
Theoretical Computer Science 255 (2001) 193–204
www.elsevier.com/locate/tcs

Marked PCP is decidable

Vesa Halavaa ;∗, Mika Hirvensalob;a ;1, Ronald de Wolf c;d

aTurku Centre for Computer Science, Lemmink�aisenkatu 14 A, 4th �oor, FIN-20520, Turku, Finland
bDepartment of Mathematics, University of Turku, FIN-20014, Turku, Finland

cCWI, P.O. Box 94079, Amsterdam, Netherlands
dUniversity of Amsterdam Netherlands

Received September 1998; revised March 1999
Communicated by A. Salomaa

Abstract

We show that the marked version of the Post Correspondence Problem, where the words on
a list are required to di0er in the 1rst letter, is decidable. On the other hand, we prove that the
PCP remains undecidable if we only require the words to di0er in the 1rst two letters. Thus we
locate the decidability=undecidability-boundary between marked and 2-marked PCP. c© 2001
Elsevier Science B.V. All rights reserved.

Keywords: Post Correspondence Problem; Marked morphism; Decidability

1. Introduction

The Post Correspondence Problem (PCP) [7] is one of the most useful undecid-
able problems, because of its simple, combinatorial description. Many other problems
can easily be reduced to it, particularly problems in formal language theory. To de-
1ne the general form of the problem we use a 1nite source alphabet �= {a1; : : : ; an},
a 1nite target alphabet � and two morphisms g; h:�∗ → �∗ (g(ab)= g(a)g(b) and
h(ab)= h(a)h(b) whenever a; b∈�∗). An instance of the PCP is a four-tuple I =(�; �; g;
h) and the PCP itself is the following decision problem:

Given I =(�; �; g; h), is there an x∈�+ such that g(x)= h(x)?

∗ Corresponding author.
E-mail addresses: vehalava@cs.utu.1 (V. Halava), mikhirve@utu.1 (M. Hirvensalo), rdewolf@cwu.nl
(R. de Wolf).
1 Supported by the Academy of Finland under grant 44087.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00163 -2

194 V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204

In other words, we have two lists of words g(a1); : : : ; g(an) and h(a1); : : : ; h(an) and
we want to decide if there is a correspondence between them: are there ai1 ; : : : ; aik ∈�
such that g(ai1) : : : g(aik)= h(ai1) : : : h(aik)? The word x∈�∗ such that g(x)= h(x) is
called a solution of I .
The general form of this problem is undecidable [7], the reason being that the two

morphisms together can simulate the computation of a Turing machine on a speci1c
input. Examining restricted versions of the PCP allows one to locate the boundary
between decidability and undecidability. For instance PCP(1), where n=1, is trivially
decidable and it turns out that also PCP(2) (n=2) is decidable [1]. On the other hand,
PCP(7) remains undecidable [6] and presently the decidability status is open for source
alphabet sizes 2¡n¡7.
We may think about other kind of restrictions, too: For instance, the decidability of

the problem is trivial if we restrict to solutions shorter than some 1xed k, but this re-
stricted form is NP-complete [2, p. 228]. If we restrict to g; h which have to be injective
(g is injective if x �= y implies g(x) �= g(y)), the problem still remains undecidable [4].
A stronger restriction than injectivity is to have g and h marked, which we formally

de1ne as follows. If z is a string, then Prefk(z) stands for the pre1x of length k
of z (Prefk(z)= z if |z|6k). A morphism g is k-marked if g is nonerasing (g(a)
is always nonempty) and Prefk(g(a)) �=Prefk(g(b)) whenever a �= b∈�. An instance
I =(�; �; g; h) of the PCP is k-marked if both g and h are k-marked, and k-marked
PCP is the PCP decision problem restricted to k-marked instances. We will abbreviate
1-marked to marked. If I is marked then g(a) and g(b) start with a di0erent letter
whenever a �= b∈�, which implies that |�|6 |�|, but without loss of generality we
may even assume that �⊆�. Markedness clearly implies injectivity (but k-markedness
does not, in general): suppose g is marked and x �=y∈�+, let x= zax′ and y= zby′; a
and b being the 1rst letter where x and y di0er. Because of markedness we have
g(a) �= g(b), hence g(x)= g(z)g(a)g(x′) �= g(z)g(b)g(y′)= g(y), so g is injective. The
converse does not hold. Consider for instance �=�= {1; 2}; g(1)= 11; g(2)= 12,
then g is injective but not marked.
The proof of decidability of PCP(2) in [1] is based on a reduction from arbitrary

instances of PCP(2) to marked instances of the generalized PCP(2), which is the fol-
lowing decision problem: Given morphisms g; h :�∗ → �∗ and words u1; u2; v1; v2 ∈�∗,
is there a word x∈�+ such that u1g(x)u2 = v1h(x)v2? The authors then introduce a re-
duction procedure to convert an instance of generalized PCP to a (hopefully) simpler
instance and eventually prove by extensive case analysis that the marked generalized
PCP(2) is decidable. In particular the marked PCP(2) is decidable. Here we extend the
reduction procedure of [1] and show that the marked PCP is decidable for any alphabet
size. We will in fact show that the marked PCP is in PSPACE (the class of languages
that can be recognized in space upper bounded by p(N) for some polynomial p of
the input size N).
As stated above, the PCP can be used for establishing the boundaries between decid-

ability and undecidability. The main result of this paper is the decidability of the marked
PCP. How much can we weaken the markedness condition before we lose decidability?

V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204 195

Fig. 1. Building a solution of marked PCP.

We will show in Section 7 that the 2-marked PCP is undecidable, thus locating the
decidability=undecidability-boundary between 1-markedness and 2-markedness.
In another direction, we can weaken the markedness condition by only requiring g

and h to be pre>x morphisms (g is pre1x if no g(ai) is a pre1x of another g(aj)) or
even bipre>x (g is bipre1x if no g(ai) is a pre1x or suHx of another g(aj)). It turns
out that the bipre1x PCP is undecidable [8]. 2

2. Finding the decision procedure

A very obvious method to 1nd solutions of an instance I =(�; �; g; h) of the marked
PCP (if there are any) is to try to construct a solution x such that g(x)= h(x) would
begin with a particular a∈�. Such a solution will be referred to as a solution with
label a hereafter. Let us 1x a label a∈�. The attempt begins by choosing words
�0 = g(a1) and �0 = h(b1) that begin with a. If there are such words, they are unique
because g and h are marked, and we check whether �0 and �0 are comparable (one of
the words is a pre1x of the other). Assume, for instance, that �0 = �0s for some s∈�∗
which we call an over�ow of g (overJow of h is de1ned analogously). Because h is
marked, there is at most one b2 ∈� such that h(b2) begins with the initial letter b of
s. If h(b2) is comparable with s, we de1ne �1 = �0 and �1 = �0h(b2) (see Fig. 1).
In general, the procedure can be described by means of a sequence (�i; �i), where

(�0; �0) is de1ned as above and

(�i+1; �i+1)=




(�i; �ih(c)); if |�i|¿ |�i| and �i and �ih(c)
are comparable for some c∈�:

(�ig(c); �i); if |�i|¡ |�i| and �ig(c) and �i
are comparable for some c∈�:

Otherwise (�i+1; �i+1) remains unde1ned. Because g and h are marked, each (�i; �i) is
unique, if de1ned. The process continues until one of the following cases occur:

1. Blocking case

If |�i|¿ |�i| (resp. |�i|¡ |�i|) but �i and �ih(c) (resp. �ig(c) and �i) are not com-
parable for any c∈�, we call the case blocking (Fig. 2).

2 Clearly, a marked morphism is pre1x. Both marked and bipre1x PCP are special cases of the injective
PCP, but the 2-marked PCP is not. See also at the end of Section 7.

196 V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204

Fig. 2. Blocking case, d1 �= d2.

Fig. 3. Periodic case.

2. Periodic case

If an overJow of g or h is seen twice, the case is called periodic. Because the
continuation is always unique, the process would cycle forever (Fig. 3).

3. Terminating case

If �i= �i for some i, we say that the case is terminating (Fig. 4).

If the case is not blocking or terminating, then it is periodic, since the overJows
of g (resp. h) are proper suHxes of words g(a1); : : : ; g(an) (resp. h(a1); : : : ; h(an)) and
there are only 1nitely many such suHxes. The blocking and periodic cases are easy to
handle: solutions (with label a) do not exist. On the other hand, the terminating case
seems to be essentially more complicated: We just obtain words u and v that satisfy
�i= g(u)= h(v)= �i and |g(u)| = |h(v)| is minimal. Later we shall call such words u
and v blocks with label a or a-blocks. Noncomparability of u and v clearly implies that
solutions with label a do not exist. On the other hand, if u= vw for some word w∈�∗,
then either w is empty and a solution has been found, or w begins with some letter b.
In the latter case we can continue the search by de1ning (�i+1; �i+1)= (�i; �ih(b)).
For example, Fig. 4 can not represent any solution, since the word u= a1a2a3 is

longer than v= b1b2. If a1a2 = b1b2, we just complete the image of h by adding h(a3)
and continue the procedure. But the procedure may again end up in the terminating
case, still not proving nor refuting the existence of a solution with label a. At this
point, there is no a priori knowledge on how long the process should run until we can
decide if there is a solution with label a or not.
On the other hand, if (�; �; g; h) has a solution, then it can evidently be represented

as

g(u1)g(u2) : : : g(uk)= h(v1)h(v2) : : : h(vk);

where each (ui; vi) is a pair of blocks labelled with some ai ∈�. Notice also that if
(ui; vi) and (uj; vj) are pairs of blocks with labels ai �= aj, then ui and uj (and also

V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204 197

Fig. 4. Terminating case.

vi and vj) begin with a di0erent letter, because morphisms g and h are marked. This
means that the all the block pairs (u1; v1); : : : ; (um; vm) can be written as two lists of
words that satisfy the markedness condition. To 1nd a solution we should then 1nd a
sequence of indices such that uii : : : uik = vi1 : : : vik , which means that we are left with
another instance of the marked PCP. This leads to the approach of the next section.

3. Reduction to simpler instances

The aim is to reduce an instance I =(�; �; g; h) of the marked PCP to a somewhat
easier instance I ′=(�′; �; g′; h′) of the same problem in a way that preserves equiva-
lence: I has a solution if and only if I ′ does. To do this, we check for each label a∈�
whether the procedure in Section 2 is terminating or not. Because � can be renamed,
we can assume that letters a1; : : : ; am ∈�⊆� are exactly the labels that lead to the ter-
minating case giving (u1; v1); : : : ; (um; vm) as the corresponding block pairs (of course,
there cannot be more than n= |�| labels leading to the terminating case). We now
de1ne the reduced instance I ′=(�′; �; g′; h′) by �′= {a1; : : : ; am}⊆� and g′(ai)= ui
and h′(ai)= vi for each ai ∈�′. It is worth noticing that by construction, the concate-
nated morphisms gg′ and hh′ are identical: g(g′(ai))= g(ui)= h(vi)= h(h′(ai)) for any
letter ai ∈�′, so gg′(w)= hh′(w) for each w∈�′∗ also. The crucial property of the
reduction from I to I ′ is that the equivalence is preserved:

Lemma 1. Let I ′ be the reduction of I . Then I and I ′ are equivalent.

Proof. Assume 1rst that I has a solution g(x)= h(x) beginning with a1. Let u1 and
v1 be the pre1xes of x such that the word g(u1)= h(v1) has minimal length (u1
and v1 are clearly unique). This implies that (u1; v1) is the pair of a1-blocks. Let
x= u1s1 = v1t1. If u1 �= x, then also v1 �= x and g(s1)= h(t1), both words beginning
with some letter a2. Now there are unique pre1xes u2 and v2 of s1 and t1, respec-
tively, such that g(u2)= h(v2) has minimal length. This again means that u2 and
v2 are the a2-blocks. Continuing in this way we can reveal two factorizations of
x= u1u2 : : : uk = v1v2 : : : vk such that (ui; vi) is the pair of ai-blocks. By de1nitions of
g′ and h′; g′(a1 : : : ak)= u1 : : : uk = v1 : : : vk = h′(a1 : : : ak).
On the other hand, if I ′ has a solution x′, then x= g′(x′)= h′(x′) is a solution of I ,

since gg′ and hh′ are identical: g(x)= gg′(x′)= hh′(x′)= h(x).

198 V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204

If we could prove that I ′ is somehow simpler than I , then we could repeat the pro-
cedure, reduce to simpler and simpler equivalent instances I ′′, I ′′′,: : :, and (hopefully)
1nally decide I . I ′ can be simpler than I in the sense that |�′|¡|�| (m¡n) and if the
reduction eventually leads to alphabet size 1, we can trivially decide I . But it turns out
that there are instances that do not lead to |�| =1 (see [4]), hence we need another
way to measure how complex an instance I is.

4. Su"x complexity

For an instance I =(�; �; g; h) of marked PCP we de1ne, analogously to [1], the
su@x complexity:

 (I) =
∣∣∣∣
⋃
a∈�

{x | x is a proper suHx of g(a)}
∣∣∣∣

+
∣∣∣∣
⋃
a∈�

{x | x is a proper suHx of h(a)}
∣∣∣∣

and demonstrate that the reduction from I to I ′ cannot increase the suHx complexity.
The intuitive idea behind the proof is that the reduction is based on building the blocks
that become the images of the reduced morphisms. But a proper suHx of some g′(a′)
is built because a proper suHx of some h(a) is seen, so words g′(a′) cannot have
more proper suHxes altogether than words h(a) do. Similarly, words h′(a′) have at
most equally many proper suHxes as words g(a).

Lemma 2. Let I ′ be the reduction of I . Then (I ′)6 (I).

Proof. De1ne the following four sets:

G =
⋃
a∈�

{x | x is a proper suHx of g(a)};

G′ =
⋃

a∈�′
{x | x is a proper suHx of g′(a)};

H =
⋃
a∈�

{x | x is a proper suHx of h(a)};

H ′ =
⋃

a∈�′
{x | x is a proper suHx of h′(a)}:

We will de1ne an injective function p : G′ →H . Let u= xr : : : xc ∈G′ be a proper suHx
of some g′(ai)= ui= x1 : : : xc. Let s be the shortest element of H that is comparable
with g(u) and appears as an overJow of h in a terminating case of the procedure of
Section 2. At least one overJow comparable with g(u) exists, because ui itself is a
ai-block generated by the procedure and so xr has been introduced because of seeing
a proper suHx of some h(yt) comparable with g(xr) (see Fig. 5). Furthermore, the
shortest such overJow s is unique because it is not only comparable with g(xr) but
also with g(xrxr+1 : : : xc). De1ne p as p(u)= s.

V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204 199

Fig. 5. The suHx s corresponding to u.

The injectivity of p is seen as follows: If u= xrxr+1 : : : xc and u′= x′rx
′
r+1 : : : x

′
d are

elements of G′ and s=p(u)=p(u′), then s is the shortest overJow of h due to which
xr and x′r are introduced. Because of markedness, any overJow completely determines
how the procedure continues, eventually giving u= u′. Thus p is injective, which
implies |G′|6 |H |.
Similarly we can de1ne an injective function from H ′ to G, which proves |H ′|6 |G|.

It now follows that (I ′)= |G′|+ |H ′|6 |G|+ |H | = (I).

If the consecutive reductions do not lead to source alphabet of size 1, we may
hope that they eventually lead to an instance with =0. Such an instance is clearly
decidable, because then all words would have length 1. Unfortunately there are also
instances that never reach |�| =1 or =0 (see [4]), but now we have a limitation on
the number of distinct instances in the reduction procedure:

Lemma 3. Let �= {a1; : : : ; am}⊆� be >nite alphabets and z be a positive natural
number. There exist only >nitely many distinct instances I =(�; �; g; h) of the PCP
that satisfy (I)6z.

Proof. Recall 1rst that there is nothing essential in � but the cardinality: An in-
stance I =(�; �; g; h) is completely speci1ed by giving the 2m words g(a1); : : : ; g(am);
h(a1); : : : ; h(am)∈�+. Note that if one of those words has length ¿z + 1, then this
word has more than z proper suHxes and (I)¿z. Accordingly, each of the 2m words
can have length at most z + 1, so there are at most (|�| + 1)2m(z+1) di0erent I that
satisfy (I)6z.

It is now easy to see that if the sequence of reductions does not reach an Ij with
alphabet of size 1 or (Ij)= 0, then the process starts to cycle: Assume that there
exist k; m and z such that all Ii in the in1nite sequence Ik ; Ik+1; Ik+2; : : : have source
alphabet of size m and (Ii)= z. Now this sequence will repeat itself after a while,
for otherwise there would be in1nitely many distinct instances with the same alphabet
and -value, contradicting Lemma 3.

5. Marked PCP is decidable

The decision procedure for the marked PCP is based on making equivalence-preserv-
ing reductions I0; I1; I2; : : : beginning with I0 = I =(�; �; g; h) until one of the following

200 V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204

cases occur:
(1) Sequence reaches an Ij with |�j| =1.
(2) Sequence reaches an Ij with (Ij)= 0.
(3) Sequence starts cycling.
As seen before, cases (1) and (2) can be solved easily. Finally we will show that the
instances leading to a cycle are easily solvable:

Lemma 4. Let I be an instance of the marked PCP that starts a cycle (i.e. starting
the reduction process with I eventually gives I again). Then I has a solution if and
only if I has a solution of length 1.

Proof. Assume that I0 = I eventually appears again:

I0→ I1→ · · · → Ir−1→ Ir = I0;

where Ii=(�; �; gi; hi). By the proof of Lemma 1, for every solution xi to some Ii, there
is a solution xi+1 to Ii+1 such that xi= gi+1(xi+1)= hi+1(xi+1). Suppose x0 is a solution
to I0 of minimal length. Applying the relation between two consecutive solutions, we
1nd out inductively that there is some solution xr to Ir such that

x0 = g1(x1)= g1g2(x2)= · · · = g1g2 : : : gr(xr);

x0 = h1(x1)= h1h2(x2)= · · · = h1h2 : : : hr(xr):

Since the gi and hi cannot be length-decreasing, we have |x0|¿ |xr|. But x0 was cho-
sen to be a minimal-length solution to I0 and xr is also a solution to Ir = I0, hence
|x0| = |xr|. This implies that g0(= gr) and h0(= hr) map the letters occurring in xr to
letters. But then the 1rst letter of xr is already a solution, hence |x0| = |xr| =1. Thus
I0 has a solution if and only if I0 has a 1-letter solution (i.e., there is an a∈�0 such
that g0(a)= h0(a)).

Note that to decide if the reduction process has reached a cycle, we do not need to
remember all the instances seen before, but it suHces to count how many instances with
a 1xed m= |�| and suHx complexity z have been seen so far: If the counter exceeds
(|�| + 1)2m(z+1), then some instance has certainly occurred twice and the process is
cycling. Below we summarize this analysis in an algorithm and a theorem:

Decision procedure for marked PCP.
(1) Set c=0; i=0; I0 = I .
(2) Set i= i + 1.
(3) Reduce Ii−1 to Ii in the way stated above.
(4) If Ii has source alphabet of size 1 or =0, then decide Ii, print the outcome and

terminate.
(5) If Ii is simpler than Ii−1 (smaller source alphabet or) then set c=0 and goto 2.

V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204 201

(6) If c¿(|�|+ 1)2m(z+1), where m is the current alphabet size and z the suHx com-
plexity, then there is a cycle and we can decide Ii by checking if it has a 1-letter
solution, print the outcome and terminate;
else set c= c + 1 and goto 2.

Theorem 5. Marked PCP is decidable.

6. Complexity analysis

To end the decidability-part we analyze the complexity of the algorithm. Each re-
duction step can be done in linear space, if we ignore the space needed to print the
outcome (i.e., the next instance). Namely, let Ni be the size of some instance Ii (i.e.,
the number of bits needed to describe the instance). The blocks are found by running
the procedure of Section 2 for each label a∈�. To decide if the procedure is termi-
nating, we need only to remember the current overJow (requires O(Ni) bits) and how
many suHxes has been seen so far (if the counter exceeds the number of the suHxes,
we know the procedure is in cycle). Since there are only 2n=O(Ni) di0erent g(ai)
and h(ai), there are only O(N 2i) di0erent suHxes, hence O(log Ni) bits are enough for
the counter. But how large can the reduced instances grow? If there would be some
word g(ai) of an instance Ii longer than (I0) + 1, then (Ii)¿ (I0) contradicting
Lemma 2. Therefore Ni=O(2n((I0) + 1))=O(N 3) for any instance Ii and the space
bound O(N 3) bound for any reduction step follows.
In the decision procedure, the counter c runs up to (|�|+1)(z+1)2m and remembering

that m=O(N); |�| =O(N) and z=O(N 2) we see that no more than O(N 3 log N)
bits are needed to sustain the counter. Therefore, marked PCP is in PSPACE. The
space bound O(N 3 log N) also implies a time bound 2O(N

3 log N).

7. 2-Marked PCP is undecidable

Here we will show that if we weaken the condition of markedness, by only requiring
the morphisms to be 2-marked, then the PCP becomes undecidable again.
Consider the following semigroup S7 =%=R with set of 5 generators %= {a; b; c; d; e}

and 7 relations:

S7 = 〈a; b; c; d; e | R〉
R= {ac= ca; ad=da; bc= cb; bd=db; eca= ce; edb=de; cca= ccae}.

Tzeitin [10] (see also [3, p. 445]) proved that the following problem for this semigroup
is undecidable:

Given u; v∈%+, is u= v∈ S7?

202 V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204

Table 1
De1nition of g and h

B E # # a : : : e a : : : e [s= t] [s= t]

g Bu# E # # a : : : e a : : : e t s
h B #vE # # a : : : e a : : : e s t

Note that the set of 7 left-hand-sides of R is 2-marked, and similarly for the set
of 7 right-hand-sides of R. We will reduce this problem to the 2-marked PCP. We
use a slight modi1cation of the standard reduction, involving an alphabet with some
underlined letters in order to ensure 2-markedness.
De1ne the source alphabet as

�=% ∪ % ∪ {B; E; #; #; r1; r2; : : : ; r7; r1; r2; : : : ; r7};

where %= {a; b; c; d; e}, and r1; : : : ; r7 are the 7 relations in R and r1; : : : ; r7 are their
underlined versions (considered as single letters), so r1 = [ac= ca], r1 = [ac= ca] etc.
De1ne the target alphabet as

�=% ∪ % ∪ {B; E; #; #}:

B and E will mark the beginning and end of expressions, respectively, and # and #
will act as separators. Given u; v∈%+, g and h are de1ned by Table 1.
Note that the constructed instance I =(�; �; g; h) is an instance of the 2-marked PCP.

The following lemma shows that the reduction preserves equivalence with Tzeitin’s
problem:

Lemma 6. Let u; v; I be as above. Then u= v∈ S7 if and only if I has a solution.

Proof. Suppose 1rst that u= v∈ S7. Then there is a sequence u= u1→ u2→ · · · → uk
= v, where ui= u′su′′ and ui+1 = u′tu′′, and s= t ∈R or t= s∈R. We construct a so-
lution to I by induction on k.
If k =1, then u= v∈%+. Now x=Bu#uE is a solution to I .
Now let I ′=(�; �; g′; h′) be the instance of the 2-marked PCP corresponding to

u= uk−1 ∈ S7. By the induction hypothesis we can assume that I ′ has a minimal-length
solution x′. It is easy to see that every solution must begin with B and end with E,
so x′=ByE, and therefore g′(By)=w#uk−1 and h′(By)=w for some w. Note that
since I and I ′ only di0er in the assignment h(E) and h′(E), and E cannot occur in y
(because x′ is minimal), we also have g(By)=w#uk−1 and h(By)=w. We distinguish
two cases. Firstly, uk−1 = u′su′′ and v= uk = u′tu′′, where r= [s= t] is one of the
7 relations. Then it is easily veri1ed that x=By#u′ru′′#u′tu′′E is a solution to I .
Secondly, if uk−1 = u′tu′′ and v= uk = u′su′′, then x=By#u′tu′′#u′ru′′E is a solution.
This completes the induction step.

V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204 203

Fig. 6. Picture leading to u= v.

For the other direction, suppose I has a minimal-length solution x. This x must be
of the form Bx1x2 : : : xmE, where xi ∈�, so g(Bx1 : : : xmE)=Bu#g(x1 : : : xm)E=Bh(x1 : : :
xm)#vE= h(Bx1 : : : xmE). Ignoring the underlining, g(x)= h(x) must be of the form
Bu1#u2# : : : #uk−1#ukE, where ui ∈%∗, u1 = u and uk = v. We will show that ui= ui+1 ∈
S7 for every 16i6k − 1, from which u= v∈ S7 follows.
Since Bu#g(x1 : : : xm)E=Bh(x1 : : : xm)#vE, # must occur in h(x1 : : : xm), so there is

the smallest i such that xi=#, and hence u= h(x1 : : : xi−1). Since there is no under-
lining in u, it follows that x1; : : : ; xi−1 must have been chosen from a; : : : ; e; r1; : : : ; r7.
Let x1 : : : xi−1 =w1ri1w2ri2 : : : wl, with wi ∈%∗ and ri= [si= ti]∈{r1; : : : ; r7}. Then u=
h(w1ri1w2ri2 : : : wl)=w1si1w2si2 : : : wl. See Fig. 6 for illustration.
Note that g(x1 : : : xi−1)= g(w1ri1w2ri2 : : : wl)=w1ti1w2ti2 : : : wl. But now, since we

must have g(x1 : : : xmE)= h(xi+1 : : : xmE), there must be the smallest index j¿i such
that xj ∈{#; #} and h(xi+1 : : : xj−1) = g(x1 : : : xi−1) =w1ti1w2ti2 : : : wl. The latter string
(without underlining) is u2. Note that u1 = u2 ∈ S7, because u1(= u) and u2 only di0er
by u2 having ti where u1 has si.
Continuing this reasoning, we can show that for every two words ui; ui+1 ∈%∗ occur-

ring in g(x)= h(x) separated by #, ignoring underlining, we must have ui= ui+1 ∈ S7
(some of the words ui and ui+1 may actually already be equal in �+). Hence u and v
are equal in S7, since g(x) starts with u1 = u and ends with uk = v.

Together with Tzeitin’s result, the above lemma implies:

Theorem 7. 2-Marked PCP is undecidable.

To end this section, we emphasize that 2-marked PCP is not a special case of the
injective PCP. For example, the morphism de1ned by g(1)= 23, g(2)= 2, g(3)= 3 is
2-marked but not injective. We can combine k-markedness and injectivity by calling
a morphism g strongly k-marked if g is both k-marked and pre1x (i.e., no g(ai) is a
pre1x of another g(aj)). This clearly implies injectivity. It follows from a construction
of Ruohonen [8] that the strongly 5-marked PCP is undecidable: the bipre1x instances
of PCP constructed there to show undecidability of the bipre1x PCP are also 5-marked.
Decidability of the strongly k-marked PCP for 1¡k¡5 is still open.

204 V. Halava et al. / Theoretical Computer Science 255 (2001) 193–204

8. Conclusion and future work

We can investigate the boundary between decidability and undecidability by ex-
amining which restrictions on the Post Correspondence Problem render the problem
decidable. We have shown here that restricting the PCP to marked morphisms gives
us decidability. On the other hand, the 2-marked PCP is still undecidable.
The following questions remain open:

• Is polynomial space the best we can do when deciding the marked PCP or is the
problem solvable even in polynomial time?

• What about decidability of the strongly k-marked PCP for 1¡k¡5?
• What about decidability of the marked generalized PCP [1, 3]?
• The decidability status of the PCP with elementary morphisms [9, pp. 72–77] is still
open. A morphism g is elementary if it cannot be written as a composition g2g1
via a smaller alphabet. The marked PCP is a subcase of the elementary PCP which
we have shown here to be decidable. Can our results help to settle the decidability
status of the elementary PCP?

Acknowledgements

We thank Tero Harju, Juhani KarhumQaki, John Tromp and Harry Buhrman for helpful
comments. The second author would like to thank the CWI for its hospitality during
the summer of 1998, when part of this work was done.

References

[1] A. Ehrenfeucht, J. KarhumQaki, G. Rozenberg, The (generalized) Post correspondence problem with lists
consisting of two words is decidable, Theoret. Comput. Sci. 21(2) (1982) 119–144.

[2] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[3] T. Harju, J. KarhumQaki, D. Krob, Remarks on generalized Post correspondence problem, Proceedings
of 13th STACS, Lecture Notes in Computer Science, Vol. 1046, Springer, Berlin, 1996, pp. 39–48.

[4] T. Harju, J. KarhumQaki, Morphisms, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal
Languages, Vol. 1, Springer, Berlin, 1997, pp. 439–510.

[5] Y. Lecerf, RSecursive insolubilitSe de l’Sequation gSenSerale de diagonalisation de deux monomorphisms de
monoQTdes libres +x=Ux. Comptes Rendus Acad. Sci. Paris 257 (1963) 2940–2943.

[6] Y. Matiyasevich, G., SSenizergues, Decision problems for semi-Thue systems with a few rules,
Proceedings of the 11th IEEE Symposium on Logic in Computer Science, 1996, pp. 523–531.

[7] E.L. Post, A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc. 52 (1946) 264–268.
[8] K. Ruohonen, Reversible machines and Post’s correspondence problem for bipre1x morphisms, J.
Inform. Process. Cybernet. (EIK) 21(12) (1985) 579–595.

[9] A. Salomaa, Jewels of Formal Language Theory, Pitman, London, 1981.
[10] G.C. Tzeitin, Associative calculus with an unsolvable equivalence problem, Tr. Mat. Inst. Akad. Nauk,

52 (1958) 172–189 (in Russian).

