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Abstract
We survey the notion of control in various areas of
computational social choice: in voting, judgment
aggregation, fair division, cooperative game the-
ory, matching under preferences, group identifica-
tion, and opinion diffusion. In all these scenarios,
control can be exerted, e.g., by adding or deleting
agents with the goal of influencing the outcome.

1 Introduction
Computational social choice was founded by three seminal
papers of Bartholdi et al. [1989b; 1989a; 1992], and the
founding fathers of this area—at that time new, but now a
key topic at all large AI conferences—focused on winner de-
termination, manipulation, and control of elections. We sur-
vey some central models and results about control in com-
putational social choice since its beginnings. Control in elec-
tions means that a (usually external) agent (called the election
chair) modifies the structure of an election by, e.g., adding or
deleting voters or candidates with the goal of either making a
favorite candidate win (in the constructive case) or preventing
a despised candidate’s victory (in the destructive case).

Along with manipulation and bribery [Faliszewski et al.,
2009a], control attacks on single-winner elections were the
main focus of attention in the early days of computational
social choice and the subject of book chapters [Baumeister
and Rothe, 2024; Faliszewski and Rothe, 2016; Conitzer and
Walsh, 2016]. Since then the study of control has spread like
a wildfire over various other subfields of computational so-
cial choice. Our survey covers control not only in single-
winner and multiwinner voting but also in judgment aggrega-
tion, fair division, cooperative game theory, matching under
preferences, group identification, and opinion diffusion. In
each of these fields, we describe the underlying models and
scenarios and explain how control can be exerted in them, for
instance, by adding or deleting agents with the goal of in-
fluencing the outcome. We give an overview of some of the
main results on control in each of these fields and highlight a
number of challenges for future research.

2 Control in Voting
An election is given as a pair (C,V ) with a set C of candi-
dates and a list V of votes over C. We will assume that votes

are linear orders (but note that there are also other ways of
representing voter preferences, e.g., approval ballots). In or-
der to determine the winner(s) of an election (respectively, its
winning committee(s) of a given size), many single-winner
(respectively, multiwinner) voting rules have been proposed,
see, e.g., [Baumeister and Rothe, 2024; Zwicker, 2016;
Brams and Fishburn, 2002] (respectively, [Baumeister et al.,
2024; Faliszewski et al., 2017]). We start with the former.

2.1 Single-Winner Voting Rules
A very important class of single-winner voting rules are the
positional scoring protocols where candidates score points
based on their positions in the votes. Among these, we focus
on plurality where only top-ranked candidates score a point,
and on the rule by Borda [1781] where each candidate ranked
in the i-th position of a vote scores m − i points for m candi-
dates. For instance, in the election shown in Figure 1, d with
a score of 5 is the plurality winner (whereas a, b, and c score
only 1, 3, and 3 points) and b and d with a score of 19 are the
Borda winners (whereas a and c score only 17 points).

Other voting rules are based on pairwise comparisons of
candidates—among those, the Condorcet-consistent rules are
particularly important: rules that elect the Condorcet winner
whenever there exists one. A Condorcet winner of an election
is a candidate who beats all other candidates by a majority
of votes in pairwise comparison. Condorcet winners do not
always exist [Condorcet, 1785], but if so, they are unique. For
example, the voting rule due to Schulze [2011] is Condorcet-
consistent. Being widely used in practice and celebrated for
its many useful properties, it is based on the strength of paths
between candidates in the weighted majority graph (WMG)
of an election (C,V ): There is a vertex for each candidate,
and there is an edge from x to y exactly if the edge weight,
defined as the difference DV (x, y) of how many voters prefer
x to y minus how many prefer y to x, is positive (see the
WMGs in Example 1). Define the path strength str(p) as the
weight DV (c, d) of the weakest edge (c, d) on p. For each
pair of distinct candidates c, d ∈ C, define the strength of a
strongest path between c and d as PV (c, d) = max{str(p) ∣
p is a path from c to d}. Now, c ∈ C is a Schulze winner of
(C,V ) if P (c, d) ≥ P (d, c) for each d ∈ C ∖ {c}.

We now describe some typical control scenarios in voting.
Example 1. Anna (a), Belle (b), Chris (c), and David (d)
run for president of the renowned Association for Advancing



v1 ∶ b a c d v2 ∶ d c b a
v3 ∶ c a b d v4 ∶ d b c a
v5 ∶ a d b c v6 ∶ c b a d
v7 ∶ b c a d v8 ∶ d a b c
v9 ∶ d b a c v10 ∶ c a d b
v11 ∶ d c a b v12 ∶ b a d c

c a d

b
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Figure 1: An election (left) and its WMG (right)

Anonymous Ideas (AAAI). The 12 current AAAI members
eligible to vote cast the ballots shown in Figure 1 (left), where
candidates are ordered from left (most preferred) to right
(least preferred). The corresponding WMG (right) shows that
there is no Condorcet winner (as no vertex has only outgo-
ing edges) and all candidates are Schulze winners. Evil Eve,
though, is not happy about this. Being the election chair,
she has the power to add new voters (whose preferences she
knows). Wishing to make her favorite candidate d the unique
Schulze winner, she adds the (boldfaced) voters v13, . . . , v18,
and we obtain the following new election and WMG:

v1 ∶ b a c d v2 ∶ d c b a
v3 ∶ c a b d v4 ∶ d b c a
v5 ∶ a d b c v6 ∶ c b a d
v7 ∶ b c a d v8 ∶ d a b c
v9 ∶ d b a c v10 ∶ c a d b
v11 ∶ d c a b v12 ∶ b a d c
v13v13v13 ∶ b a c d v14v14v14 ∶ d c b a
v15v15v15 ∶ b c a d v16v16v16 ∶ d a b c
v17v17v17 ∶ d b a c v18v18v18 ∶ c a d b

c a d

b

2 2

2
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The WMG above shows that Eve has reached her goal:
d alone wins. Fraudulent Frodo, however, is not amused.
By making Eve’s control attack public (thus causing her im-
peachment), he becomes the new election chair. Unlike Eve’s
constructive goal, his goal is purely destructive: He doesn’t
care who wins as long as d is not the only Schulze winner. Of
course, he cannot simply delete the voters just added, but he
can exert control by deleting candidates (except d). By delet-
ing b, he obtains the following new election and WMG:

v1 ∶ a c d v2 ∶ d c a
v3 ∶ c a d v4 ∶ d c a
v5 ∶ a d c v6 ∶ c a d
v7 ∶ c a d v8 ∶ d a c
v9 ∶ d a c v10 ∶ c a d
v11 ∶ d c a v12 ∶ a d c
v13 ∶ a c d v14 ∶ d c a
v15 ∶ c a d v16 ∶ d a c
v17 ∶ d a c v18 ∶ c a d

c a d
2 2

2

Now, Frodo has reached his goal: Each of a, c, and d win,
so d is not a unique Schulze winner. ⌟

The scenarios described in Example 1 give rise to defining
the following problems. For constructive control by adding
voters (CCAV), we are given a set C of candidates, two lists

(V and U ) of votes over C, where already registered voters
cast the votes in V and in U are those of as yet unregistered
voters, a designated candidate c ∈ C, and a positive integer k.
The question is whether there is a sublist U ′ ⊆ U , ∣U ′∣ ≤ k,
such that c wins the election (C,V ∪ U ′). For destructive
control by deleting candidates (DCDC), an election (C,V ),
a designated candidate c ∈ C, and a positive integer k are
given, and we ask whether at most k candidates can be deleted
from C such that c does not win the resulting election.

Two winner models distinguished: The unique-winner
model requires c to be the only winner in the constructive
case and not winning alone in the destructive case, whereas
the nonunique-winner model only requires c to be one (of
possibly several) winner(s) in the constructive case and not
winning at all in the destructive case. The problems of con-
structive control by deleting voters (CCDV) and by adding
or deleting candidates (CCAC1 and CCDC) and of destruc-
tive control by adding candidates (DCAC) and by adding or
deleting voters (DCAV and DCDV) are defined analogously.

A variety of control scenarios by partition of voters or can-
didates have also been studied; especially control by parti-
tion of voters is interesting, as it models “gerrymandering”—
ways of redistricting voting districts. Due to space limita-
tions, however, we omit them here and only mention that
some cases of destructive control by partition of candidates
collapse [Hemaspaandra et al., 2020; Carleton et al., 2023].
We also omit defining and discussing further types of control,
such as control by replacing voters or candidates [Loreggia
et al., 2015; Erdélyi et al., 2021] and certain “more natural
models” of control by partition [Erdélyi et al., 2015c] as well
as multimode control attacks [Faliszewski et al., 2011], which
combine various standard control types. All these control at-
tacks omitted here are discussed in detail by Baumeister and
Rothe [2024] and Faliszewski and Rothe [2016].

For some of the control scenarios defined above, the elec-
tion chair’s goal can never be reached. For example, con-
structive control by adding candidates is never possible for
the chair in Condorcet voting: If the designated candidate
c is not a Condorcet winner in a given election, c does not
beat all other candidates in pairwise comparison, so c can
never be made a Condorcet winner by adding more candi-
dates. We then say Condorcet voting is immune (I) to this
type of control. If a voting rule is not immune to some con-
trol type, we say it is susceptible (S) to it, and in that case we
consider the computational complexity of the corresponding
problem. If it can be solved in P, we say the rule is vulner-
able (V) to this control type; and if it is NP-hard, we say
the rule is resistant (R) to it. Table 1 gives an overview of
the known complexity results for the four rules and the eight
control scenarios defined above. Results marked by ∗ are
due to Bartholdi et al. [1992]; by † due to Hemaspaandra
et al. [2007]; by § due to Russel [2007]; by $ due to Elkind
et al. [2011]; by ♠ due to Parkes and Xia [2012]; by ‡ due to

1Bartholdi et al. [1992] originally defined a variant (CCAUC)
where an unlimited number of candidates may be added: No k is
given. For most voting rules, CCAUC behaves just as CCAC in
terms of complexity. Interestingly, however, they behave differently
for Llull voting [Hägele and Pukelsheim, 2001]: CCAUC can be
solved in P, yet CCAC is NP-complete [Faliszewski et al., 2009b].



Menton and Singh [2013]; by ❄ due to Chen et al. [2015]; by
£ due to Loreggia et al. [2015]; by ♡ due to Hemaspaandra
and Schnoor [2016]; by ♣ due to Neveling and Rothe [2021];
by ♢ originally claimed by Menton and Singh [2013] whose
proof was later corrected by Maushagen et al. [2024]; and by
¶ originally claimed by Menton and Singh [2012] but later
stated as open [Menton and Singh, 2013] and re-established
by Maushagen et al. [2024].

Table 1: Control complexity results for some voting rules
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Plurality V∗ V† V∗ V† R† R† R∗ R† R∗ R†

Borda R§ V§ R♡ V§ R$ V£ R♣ V♣ R❄ V£

Condorcet R∗ V† R∗ V† I† V† I∗ V† V∗ I†

Schulze R♠ R♠ R♠ R♠ R♠ ? R‡ ? R♢ V¶

Observe that the destructive case never is harder than the
constructive case (note that immunity means that the control
problem is trivial and thus in P). Solving the open cases in
Table 1 for Schulze voting seems to be a challenging task.
Challenge 1. Solve the open cases in Table 1 for Schulze
voting: What is the complexity of DCAC and DCAUC?

The control complexity has also been explored for many
other natural voting rules, which we will not define here:
for approval voting [Hemaspaandra et al., 2007]; Copeland
and Llull voting [Faliszewski et al., 2009b]; sincere-strategy
preference-based approval voting [Erdélyi et al., 2009]; k-
approval and k-veto [Lin, 2011; Lin, 2012]; range voting and
normalized range voting [Menton, 2013]; ranked-pairs voting
[Hemaspaandra et al., 2013; Maushagen et al., 2024]; Buck-
lin and fallback voting [Erdélyi et al., 2015a; Erdélyi et al.,
2015b]; and veto and maximin [Maushagen and Rothe, 2016;
Maushagen and Rothe, 2018; Maushagen and Rothe, 2020].

2.2 Multiwinner Voting Rules
3 Control in Judgment Aggregation
4 Control in Fair Allocation
Dividing resources among a set of agents in a fair and efficient
way is a practical problem that has been around since biblical
times. The possible settings are widely varied, based on the
type of resources, the fairness and efficiency criteria, and the
possible additional constraints on the desired allocation. The
resources to be allocated are usually non-homogeneous, i.e.,
different agents may value a given part of it differently, and
can be either divisible or indivisible. In cake cutting, each
agent has a utility function over a divisible resource called
the cake, while in fair division, each agent has utilities over a
set of indivisible items, expressed either as a cardinal utility
function or a linear preference order.
Example 2. Suppose that the Anna, Belle, Chris, and David
receive a gift bag from their aunt for Christmas containing a
kite (K), a toy lion (L), a pair of mittens (M), a jar of nutella

(N), and an oboe (O). To distribute the gifts in a fair way,
their father asks the children to evaluate them, eliciting the
following values.

K L M N O

a ∶ 6 2 1 10 1
b ∶ 0 3 3 10 4
c ∶ 5 3 0 10 2
d ∶ 3 2 0 10 5

πdad πmum

a ∶ K K
b ∶ M L,M
c ∶ L P
d ∶ O O

The children’s father, anticipating a calamity, quickly con-
fiscates the jar of nutella. He allocates the gifts according to
the allocation πdad shown above. Pointing out that each child
has received a gift that is worth more than the fourth of the
total value of all remaining gifts (i.e., more than 10

4
), he walks

away with the nutella.
Immediately, a skirmish breaks out, because Belle envies

the oboe from David, and Anna envies the kite from Chris.
The children’s mother comes to the rescue brandishing a set
of paints (P), valued to 5 by each child, and redistributes the
gifts according to allocation πmum above. Peace ensues. ⌟

In Example 2, the control action performed by the father
was item removal, with the aim of achieving an allocation that
is proportional, that is, allocates to each agent p a subset of
the item set I having value at least up(I)/∣A∣ where A is the
set of agents and up ∶ I → N denotes the valuation function
of p which naturally extends to 2I by assuming additive val-
uations. The second control action, performed by the mother,
was item addition, to facilitate an envy-free allocation, i.e., al-
location π ∶ A → 2I where up(π(p)) ≥ up(π(q)) holds for
each two agents p and q.

The study of control in fair allocation was initiated by
Aziz et al. [2016]. Besides item removal and item addition,
Aziz et al. also defined agent removal and agent addition, as
well as item/agent replacement and item/agent partitioning
for achieving fairness. Instead of defining these control ac-
tions formally, we will focus on the control action considered
most often (in fact, almost exclusively) in the literature: item
removal. The popularity of this notion is probably due to the
fact that donating goods is a natural and practically feasible
option in most scenarios.

Caragiannis et al. [2019] considered cardinal and additive
preferences, and proposed an algorithm for finding an allo-
cation that is envy-free up to any item (EFX), meaning that
no agent envies another agents’ bundle after the worst item is
discarded from it, and is guaranteed to have at least half of
the Nash welfare2 achievable by any allocation. Chaudhury
et al. [2021] gave a method for finding an allocation that is
EFX by donating a bundle of at most ∣A∣ items such that no
agent would prefer the donated bundle to its own.

In a setting with ordinal preferences, Brams et al.[2014]
have devised an algorithm for two agents that produces an
envy-free3 partial allocation with the minimal number of un-
allocated (or from a different perspective, donated) items.

2The Nash welfare of an allocation is the geometric mean of the
utility values obtained by the agents.

3An allocation π is envy-free under ordinal preferences, if for
each two agents p and q there is an injection f from π(j) to π(i)
such that for each item x ∈ π(j) agent i prefers f(x) to x.



Aziz et al. [2016] showed that a similar algorithm is not
possible for three agents, since even determining whether a
complete envy-free allocation exists is NP-hard. Under or-
dinal preferences, deciding the existence of a proportional4
allocation is easy, but computing the minimum number of
items whose removal leaves an instance admitting a propor-
tional allocation is NP-hard already for three agents [Dorn
et al., 2021]. Besides obtaining an FPT algorithm for three
agents, parameterized by the number of item removals, Dorn
et al. [2021] also considered a setting where some fixed allo-
cation is given in advance, and the task is to make this alloca-
tion proportional by removing items.

Applying control to make an a priori fixed allocation fair
was also studied by Boehmer et al. [2024] for the setting with
additive cardinal utilities over indivisible items, and by Segal-
Halevi [2022] for cake cutting with geometric constraints.

Finally, let us mention that researchers have also consid-
ered hiding information [Hosseini et al., 2020; Bliznets et
al., 2024] to achieve fairness which may also be considered a
form of control.

5 Control in Cooperative Game Theory
One of the type of games in cooperative game theory are
coalitional games with a characteristic function [von Neu-
mann and Morgenstern, 1944], which are defined as a pair
(N,v) with player set N and characteristic function v ∶
2N → R. Each subset of N is called a coalition. The coali-
tional game is monotonic if for any C,C ′ with C ⊆ C ′ ⊆ N ,
v(C) ≤ v(C ′). It is called simple, if additionally v(C) ∈
{0,1} for all C ⊆ N ; if v(C) = 1, we call C a winning coali-
tion, while if v(C) = 0, we call it a losing coalition. We call
a player i pivotal for C ⊆ N ∖ {i} if v(C ∪ {i}) − v(C) = 1.

The analysis of simple games includes, i.a., answering
the question of how import a player is in forming win-
ning coalitions. This importance is measured by power in-
dices such as the Shapley–Shubik index [Shapley and Shubik,
1954] and the probabilistic Penrose–Banzhaf index [Dubey
and Shapley, 1979]; both are #P-complete [Valiant, 1979] to
compute [Deng and Papadimitriou, 1994; Prasad and Kelly,
1990]. The power indices count—each in a different way—
the coalitions for which the player is pivotal in the considered
game.

Next to measuring the power, the interesting topic of tem-
pering it has also been wildly studied—we discuss some ex-
amples of control in two classes of simple games in the fol-
lowing two subsections.

5.1 Adding or Deleting Players in Weighted Voting
Games

A weighted voting game (WVG) G = (w1, . . . ,wn; q) is a
simple coalitional game with player set N , which consists of
a quota q ∈ N and nonnegative integer weights, where wi is
the weight of player i ∈ N . Let wC = ∑i∈C wi for C ⊆ N . The
characteristic function v of G is defined as follows: v(C) = 1
if wC ≥ q, and v(C) = 0 otherwise.

4An allocation π ∶ A → 2I is proportional under ordinal prefer-
ences, if for any i ≤ ∣I ∣ each agent gets at least i/∣A∣ items among
the first i items of her preference list.

Inspired by the idea discussed in Section 2, Rey and
Rothe [2018] introduced control of the player set in a given
weighted voting game in two forms: by adding players and
by deleting players. The goal of the control, in both cases,
is increasing, nondecreasing, decreasing, nonincreasing, or
maintaining a given player’s power. They analyzed the prob-
lems in the context of their computational complexity, so they
defined the related decision problems as follows: In the case
of control by deleting players, for a given WVG, a distin-
guished player, and a specified limit, the question is whether
it is possible to change or maintain—according to the chosen
goal—this player’s power index by deleting not more than
the specified number of players; in the case of the control by
adding players, a set of new players is additionally provided
and the question is whether the same goal can be achieved by
adding not more than the specified number of new players.

These problems have been studied for the probabilistic
Penrose–Banzhaf and the Shapley–Shubik indices [Rey and
Rothe, 2018; Kaczmarek and Rothe, 2024b; Kaczmarek and
Rothe, 2024c; Kaczmarek and Rothe, 2024a]. For all prob-
lems of control by adding players, completeness for the class
NPPP (the class of problems solvable by a nondetermin-
istic Turing machine accessing PP oracle [Turing, 1939;
Gill, 1977]) was established [Rey and Rothe, 2018; Kacz-
marek and Rothe, 2024c; Kaczmarek and Rothe, 2024a].
For the problems of control by deleting players, the ques-
tion of where their completeness can be found is still open;
the current known bounds are—depending on the specific
problem—are as follows: NPPP as the upper bound for all of
them [Rey and Rothe, 2018]; the classes NP, coNP, DP [Pa-
padimitriou and Yannakakis, 1984], and Θp

2
[Papadimitriou

and Zachos, 1983] as the lower bounds [Rey and Rothe, 2018;
Kaczmarek and Rothe, 2024b].

Kaczmarek and Rothe [2024b] introduced the model of
weighted voting games where a game’s quota is not directly
given. Specifically, it is defined as r ⋅wN for player set N and
a specified factor r ∈ [0,1]. At first glance, this change does
not seem to be significant; however, it is in the context of the
problems discussed above. The authors introduced and ana-
lyzed the corresponding decision problems, where the control
types applied to a given WVG can result in a WVG with not
only a modified player set but also an altered quota. They
established the upper bound for all of them for NPPP and
proved their hardness for the classes NP, coNP, and DP.

Challenge 2. Find a completeness result for the decision
problems of control by adding or deleting players with the
goal of either changing or maintaining a player’s power in
both models of WVGs, where it has not been established yet.
Analyze these control types for other power indices.

5.2 Adding or Deleting Edges in Graph-Restricted
Weighted Voting Games

WVGs have also been studied with an additional restriction
by a graph [Myerson, 1977; Napel et al., 2012]—undirected
simple graph (see, e.g., [Diestel, 2017]), whose vertices cor-
respond to players. In these games, coalition C wins if and
only if there exists C ′ ⊆ C such that wC′ ≥ q, for a given
quota q, and C ′ induces a connected subgraph of the restrict-



ing graph. Despite the restriction, however, computing the
two power indices stays #P-complete [Skibski et al., 2015].

With the new structural component, additional control pos-
sibilities arise: for a given graph-restricted WVG, a distin-
guished player, and a specified limit, the question is whether
adding or removing up to the specified number of edges
can change or maintain the player’s power [Kaczmarek and
Rothe, 2021]. While no completeness results have been es-
tablished, all these problems are at least NP-hard or coNP-
hard. Therefore, the challenges in the analysis of their com-
plexity are analogous to Challenge 2.

6 Control in Matching under Preferences
Most work on control in relation to matching under prefer-
ences concentrates on the classic STABLE MARRIAGE (SM)
problem and its generalization, the COLLEGE ADMISSION
(CA) problem [Gale and Shapley, 1962]. In an instance of
SM, we are given a set of agents on a two-sided market, tradi-
tionally called men and women, and a preference list for each
agent, which is a strict linear order over a subset of agents
from the opposite side of the market. The task is to find a
matching between men and women that is stable, i.e., con-
tains no man–woman pair such that both of them prefer each
other to their partner in the matching (called a blocking pair).
Example 3. Suppose that Anna (a), Belle (b), Chris (c),
and David (d) are attending a dance class, and need to form
opposite-sex couples. Their preferences are as follows:

a ∶ c d, c ∶ a b,
b ∶ c d, d ∶ b a.

The only stable matching in this instance is {(a, c), (b, d)}.
However, Belle’s friend, Evil Eve, is among the teachers of
the class, and her goal is to match Belle with her top-choice
partner, Chris. She considers three options to achieve her
goal: (1) declaring that Chris is too short for Anna and hence
cannot dance with her, (2) stepping on Anna’s toes with her
high heels, thereby sending her off to ER, or (3) inviting her
attractive friend, Frodo (f ) whom Anna prefers to Chris. She
decides on option (3), and obtains the following instance:

a ∶ f c d, c ∶ a b,
b ∶ c d f, d ∶ b a,

f ∶ b a.
But Eve is not entirely satisfied, as now there are two stable
matchings, M1 = {(a, f), (b, c)} and M2 = {(a, c), (b, f)}.
Hence, she declares that Frodo is too tall for Belle, thus en-
suring that M1 becomes the only stable matching. ⌟

Example 3 highlights some of the settings examined by
Boehmer et al. [2021] who initiated the study of control prob-
lems in relation to stable matchings. Boehmer et al. defined
five manipulative actions and three different goals, thereby
obtaining 15 different computational problems. Among these
actions are the control actions showcased in Example 3:

• AddAg: adding agents (e.g., inviting Frodo),
• DelAg: deleting agents (e.g., removing Anna from the

class), and
• DelAcc: deleting acceptability (e.g., declaring con-

straints on who can dance with whom);

others involve changing the preference lists of the agents and
thus fall into the category of manipulation or bribery.

Example 3 depicts also some of the possible goals that an
external controller may want to ensure. These may either fo-
cus on a distinguished agent or pair of agents, or aim to ob-
tain a stable matching with some desirable property, e.g., a
perfect matching, where every agent is matched. In the gen-
eralization of SM where the underlying graph is not necessar-
ily bipartite, called the STABLE ROOMMATES model, a stable
matching may not exist, so ensuring the existence of a stable
matching becomes a meaningful aim. Below, we summarize
known results for problems where the controller’s aim is that

• MA: a given agent is matched in a stable matching,
• MP: a given pair is contained in a stable matching,
• SM: a given matching becomes stable,
• USM: a given matching becomes the unique stable

matching,
• ∃SM: a stable matching exists, or
• ∃PSM: a perfect and stable matching exists.
For each control action A ∈ {AddAg,DelAg,DelAcc} and

each goal G ∈ {MA,MP,SM,USM,∃SM,∃PSM} discussed
above, the CONTROL IN STABLE MARRIAGE-A-G (or CSM-
A-G) problem asks for the minimum number of control ac-
tions necessary to achieve the given goal in a given SM in-
stance; we call the non-bipartite variants of these problems
CONTROL IN STABLE ROOMMATES-A-G (or CSR-A-G).5

Table 2: Complexity results for CONTROL IN STABLE MARRIAGE
(or ROOMMATES)-A-G problems. The problems CSM-A-∃SM are
omitted, as a stable matching always exists in an instance of SM.
Background coloring is used to group each problem SCR-A-G and
its bipartite variant.
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AddAg R▽ R▽ R∗ R∗ V∗ R▽ R∗ R∗ R▽ R▽ R▽

DelAg V∗ V▽ V∗ V▽ R∗ R∗ R∗ R∗ V† V† V†

DelAcc R♡ R♡ R∗ R∗ V∗ V∗ V∗ ? R♢ R♠ R♠

In Table 2, result by Boehmer et al. [2021] and easy conse-
quences thereof are marked with ∗ and with ∗, respectively.
Results by Chen and Schlotter [2025] are marked with ▽,
by Tan [1990; 1991] with †, by Schlotter and Mnich [2020]
with ♡, by Abraham et al. [2006] with ♢, and by Biró et
al. [2010] with ♠. We remark that some of the problems
CSM-DelAg-G have been studied in a the context of almost
stable matchings, i.e., matchings with few blocking pairs:

5We remark that the definition of CSR-A-G for control goals
SM and USM is somewhat problematic for control actions AddAg
and DelAg, since these actions change the set of agents. We adopt
the approach by Boehmer et al. [2021] who assume that the match-
ing M given in the input covers the total set of agents (including all
addable agents), and we aim to add a few agents such that the result-
ing instance contains a matching M ′ ⊆M as a stable (or the unique
stable) matching.



e.g., an instance of STABLE ROOMMATES admits a match-
ing with at most k blocking pairs if and only if we can ensure
the existence of a stable matching by k deletions of accept-
ability. Similarly, the minimum number of blocking pairs in
any matching that matches a given agent or contains a given
pair is exactly the minimum number of DelAcc actions that
ensures the corresponding goal G ∈ {MA,MP}. Further in-
tractability and parameterized results were provided by Gupta
and Jain [2025] for weighted and destructive variants of many
of the problems in Table 2, and by Bérczi et al. [2024] re-
garding agent deletion problems with additional constraints.
Kamiyama [2025] looked at the problem where preferences
can contain ties, and we aim for a super-stable matching by
deleting as few agents as possible.

A prominent line of research has also emerged in connec-
tion to the CA problem, the many-to-one variant of SM where
the two sides of the market represent students and colleges,
and each college comes with a capacity; the task is then to
find a matching of students to colleges that respects capacities
and is stable, i.e., there exists no student–college pair (s, c)
such that s prefers to be matched to c, while either c is unsat-
urated, or there is a student matched to c to whom c prefers s.
The control actions focused on by most researchers in this
setting are capacity increase, capacity decrease or capacity
modification (when both increasing and decreasing capaci-
ties is allowed). The controller’s goal is most often to ensure
the existence of a stable matching that fulfills some desirable
property such as being perfect or Pareto-optimal, by using as
few control actions as possible.

Bobbio et al. [2022] have studied the problem of mini-
mizing capacity increase (or decrease) for obtaining a stable
matching that minimizes the average college rank to which
students are matched, and proved both problems to be NP-
complete and hard to approximate; a further study developed
mixed integer programs for these problems [Bobbio et al.,
2023]. Chen and Csáji [2023] initiated the study of deter-
mining the existence of a stable matching that is simultane-
ously perfect or Pareto-optimal through capacity increases,
while bounding the sum or the maximum of these modifica-
tions. Among these four problems, only one turned out to be
polynomial-time solvable (when we bound the maximum ca-
pacity increases and aim for a perfect and stable matching),
while the other three are NP-hard. They further investigated
the parameterized complexity. Afacan et al. [2024] also con-
sidered obtaining a Pareto-optimal and stable matching, but
they worked with a model that includes a lower quota for each
college and has an upper bound only on the sum of college
capacities. Gokhale et al. [2024] gave a polynomial-time al-
gorithm for stabilizing a given matching (SM) via capacity
increase or decrease, and proved that the problem of ensuring
that some student–college pair is contained in a stable match-
ing (MP) is NP-hard for these two control actions.Nguyen
and Vohra [2018] considered a setting where students can
form couples and submit joint preference lists, and showed
that there is a capacity modification yielding a stable match-
ing where each hospital’s capacity is modified by at most two,
and the total capacity modification is at most four.

7 Control in Group Identification
Broadly speaking, group identification deals with finding a
socially qualified group among individuals. To this end, each
individual either qualifies or disqualifies all other individuals
(and themselves) for inclusion in the group. More formally,
given a set A of individuals and a profile φ ∶ A ×A → {0,1},
we use a group identification rule F to determine a socially
qualified group F (φ,A) ⊆ A. We say individual a ∈ A so-
cially qualifies b ∈ A if φ(a, b) = 1 and socially disqualifies b
if φ(a, b) = 0.

Recently, in the setting of control, three group identifica-
tion rules have been studied. The consent rule f (s,t) [Samet
and Schmeidler, 2003] and two procedural rules [Dimitrov et
al., 2007], namely the consensus-start-respecting-rule fCSR

and the liberal-start-respecting-rule fLSR. In the consent
rule f (s,t) a social qualification is determined by their own
individual assessment and two thresholds s and t. If an indi-
vidual qualifies themselves, they are qualified if and only if
at least s − 1 other individuals qualify them. Vice versa, if an
individual does not qualify themselves, they are disqualified
if and only if at least t − 1 other individuals also disqualify
them.

The second type of group identification rules are the pro-
cedural rules. These rules recursively add individuals who
are qualified by the current members into the group until no
member qualifies any individual outside the group (i.e., no
new member was added during a recursion call). The rules
differ in the selection of the initial group. The liberal-start-
respecting-rule fLSR starts with the set of individuals, who
qualify themselves, while in the consensus-start-respecting-
rule fCSR, the initial set is given by individuals who are qual-
ified by everyone (including themselves).

Example 4. After noticing the rigged election, the Asso-
ciation for Advancing Anonymous Ideas (AAAI) proposes
a new format for finding their leadership. They ask each
of the four candidates (Anna, Belle, Chris and David) who
they deem qualified to lead the association in the coming
years. Of course, everyone qualifies themselves. In addi-
tion, Anna qualifies everyone; Belle qualifies David; Chris
qualifies Belle and David; and, lastly, David qualifies Chris.
The resulting qualifications are depicted in Figure 2. Using
fCSR as the group identification rule, the association deter-
mines Belle and David as the qualified group. Evil Eve, again
unhappy with the result and wielding the power to change the
process, removes Chris from contention. Now, David is the
sole qualified individual. This, again, results in Frodo tak-
ing action and adding Grace to the pool of candidates. Grace
qualifies only herself and is deemed qualified by everyone
(the new resulting qualification graph is depicted in Figure 3).
As a result, the new socially qualified group consists solely of
Grace.

⌟
Evil Eve and Frodo both changed the qualified group by

influencing the structure of the identification task. The study
of control complexity in group identification was initiated
by Yang and Dimitrov [2018], who first studied constructive
group control by adding individuals (CGCAI), constructive
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Figure 2: Social qualifications before control is exerted in Exam-
ple 4. The social qualification graph contains a directed edge from
v to v′ if and only if φ(v, v′) = 1 for v, v′ ∈ A.
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c d
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c d

g

Figure 3: Social qualifications after control is excerted in Example 4.
The left graph shows the qualifications after Evil Eves control action
and the graph on the right depicts the state after Frodo’s intervention.

group control by deleting individuals (CGCDI) and construc-
tive group control by partitioning of individuals (CGCPI). In
the setting of group identification, the election chair’s goal is
to help a subset A+ ⊆ A of individuals to become socially
qualified (constructive control) [Yang and Dimitrov, 2018] or
prevent a subset A− ⊆ A of individuals from being included
in the socially qualified group (destructive control) [Erdélyi
et al., 2020].

Table 3 gives an overview of results for control in group
identification for fLSR and fCSR. Results marked by ♢ are
due to Yang and Dimitrov [2018], and by ♠ are due to Erdélyi
et al. [2020].

Table 3: Control complexity results for group identification for
fLSR and fCSR.
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fCSR R♢ R♠ V♢ V♠ ? ?
fLSR R♢ I♠ I♢ V♠ I♢ V♠

Recently, a domain restriction, namely the domain of con-
secutive qualifications, has been given more attention. Yang
and Dimitrov [2023; 2024] studied control with the restriction
to the consecutive domain for the consent rule, both procedu-
ral rules and through the lens of parameterized complexity. In
addition to control, Erdélyi et al. [2020] also studied bribery
in group identification. Boehmer et al. [2023] initiated the
study of a generalized problem (Constructive+Destructive)
and Exact Control in bribery, as well as considering these in
the setting of parameterized complexity. A different bribery

setting, namely mircrobribery, was studied by Erdélyi and
Yang [2020].

Challenge 3. Solve the open cases in Table 3 for fCSR:
What is the complexity of CGCPI and DGCPI? 6
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