
Stable Matching with Couples
Theory and Practice

Péter Biró, Robert W. Irving and Ildikó Schlotter

School of Computing Science Technical Report

University of Glasgow TR-2011-324

Glasgow G12 8QQ February 2011

UK

Stable matching with couples – theory and

practice

Péter Biró1,∗,†, Robert W. Irving2,∗ and Ildikó Schlotter3,‡

1 Institute of Economics, Hungarian Academy of Sciences, H-1112, Budaörsi út 45, Budapest, Hungary

Email: birop@econ.core.hu.

2 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

Email: rob.irving@glasgow.ac.uk.

3 Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Email: ildi@cs.bme.hu.

Abstract

In practical applications, algorithms for the classical version of the Hospitals Res-
idents problem (the many-one version of the Stable Marriage problem) may have to
be extended to accommodate the needs of couples who wish to be allocated to (geo-
graphically) compatible places. Such an extension has been in operation in the NRMP
matching scheme in the US for a number of years. In this setting, a stable matching
need not exist, and it is an NP-complete problem to decide if one does. However,
the only previous empirical study in this context (focused on the NRMP algorithm),
together with information from NRMP, suggest that, in practice, stable matchings do
exist and that an appropriate heuristic can be used to find such a matching.

The study presented here was motivated by the recent decision to accommodate
couples in the Scottish Foundation Allocation Scheme (SFAS), the Scottish equivalent
of the NRMP. Here, the problem is a special case, since hospital preferences are derived
from a ‘master list’ of resident scores, but we show that the existence problem remains
NP-complete in this case. We describe the algorithm used in SFAS, and contrast it
with a version of the algorithm that forms the basis of the NRMP approach. We
also propose a third simpler algorithm based on satisfying blocking pairs, and an
FPT algorithm when the number of couples is viewed as a parameter. We present an
empirical study of the performance of a number of variants of these algorithms using
a range of data sets. The results indicate that, not surprisingly, increasing the ratio of
couples to single applicants typically makes it harder to find a stable matching (and,
by inference, less likely that a stable matching exists). However, the likelihood of
finding a stable matching is very high for realistic values of this ratio, and especially
so for particular variants of the algorithms.

1 Introduction

Background
The Hospitals Residents problem (HR) is a well-known extension of the classical Stable
Marriage problem, introduced (under the alternative name of the College Admissions

∗Supported by EPSRC grant EP/E011993/1.
†Supported by OTKA grant K69027 and by the Hungarian Academy of Sciences under its Momemtum

Programme (LD-004/2010).
‡Supported by OTKA grant K67651.

1

problem) in the seminal paper of Gale and Shapley [2]. The terminology arises from
the important application to matching schemes that assign applicants to positions in the
medical domain. The best known of these schemes is the National Resident Matching
Program [11] in the U.S., but there are many others, including the Scottish Foundation
Allocation Scheme (SFAS) [18]. Our involvement with this latter scheme has been the
main motivation for the study reported in this paper. It is well known that an instance of
HR can be solved, i.e., a so-called stable matching can be found, in polynomial time, but
a number of variants of the basic problem are more challenging. This includes the case
where applicants may form couples, who submit joint, rather than individual, preferences.
The Hospitals Residents problem with Couples (HRC) has been the subject of various
studies, primarily motivated by developments in NRMP.

We consider a variant of HRC motivated by the decision to accommodate couples in
SFAS with effect from 2009. This variant differs in some respects from those that have
been studied in the literature, and from the version that is currently part of the NRMP –
essentially it can be seen as a special case of these. So we first specify the problem, which
we designate as Special HRC (or SHRC).

Statement of the problem
An instance of SHRC comprises a set of applicants (or residents), a set of programmes (or
hospitals), and a set of couples. Each programme p offers a fixed number c(p) of places,
the capacity of the programme. Each couple consists of a pair of distinct applicants, and
no applicant can be in more than one couple. An applicant is either linked or single
depending on whether or not he/she is a member of a couple. If applicants a and b form
a couple then each of a and b is the partner of the other.

Each applicant, single or linked, has a strictly ordered preference list containing a
subset of the programmes. Applicant a is said to prefer programme p to programme q if
p precedes q in a’s preference list. A programme that appears on the preference list of
an applicant is acceptable to that applicant. Each applicant a has a numerical score s(a).
Applicant a is superior to applicant b, and b is inferior to a, if s(a) > s(b). Two applicants
with the same score are said to be of equal rank. The preference list of a programme is
derived directly from the applicant scores, effectively giving a master preference list of
applicants [4]. This contrasts with the classical versions of HR (and the NRMP context)
in which each hospital has a preference list that is independent of the others. In practice,
many applicants may have the same score, leading to the presence of ties in the master
list and in the programmes’ preference lists derived from it, but we primarily consider the
case where all of the scores are distinct (which can be realised by breaking all of the ties
in some arbitrary way).

Each pair of programmes is designated as either compatible or not (primarily reflecting
their geographical locations). It is assumed that a programme is compatible with itself.
Each couple (a, b) has a joint preference list that contains precisely the compatible pairs
of programmes (x, y) where x is acceptable to a and y to b. The precise order of the pairs
on this joint preference list is not crucial for our purposes, although we do assume that
couples’ preferences have the so-called responsive property, i.e., if a prefers p to q, and both
p and q are compatible with r, then (a, b) prefers (p, r) to (q, r) in all cases. In fact, in the
SFAS scheme, a couple’s joint preference list is constructed in a particular systematic and
transparent way from the two individual preference lists1. A compatible pair that appears
on the joint preference list of couple (a, b) is said to be acceptable to that couple. A couple

1Compatible pair (p, q) precedes compatible pair (r, s) on couple (a, b)’s preference list if (i)
ranka(p) + rankb(q) < ranka(r) + rankb(s), or (ii) ranka(p) + rankb(q) = ranka(r) + rankb(s) and
max(ranka(p), rankb(q)) < max(ranka(r), rankb(s)), or (iii) ranka(p) = rankb(s), ranka(r) = rankb(q)
and s(a) > s(b). Here, rankx(y) is the ranking of programme y on the preference list of applicant x.

2

(a, b) prefers a programme pair (p, q) to a programme pair (r, s) if (p, q) precedes (r, s) on
(a, b)’s joint preference list2. Again this represents a restriction of the general version of
the problem, in which each couple has complete freedom to specify their own preference
list of programme pairs. We comment further on the relationship between SHRC and the
general HRC, and the implications of our work for the more general problem, at the end
of Section 8.

A matching M is a set of applicant-programme pairs satisfying the following three
conditions:

• each applicant a appears in at most one pair, and if 〈a, p〉 is a pair in M then p is
acceptable to a;

• if (a, b) is a couple, then either 〈a, p〉 and 〈b, q〉 are in M , where (p, q) is acceptable
to (a, b), or there is no pair in M containing a or b;

• the number of pairs in M containing the programme p is at most c(p).

In a matching M , an applicant a is matched if there is a pair 〈a, p〉 in M for some
programme p, and is otherwise unmatched. A programme p is full if there are exactly c(p)
pairs of the form 〈a, p〉 in M , and is otherwise undersubscribed. If applicant a is matched
in M , we denote by M(a) the programme p such that 〈a, p〉 is in M , i.e., a’s assigned
programme in M . If a is unmatched in M then M(a) is null. Likewise, for a programme
p, we denote by M(p) the set of applicants a such that 〈a, p〉 is in M , i.e., p’s assignees in
M .

Stability
The stability definition for this context is somewhat more complicated, and perhaps more
contentious, than in the case where there are no couples. Crucially, in formulating such a
definition, most previous authors appear to have overlooked the additional complication
that arises because of the possibility that both members of the couple may be assigned to
the same programme, or, as in [5], they have sidestepped the issue by forbidding couples
from being assigned to the same programme. Only the recent papers of McDermid and
Manlove [10] and Marx and Schlotter [9] have addressed this issue explicitly. We provide
some detailed justification for our definition of stability, which differs slightly from that
given in [10] and [9], but which we believe is appropriate for our context. We first give
our definition, and then a detailed rationale for this choice.

A matching M is stable if it is not blocked by a pair 〈a, p〉 consisting of a single applicant
a and a programme p, or by a pair 〈(a, b), (p, q)〉 consisting of a couple (a, b) and distinct
programmes p and q, or by a pair 〈(a, b), p〉 consisting of a couple (a, b) and a programme
p.

A single applicant a and a programme p block M if

(a) a is unmatched, or prefers p to M(a); and

(b) p is undersubscribed, or a is superior to a member of M(p).

A couple (a, b) and a compatible pair of distinct programmes p and q block M if

(c) a and b are unmatched, or (a, b) prefers (p, q) to (M(a),M(b)); and

(d) p is undersubscribed, or p = M(a), or a is superior to a member of M(p); and

2Note that the SFAS scheme does not permit one member of a couple to be allocated to an acceptable
programme and the other to be unallocated. However, in the algorithms that we study, this restriction
can easily be relaxed by introducing a dummy programme with infinite capacity.

3

(e) q is undersubscribed, or q = M(b), or b is superior to a member of M(q).

These first two cases are intuitive, and coincide with the corresponding cases in the
definitions given by earlier authors.

However the third case is less immediate. We say that a couple (a, b) and a programme
p, acceptable to both a and b, block M if

(f) a and b are unmatched, or (a, b) prefers (p, p) to (M(a),M(b)); and

(g) either

– (i) p has at least two free places in M ; or

– (ii) p has one free place in M , and p ∈ {M(a),M(b)} or both a and b are superior
to a member of M(p); or

– (iii) p is full in M and

1. p ∈ {M(a),M(b)} and both a and b are superior to a member of M(p); or

2. both a and b are superior to a member x of M(p), and x is a linked applicant
whose partner is also in M(p); or

3. both a and b are superior to at least two members of M(p).

Rationale
The rationale for our definition is in terms of fairness to the applicants, and ease of
justification, based on our practical experience of the SFAS matching scheme.

Once the outcome of the matching process is known, suppose that a single applicant a
queries why he was not assigned to a particular preferred programme p. Then we would
like the appropriate response to be that programme p filled all of its places with applicants
who are at least as good as a, so there is no applicant whom p could reject in order to
accommodate a. This notion of stability corresponds exactly to the one that applies in
the classical case where there are no couples.

In order to be able to provide an analogous guarantee to couples, a key requirement is
to identify the circumstances in which a couple should take precedence over an applicant,
and vice versa. We say that a couple c = (a, b) is superior to an applicant x, and x is
inferior to c, if both a and b are superior to x. An applicant x is superior to a couple
c = (a, b), and c is inferior to x, if x is superior to at least one of a and b. On the face
of it this definition may seem surprising, since it amounts to awarding a score to a couple
on the basis of the weaker member. However, we can justify this in two different ways.

Firstly, consider a programme p with two places and three applicants a, b and x, where
a and b form a couple c, x has a score intermediate between those of a and b, and all three
of these applicants have p as their first choice programme. If the two places were to be
offered to a and b then it would be impossible to make the above response to x were he
to query why he was not assigned to p.

Secondly, if a and b were single applicants rather than a couple, then a and x would
be assigned to p’s two places. If the places were given to a and b, then applicant b would
be seen to have gained an advantage by being part of a couple. Single applicants would
have some justifiable cause for complaint if, in certain circumstances, the matching scheme
were to bestow an advantage on one or more linked applicants – indeed applicants might
be tempted to act strategically by forming “artificial” couples if this were the case.

Our precedence rule involving a couple and an applicant explains why in parts (ii) and
(iii) of stability condition (g) we require that both members of a couple should satisfy a
particular condition.

4

Next we extend the notions of superiority and inferiority to couples, as follows. Suppose
for simplicity that a couple is written so that the first member is superior to the second
member or of equal rank. Then couple (a, b) is superior to couple (a′, b′), and (a′, b′)
inferior to (a, b), if (i) b is superior to b′, or (ii) b and b′ are of equal rank, and a is
superior to a′. Again, we are essentially awarding a score to a couple on the basis of the
weaker member. However, we argue that this decision is a necessary consequence of the
way we defined precedence between a couple and a single applicant. We now explain.

If there are two couples c = (a, b) and d = (a′, b′) and all of the individuals have unique
scores, then, up to symmetry, there are three ways in which the members of the couples
may be ranked, namely

1. a b a′ b′

2. a a′ b b′

3. a′ a b b′

In the first two cases, there seems no doubt that we should regard couple c as being
superior to couple d, but the third case seems much less clear cut. However, suppose there
is a programme p with two places, and that all four of these applicants, and an additional
single applicant x, rank p first among their preferences. Suppose further that the rank
ordering of the five applicants is:

a′ a b x b′.

Then it follows that p prefers couple c to x, and, as a consequence of our earlier
decision, prefers x to couple d. If preferences are to be transitive, which seems a natural
and desirable property, then p must prefer c to d. In the given scenario, the only stable
possibility is that p’s two places are filled by a and b.

We note that this interpretation of precedence between couples is reflected in part (ii)
of stability condition (g).

In addition to the above form of response to a query from a dissatisfied single appli-
cant, we can now formulate analogous responses to queries from couples. Suppose that a
couple (a, b) question why they were not assigned to a preferred compatible pair of distinct
programmes (p, q). Then the appropriate response would be that either p filled all of its
places with applicants who are at least as good as a, or q filled all of its places with appli-
cants who are at least as good as b. So there are no two applicants who can be rejected,
one by p and one by q, in order to accommodate a and b.

Finally, suppose that a couple c = (a, b) question why they were not both assigned to
a programme p. Then the appropriate response depends on whether one of them, say a,
or neither of them, is actually assigned to p. In the first case, the response would be that
p is full and has no assignee who is inferior to both a and b. In the second case, it would
be either that p has one free place but no assignee who is inferior to both a and b, or that
p is full but has no assigned couple inferior to c and no two assignees who are both inferior
to a and b.

Example 1, essentially the same as that given by Roth [16] and accredited by him to
Klaus and Klijn, illustrates that, as in other variants of the problem, an instance of SHRC
need not admit a stable matching.

Example 1. There are three applicants, comprising one single applicant a2 and one couple
(a1, a3), and two programmes, each with just one place. The applicants are numbered in decreasing
order of score (a1 highest, a3 lowest), and the preference lists are as shown in Figure 1.

There are three non-empty matchings for this instance, M1 = {〈a1, p1〉 , 〈a3, p2〉}, M2 =

{〈a2, p2〉} and M3 = {〈a2, p1〉}. It may readily be verified that M1 is blocked by 〈a2, p2〉, M2

by 〈a2, p1〉, and M3 by 〈(a1, a3), (p1, p2)〉.

5

a1 : p1

a2 : p1 p2

a3 : p2

(a1, a3) : (p1, p2)

Figure 1: An SHRC instance with no stable matching

An instance of SHRC that admits a stable matching is said to be solvable, and is
otherwise unsolvable.

Example 2 illustrates an additional possibility that does not seem to have been pointed
out before, namely that, even in a case where a stable matching does exist, some couple
might wish to exchange their allocation, but doing so would violate stability.

Example 2. There are again three applicants, comprising one single applicant a2 and one couple
(a1, a3), and two programmes, each with just one place. Again the applicants are numbered in
decreasing order of score (a1 highest, a3 lowest). The preference lists are as shown in Figure 2.

a1 : p2 p1

a2 : p1

a3 : p1 p2

(a1, a3) : (p2, p1) (p1, p2)

Figure 2: An SHRC instance with a stable matching that is not exchange-stable for a
couple

The only stable matching for this instance is M = {〈a1, p1〉 , 〈a3, p2〉} However, both members

of the couple would prefer to exchange their positions.

Related work
Roth [13] first observed that a general instance of HRC need not admit a stable matching
and Ronn [12] showed that the problem of deciding whether it does is NP-complete, even
if all of the programme capacities are equal to one and there are no single applicants. Of
course, in the general HRC problem, each programme has its own individual preference list,
and the notion of stability is defined in terms of these preferences, rather than in terms of
the global ‘superiority’ concept. As observed above, an instance of SHRC need not admit
a stable matching, but it appears that Ronn’s original proof of NP-completeness for the
general problem cannot be adapted, at least in a straightforward way, to this special case.
Aldershof and Carducci [1] show that, in the HRC context, there is no concept analogous
to the resident and hospital optimal stable matchings that are known to exist for any HR
instance, and also that stable matchings, when they do exist, can have different sizes.

Roth and Peranson [14] describe the couples algorithm implemented by NRMP, and
report on empirical studies, using real NRMP data, undertaken to investigate the effect
of varying certain aspects of the implementation. A variant of that algorithm, which is
actually very similar to Algorithm C of Section 3, is outlined by Klaus et al. [6], who
showed, among other things, that, even in cases where a stable matching exists, there may
be no possible execution of the algorithm that finds it.

Klaus and Klijn [5] study a restricted version of HRC where the couples’ preferences are
‘weakly responsive’; this means that they are derived in a logical way from their individual
preferences, much as in our context, but crucially there are no incompatible programmes
(see the formal definition in [7]). In this context they show that a stable matching is
bound to exist, but Kojima et al. [8] observe that such an assumption would be unrealistic

6

in practice. McDermid and Manlove [10] consider a version of HRC in which couples’
preferences are derived in a similarly consistent way from individual preferences, but where
pairs of programmes may be incompatible, and show that the problem of deciding whether
a stable matching exists is NP-complete in this case, even when applicants’ preference lists
have length at most three and programme capacities are at most two, and also even in the
very special case when couples are required to be matched to the same hospital. On the
other hand, they give a linear-time algorithm that determines, in this context, whether
there is a matching that is stable in the classical (Gale-Shapley) sense, and in which
assigned couples have compatible programmes. Marx and Schlotter [9] study the HRC
problem in the context of parameterized complexity, and show, amongst other things,
that the existence problem is W[1]-hard when parameterized by the number of couples.
Note, however, that in [5] members of a couple are explicitly forbidden from being assigned
to the same hospital, while in [10] and [9], the definition of a blocking pair comprising a
couple and a hospital differs slightly from ours, as discussed above. Sethuraman et al. [17]
discuss a model related to ours, in which each member of a couple submits an individual
preference list, and the couple decides on the compatibilty of programmes based on a
partition into ‘regions’. They show that linear programming can be used to determine in
polynomial time whether there is a matching that is stable in the classical sense, i.e., with
respect to the preferences of individuals, and in which the members of each couple are
assigned to compatible programmes.

Recently, Kojima et al. [8] have shown that, under certain conditions, including a
tight bound on the ratio of couples to single applicants, a stable matching exists with high
probability in HRC instances, and they present supporting empirical evidence based on
several years data from the US market for clinical psychologists.

The contribution of this paper
In this paper, we first establish that the SHRC problem is NP-complete, even under
quite severe restrictions. This is not a consequence of the known hardness results for
more general versions of the problem. We then describe an algorithm for the problem,
similar to that of Klaus et al. [6], and indicate how certain implementation choices lead
to a range of variants, including the one (Algorithm C-RAN described in Section 7) that
currently forms the basis of the SFAS matching scheme. This algorithm is contrasted
with the algorithm described by Roth and Peranson [14], and then a third, conceptually
simpler, algorithm, based on satisfying blocking pairs, is described. Again, for each of the
alternative algorithms, several possible variants are identified. In Section 6 we show that,
in contrast to the W[1]-hardness result of Marx and Schlotter [9] for the general HRC
problem, SHRC becomes fixed-parameter tractable when parameterized by the number of
couples. The second part of the paper describes an empirical study designed to investigate
the likelihood that a stable matching can be found in various circumstances, depending
particularly on the ratio of couples to single applicants, and to compare the performance
of a number of variants of the three algorithms. The final section summarises the results
of this empirical study, and draws a number of conclusions regarding the relative merits
of the algorithms and their variants, the likelihood of solving instances of SHRC, and the
relevance of these results for more general versions of the problem.

2 SHRC is NP-complete

To justify our empirical study of heuristics for the SHRC problem, we need to establish
that this special case, based on a ‘master list’ of applicants, remains NP-complete.

7

Theorem 2.1. The problem of determining whether a stable matching exists for an in-
stance of SHRC is NP-complete, even if there is a strict master list on both sides and each
hospital has capacity one.

Proof The problem is in NP, obviously. We transform from complete smti-2ml,
that is the problem of finding a complete stable matching for an instance of the stable
marriage problem with incomplete lists, ties and master lists on both sides. This problem
is NP-complete ([4], Theorem 3.2.) even under the following restrictions: there are ties in
the master list of women only, they are of length 2, each tie appears in only one individual
list and it forms the whole of that individual list. Let I be such an instance. We create
an instance I ′ of SHRC under the restrictions listed above, as follows.

First we construct the so-called proper part of I ′. Let U and W be the set of men
and women in I, respectively. Further, let UT ⊆ U denote the set of men such that each
mi ∈ UT has a single tie in his list, i.e., mi : (wi,1, wi,2). The men and the women of I will
correspond to the applicants and the programmes in I ′, respectively. Each programme
in I ′ has unit quota. Initially, let each man with a strict preference list have the same
preference list in I ′ as in I by keeping also the two master lists. Now, for each mi ∈ UT let
us create two couples, (ai,1, ai,4) and (ai,2, ai,3) in I ′ together with three new programmes,
pi,1, pi,2 and pi,3, with the following individual preference lists.

ai,1 : pi,1 pi,3

ai,2 : pi,1 pi,3

ai,3 : pi,2 wi,2

ai,4 : pi,2 wi,1

We replace mi with ai,1, ai,2, ai,3 and ai,4 in the master list of the applicants (in this
order), whilst the tie (wi,1, wi,2) is replaced with pi,1, pi,2, pi,3, wi,1 and wi,2 in the master
list of the programmes (in this order). Furthermore, we suppose that pi,1 and pi,2 are
geographically close to each other, whilst pi,3, wi,1 and wi,2 are also geographically close
to each other (but far from pi,1 and pi,2), therefore the following joint preference lists will
be constructed:

(ai,1, ai,4) : (pi,1, pi,2) (pi,3, wi,1)
(ai,2, ai,3) : (pi,1, pi,2) (pi,3, wi,2)

This completes the construction of the proper part of I ′. We shall verify that we have
the following one-to-one correspondence between the complete stable matchings of I and
the complete stable matchings of the proper part of I ′.

• 〈mi, wj〉 ∈ M for some mi ∈ U \ UT ⇐⇒ 〈mi, wj〉 ∈ M ′

• 〈mi, wi,1〉 ∈ M for some mi ∈ UT ⇐⇒
{〈ai,1, pi,3〉 , 〈ai,4, wi,1〉 , 〈ai,2, pi,1〉 , 〈ai,3, pi,2〉} ⊆ M ′

• 〈mi, wi,2〉 ∈ M for some mi ∈ UT ⇐⇒
{〈ai,2, pi,3〉 , 〈ai,3, wi,2〉 , 〈ai,1, pi,1〉 , 〈ai,4, pi,2〉} ⊆ M ′

To prove this, first let M be a complete stable matching in I and let M ′ be the
corresponding complete matching in I ′ as described above. Suppose for a contradiction
that M ′ is not stable. If M ′ is blocked by a single applicant mi and a programme wj then
this pair, 〈mi, wj〉 would be blocking for M as well. Suppose now that M ′ is blocked by a
couple (ai,1, ai,4). This couple cannot be matched to programmes pi,1 and pi,2, respectively,
since this is their first choice, and therefore, according to our construction of M ′, these

8

two programmes must be occupied by the other possible couple, (ai,2, ai,3). In this case,
(ai,1, ai,4) is not blocking with (pi,1, pi,2). Similarly, we get a contradiction if we suppose
that couple (ai,2, ai,3) is blocking for M ′.

Now, let us suppose that M ′ is a complete stable matching in I ′. The stability of M ′

implies that either {〈ai,2, pi,1〉 , 〈ai,3, pi,2〉} ⊆ M ′ or {〈ai,1, pi,1〉 , 〈ai,4, pi,2〉} ⊆ M ′ for each
index i, where mi ∈ UT . Let M be the corresponding matching in I as described. Suppose
for a contradiction that M is not stable. Note that M cannot be blocked by 〈mi, wi,1〉
for some mi ∈ UT , since if 〈mi, wi,1〉 /∈ M then 〈mi, wi,2〉 ∈ M by the construction. We
get a similar contradiction if M is blocked by 〈mi, wi,2〉. Furthermore if M is blocked by
〈mi, wj〉 for some mi ∈ U \ UT then the copy of this pair would block M ′ too, so the
proof of the statement (i.e. the one-to-one correspondence between the complete stable
matchings of I and the complete stable matchings of I ′) is complete.

We refer to those involved in the proper part as proper programmes and proper appli-
cants. Now we construct the additional part of I ′. We extend the set of applicants with
seven applicants, {a∗i : 0 ≤ i ≤ 6} by appending them to the end of the master list of the
applicants (a∗0 highest, a∗6 lowest), we also add three new programmes {p∗i : 1 ≤ i ≤ 3}
appended to the end of the master list of the programmes in an arbitrary strict order. Let
the applicants have the following individual preference lists.

a∗0 : [all proper programmes] p∗1
a∗1 : p∗1
a∗2 : p∗3
a∗3 : p∗3
a∗4 : p∗1
a∗5 : p∗2
a∗6 : p∗2

Moreover, six of the seven additional applicants form three couples with the following
joint lists.

(a∗1, a
∗
6) : (p∗1, p

∗
2)

(a∗2, a
∗
4) : (p∗3, p

∗
1)

(a∗3, a
∗
5) : (p∗3, p

∗
2)

We show that I admits a complete stable matching if and only if I ′ admits a stable
matching. Suppose first that M is a complete stable matching in I. Let M ′ be the corre-
sponding stable matching in the proper part of I ′ extended with {〈a∗0, p

∗
1〉 , 〈a∗3, p

∗
3〉 , 〈a∗5, p

∗
2〉}.

It is straightforward to show that this matching is stable. In the other direction, if M ′ is a
stable matching then first we shall show that the proper programmes are completely filled
with proper applicants. This is because a∗0 cannot be allocated to a proper programme,
since otherwise it would not be possible to allocate the three additional couples to the
three additional programmes in a stable way. But if a∗0 is not allocated to a proper pro-
gramme then each proper programme must be filled by a proper applicant (since otherwise
a∗0 would form a blocking pair with such an unallocated programme). This means that
every applicant is matched to a proper programme in the restriction of M ′ to the proper
part of I ′, therefore M , the corresponding stable matching in I, is complete. 2

It is the current practice of SFAS, as in many practical matching schemes, that the
preference lists of the applicants have bounded length (currently ten in the case of SFAS).
Also, in our empirical study, described in Section 7, we work with randomly generated
instances in which each preference list has length six. So the question arises whether
the above NP-completeness result holds also for bounded length preference lists. This

9

is indeed the case, since we can extend the proof of Theorem 2.1 for SHRC with the
additional restriction that each preference list has length at most four, as follows.

Theorem 2.2. The problem of determining whether a stable matching exists for an in-
stance of SHRC is NP-complete, even if there is a strict master list on both sides, each
hospital has capacity one and the length of each individual preference list is at most four.

Proof Let I be an instance of SHRC, which satisfies the restrictions of the previous
theorem, namely, there is a master list on both sides, each hospital has capacity one, and
furthermore, the individual list of each member of any couple has length at most four (this
obviously holds in the construction provided in the proof of Theorem 2.1). We construct
an instance I ′ of SHRC that will satisfy the additional condition that each individual
preference list has length at most four.

Let A = {a1, a2, . . . , an} be the set of single applicants and P = {p1, p2, . . . , pm} the
set of programmes in I. When creating I ′ from I we will replace each ai ∈ A having a
preference list of length more than four by a gadget as follows. Let l(ai) denote the length
of ai’s preference list and let posai

(k) be the kth item in this list. Furthermore, recall that
rankai

(pj) = k if pj = posai
(k) (i.e. if programme pj is the kth choice of applicant ai).

We add 5 × (l(ai) − 4) new applicants, A′
i = {ar

i,k : 1 ≤ r ≤ 5, 1 ≤ k ≤ l(ai) − 4}, and
7 × (l(ai) − 4) new programmes, P ′

i = {pr
i,k : 1 ≤ r ≤ 7, 1 ≤ k ≤ l(ai) − 4} (each with

capacity one), where the applicants in A′
i have the following individual preference lists:

a1
i,k : p1

i,k p4
i,k (1 ≤ k ≤ l(ai) − 4)

a2
i,k : p2

i,k p3
i,k (1 ≤ k ≤ l(ai) − 4)

a3
i,k : p3

i,k posai
(k + 3) p4

i,k+1 p5
i,k (1 ≤ k ≤ l(ai) − 5)

a3
i,k : p3

i,k posai
(k + 3) posai

(k + 4) p5
i,k if k = l(ai) − 4

a4
i,k : p4

i,k p7
i,k (1 ≤ k ≤ l(ai) − 4)

a5
i,k : p5

i,k p6
i,k (1 ≤ k ≤ l(ai) − 4)

Furthermore, let the first three entries in ai’s preference list remain the same and let
the fourth entry be p4

i,1. We suppose that a1
i,k forms a couple with a5

i,k, a2
i,k forms a couple

with a4
i,k and the hospitals with programmes {p2

i,k, p
4
i,k, p

6
i,k}, {p

1
i,k, p

5
i,k} and {p3

i,k, p
7
i,k} are

geographically close to each other, respectively, for each k (1 ≤ k ≤ l(ai) − 4). This leads
to the following joint preference lists:

(a1
i,k, a

5
i,k) : (p1

i,k, p
5
i,k) (p4

i,k, p
6
i,k) (1 ≤ k ≤ l(ai) − 4)

(a2
i,k, a

4
i,k) : (p2

i,k, p
4
i,k) (p3

i,k, p
7
i,k) (1 ≤ k ≤ l(ai) − 4)

Finally, we extend the master lists of I to I ′. Regarding the new master list of the
programmes, let pr

i,k precede ps
j,l whenever r < s and let pr

i,k precede hj ∈ P if and only
if r ≤ 3. Regarding the new master list of the applicants, let ar

i,k precede as
j,l whenever

r < s, let ar
i,k precede ai ∈ A if r ≤ 2, let ai ∈ A precede ar

i,k if r ≥ 4, and let ai and a3
i,k

precede aj and a3
j,l if and only if ai precedes aj in the original master list. We can decide

all the remaining undefined relations arbitrarily.
In order to simplify the notations, for each ai ∈ A and k (1 ≤ k ≤ l(ai) − 4), let

us define Bi
k = {〈a3

i,k, p
3
i,k〉, 〈a

1
i,k, p

1
i,k〉, 〈a

5
i,k, p5

i,k〉, 〈a
2
i,k, p2

i,k〉, 〈a
4
i,k, p4

i,k〉}. Furthermore, for

each ai ∈ A, let W i
1 = {〈ai, p

4
i,1〉, 〈a

1
i,1, p

1
i,1〉, 〈a

5
i,1, p

5
i,1〉, 〈a

2
i,1, p

3
i,1〉, 〈a

4
i,1, p

7
i,1〉} and for each k

(2 ≤ k ≤ l(ai) − 4), let W i
k = {〈a3

i,k−1, p
4
i,k〉, 〈a

1
i,k, p

1
i,k〉, 〈a

5
i,k, p

5
i,k〉, 〈a

2
i,k, p3

i,k〉, 〈a
4
i,k, p7

i,k〉}.
Now we show that I has a stable matching if and only if I ′ admits one. First suppose

that M is a stable matching in I. We create a stable matching M ′ in I ′ as follows. For
each applicant ai,

10

1. if ai /∈ A (i.e. when ai is a member of a couple in I) or ai ∈ A with l(ai) ≤ 4 then
let M ′(ai) = M(ai) unchanged (and in particular, if ai is unmatched in M then let
ai be unmatched in M ′, too).

2. if ai ∈ A and l(ai) > 4 then

(a) if rankai
(M(ai)) ≤ 3 then

let M ′(ai) = M(ai) and (∪
l(ai)−4
k=1 Bi

k) ⊆ M ′,

(b) if rankai
(M(ai)) = t + 3 for some (1 ≤ t < l(ai) − 4) then

let M ′(a3
i,t) = M(ai) and (∪t

k=1W
i
k) ∪ (∪

l(ai)−4
k=t+1 Bi

k) ⊆ M ′,

(c) if rankai
(M(ai)) = l(ai) − 1 or rankai

(M(ai)) = l(ai) then

let M ′(a3
i,l(ai)−4) = M(ai) and (∪

l(ai)−4
k=1 W i

k) ⊆ M ′,

(d) if ai is unmatched in M then

let (∪
l(ai)−4
k=1 W i

k) ⊆ M ′ (and leave a3
i,l(ai)−4 unmatched).

We shall prove that M ′ is stable. By the construction of the matching M ′, it is
easy to see that a new programme cannot be involved in a blocking pair. Suppose for a
contradiction that pj ∈ P forms a blocking pair with a single applicant of form a3

i,k. Then

it must be the case that 〈a3
i,k, p

4
i,k+1〉 ∈ M ′ and either 〈a3

i,l, ps〉 ∈ M ′ for some ps ∈ P and

k < l, or a3
i,l(ai)−4 is unmatched. Note that this means that either ai is matched to ps

in M , where pj precedes ps in ai’s list, or ai is unmatched in M . Furthermore, since pj

prefers a3
i,k to M ′(pj) then pj prefers ai to M(pj), thus 〈ai, pj〉 is a blocking pair for M , a

contradiction.
Conversely, suppose that M ′ is a stable matching in I ′. Let 〈ai, pj〉 ∈ M if either

〈ai, pj〉 ∈ M ′ or 〈a3
i,t, pj〉 ∈ M ′ for some t (1 ≤ t ≤ l(ai) − 4). First we show that M is a

matching. Suppose that 〈a3
i,t, pj〉 ∈ M ′ for some pj ∈ P , ai ∈ A and t (1 ≤ t ≤ l(ai) − 4),

then it must be the case that {〈a2
i,t, p

3
i,t〉, 〈a

4
i,t, p

7
i,t〉} ⊆ M ′ (since otherwise a3

i,t would be

blocking with p3
i,t) and {〈a1

i,t, p
1
i,t〉, 〈a

5
i,t, p

5
i,t〉} ⊆ M ′ (since otherwise couple (a1

i,t, a
5
i,t) would

be blocking with pair of programmes (p1
i,t, p

5
i,t)). This implies that 〈a3

i,t−1, p
4
i,t〉 ∈ M ′ (or

〈ai, p
4
i,t〉 ∈ M ′ if t = 1), since if p4

i,t would be unmatched in M ′ then couple (a2
i,t, a

4
i,t) would

be blocking with programmes (p2
i,t, p

4
i,t). Continuing this argument, if t > 1 then we get

that (∪t
k=1W

i
k) ⊆ M ′. By the same reason, we can see that no 〈a3

i,k, ps〉 can be in M ′ for
any k > t and ps ∈ P , thus M is a matching. Note that if no applicant of {ai} ∪ A′

i is

matched to a programme pj ∈ P then ai is unmatched in M and (∪
l(ai)−4
k=1 W i

k) ⊆ M ′.
Finally, we show that the stability of M ′ implies the stability of M . Suppose for a

contradiction that ai ∈ A forms a blocking pair with pj ∈ P in M . If l(ai) ≤ 4 or pj is one
of the first three items in ai’s list, then 〈ai, pj〉 is a blocking pair for M ′, too. Otherwise,
when l(ai) > 4 and pj is the (k + 3)th item in ai’s preference list for some k ≥ 1, it must
be the case that either M(ai) is the lth item in ai’s preference list for some k < l or ai is
unmatched in M . In either case, W i

k ⊆ M ′ and therefore 〈a3
i,k, pj〉 is blocking for M ′, a

contradiction. 2

Note that Theorem 2.2 obviously remains true for a version of the problem intermediate
between SHRC and HRC, in which programmes’ preferences are derived from a master list,
but couples have complete freedom to form their own joint preference lists. Also, the fact
that the result holds when all programmes have capacity 1 means that NP-completeness
does not depend on the precise formulation of the stability criterion for blocking pairs of
the form 〈(a, b), p〉.

11

sort the applicants by decreasing score, breaking ties uniformly at random;
for each applicant a in sorted order

if (a is a single applicant)
delete all full programmes x from a’s list;
// a cannot be assigned to x because of superior single applicants
if (a’s list contains at least one programme)

assign a to the first programme on his preference list;
else // a is a member of a couple c

delete all entries (x, x) from c’s list where x has just one free place;
// couple c cannot be assigned to x because of superior single applicants
if (a is the superior member of c)

delete all entries (x, y) from c’s list where x is full;
// a cannot be assigned to x because of superior single applicants

else if (a is the inferior member of c)
delete all entries (y, x) from c’s list where x is full;
// a cannot be assigned to x for the same reason

Figure 3: Phase 1 of Algorithm C

3 The SFAS algorithm

The algorithm that forms the basis of SFAS, which we refer to as Algorithm C, consists
of two phases.

Phase 1 of Algorithm C
In Phase 1, some initial simplification is undertaken, whereby single applicants can become
(provisionally) assigned to the best available programme, and unattainable entries are
deleted from preference lists.

Ties consisting of applicants with identical scores are broken at random to produce a
strictly ordered list of applicants. We refine the notion of superiority so that applicant a is
now regarded as superior to applicant b, and b inferior to a, if a precedes b in this strictly
ordered list. In this first phase, the applicants are processed in the order in which they
appear in this strictly ordered list. Henceforth, a couple is always represented as an ordered
pair (a, b) such that a is superior to b. (Of course, in general, breaking ties in different
ways can be expected to lead to different outcomes. The entire algorithm, including the
tie-breaking step, can be executed many times, and the ‘best’ solution returned, according
to whatever optimality criterion may be appropriate.) A pseudocode version of Phase 1
of Algorithm C appears in Figure 3.

The outcome of Phase 1 is a reduced set of preference lists and an initial assignment
of (a subset of) the single applicants to programmes.

Lemma 3.1. (i) If programme p is removed from the single applicant a’s preference list
during Phase 1, then there is no stable matching in which a is assigned to p.
(ii) If programme pair (p, q) is removed from the couple (a, b)’s preference list during Phase
1, then there is no stable matching in which a is assigned to p and b to q.

Proof (i) Suppose that, at step x of the algorithm, programme p is removed from
applicant a’s preference list during Phase 1, and that there is a stable matching M in
which a is assigned to p. Suppose further that this was the first such removal. Then at
step x, p must have been full with applicants superior to a. Hence at least one of these
applicants, say b, is not assigned to p in M . But b cannot be assigned in M to a programme

12

he prefers to p, for such a programme would have to have been removed from his list prior
to step x, contrary to the assumption that the first such removal was at step x. Hence b
and p block M , a contradiction.
(ii) The proof in this case is analogous to the proof of part (i). 2

Phase 2 of Algorithm C
Define an agent to be either a single applicant or a couple. In Phase 2 of the algorithm, at
any given stage, some agents are matched and some are not. Unmatched agents apply to
the next entry in their preference list, where the next entry moves sequentially along the
list, but may be reset to an earlier entry in the list in certain circumstances. Unmatched
agents that have a next entry available are represented in a data structure, which we
refer to as the waiting list. At the end of Phase 1, all the couples who have a non-empty
preference list are added to the waiting list.

An application is accepted if it constitutes a blocking pair for the current matching, and
is otherwise rejected. An accepted application may lead to the rejection of one or more
weakest assignees to avoid programmes becoming over-subscribed. If one member of a
matched couple is rejected the other member must withdraw from his assigned programme.
Note that rejection of an agent advances the ‘next’ entry in the preference list of that agent
(taking care to avoid the repetition of such a step when both members of a couple are
simultaneously rejected.)

In addition, each programme that is, or has been, full, maintains a set of rejected
applicants – its reserve list. So if some applicant withdraws from such a programme p,
because of their partner’s rejection, or because of the possibility of an improved assignment
(see below), each applicant in p’s reserve list should, in due course, be allowed to re-apply
to the programme if this might improve his assignment. This is achieved by withdrawing
the applicant from any programme to which he is currently assigned (and likewise his
partner, in the case of a linked applicant), conducting a ‘reset’ operation on the ‘next’
preference list position (of the applicant or the couple), and adding him (or the couple
containing him) to the waiting list (if not already a member of it). Note that the ‘reset’
operation is conditional – it means moving the ‘next’ position to the one occupied by
p, unless this would imply a move forward in the list (perhaps the review of another
programme already caused a reset). Reset for a couple means moving the ‘next’ position
to the first entry containing p for the appropriate member (again, only if this represents
a move to a position higher in the list).

A further data structure, which we refer to as the review list, holds the programmes
that have experienced one or more withdrawals and that have a non-empty reserve list.
Whenever a programme p is taken from this review list, each applicant on its reserve
list whom p would now accept must be examined – this is referred to as reviewing the
programme.

Consider first a single such applicant a. The pair 〈a, p〉 blocks the current matching,
so a should withdraw from his currently assigned programme (if any), the next position in
a’s preference list should be (conditionally) reset to the position occupied by p, a should
be added to the waiting list (if not already in that list) and should be removed from p’s
reserve list.

The situation for a linked applicant is a little more subtle. If a is a linked applicant on
p’s reserve list, say with partner b, then entries of the form (p, q) that precede the current
assignment on (a, b)’s preference list must be examined in turn (potentially all such pairs
if a and b are unassigned). The first such (p, q) that blocks the current matching with
(a, b) leads to actions similar to the previous case – a and b should withdraw from their
currently assigned programmes (if any), the next position in (a, b)’s preference list should
be (conditionally) reset to the position occupied by (p, q), (a, b) should be added to the

13

waiting list, and a removed from p’s reserve list (but see the additional remark below). No
further such pairs (p, q) need then be considered. However, if, during the search for such a
blocking pair, a pair (p, q) is encountered that does not block the matching, this must be
because q would reject b. But b need not be on q’s reserve list, so must be added to it in
that case (since a subsequent withdrawal from q might otherwise leave 〈(a, b), (p, q)〉 as a
blocking pair). A final subtlety arises if the pair (p, p) is encountered on (a, b)’s preference
list but does not block with (a, b). In this case p would accept a but not both a and b.
A subsequent withdrawal from p might change this, so we must ensure that one of these
applicants remains on p’s reserve list, even if a blocking pair of the form 〈(a, b), (p, q)〉 is
subsequently found.

Phase 2 terminates if the waiting list and review list both become empty.
A pseudocode description of a version of Phase 2 of Algorithm C appears in Figures

4 – 8. Recall that we are assuming that when a couple is represented as an ordered pair
(a, b), applicant a is superior to applicant b.

place each couple with a non-empty preference list on the waiting list;
set the review list to be empty;
while the waiting list W or the review list R is non-empty

if W is non-empty
remove agent x from W ;
x applies to the next entry on its preference list;

else
remove programme p from R;
review programme p;

Figure 4: Phase 2 of Algorithm C

Theorem 3.1. If Phase 2 of Algorithm C terminates then the final matching of applicants
to programmes is stable.

Proof We first note some key consequences of the stability definition:

• if a programme p rejects an assignee a in favour of another single applicant, the new
assignee is superior to a;

• if p rejects one or two assignees (who do not themselves form a couple) in favour of
a couple, both members of the new couple are superior to the rejected applicant(s);

• if p rejects an assigned couple in favour of a new couple, the weaker member of the
rejected couple is inferior to both members of the new couple.

Let M be the matching produced by the algorithm on termination. Suppose first that
M is blocked by the pair 〈a, p〉. Then p must have rejected a, possibly more than once.
The last time that p rejected a, say at step x in the execution of the algorithm, p must
have been full with applicants superior to a, and a must then have become a member of
p’s reserve list. Denote by b the weakest assignee of p at that point. There could have been
no subsequent withdrawals from p, for this would have caused p to be added to the review
list, and thereafter, when p was removed from this list, a, as a member of its reserve list,
would have had his preference list position reset, and would have to have applied again to
p to finish up with a worse assignment than p (or no assignment at all). Hence, since p had
no withdrawals after step x, and since the rejection of an assignee after this step cannot

14

// Single applicant a applies to programme p
if a and p block the current matching

assign a to p;
if p is oversubscribed

p rejects its worst assignee;
else

p rejects a;

// Couple (a, b) applies to the programme pair (p, q) (p 6= q)
if (a, b) and (p, q) block the current matching

assign a to p and b to q;
if p is oversubscribed

p rejects its worst assignee;
if q is oversubscribed

q rejects its worst assignee;
else

p rejects a and/or q rejects b;

// Couple (a, b) applies to the programme pair (p, p)
if (a, b) and p block the current matching

assign a and b to p;
if p is oversubscribed

p rejects its worst assignee;
if p is still oversubscribed

p rejects its worst assignee;
else

p rejects b; // no need also to reject a

Figure 5: The application steps in Phase 2 of Algorithm C

// Programme p rejects applicant a
if a is a single applicant

advance next position in a’s preference list;
if a has preferences remaining

add a to waiting list;
else // a is in a couple c

advance next position in c’s preference list;
if c has preferences remaining

add c to waiting list (if not already in it);
add a to p’s reserve list (if not already in it);
if a is assigned to p

unassign a from p;
if a is a linked applicant

a’s partner withdraws from his assigned programme;

Figure 6: The rejection step in Phase 2 of Algorithm C

15

// Applicant a withdraws from programme p;
if p has a non-empty reserve list

add p to the review list; // if not already in it
unassign a from p;

Figure 7: The withdrawal step in Phase 2 of Algorithm C

// Review programme p;
for each applicant a in p’s reserve list whom p would now accept

if a is a single applicant
if 〈a, p〉 blocks the current matching

a withdraws from assigned programme (if any);
conditionally reset a; // to position occupied by p
add a to waiting list; // if not already in it
remove a from p’s reserve list;

else if a is the superior member of a couple (a, b)
for each pair of the form (p, q) in (a, b)’s preference list, in order

if 〈(a, b), (p, q)〉 is in the current matching
break;

else if 〈(a, b), (p, q)〉 blocks the current matching for some q
a and b withdraw from assigned programmes (if any);
conditionally reset (a, b); // to position occupied by (p, q)
add (a, b) to waiting list; // if not already in it
remove a from p’s reserve list unless (a, b) prefers (p, p) to (p, q); (A)
break;

else if q would reject b
add b to q’s reserve list; (B)

else
deal analogously with the case where a is the inferior member of a couple (b, a)

Figure 8: The review step in Phase 2 of Algorithm C

16

give p an assignee inferior to b, it follows that, on termination, p is full with assignees
superior to a, a contradiction.

Suppose now that M is blocked by the pair 〈(a1, a2), (p1, p2)〉, where p1 and p2 are
distinct programmes. Then p1 must have rejected a1 or p2 must have rejected a2, possibly
more than once. Suppose, without loss of generality, that the last time this happened, p1

was full with applicants superior to a1, so that a1 became a member of p1’s reserve list
at that point. If there were no subsequent withdrawals from p1 then it is not possible
that (a1, a2) and (p1, p2) block M . On any subsequent withdrawal from p1, a1 would be
retrieved from p1’s reserve list. If (a1, a2) and (p1, p2) block the matching at that moment,
then couple (a1, a2) have their current position reset, and this ensures that they must
apply again to (p1, p2) (since they end up with a worse assignment than that), which is
a contradiction. Otherwise, if p1 would not accept a1 at that point, then a1 will remain
on p1’s reserve list awaiting a possible further withdrawal. Finally, if (a1, a2) and (p1, p2)
fail to block the current matching because p2 is full of applicants superior to a2, it may
happen that a future withdrawal from p2 causes (a1, a2) and (p1, p2) to block the matching
at that point. However, in this case a2 will have been placed on the reserve list of p2 (at
the step labeled (A) in Figure 8), and this will ensure that (a1, a2) once again apply to
(p1, p2), a contradiction.

Finally suppose that M is blocked by the pair 〈(a1, a2), p〉. Then again p must have
rejected (a1, a2), and recalling our assumption that a1 is superior to a2, then the last time
this happened, p must have had at least c(p)− 1 assignees, excluding a1, who are superior
to a2. Applicant a2 would have been placed on p’s reserve list at that point. If there
is no subsequent withdrawal from p, then 〈(a1, a2), p〉 cannot block M . If, when such a
withdrawal takes place, the resulting matching is blocked by 〈(a1, a2), p〉, then provided a2

is on p’s reserve list at that point, (a1, a2) would have their preference list position reset
to ensure a further application to p. So how can this fail to happen? It may be that,
following a withdrawal from p, the resulting matching is not blocked by 〈(a1, a2), p〉 but
is blocked by 〈(a1, a2), (r, p)〉 where r is some other programme. In this case we must be
careful not to remove a2 from p’s reserve list if the resulting reset is to a point lower in
the list than (p, p). This is ensured by the step labeled (B) in Figure 8. 2

However, Phase 2 of the algorithm may not terminate; certainly if the problem instance
admits no stable matching, this will be the case. Furthermore, even if a stable matching
does exist, it may not be found by the algorithm, as is illustrated by Example 3.

Example 3. There are eight applicants, comprising three couples (a1, a5), (a2, a4) and (a6, a8)
together with two single applicants a3 and a7. There are eight programmes, p1, . . . , p8, each with
just one place. The applicants are numbered in decreasing order of score (a1 highest, a8 lowest),
and the individual and joint preference lists are as shown in Figure 9.

There is a unique stable matching

M = {〈a1, p3〉 , 〈a2, p1〉 , 〈a3, p5〉 , 〈a4, p2〉 〈a5, p6〉 , 〈a7, p8〉}

for this instance. However, the algorithm fails to converge to this matching; it will reach the

matching M ′ = {〈a1, p1〉 , 〈a2, p3〉 , 〈a3, p5〉 , 〈a4, p7〉 〈a5, p2〉}, and will then cycle for the unsolvable

sub-instance induced by {a6, a7, a8}.

Variants of Algorithm C

A number of variants of Algorithm C arise as a result of possible implementation
choices, such as

• the organisation of the waiting list: agents can be removed from this list randomly,
or the list can be handled in some more restricted way, say as a stack;

17

a1 : p1 p3

a2 : p4 p1 p3

a3 : p1 p5

a4 : p5 p2 p7

a5 : p2 p6

a6 : p6

a7 : p6 p8

a8 : p8

(a1, a5) : (p1, p2) (p3, p6)
(a2, a4) : (p4, p5) (p1, p2) (p3, p7)
(a6, a8) : (p6, p8)

Figure 9: An awkward SHRC instance for Algorithm C

• the relative priority of single applicants and couples: these can be treated equally,
or we might choose to prioritise one or the other when choosing an agent from the
waiting list;

• the review list can be given priority over the waiting list, so that at each stage a
programme from the former list is reviewed, and only when the review list is empty
is an agent taken from the waiting list.

4 An algorithm based on the Roth-Peranson approach

The couples algorithm described by Roth and Peranson [14] as the basis for the NRMP
approach, when adapted to our context, has much in common with Algorithm C. The main
distinction is that agents, i.e., single applicants or couples, are introduced into the market
one at a time, and after each such introduction, the resulting sequence of applications,
rejections, withdrawals, etc. is allowed to continue until stability is achieved before the
next agent is introduced. This is based on the approach used in the algorithm proposed
by Roth and Van de Vate [15] for the classical Stable Marriage problem.

Our implementation is, of course, adapted to the context of applicant scores, and
incorporates the stability definition given in Section 1. (It is not clear how Roth and
Peranson define a blocking pair comprising a couple and one hospital.) We refer to this
adaptation of the Roth-Peranson approach as Algorithm RP. In implementing Algorithm
RP, we have available the same choices as those discussed earlier for Algorithm C, and
in addition, the order in which agents are introduced to the market can be varied – for
example, singles first, or couples first, or a random choice of agent at each stage.

5 An algorithm based on satisfying blocking pairs

For a given instance I of SHRC, a matching M that is not stable is bound to have one
or more blocking pairs, as described in Section 1. A given single applicant a, or couple c,
may belong to zero or more blocking pairs. An agent that belongs to one or more blocking
pairs is called a blocking agent, and for any such agent x, we define the best blocker for x
to be the blocking pair that involves the highest placed entry on x’s preference list. The
best blocker set for M , denoted BM , is the set of best blockers. It is immediate that M is
stable if and only if BM is empty.

The general idea of the algorithm of this section, which we refer to as Algorithm BB,
is that we maintain throughout the best blocker set relative to the current matching.

18

At each step we choose a blocking pair from this set, change the matching by satisfying
this blocking pair, allowing for any required rejections and/or withdrawals, and update
the best blocker set accordingly. The algorithm terminates if this set becomes empty.
Several variants are possible depending on how a blocking pair is chosen at each step –
for example, it may be chosen at random, or blocking pairs involving singles (or couples)
could be prioritised, or priorities could be based on applicant scores, or on how often a
best blocker for a particular agent has previously been chosen (which we refer to as usage).

It is interesting to note that, for the special case where there are no couples, i.e., an
instance of the classical HR problem, if the matching is initially empty, the best blocker
set initially contains each agent paired with the first entry on its list, and Algorithm BB
reduces to an execution of the standard Gale-Shapley algorithm.

In our setting, it seems reasonable to re-use Phase 1 of Algorithm C here, since this is
again applicable and will typically remove some entries from preference lists. The initial
matching is the one constructed by Phase 1, and the best blocker set is initialised to
contain an element for each couple that has a non-empty list at this point, consisting of
the couple paired with the first entry on its (reduced) preference list.

Although conceptually simpler than the other algorithms, Algorithm BB does present
some interesting implementation challenges. When a blocking pair is satisfied, resulting re-
jections and withdrawals can have a substantial knock-on effect on the set of best blockers,
and these have to be managed carefully to ensure a correct and efficient implementation.

Notice that Example 3 can be used again here to show that, just like Algorithm C,
Algorithm RP and Algorithm BB can also fail to find a stable matching even in cases where
one exists. To show this, first we shall observe that, considering any of the variants of
Algorithms C, RP and BB, if (a1, a5) is matched to (p1, p2) at any point of the algorithm
then (a1, a5) must remain matched there subsequently, so the unique stable matching
(where this couple is matched to (p3, p6)) cannot be reached. Furthermore, in each variant
of Algorithms C and RP, no agent becomes matched to his/their second choice before
having been rejected by his/their first choice. Suppose for a contradiction that (a1, a5) is
matched to (p3, p6) on termination of one of these algorithms. It must be the case that
(a1, a5) has already been rejected by (p1, p2), and at that point, say at time t1, p1 and p2

must have been occupied by a2 and a4, respectively. Let t2 denote the time when (a2, a4)
became matched to (p1, p2) for the first time. Since (p1, p2) is the second choice of (a2, a4)
then they must have been rejected by their first choice, (p4, p5), at an earlier moment, say
at t3. At that point p5 must have been occupied by a3. Since p5 is a3’s second choice, he
must have been rejected by p1 even earlier, say at t4, when p1 must have been occupied
by a1 (and p2 by a5), because these positions could not have been occupied by a2 and a4

(according to our assumption that they first get matched there at t2 > t4), a contradiction.
By using a similar argument we can also show that none of the variants of Algorithm BB
can reach the unique stable matching, since here no agent becomes matched to his/their
second choice if he/they form a blocking pair with his/their first choice.

However, a variant of this approach is to base the algorithm on the complete set of
blocking pairs at each stage. This variant always has the possibility of finding a stable
matching when one exists – it might fortuitously choose precisely the pairs of such a
matching in some order. Intuition suggests that choosing anything other than the best
blocker for an agent may not be a good strategy, intuition that was borne out in practice
– our implementation of a variant of Algorithm BB based on a complete set of blocking
pairs did not succeed in finding a stable matching (in reasonable time) for any set of test
data used in the empirical study described in Section 7.

19

6 An FPT Algorithm

It is natural to consider the SHRC problem from the point of view of fixed-parameter
tractability, with the number of couples as the obvious parameter. In this section, we
describe an FPT algorithm for SHRC in the case of a strict master list of applicants.
(Recall that the preference lists of the applicants are also strictly ordered). Such an
algorithm is easy to devise in the case that the preference lists of the applicants, and
hence also of the couples, are bounded in length by a constant. For the general case, we
use a subtle argument to show that the preference lists of the couples can be pruned so
that they effectively become of bounded length.

Consider a solvable instance of SHRC with a strict master list of applicants, and let
k be the number of couples in the instance. Let M be a stable matching and let M ′ be
the matching produced by executing Phase 1 of Algorithm C. For a given applicant a, we
refer to applicants with a higher score than a as a-superior.

The first lemma emphasises the preference of applicants for M ′ rather than M .

Lemma 6.1. (i) No single applicant a prefers M(a) to M ′(a).
(ii) M(a) = M ′(a) for every single applicant a who has a higher score than all of the linked
applicants.

Proof (i) This follows at once from Lemma 3.1(i).
(ii) Suppose that the claim is invalid, and that applicant a is the highest scoring single
applicant for which it is untrue. Then, by Part (i), a prefers p = M ′(a) to M(a). In M ,
as in M ′, p cannot be full of a-superior applicants, so it is immediate that a and p block
M . 2

On the other hand, the next lemma shows that each programme does at least as well
in M as in M ′.

Lemma 6.2. Every programme p for which M(p) 6= M ′(p) prefers M(p) to M ′(p) in the
sense that, if a is an applicant in M ′(p) \ M(p), then |M(p)| = c(p) and every applicant
in M(p) is a-superior.

Proof Suppose, for a contradiction, that a is an applicant in M ′(p) \M(p) (so that a
is necessarily a single applicant) and that either |M(p)| < c(p) or some applicant in M(p)
is inferior to a. Then it follows from Lemma 6.1 that a prefers p to his assignment, if any,
in M ′, and therefore a and p block M . 2

Consider the couple c = (a, b) where a is the highest scoring linked applicant. Let
L(c) be c’s preference list after the execution of Phase 1 of Algorithm C, and let L′(c) be
the reduced list obtained by pruning L(c) in the following way. Each entry (p, q) of L(c)
is considered in turn. If no previous entry was of the form (r, q), with r 6= q, and if the
number of accepted entries is less than 2k then (p, q) is accepted, i.e., it remains in the
preference list, otherwise it is deleted.

The next lemma underpins the correctness of our FPT algorithm.

Lemma 6.3. Let M be a stable matching in which couple c = (a, b) is matched to the
programme pair (p, q). Then (p, q) appears as an entry on c’s pruned list.

Proof Suppose that (r, q), with r 6= q, precedes (p, q) on L(c) (so that a prefers r to p,
since couples’ preferences are assumed to be responsive). Then, c and (r, q) must block M .
This follows from Lemma 6.1(ii) and the fact that (p, q)’s presence on L(c) implies that
not all of p’s places are filled in M ′ (and hence not in M either) by a-superior applicants.
Note that the condition r 6= q is needed here, for otherwise it may be that q is full in

20

M with b as its weakest assignee, so that a place would be available for a in q only by
excluding b.

On the other hand, suppose that there is no such predecessor (r, q) of (p, q) on L(c) but
that L′(c) contains a set of 2k predecessors of (p, q) from L(c), say X = (x1, y1), . . . , (x2k, y2k).
By the same argument as in the previous paragraph, it is not possible that any of the pro-
grammes xi has all of its places filled in M ′ or in M by a-superior applicants. We consider
three cases for the pairs (xi, yi).
case (a) xi 6= yi and (yi, yi) does not appear as an earlier entry on L(c). Then yi has at
most c(yi)−1 b-superior assignees in M ′ (otherwise (xi, yi) would not appear in L(c)) and
exactly c(yi) b-superior assignees in M (otherwise (a, b) and (xi, yi) would block M).
case (b) xi = yi and yi 6= yj for all j. Then yi has at most c(yi)−2 b-superior assignees in
M ′ (otherwise (xi, yi) would not appear in L(c)) and at least c(yi)−1 b-superior assignees
in M (otherwise (a, b) and (xi, yi) would block M).
case (c) there are two entries (xi, yi) and (xj , yj) (i < j) in L(c) with xi = yi = yj. Then
yi has at most c(yi) − 2 b-superior assignees in M ′ (otherwise (xi, yi) would not appear
in L(c)) and exactly c(yi) b-superior applicants in M (otherwise (a, b) and (xj , yj) would
block M).

Hence, for each of the programmes yi covered by cases (a) and (b), where yi appears
only once as the second member of a pair in X, there is a b-superior applicant who is
assigned to yi in M but not in M ′. For each one covered by case (c), where yi appears
twice as the second member of a pair in X, there are two b-superior applicants who are
assigned to yi in M but not in M ′. Therefore, for every pair (xi, yi) we can identify a
b-superior applicant who is assigned to yi in M but not in M ′. But, by Lemma 6.2, no
programme is assigned fewer b-superior applicants in M than in M ′. Hence the number
of b-superior applicants who are assigned in M exceeds the number who are assigned in
M ′ by at least 2k. But these additional assigned applicants must all be linked applicants,
and there can be at most 2k − 1 linked b-superior applicants — a contradiction. 2

Note that a stronger version of the pruning algorithm would stop accepting entries
from L(c) as soon as the number of accepted entries exceeds the number of b-superior
linked applicants.

Figure 10 summarises Algorithm F, our FPT algorithm for SHRC in the case of a strict
preference list of applicants. It is assumed that Phase 1 of Algorithm C has already been
executed to provide the initial preference lists for input to this algorithm. If no matching
is output by Algorithm F then no stable matching exists.

Theorem 6.1. For an instance of SHRC in which the master list of applicants is strict and
there are k couples, Algorithm F correctly determines whether a stable matching exists in
O(2k+2(k+1)!f(n)) time, where f is a polynomial function of constant degree (independent
of k) of the input size n.

Proof If the algorithm returns a matching then it is immediate that the matching is
stable. Lemma 6.3 establishes that pruning the current couple’s preference list to length
at most 2k cannot exclude a stable matching. So it suffices to show that, for a fixed
assignment of the couples, the proposed way in which the single applicants are processed
is the only way in which a stable matching can be produced. But this follows at once
from the fact that, at any stage, if the next single applicant a is not assigned to the best
available programme p then a and p will inevitably form a blocking pair for the resulting
matching.

Let g(n, k) be the complexity of the algorithm. Then it follows from the fact that the
loop is executed at most 2k + 1 times that

g(n, k) = (2k + 1)g(n, k − 1) + f1(n)

21

procedure solve (int k) // k is the number of unprocessed couples
if (k > 0)

c = (a, b), where a is the highest ranked unprocessed linked applicant;
prune c’s preference list to contain at most 2k entries;
for each possible assignment of c (including being unassigned)

update the programmes’ capacities;
// couple c has now been processed
solve(k-1);

else
for each single applicant a, in order of score

assign a to the first programme on his list, if any,
with remaining capacity > 0;

if the resulting matching M is stable
output M and halt;

Figure 10: Algorithm F – An FPT algorithm for SHRC with strictly ranked applicants

for k ≥ 1, where f1 is a polynomial function of n. Because of the obvious polynomial-time
complexity of assigning single applicants and checking stability, we also have

g(n, 0) = f2(n)

where f2 is a polynomial function of n. Iteration of the recurrence relation leads to

g(n, k) =

k∏

i=0

(2i + 1)f2(n) +

k∑

j=1

j−1∏

i=o

(2i + 1)f1(n),

and the claimed complexity follows by straightforward manipulation of this formula. 2

7 An empirical study

There is a huge number of combinations of options that could be implemented for the
various algorithms, so some selectivity has been essential. The following variants of the
three algorithms, already referred to in previous sections, were included in the study,
together with a basic version of the FPT algorithm of Section 6.

Algorithm C

• C-RAN: random waiting list;

• C-STA: stack waiting list;

• C-SGL: random waiting list subject to prioritising single applicants;

• C-CPL: random waiting list subject to prioritising couples;

• C-RLP: random waiting list but with review list prioritised.

Algorithm BB

• BB-RAN: random best blocker chosen at each step;

22

• BB-SCO: best blocker with highest scoring applicant chosen at each step (with score
of a couple equal to the lower of the scores of its members);

• BB-USE: best blocker chosen according to usage (see definition in Section 5);

• BB-USS: best blocker chosen according to usage, but with single-blockers prioritised;

• BB-SGL: random best single-blocker chosen if there is one, otherwise random best
couple-blocker;

• BB-CPL: random best couple-blocker chosen if there is one, otherwise random best
single-blocker.

Algorithm RP

• RP-RAN: random agent introduced at each step;

• RP-SGL: random agent introduced at each step but singles first;

• RP-CPL: random agent introduced at each step but couples first.

Algorithm F

• F: basic implementation.

In this empirical study, we focused entirely on the case of a strictly ordered master list.
We generated example problem instances with four different numbers of applicants – 100,
500, 1000 and 2000. For each of these sizes n we varied the number of linked applicants
from around 5% of the total up to 100%; this was done by using our random instance
generator to create a set of 1000 base instances of size n with no ties, and then randomly
pairing together more and more of the applicants until all applicants were in couples. In
all cases, we set the number of programmes to be one tenth of the number of applicants,
the number of places, distributed randomly among the programmes, to be equal to the
number of applicants, and the length of each applicant’s preference list to be (somewhat
arbitrarily) six. Applicants were given random distinct scores.

All programs were written in Java and were run on a PC with a 2.84 GHz processor,
and with 3.5 GB of RAM, running Windows XP. All variants of Algorithms C, BB and
RP were allowed a fixed maximum running time on each instance, 1 second, 5 seconds, 10
seconds and 20 seconds for the instances of size 100, 500, 1000 and 2000 respectively. A
failure message was output if no stable matching was found within that time. The main
output from each program run was the number of instances, out of 1000, for which a stable
matching was found within the allocated time. Of course, even if all program variants fail
on a particular instance, this need not necessarily be because a stable matching does not
exist. Our conclusions can only be in terms of how feasible it is to find a stable matching,
not how likely it is that one exists. In addition for each data set, we aggregated the number
of instances that were solved by at least one of the algorithm variants. It was feasible to
run Algorithm F only on instances with 100 applicants and 2 or 5 couples. Exhaustive
runs in these two cases took around three minutes and eight hours respectively.

Tables 1, 2, 3 and 4 report the numbers of instances of sizes 100, 500, 1000 and 2000,
respectively, that were solved, out of a total of 1000 instances in each case, using the
selected variants of Algorithms C, BB and RP. Only the variants of the algorithms that
were competitive on the smaller instances were run on instances of size 2000, to reduce to
manageable proportions the total running time of the programs.

In each column of these tables, the most successful algorithm variant(s), in terms of
the number of instances solved, is/are highlighted in bold. The row labeled ‘total’ in each

23

table reports how many of the 1000 instances were solved by at least one of the algorithm
variants, giving a lower bound on the number of these instances that do admit a stable
matching. The final row in Table 1 gives, in the few cases where this was feasible, the
number of instances solved by Algorithm F, in other words, the actual number of solvable
instances.

Number of couples
Algorithm 2 5 10 15 20 25 30 35 40 45 50
C-RAN 981 965 909 870 827 801 740 648 604 529 453
C-STA 978 937 831 753 676 640 605 531 508 470 407
C-SGL 981 962 907 862 822 801 753 685 627 545 446
C-CPL 974 927 821 758 712 681 646 586 554 506 451
C-RLP 968 920 825 708 555 424 288 193 136 84 49

BB-RAN 983 966 916 882 851 829 772 701 621 530 430
BB-SCO 968 922 819 722 604 527 444 306 248 172 107
BB-USE 982 962 911 872 839 816 773 705 662 591 507

BB-USS 968 929 863 805 751 714 686 659 647 582 507

BB-SGL 968 931 864 819 779 749 716 699 654 553 429
BB-CPL 981 952 843 687 563 496 410 344 325 329 425
RP-RAN 929 841 704 601 501 411 384 353 274 256 228
RP-SGL 975 925 796 705 613 536 477 394 336 280 211
RP-CPL 917 843 693 586 489 405 358 304 266 222 220

Total 984 967 921 888 861 848 825 793 769 728 672

F 984 969 - - - - - - - - -

Table 1: Instances of size 100 (1 second per instance)

Number of couples
Algorithm 12 25 50 75 100 125 150 175 200 225 250
C-RAN 976 958 908 862 811 729 586 352 163 40 5
C-STA 965 925 807 745 660 588 481 331 191 41 10

C-SGL 976 957 904 861 801 752 677 504 244 61 4
C-CPL 964 908 804 767 709 580 426 253 122 30 5
C-RLP 962 922 805 546 271 92 19 3 1 0 0

BB-RAN 976 958 911 870 800 655 412 169 51 14 0
BB-SCO 958 914 793 663 498 342 230 122 65 29 8
BB-USE 976 957 909 867 799 696 501 254 81 27 4
BB-USS 963 934 880 825 764 716 682 546 281 71 4
BB-SGL 963 934 879 828 773 720 680 529 232 44 0
BB-CPL 974 943 783 482 215 95 25 8 0 1 2
RP-RAN 888 771 579 453 320 188 119 67 35 16 4
RP-SGL 952 897 701 547 395 277 170 83 41 9 3
RP-CPL 872 778 585 424 306 183 115 63 28 11 1

Total 976 958 911 871 820 775 739 642 401 143 29

Table 2: Instances of size 500 (5 seconds per instance)

In cases where a stable matching is not found, the variants of Algorithm BB can
provide potentially useful information not readily available from Algorithms C and RP,
namely how near they came to finding a stable solution. It is not unreasonable to regard a
matching with the smallest number of best blockers as being one that is closest to stability
– since the minimum number of best blockers is the same as the minimum number of agents
involved in blocking pairs.

Table 5 shows the average and maximum, taken over all instances that were not solved
by any of the algorithms, of the minimum number of best blockers found by any of variants
of Algorithm BB. This gives an indication of how close, in general, Algorithm BB came to
finding a stable matching in cases where none of the algorithms was able to find one. The

24

Number of couples
Algorithm 25 50 100 150 200 250 300 350 400 450 500
C-RAN 975 956 910 865 820 761 503 153 35 1 0
C-STA 961 906 766 672 594 440 238 80 23 1 0
C-SGL 975 956 908 866 818 786 675 362 101 6 0
C-CPL 955 913 802 752 707 525 242 69 11 0 0
C-RLP 968 923 789 376 89 13 0 0 0 0 0

BB-RAN 976 956 914 871 772 424 100 11 3 0 0
BB-SCO 963 916 785 655 492 324 173 97 32 7 2

BB-USE 976 955 912 868 782 475 140 19 5 0 0
BB-USS 968 934 878 824 775 745 638 296 47 0 0
BB-SGL 968 933 879 822 786 754 654 294 44 0 0
BB-CPL 969 934 745 395 80 7 0 0 0 0 0
RP-RAN 879 770 562 376 251 167 66 27 3 1 0
RP-SGL 948 863 695 503 326 239 103 33 6 1 0
RP-CPL 879 780 559 425 256 140 64 12 2 0 0

Total 976 956 914 871 830 799 714 469 151 12 2

Table 3: Instances of size 1000 (10 seconds per instance)

Number of couples
Algorithm 50 100 200 300 400 500 600 700 800 900 1000
C-RAN 970 957 926 855 810 744 518 82 1 0 0
C-SGL 970 957 924 854 799 745 670 360 25 0 0

BB-RAN 970 957 927 855 592 74 3 0 0 0 0
BB-USS 955 940 894 817 763 707 475 58 1 0 0
BB-SGL 956 939 894 820 760 718 508 67 0 0 0

Total 970 957 927 856 812 751 680 369 26 0 0

Table 4: Instances of size 2000 (20 seconds per instance)

clear messages is that, except when a high proportion of the applicants are in couples, we
can either find a stable matching, or come very close to one, in the vast majority of the
instances that we studied.

Percentage of linked applicants
Instance size 5 10 20 30 40 50 60 70 80 90 100

100
Average 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03 1.04 1.19

Maximum 1 1 1 1 1 1 1 2 2 2 4

500
Average 1.00 1.00 1.00 1.04 1.03 1.04 1.07 1.56 3.37 6.83 12.4

Maximum 1 1 1 2 2 2 4 10 14 23 29

1000
Average 1.00 1.02 1.02 1.04 1.03 1.11 1.26 4.13 11.6 23.1 37.6

Maximum 1 2 2 2 2 6 6 17 30 43 61

2000
Average 1.00 1.00 1.01 1.04 1,12 1.15 2.64 15.8 37.9 68.2 102

Maximum 1 1 1 2 2 4 22 45 69 102 144

Table 5: Average and maximum of overall minimum number of best blockers in unsolved
instances of sizes 100, 500, 1000 and 2000

One factor that could significantly affect the chances of a stable solution and the
performance of the various algorithms is the density of the compatibility matrix used
to form couples’ preference lists. The experiments reported above used a compatibility
probablity of 0.75, so to investigate this effect we repeated a subset of the simulations
using a lower compatibility probability of 0.3. Table 6 gives the results of running the
algorithms on the instances of size 100, but using that lower compatibility probability.
Again, the final row of the table summarises the results of running Algorithm F on these
instances.

It is obvious that allowing more time for any particular algorithm variant might in-

25

Number of couples
Algorithm 2 5 10 15 20 25 30 35 40 45 50
C-RAN 983 946 884 820 796 740 694 645 574 521 431
C-STA 979 917 812 693 654 560 522 518 462 448 376
C-SGL 983 946 877 815 794 741 695 660 589 532 431
C-CPL 976 914 800 706 685 638 607 576 519 506 435

C-RLP 974 927 838 730 621 502 367 275 180 127 98
BB-RAN 985 950 891 847 804 758 713 676 560 478 385
BB-SCO 973 930 841 742 623 544 413 333 227 158 115
BB-USE 983 932 884 838 792 751 709 680 590 522 410
BB-USS 973 932 865 806 753 706 655 646 572 522 410
BB-SGL 973 934 868 812 767 733 690 686 593 528 379
BB-CPL 983 936 781 606 461 368 280 257 225 262 384
RP-RAN 926 820 635 493 408 292 260 205 143 109 116
RP-SGL 976 908 792 656 552 420 339 277 214 165 118
RP-CPL 917 821 619 502 373 276 189 126 110 89 108

Total 985 950 894 848 813 776 754 743 679 643 559

F 985 952 - - - - - - - - -

Table 6: Instances of size 100 with 0.3 compatibility (1 second per instance)

crease the number of instances solved. To obtain a feel for this, we re-ran all of the
experiments on instances of size 100 but allowing 10 seconds per instance rather than 1
second, and a subset of the experiments, for the most successful algorithm variants, on
instances of size 500 but allowing 50 seconds per instance rather than 5 seconds. The
results are shown in Tables 7 and 8.

Number of couples
Algorithm 2 5 10 15 20 25 30 35 40 45 50
C-RAN 981 963 907 876 833 816 778 715 664 623 572
C-STA 978 938 830 760 701 681 641 585 572 542 502
C-SGL 981 963 906 861 829 816 782 737 686 628 580

C-CPL 974 927 826 778 739 724 710 654 639 611 573
C-RLP 968 921 824 711 571 438 308 207 149 89 56

BB-RAN 983 966 916 883 853 838 802 751 701 629 530
BB-SCO 968 922 819 722 604 527 444 306 248 172 107
BB-USE 982 962 911 872 841 820 782 735 700 653 579
BB-USS 968 929 863 805 751 714 687 670 668 637 579
BB-SGL 968 931 865 818 779 749 729 722 706 644 548
BB-CPL 981 954 842 697 576 523 451 387 362 401 534
RP-RAN 928 840 694 601 492 441 394 358 321 305 250
RP-SGL 975 925 796 714 617 557 493 418 358 312 258
RP-CPL 917 843 693 590 500 416 375 325 293 253 262

Total 984 967 921 886 861 848 831 803 786 761 727

Table 7: Instances of size 100 (10 seconds per instance)

Finally, we conducted a much smaller-scale study of larger instances, of sizes 10000,
20000 and 30000 (the latter of the order of magnitude of NRMP instances), to give an
indication as to whether the conclusions drawn from studying smaller instances would
continue to hold in such cases. Table 9 summarises the numbers of instances solved for
the cases of size 30000, where just 10 instances in each set were involved. Note that here,
each algorithm was allowed 30 seconds execution time on each instance, but, with only
a handful of exceptions, the solved instances were, in practice, solved in under 1 second.
The pattern of solved instances was similar for problem sizes 10000 and 20000.

This smaller scale study of instances of larger size confirms the general trends dis-
cernable for smaller instances. When the proportion of couples is small, the likelihood of
finding a stable solution remains high. However, as the ratio of couples to single applicants

26

Number of couples
Algorithm 12 25 50 75 100 125 150 175 200 225 250
C-RAN 976 957 908 864 813 752 654 453 233 75 9
C-SGL 976 957 902 861 801 759 716 582 319 100 8

BB-RAN 976 958 911 870 815 732 538 299 100 27 2
BB-USS 963 934 880 825 764 717 697 628 414 154 15

BB-SGL 963 934 882 830 771 727 704 612 357 93 3

Total 976 958 911 870 821 778 756 683 493 199 24

Table 8: Instances of size 500 (50 seconds per instance)

Algorithm 750 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
C-RAN 10 9 10 7 6 5 0 0 0 0 0
C-STA 10 9 8 6 6 5 4 0 0 0 0
C-SGL 10 9 10 7 6 5 5 0 0 0 0
C-CPL 10 9 5 5 6 0 0 0 0 0 0
C-RLP 10 9 0 0 0 0 0 0 0 0 0

BB-RAN 10 9 10 1 0 0 0 0 0 0 0
BB-SCO 10 8 6 4 4 2 1 0 0 0 0
BB-USE 10 9 10 0 0 0 0 0 0 0 0
BB-USS 10 9 10 6 5 1 0 0 0 0 0
BB-SGL 10 9 10 6 5 2 0 0 0 0 0
BB-CPL 10 9 6 0 0 0 0 0 0 0 0
RP-RAN 10 8 2 2 0 0 0 0 0 0 0
RP-SGL 10 9 6 6 1 2 0 0 0 0 0
RP-CPL 9 8 4 5 0 0 0 0 0 0 0

Total 10 9 10 7 6 5 5 0 0 0 0

Table 9: Instances of size 30000 solved by various algorithms (30 seconds per instance)

increases the decrease in the proportion of solved instances becomes steeper, reinforcing
the belief that the absolute number of couples, and not just the proportion, is significant
in this respect. For instances of size 10000 or greater, none of the algorithms was able to
solve a single instance in which more than 60% of the applicants were in couples. The other
notable feature for larger instances is the prominence of Algorithm C-SGL: this variant
dominated all of the others in the sense that every single instance of size 10000 or more
that was solved by at least one of the algorithm variants was solved by this particular one.

8 Discussion and conclusions

In this section we make a number of observations, on the basis of the empirical study,
regarding the effectiveness of the various algorithms and the question of the existence of
stable matchings.

Algorithm C
Variants C-RAN (random waiting list) and C-SGL (random waiting list subject to pri-
oritising single applicants) are the most successful, the former generally being superior
when the number of linked applicants is up to about 40% of the total, and the latter
when this ratio is exceeded. However C-SGL appears to become pre-eminent in the case
of larger instances. Use of a stack waiting list is generally less successful (except for a
curious unexplained outlier in the 500 data set when all applicants are in couples) – this
is a significant observation in view of the tendency for implementations of Gale-Shapley
like algorithms to organise applicants in a stack (as in the algorithm described by Klaus
et al. [6]). Prioritising the review list appears to be a bad strategy.

Algorithm BB

27

The relative success rate of the variants of Algorithm BB is very much dependent on
the instance size and number of couples, but the effectiveness of this conceptually simple
approach, at least when the proportion of couples is relatively small, came as something
of a surprise. It is curious how BB-USE is better than BB-USS on data sets of size 100,
but BB-USS is markedly better on the larger data sets. Also strange is the fact that
BB-CPL consistently outperforms BB-SGL when the number of couples is very small,
but otherwise BB-SGL is greatly superior. BB-RAN is never beaten when the proportion
of linked applicants is small (up to 30% of applicants). On larger data sets with many
couples BB-USS and BB-SGL perform much better than the other variants, so it seems
to be important to prioritise single applicants. Prioritising by score seems to be a poor
strategy (perhaps because it encourages cyclic behaviour) – but again there are curious
outliers in the 500 and 1000 data sets when all applicants are in couples.

Algorithm RP
It appears that our version of the Roth-Peranson algorithm is generally not competitive
with the other algorithms. This may not be entirely surprising, since in this approach
stability has to be achieved over and over again as each successive agent is admitted.
RP-SGL (single applicants admitted first) is consistently the best of the three variants,
confirming the findings reported in the original paper of Roth and Peranson [14].

Algorithm F
Although Algorithm F could be run only on instances with 100 applicants and 2 or 5
couples, the results are of some interest since they give a definitive answer to the question
of how many such instances do admit a stable matching. In the case of 2 couples (first
column of Tables 1 and 6), all such instances were identified by at least one of the heuristics,
but with 5 couples (second column of Tables 1 and 6) there were 2 instances with a stable
matching that none of the heuristics was able to solve.

Overall comparison
Variants of Algorithm BB – BB-RAN and BB-USE in particular – are the clear winners on
data sets of size 100. On larger data sets, variants of Algorithm C – C-RAN and C-SGL
in particular – are competitive, and the latter variant clearly outperforms any variant
of Algorithm BB as the proportion of couples grows, and indeed is unambiguously the
most effective variant for larger instances. Ideally, one might have wished that a single
algorithm would emerge as being unambiguously the best, but unfortunately the empirical
results do not lead to such a conclusion. Instead, it appears that it is a good strategy,
in practice, to have a number of algorithm variants available to maximise the chances of
finding a stable solution for any particular instance.

General
When the proportion of couples is low, the best algorithms solve all, or almost all, of the
instances that can be solved by any of the algorithms. Based on the limited evidence
from Algorithm F, it appears that all, or almost all, of such instances that do have a
stable matching can be identified and solved by the best heuristics. By contrast, for
higher proportions of couples, the total number of instances solved, aggregated over all of
the algorithm variants, can be substantially greater than the number solved by any one
algorithm. An increase in both the number of couples and the proportion of couples makes
it harder to find a stable matching, but we do not have the evidence to judge to what
extent this is because a stable matching is less likely to exist. For all of the algorithms,
prioritising single applicants rather than couples appears to be a good strategy, in other
words that assigning the “easier” agents first seems to be advisable. We have no strong
intuition as to why this should be the case, as in some other contexts, such as the use of
variable-ordering heuristics in constraint programming, handling the more awkward cases

28

first can often be the preferred strategy [3]. This is an issue that may be worthy of further
consideration and investigation.

Additional observations
Running the various algorithms on numerous data sets revealed a number of additional
interesting facts. For example, just as the number of solved instances decreased with an
increasing couples to singles ratio, so the average number of proposal steps for the solved
instances increased. For small number of couples, and even for the less effective algorithms,
it appeared that most instances that were solved at all were solved very quickly. However,
for larger numbers of couples many of the solved instances required a large number of
proposals.

When the compatibility probability is reduced, so that couples’ preference lists are
typically shorter, the numbers of instances for which a stable solution was found were
generally somewhat reduced. The overall pattern of results was somewhat similar to the
earlier case. However, the successful variants of Algorithm C seemed to be less affected
than the successful variants of Algorithm BB, and the variants of Algorithm RP seemed
to be most severely affected. Somewhat bizarrely, and inexplicably, the least effective
of all of the variants, Algorithms C-RLP and BB-SCO, improve when the compatibility
probability is lower. The use of a relatively high compatibility probability in our main
experiments can be justified by the fact that, in practice, linked applicants tend to submit
highly correlated preference lists, typically focusing on one geographical region in which a
high proportion of pairs of programmes are compatible.

When the algorithms are allowed more time to find stable matchings, there is very
little change in the results pattern for low or moderate numbers of couples. Indeed, in
the trials that we conducted, few if any additional instances of this kind were solved when
the time available was increased by a factor of 10. In one or two cases, the shorter runs
actually solved more such instances (presumably because in just one or two instances a
‘lucky’ sequence of random choices was made). For larger numbers of couples, there were
some significant increases in the numbers of instances solved. With one notable exception,
this trend of improvement was similar for all variants, though slightly more accentuated
for variants of Algorithm C when the number of couples was very high. The exception
was Algorithm BB-SCO, where the results, in all cases, were completely unchanged when
extra time was allowed, revealing the fact that failure to find a stable matching in this case
is the result of cyclic behaviour that appears to be inevitable in any particular instance
because of the fixed order in which best blockers are chosen.

More general contexts
Although the results and observations presented above are based on SHRC, the particular
version of the HRC problem that is relevant in our application domain, we believe that they
are indicative of the likely behaviour of the various algorithms were they to be tailored for
more general settings, where both programmes and couples have the freedom to form their
own preference lists. We note that our definition of stability is appropriate for this more
general context provided that the concept of superiority is replaced by that of position
within individual programme preference lists. Each of algorithms C, BB and RP can easily
be amended to handle the more general problem, except that, in the case of Algorithms
C and BB, Phase 1 is no longer applicable and Phase 2 therefore starts with an empty
matching.

Our empirical study was based exclusively on instances with a strictly ordered master
list. If, in a practical setting such as SFAS, the master list has ties, then these can, of
course, be broken arbitrarily to produce a strictly ordered list. However, the prospects of
finding a stable solution are even greater in this case, since different instances of SHRC
can be created by breaking ties in different ways, and failure to find a solution for one

29

such instance need not imply failure for another.

Acknowledgment
We acknowledge the contribution of one of the reviewers who suggested the investigation
of the problem from the point of view of fixed-parameter tractability.

References

[1] B. Aldershof and O.M. Carducci. Stable matchings with couples. Discrete Applied
Mathematics, 68:203–207, 1996.

[2] D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

[3] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence, 14(3):263–313, 1980.

[4] R.W. Irving, D.F. Manlove, and S. Scott. The stable marriage problem with master
preference lists. Discrete Applied Mathematics, 156:2959–2977, 2008.

[5] B. Klaus and F. Klijn. Stable matchings and preferences of couples. Journal of
Economic Theory, 121:75–106, 2005.

[6] B. Klaus, F. Klijn, and J. Massó. Some things couples always wanted to know about
stable matchings (but were afraid to ask). Review of Economic Design, 11:175–184,
2007.

[7] B. Klaus, F. Klijn, and T. Nakamura. Corrigendum: Stable matchings and preferences
of couples. Journal of Economic Theory, 144:2227–2233, 2009.

[8] F. Kojima, P.A. Pathak, and A.E. Roth. Matching with couples: stability and incen-
tives in large markets. Working paper, 2010.

[9] D. Marx and I. Schlotter. Stable assignment with couples: parameterized complexity
and local search. In Proceedings of IWPEC 2009: The Fourth International Workshop
on Parameterized and Exact Computation, volume 5917 of Lecture Notes in Computer
Science, pages 300–311. Springer, 2009. To appear in Journal of Combinatorial Op-
timization.

[10] E. McDermid and D.F. Manlove. Keeping partners together: Algorithmic results for
the hospitals / residents problem with couples. Journal of Combinatorial Optimiza-
tion, 19:279–303, 2010.

[11] http://www.nrmp.org/about nrmp/how.html (National Resident Matching Pro-
gram website).

[12] E. Ronn. NP-complete stable matching problems. Journal of Algorithms, 11:285–304,
1990.

[13] A. E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 6(4):991–1016, 1984.

[14] A. E. Roth and E. Peranson. The redesign of the matching market for American
physicians: Some engineering aspects of economic design. American Economic Re-
view, 89(4):748–780, 1999.

30

[15] A. E. Roth and J. H. Vande Vate. Random paths to stability in two-sided matching.
Econometrica, 58(6):1475–1480, 1990.

[16] A.E. Roth. Deferred acceptance algorithms: history, theory, practice, and open ques-
tions. International Journal of Game Theory, 36:537–569, 2008.

[17] J. Sethuraman, C-P. Teo, and L. Qian. Many-to-one stable matching: geometry and
fairness. Mathematics of Operations Research, 31:581–596, 2006.

[18] http://www.nes.scot.nhs.uk/sfas/ (Scottish Foundation Allocation Scheme web-
site).

31

