properties 2 and 4 again for

jrev in the reversed instance, we know that there must be an arc c in A+
P (j) that

ends in the fragment H . Clearly, c ∈ L(F,H) ∪ R(F,H) ∪ X (F,H) must hold
by Property 4 for j. Observe that c /∈ X (F,H), as Property 5 holds for every
position in [nP]. Also, c /∈ R(F,H) by the definition of yR = Rmin(F,H). Thus,
we know that c ∈ L(F,H), implying yL = Lmax(F,H) ≥ j as well. As Property
6 holds for each position, we also have yL < yR.

Since i is LR-critical, at least one arc of L(F,H) starting at yL must end
at a position i′ not greater than i. Clearly, as i is left-aligned we get that i′

is left-aligned as well. By Proposition 4, this means that yL is left-aligned too.
Now, by ϕ(yL) = yL

left and ϕ(yR) = yR
right, we obtain that some position in

[yL
left+1, yR

right−1] must be contained in Sdel(ϕ). Using max(t1, y
R

left−σ(F)+

1) = yR
left −σ(F) + 1 = jright − σ(F) + 1 = jleft + 1 ≤ yL

left +1, this proves our
claim.

Property 8: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such that

cend = y is non-trivial, dend = yleft holds. Also, for every (c, d) ∈ R−
left(i)

such that cstart = y is non-trivial, dstart = yleft holds.

If Property 8 does not hold for i, then by Properties 2 and 4 either A−
P (i) or

A+
P (i) must contain an arc in R(F,H)∪X (F,H) for some (F,H). But this means

that Property 5 or 7 is violated, a contradiction. Thus, we can correctly reject.

14

Property 9: If i is non-trivial, then for each marked position m ∈ M ,
AP (i,m) = AT (ileft,mleft) holds ifm > i, and AP (m, i) = AT (mleft, ileft)
holds if m < i.

Suppose that i violates Property 9, because AP (i,m) 6= AT (ileft,mleft) for some
m > i. (The case m < i is analogous.) Since m is trivial, ϕ(m) = mleft. Consid-
ering ϕ(i) = ileft, we get that if AP (i,m) > AT (ileft,mleft), implies that we can
reject the instance. On the other hand, if AP (i,m) < AT (ileft,mleft) then we
can output a removable arc (ileft,mleft).

B. Proving the correctness of our algorithm

Here we present all remaining proofs showing that our algorithm is correct.

Proof (of Lemma 3). We only show (1), as all the other statements are analogous.
To this end, recall that as i is left-aligned, ϕ(i) = ileft. Note that (c, d) ∈ R+

left(i)
directly implies cstart = i and dstart = ileft, yielding ϕ(cstart) = dstart. By
|A+

P (i)| = |A+
T (ileft)| we know that no arc in A+

T (ileft) can be deleted, meaning
that ϕ must map the right endpoints of the arcs A+

P (i) to the right endpoints
of the arcs in A+

T (ileft) bijectively. Using that ϕ is an alignment of (SP ;ST), it
must indeed map cend to dend, by the definition of R+

left(i). ut

Proof (of Lemma 9). Observe that the conditions of Lemma 8 hold for every
proper marked fragmentation obtained by the algorithm, in particular for F .

First, suppose that the conditions of (i) hold, and suppose a < b (the case
a > b is analogous). As a is a trivial position not marked in (F ,M), claim
(1) of Lemma 8 implies |A+

P (a)| = |A+
T (aright)|. Let c be an arc (a, b) and let

(c, d) ∈ R+
right(a). As a is trivial, it is right-aligned as well, so we obtain ϕ(b) =

ϕ(cend) = dend by Lemma 3. Using claim (2) of Lemma 8 for a, we also know
dend = bright. This implies ϕ(b) = bright, showing that b is indeed right-aligned.

Assume that the conditions of (ii) hold for a and b. As both of them are
left-aligned, we get that AP (a, b) must equal the number of arcs connecting aleft

and bleft in AT \Adel(ϕ). Hence, if AP (a, b) > AT (aleft, bleft) then we reject, and
if AP (a, b) > AT (aleft, bleft) then we output a removable arc (aleft, bleft). ut

To prove Lemmas 7 and 8, we start with the observations of Lemma 13,
stating that the properties ensured during some step will not be violated later
on. This has important consequences regarding the correctness of the algorithm
(which are used in the proofs of Lemmas 7 and 8), but in addition, it provides
a convenient tool that can be used for bounding the running time.

Lemma 13. Let F ′ be a fragmentation obtained from F by dividing some F ∈ F
into fragments F1 and F2 with a right split (with F1 preceding F2). Let 1 ≤ ` ≤ 8.
(1) Suppose i is not contained in F2 and ` 6= 7. If Property ` holds for i in F
(or in F rev), then Property ` holds for i in F ′ (or in F ′rev) as well.
(2) Suppose π(F , H, `) = 1 for a fragment H. If H 6= F then π(F ′, H, `) = 1,
and if H = F then π(F ′, F1, `) = 1.

15

(3) Suppose π(F rev, Hrev, `) = 1 for a fragment H ∈ F . If H 6= F then
π(F ′rev, Hrev, `) = 1, and if H = F then π(F ′rev, F rev

1 , `) = 1.
(4) If π(F rev, F rev, `) = 1, then π(F ′rev, F rev

2 , `) = π(F ′, F2, `) = 1.
(5) If (F ,M) is a proper marked fragmentation, then so is (F ′,M).

Proof. To see (1), we need some basic observations. First, ileft is the same ac-
cording to F ′ as it is in F for each i not contained in F2, and iright is the same
according to F ′ as it is in F for each i ∈ [nP]. Second, the set of non-trivial
positions in F ′ is a subset of the non-trivial positions in F . These conditions
directly imply (1) for each case where ` /∈ {5, 6, 7}, using only the definitions of
these properties.

Observe that if an arc in AP is contained in L(H ′
1, H

′
2), for some H ′

1 and H ′
2

in the fragmentation F ′, then it is contained in L(H1, H2) for some H1 and H2 in
F as well. The analogous fact holds also for the sets R(H ′

1, H
′
2) and X (H ′

1, H
′
2).

Thus, if i violates Property 5 or 6 in F ′, then i also violates it in F , proving (1).

Clearly, (2) and (3) follow directly from (1) in the cases where ` 6= 7. For
the case ` = 7, observe that π(F , H, 7) = 1 implies R(H0, H) = ∅ for every H0

preceding H . Hence, the requirements of statement (2) follow immediately. The
analogous claim in the reversed instance shows that (3) also holds for ` = 7.

To prove (4), let i be contained in F2. Note that Properties 2, 3, . . . , 8 vac-
uously hold for i in F ′, because F2 is trivial. Using that ileft = iright and the
definition of Property 1, we get that if it holds for irev in F rev, then it holds for
i in F ′ as well. Finally, observe that if Property ` holds for some trivial position
i in F ′, then it trivially holds for irev in F ′rev, proving (4).

To prove (5), assume that (F ,M) is proper. By (2), (3), and (4), we immedi-
ately obtain that (F ′,M) is 8-proper, so we only have to verify Property 9. But
since the set M of marked trivial positions is the same in both fragmentations,
and ileft is the same in (F ′,M) as in (F ,M) for each non-trivial or marked trivial
position i of F ′, Property 9 also remains true for each position. ut

Observe that (5) of Lemma 13 directly proves Lemma 7. Below we give a
proof of Lemma 8 as well.

Proof (of Lemma 8). First, we show that the statements of the lemma hold
for (F ,M). To see this, recall that each trivial position in (F ,M) is marked,
therefore statements (1) and (2) for (F ,M) are equivalent to Properties 2 and 8
for (F rev,M rev), respectively. Since (F ,M) is 8-proper, these properties indeed
hold for each position in (F rev,M rev).

To see that these statements remain true after applying a sequence of right
splits to (F ,M), we need two simple observations. First, notice that the value of
iright for a position i ∈ [nP] does not change in a right split. Second, the set of
positions that are not marked does not change either, since the performed right
splits do not modify the set M of marked positions. Thus, statements (1) and
(2) for some position i have exactly the same meaning in (F ′,M) as in (F ,M).
This proves the lemma. ut

16

C. Proving the running time of the algorithm

As a straightforward implication of the claims (1), (2), and (3) of Lemma 13, we
obtain the following observation.

Proposition 14. Let F ′ be a fragmentation obtained from F by performing a
right split. Then µ(F ′) ≥ µ(F).

This will be used in the proof of Lemma 12. For technical reasons, we slightly
re-formulate this lemma as follows.

Lemma 15. Let F1, . . . ,Ft,Ft+1 be a series a fragmentations such that for each
i ∈ [t] the algorithm obtains Fi+1 from Fi by applying a left or a right split
at a position ji violating Property `i in Fi. Let Hi denote the fragment of Fi

containing ji.
(1) µ(Fi+1) ≥ µ(Fi) for each i ∈ [t]. If µ(Fi+1) = µ(Fi), then either `i = 2 and
the algorithm applied a left split to obtain Fi+1, or `i = 7.
(2) If µ(F1) = µ(Ft+1) and `i = 7 for every i ∈ [t], then Hi contains every
position in Hi+1 for each i ∈ [t]. Also, t ≤ kb holds.

Proof. First, notice that a left split is the same as a right split in the reverse
instance. Also, the measure of a fragmentation is the same as the measure of its
reversed version. By Proposition 14, this implies µ(Fi+1) ≥ µ(Fi) for each i.

To prove the rest of claim (1), suppose that µ(Fi+1) = µ(Fi) and Fi+1

is obtained from Fi by a right split at ji. Let H ′
i be the non-trivial fragment

obtained from Hi in this step. Now, by the choice of ji, Property `i is violated by
ji in Fi, but is not violated by any position j′ preceding ji in Fi. In all cases where
`i 6= 7, claim (1) of Lemma 13 implies that the positions preceding ji cannot
violate Property `i in Fi+1, yielding π(Fi, Hi, `i) = 0 but π(Fi, H

′
i, `i) = 1.

Considering claims (2) and (3) of Lemma 13, (1) follows.
To prove (2), suppose that Hi is a counterexample for (2), meaning that Hi

does not contain the positions of Hi+1. Since Fi+1 is obtained from Fi by a right
split, this can only happen if Hi+1 is a non-trivial fragment of Fi different from
Hi. Recall that a fragment B contains some position violating Property 7, if and
only if R(A,B) 6= ∅ holds for some fragment A in the fragmentation. Hence,
π(Fi+1, Hi+1, 7) = 0 implies π(Fi, Hi+1, 7) = 0.

Since the algorithm always chooses the first position violating some property
to branch on, ji must be the smallest position that is LR-critical for some pair of
fragments in Fi. Therefore, Hi must precede Hi+1. But now, the choice of ji+1

indicates π(Fi+1, H
′
i, 7) = 1, where H ′

i is the non-trivial fragment of Fi+1 ob-
tained by splitting Hi at ji in Fi. Together with π(Fi, Hi, 7) = 0 and statements
(2) and (3) of Lemma 13, this shows µ(Fi+1) > µ(Fi), a contradiction.

It remains to show t ≤ kb. By the claim proven above, H1 ∈ F1 contains
every ji. Let P denote the set of non-trivial fragments in F1 preceding H . By
the construction of the fragmentations Fi, each fragment in P is a non-trivial
fragment of Fi as well, preceding Hi. We denote by PR,i those fragments F in
P for which R(F,Hi) 6= ∅ holds in Fi. Since ji is LR-critical for some pair of
fragments in Fi, we get PR,i 6= ∅ for any i ∈ [t]. Note also PR,i+1 ⊆ PR,i.

17

For some F ∈ PR,i, then we define di(F) as follows. If L(F,Hi) = ∅ in Fi,
then let yL

i be the first position contained in F minus one, otherwise let yL
i

have the value of Lmax(F,Hi) in Fi. Also, let yR
i be the value of Rmin(F,Hi) in

Fi. We set di(F) = yR
i − yL

i . Let A ∈ PR,i+1 ∩ PR,i be a non-trivial fragment
such that ji is LR-critical for (A,Hi). We show di+1(A) > di(A). First note
that neither Lmax(A,Hi+1) > Lmax(A,Hi) nor Rmin(A,Hi+1) < Rmin(A,Hi) is
possible, since L(A,Hi+1) ⊆ L(A,Hi) and R(A,Hi+1) ⊆ R(A,Hi) always hold.
This implies yL

i+1 ≤ yL
i and yR

i+1 ≥ yR
i .

Clearly, ji is either L-critical or R-critical for (A,Hi). First, let us assume
that ji is L-critical for (A,Hi). Observe that the definition of L-criticality implies
that for any arc c starting at Lmax(A,Hi) and contained in L(A,Hi) in Fi, we
know cend ≥ ji. Since Fi+1 is obtained by performing the right split at ji, every
position of Hi+1 precedes ji, implying that such an arc c cannot be contained in
L(A,Hi+1) in Fi+1. Thus, Lmax(A,Hi+1) 6= Lmax(A,Hi), from which yL

i+1 < yL
i

follows. Therefore, we have di+1(A) > di(A).
Second, let us assume that ji is R-critical for (A,Hi). By the definition of

R-criticality, for any arc c starting at Rmin(A,Hi) and contained in R(A,Hi) in
Fi, we know cend ≥ ji. Again, we know that every position of Hi+1 precedes ji.
From this, we have that c cannot be contained in R(A,Hi+1) in Fi+1, implying
yR

i+1 > yR
i . Therefore, we have di+1(A) > di(A) in this case as well.

Now, we claim that 1 ≤ di(A) ≤ σ(A) for any A ∈ PR,i. First, it is clear
that for any ` < 7, Property ` holds for each position both in Fi and in the
reversed fragmentation F rev

i , as otherwise the algorithm would branch on a po-
sition violating Property `. Thus, Lmax(A,Hi) ≥ Rmin(A,Hi) cannot happen,
as this would mean that there is a conflict-inducing position in Hi for (A,Hi),
violating Property 6. This directly implies 1 ≤ di(A).

On the other hand, assume di(A) = yR
i − yL

i > σ(A). This implies that
h = yR

i − σ(A) is contained in A, but no arc of L(A,Hi) ∪R(A,Hi) starts in h.
However, by Properties 2 and 4 for yR

i , we know that some arc in A+
T ((yR

i)left) =
A+

T (hright) ends in Hi. Using these properties for hrev in the reversed instance, we
obtain that some arc c in A+

P (h) must also end in Hi. By Property 4 for h, c must
be contained in one of the sets L(A,Hi), R(A,Hi), X (A,Hi). But yL

i < h < yR
i ,

so we obtain c ∈ X (A,Hi). Therefore, some position in Hi violates Property 5,
a contradiction. This proves 1 ≤ di(A) ≤ σ(A).

Now, observe that for any i ∈ [t], ji is LR-critical for some (A,Hi) with
A ∈ PR,i. If A ∈ PR,i+1 as well, then di+1(A) > di(A). By our bounds on di(A),
this yields that there can be at most σ(A) indices i where ji is LR-critical for
(A,Hi). (Here we also used that di(A) cannot decrease.) This clearly implies
t ≤

∑

F∈P σ(F) = δ(H1). Finally, δ(H1) ≤ kb proves (3). ut

Proof (of Lemma 11). Let us briefly overview the steps of our algorithm. We
start from an initial marked fragmentation MF0. While the marked fragmenta-
tion is not proper, we choose the smallest ` and the smallest position i violating
Property ` (maybe in the reversed instance), and branch into a bounded number
of directions. In these branches, we either modify the actual marked fragmenta-
tion, output a removable base, or reject. We proceed with such branchings

18

iteratively until we either produce an output, or we obtain a proper fragmen-
tation. After this, we do not perform any more branchings. Instead, we apply
Lemma 9 repeatedly. In each such step, we either reject, output a removable

arc, or perform a right split. If we reach a state where Lemma 9 does not apply,
then we output an arc-preserving alignment using Lemma 10.

Let us bound the size of the search tree created by the algorithm. First,
observe that those branchings where we guess ϕ(i) for some position i result in
at most kb + 1 directions. Such branchings will be called standard branchings.
Recall that additional branchings only occur when i turns out to be left aligned,
and Lemma 6 yields Cases D or E. Branchings caused by Case D can occur at
most kb − 1 times, and each such branching results in at most kb − 1 directions
Case E produces at most 2kb−1 branches, each yielding an output immediately,
so this can only happen once.

We are going to show that the number of standard branchings is at most
g(ka, kb) = 4k3

b + 17k2
b + 2kbka = O(k3

b + kbka). This implies that the height
of the search tree is at most f(ka, kb) + kb, and it has at most f(ka, kb) =

(kb + 1)g(ka,kb)(kb − 1)kb−1(2kb − 1) = k
O(k3

b
+kbka)

b leaves. To verify that each
branch can be performed in linear time, it suffices to show that we spend only
O(|(ST , AT)|) time in each node. For this, the only non-trivial task is to show
that the repeated application of Lemma 9 can be implemented in linear time.
But since Lemma 9 cannot be applied more than twice for an arc (a, b) ∈ AP ,
this iteration can indeed be implemented in O(|(ST , AT)|) time.

It remains to bound the number of standard branchings performed in a row.
Let MF0,MF1, . . . ,MFt be the sequence of marked fragmentations produced
in this process. (We interpret these as marked fragmentations for ϕ and not for
ϕrev.) We are going to show t ≤ g(ka, kb). We say that two marked fragmen-
tations MFi and MFj are in the same segment, if they have the same number
of non-trivial fragments. By Lemma 2, this divides the sequence MF0, . . . ,MFt

into at most kb segments. Let S = MFt1 ,MFt1+1, . . . ,MFt2 be such a segment.
Clearly, either MFh (t1 < h ≤ t2) is obtained by a left or a right split from
MFh−1, or MF rev

h (t1 < h ≤ t2) is obtained by a left or a right split from
MF rev

h−1. Let MFp be the last marked fragmentation in S that is not 8-proper.

Let the measure of a marked fragmentation be the measure of its fragmen-
tation. Using Lemma 12, we know that µ(MFh) < µ(MFh+1) must hold for
any t1 ≤ h < p, except for the following two possibilities. First, µ(MFh) =
µ(MFh+1) can happen if MFh+1 is obtained fromMFh by performing a left split
at a position violating Property 2 (Case B of Lemma 6). Recall that this can hap-
pen at most 2ka times. Second, µ(MFh) = µ(MFh+1) can happen if MFh+1 is
obtained fromMFh by performing a right split at a position violating Property 7.
By (2) of Lemma 12, this can happen for at most kb consecutive branchings. Tak-
ing into account that the number of non-trivial fragments cannot exceed kb, but
branchings can also happen in the reversed instance, Lemma 12 also implies that
there can be at most 2kb continuous sequences of such branchings. This shows
that µ(MFh) = µ(MFh+1) can happen altogether for at most 2k2

b + 2ka indices

19

h with t1 ≤ h < p. Using again Proposition 2 and that MFp is not 8-proper, we
get µ(MFp) ≤ 16kb − 1. Hence, we obtain that p− t1 ≤ 2k2

b + 16kb + 2ka − 1.
Now, we consider the marked fragmentations MFp+1,MFp+2, . . . , MFt2 (if

existent) obtained by the algorithm while trying to ensure Property 9. Observe
that MFh+1 (p+1 ≤ h < t2) is obtained by applying a right split at j, so by the
choice of j, Property 9 holds for each position j′ ≤ j in any MFh′ where h′ ≥ h.
Note that this strongly relies on the fact that the set of marked positions does
not increase in these right splits, since we do not mark the new trivial positions.
This, together with Proposition 2 implies that we can perform at most kb such
branchings, yielding t2 ≤ p+1+kb ≤ t1+4k2

b +17kb+2ka. Altogether, this implies
that each segment can contain at most 4k2

b + 17kb + 2ka standard branchings,
which proves our claimed bound on the size of the search tree. ut

20

