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Abstract

In this note we survey the theory of statistical decisions, i.e., con-
sider statistical inferences, where the target of the inference takes
finitely many values. For the formulation of the Bayes decision, the
aim is to minimize the weighted average of conditional error prob-
abilities. In the scheme of simple statistical hypotheses testing we
constrain a conditional error probability and minimize the other one.
Study the composite hypotheses, the testing of homogeneity and the
testing of independence, too. In the analysis the divergences (L1-
distance, I-divergence, Hellinger distance, etc.) between probability
distributions play an important role.
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1 Bayes decision

1.1 Bayes risk

For the statistical inference, a d-dimensional observation vector X is given,
and based on X, the statistician has to make an inference on a random
variable Y , which takes finitely many values, i.e., it takes values from the set
{1, 2, . . . ,m}. In fact, the inference is a decision formulated by a decision
function

g : Rd → {1, 2, . . . , m}.
If g(X) 6= Y then the decision makes error.

In the formulation of the Bayes decision problem, introduce a cost func-
tion C(y, y′) ≥ 0, which is the cost if the label Y = y and the decision
g(X) = y′. For a decision function g, the risk is the expectation of the cost:

R(g) = E{C(Y, g(X))}.

In Bayes decision problem, the aim is to minimize the risk, i.e., the goal is
to find a function g∗ : Rd → {1, 2, . . . , m} such that

R(g∗) = min
g:Rd→{1,2,...,m}

R(g), (1)

where g∗ is called the Bayes decision function, and R∗ = R(g∗) is the Bayes
risk.

For the posteriori probabilities, introduce the notations:

Py(X) = P{Y = y | X}.

Let the decision function g∗ be defined by

g∗(X) = arg min
y′

m∑
y=1

C(y, y′)Py(X).

If arg min is not unique then choose the smallest y′, which minimizes∑m
y=1 C(y, y′)Py(X). This definition implies that for any decision function g,

m∑
y=1

C(y, g∗(X))Py(X) ≤
m∑

y=1

C(y, g(X))Py(X). (2)
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Theorem 1 For any decision function g, we have that

R(g∗) ≤ R(g).

Proof. For a decision function g, let’s calculate the risk.

R(g) = E{C(Y, g(X))}
= E{E{C(Y, g(X)) | X}}

= E

{
m∑

y=1

m∑

y′=1

C(y, y′)P{Y = y, g(X) = y′ | X}
}

= E

{
m∑

y=1

m∑

y′=1

C(y, y′)I{g(X)=y′}P{Y = y | X}
}

= E

{
m∑

y=1

C(y, g(X))Py(X)

}
,

where I denotes the indicator. (2) implies that

R(g) = E

{
m∑

y=1

C(y, g(X))Py(X)

}

≥ E

{
m∑

y=1

C(y, g∗(X))Py(X)

}

= R(g∗).

2

Concerning the cost function, the most frequently studied example is the
so called 0− 1 loss:

C(y, y′) =

{
1 if y 6= y′,
0 if y = y′.

For the 0− 1 loss, the corresponding risk is the error probability:

R(g) = E{C(Y, g(X))} = E{I{Y 6=g(X)}} = P{Y 6= g(X)},
and the Bayes decision is of form

g∗(X) = arg min
y′

m∑
y=1

C(y, y′)Py(X) = arg min
y′

∑

y 6=y′
Py(X) = arg max

y′
Py′(X),
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which is called maximum posteriori decision, too.

If the distribution of the observation vector X has density, then the Bayes
decision has an equivalent formulation. Introduce the notations for density
of X by

P{X ∈ B} =

∫

B

f(x)dx

and for the conditional densities by

P{X ∈ B | Y = y} =

∫

B

fy(x)dx

and for a priori probabilities

qy = P{Y = y},

then it is easy to check that

Py(X) = P{Y = y | X = x} =
qyfy(x)

f(x)

and therefore

g∗(x) = arg min
y′

m∑
y=1

C(y, y′)Py(x)

= arg min
y′

m∑
y=1

C(y, y′)
qyfy(x)

f(x)

= arg min
y′

m∑
y=1

C(y, y′)qyfy(x).

From the proof of Theorem 1 we may derive a formula for the optimal
risk:

R(g∗) = E

{
min

y′

m∑
y=1

C(y, y′)Py(X)

}
.
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If X has density then

R(g∗) = E

{
min

y′

m∑
y=1

C(y, y′)
qyfy(X)

f(X)

}

=

∫

Rd

min
y′

m∑
y=1

C(y, y′)
qyfy(x)

f(x)
f(x)dx

=

∫

Rd

min
y′

m∑
y=1

C(y, y′)qyfy(x)dx.

For the 0− 1 loss, we get that

R(g∗) = E
{

min
y′

(1− Py′(X))

}
,

which has the form, for densities,

R(g∗) =

∫

Rd

min
y′

(f(x)− qy′fy′(x))dx = 1−
∫

Rd

max
y′

qy′fy′(x)dx.

1.2 Approximation of Bayes decision

In practice, the posteriori probabilities {Py(X)} are unknown. If we are given

some approximations {P̂y(X)}, from which one may derive some approximate
decision

ĝ(X) = arg min
y′

m∑
y=1

C(y, y′)P̂y(X)

then the question is how well R(ĝ) approximates R∗.

Lemma 1 Put Cmax = maxy,y′ C(y, y′), then

0 ≤ R(ĝ)−R(g∗) ≤ 2Cmax

m∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.
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Proof. We have that

R(ĝ)−R(g∗) = E

{
m∑

y=1

C(y, ĝ(X))Py(X)

}
− E

{
m∑

y=1

C(y, g∗(X))Py(X)

}

= E

{
m∑

y=1

C(y, ĝ(X))Py(X)−
m∑

y=1

C(y, ĝ(X))P̂y(X)

}

+E

{
m∑

y=1

C(y, ĝ(X))P̂y(X)−
m∑

y=1

C(y, g∗(X))P̂y(X)

}

+E

{
m∑

y=1

C(y, g∗(X))P̂y(X)−
m∑

y=1

C(y, g∗(X))Py(X)

}
.

The definition of ĝ implies that

m∑
y=1

C(y, ĝ(X))P̂y(X)−
m∑

y=1

C(y, g∗(X))P̂y(X) ≤ 0,

therefore

R(ĝ)−R(g∗) ≤ E

{
m∑

y=1

C(y, ĝ(X))|Py(X)− P̂y(X)|
}

+E

{
m∑

y=1

C(y, g∗(X))|P̂y(X)− Py(X)|
}

≤ 2Cmax

m∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.

2

In the special case of the approximate maximum posteriori decision the
inequality in Lemma 1 can be slightly improved:

0 ≤ R(ĝ)−R(g∗) ≤
m∑

y=1

E
{
|Py(X)− P̂y(X)|

}
.

Based on this relation, one can introduce efficient pattern recognition rules.
(For the details, see Devroye, Györfi, and Lugosi [21].)

7



2 Testing simple hypotheses

2.1 α-level tests

In this section we consider decision problems, where the consequences of the
various errors are very much different. For example, if in a diagnostic problem
Y = 0 means that the patient is OK, while Y = 1 means that the patient is
ill, then for Y = 0 the false decision is that the patient is ill, which implies
some superfluous medical treatment, while for Y = 1 the false decision is
that the illness is not detected, and the patient’s state may become worse.
A similar situation happens for radar detection.

The event Y = 0 is called null hypothesis and is denoted by H0, and
the event Y = 1 is called alternative hypothesis and is denoted by H1. The
decision, the test is formulated by a set A ⊂ Rd, called acceptance region
such that accept H0 if X ∈ A, otherwise reject H0, i.e., accept H1. The set
Ac is called critical region.

Let P0 and P1 be the probability distributions of X under H0 and H1,
respectively. There are two types of errors:

• Error of the first kind, if under the null hypothesis H0 we reject H0.
This error is P0(A

c).

• Error of the second kind, if under the alternative hypothesis H1 we
reject H1. This error is P1(A).

Obviously, one decreases the error of the first kind P0(A
c) if the error of

the second kind P1(A) increases. We can formulate the optimization problem
such that minimize the error of the second kind under the condition that the
error of the first kind is at most 0 < α < 1:

min
A: P0(Ac)≤α

P1(A). (3)

In order to solve this problem the Neyman-Pearson Lemma plays an impor-
tant role.

Theorem 2 (Neyman, Pearson [45]) Assume that the distributions P0

and P1 have densities f0 and f1:

P0(B) =

∫

B

f0(x)dx and P1(B) =

∫

B

f1(x)dx.
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For a γ > 0, put
Aγ = {x : f0(x) ≥ γf1(x)}.

If for any set A
P0(A

c) ≤ P0(A
c
γ)

then
P1(A) ≥ P1(Aγ).

Proof. Because of the condition of the theorem, we have the following
chain of inequalities:

P0(A
c) ≤ P0(A

c
γ)

P0(A
c ∩ Aγ) + P0(A

c ∩ Ac
γ) ≤ P0(A ∩ Ac

γ) + P0(A
c ∩ Ac

γ)∫

Ac∩Aγ

f0(x)dx ≤
∫

A∩Ac
γ

f0(x)dx.

The definition of Aγ implies that

γ

∫

Ac∩Aγ

f1(x)dx ≤
∫

Ac∩Aγ

f0(x)dx ≤
∫

A∩Ac
γ

f0(x)dx ≤ γ

∫

A∩Ac
γ

f1(x)dx,

therefore using the previous chain of derivations in a reverse order we get
that

P1(A
c) ≤ P1(A

c
γ).

2

If for an 0 < α < 1 there is a γ = γ(α), which solves the equation

P0(A
c
γ) = α,

then the Neyman-Pearson Lemma implies that in order to solve the problem
(3), it is enough to search for set of form Aγ, i.e.,

min
A: P0(Ac)≤α

P1(A) = min
Aγ : P0(Ac

γ)≤α
P1(Aγ).

Then Aγ is called the most powerful α-level test.
Because of the Neyman-Pearson Lemma, we introduce the likelihood ratio

statistic

T (X) =
f0(X)

f1(X)
,
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and so the null hypothesis H0 is accepted if T (X) ≥ γ.

Example 1. As an illustration of the Neyman-Pearson Lemma, consider the
example of an experiment, where the null hypothesis is that the components
of X are i.i.d. normal with mean m = m0 > 0 and with variance σ2, while
under the alternative hypothesis the components of X are i.i.d. normal with
mean m1 = 0 and with the same variance σ2. Then

f0(x) = f0(x1, . . . , xd) =
d∏

i=1

(
1√
2πσ

e−
(xi−m)2

2σ2

)

and

f1(x) = f1(x1, . . . , xd) =
d∏

i=1

(
1√
2πσ

e−
x2

i
2σ2

)

and
f0(X)

f1(X)
≥ γ

means that

−
d∑

i=1

(Xi −m)2

2σ2
+

d∑
i=1

X2
i

2σ2
≥ ln γ,

or equivalently,
d∑

i=1

(2Xim−m2) ≥ 2σ2 ln γ.

This test accepts the null hypothesis if

1

d

d∑
i=1

Xi ≥ 2σ2 ln γ/d + m2

2m
=

σ2 ln γ

dm
+

m

2
=: γ′.

This test is based on the linear statistic
∑d

i=1 Xi/d, and the question left is
how to choose the critical value γ′, for which it is an α-level test, i.e., the
error of the first kind is α:

P0

{
1

d

d∑
i=1

Xi ≤ γ′
}

= α.
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Under the null hypothesis, the distribution of 1
d

∑d
i=1 Xi is normal with mean

m and with variance σ2/d, therefore

P0

{
1

d

d∑
i=1

Xi ≤ γ′
}

= Φ

(
γ′ −m

σ/
√

d

)
,

where Φ denotes the standard normal distribution function, and so the critical
value γ′ of an α-level test solves the equation

Φ

(
−m− γ′

σ/
√

d

)
= α,

i.e.,
γ′ = m− Φ−1(1− α)σ/

√
d.

Remark 1. In many situations, when d is large enough, one can refer to the
central limit theorem such that the log-likelihood ratio

ln
f0(X)

f1(X)

is asymptotically normal. The argument of Example 1 can be extended if
under H0, the log-likelihood ratio is approximately normal with mean m0

and with variance σ2
0. Let the test be defined such that it accepts H0 if

ln
f0(X)

f1(X)
≥ γ′,

where
γ′ = m0 − Φ−1(1− α)σ0.

Then this test is approximately an α-level test.

2.2 φ-divergences

In the analysis of repeated observations the divergences between distribu-
tion play an important role. Imre Csiszár [14] introduced the concept of
φ-divergences. Let φ : (0,∞) → R be a convex function, extended on [0,∞)
by continuity such that φ(1) = 0. For the probability distributions µ and ν,
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let λ be a σ-finite dominating measure of µ and ν, for example, λ = µ + ν.
Introduce the notations

f =
dµ

dλ

and

g =
dν

dλ
.

Then the φ-divergence of µ and ν is defined by

Dφ(µ, ν) =

∫

Rd

φ

(
f(x)

g(x)

)
g(x)λ(dx). (4)

The Jensen inequality implies the most important property of the φ-
divergences:

Dφ(µ, ν) =

∫

Rd

φ

(
f(x)

g(x)

)
g(x)λ(dx) ≥ φ

(∫

Rd

f(x)

g(x)
g(x)λ(dx)

)
= φ(1) = 0.

It means that Dφ(µ, ν) ≥ 0 and if µ = ν then Dφ(µ, ν) = 0. If, in addition,
φ is strictly convex at 1 then Dφ(µ, ν) = 0 iff µ = ν.

Next we show some examples.

• For
φ1(t) = |t− 1|,

we get the L1 distance

Dφ1(µ, ν) =

∫

Rd

|f(x)− g(x)|λ(dx).

• For
φ2(t) = (

√
t− 1)2,

we get the squared Hellinger distance

Dφ2(µ, ν) =

∫

Rd

(√
f(x)−

√
g(x)

)2

λ(dx)

= 2

(
1−

∫

Rd

√
f(x)g(x)λ(dx)

)
.
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• For
φ3(t) = − ln t,

we get the I-divergence

I(µ, ν) = Dφ3(µ, ν) =

∫

Rd

ln

(
g(x)

f(x)

)
g(x)λ(dx).

• For
φ4(t) = (t− 1)2,

we get the χ2-divergence

χ2(µ, ν) = Dφ4(µ, ν) =

∫

Rd

(f(x)− g(x))2

g(x)
λ(dx).

An equivalent definition of the φ-divergence is

Dφ(µ, ν) = sup
P

∑
j

φ

(
µ(Aj)

ν(Aj)

)
ν(Aj), (5)

where the supremum is taken over all finite Borel measurable partitions P =
{Aj} of Rd.

The main reasoning of this equivalence is that for any partition P = {Aj},
the Jensen inequality implies that

Dφ(µ, ν) =

∫

Rd

φ

(
f(x)

g(x)

)
g(x)λ(dx)

=
∑

j

∫

Aj

φ

(
f(x)

g(x)

)
g(x)λ(dx)

=
∑

j

1

ν(Aj)

∫

Aj

φ

(
f(x)

g(x)

)
g(x)λ(dx)ν(Aj)

≥
∑

j

φ

(
1

ν(Aj)

∫

Aj

f(x)

g(x)
g(x)λ(dx)

)
ν(Aj)

=
∑

j

φ

(
µ(Aj)

ν(Aj)

)
ν(Aj).
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The sequence of partitions P1,P2, . . . is called nested if any cell A ∈ Pn+1

is a subset of a cell A′ ∈ Pn. Next we show that for nested sequence of
partitions ∑

A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑ .

Again, this property is the consequence of the Jensen inequality:

∑

A′∈Pn+1

φ

(
µ(A′)
ν(A′)

)
ν(A′) =

∑
A∈Pn


 ∑

A′∈Pn+1,A′⊂A

φ

(
µ(A′)
ν(A′)

)
ν(A′)




=
∑

A∈Pn


 ∑

A′∈Pn+1,A′⊂A

φ

(
µ(A′)
ν(A′)

)
ν(A′)
ν(A)


 ν(A)

≥
∑

A∈Pn

φ


 ∑

A′∈Pn+1,A′⊂A

µ(A′)
ν(A′)

ν(A′)
ν(A)


 ν(A)

=
∑

A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A).

It implies that there is a nested sequence of partitions P1,P2, . . . such that

∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑ sup

P

∑
A∈P

φ

(
µ(A)

ν(A)

)
ν(A).

The sequence of partitions P1,P2, . . . is called asymptotically fine if for
any sphere S centered at the origin

lim
n→∞

max
A∈Pn,A∩S 6=0

diam(A) = 0. (6)

One can show that if the nested sequence of partitions P1,P2, . . . is asymp-
totically fine then

∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑

∫

Rd

φ

(
f(x)

g(x)

)
g(x)λ(dx).

This final step is verified in the particular case of L1 distance. (Cf. Section

3.3.) In general, we may introduce a cell wise constant approximation of f(x)
g(x)

:

Fn(x) :=
µ(A)

ν(A)
if x ∈ A.
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Thus, ∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) =

∫

Rd

φ (Fn(x)) g(x)λ(dx)

and

Fn(x) → f(x)

g(x)

for almost all x mod λ with g(x) > 0 such that
∫

Rd

φ (Fn(x)) g(x)λ(dx) →
∫

Rd

φ

(
f(x)

g(x)

)
g(x)λ(dx).

2.3 Repeated observations

The error probabilities can be decreased if instead of an observation vector X,
we are given n vectors X1, . . . ,Xn such that under H0, X1, . . . ,Xn are inde-
pendent and identically distributed (i.i.d.) with distribution P0, while under
H1, X1, . . . ,Xn are i.i.d. with distribution P1. In this case the likelihood
ratio statistic is of form

T (X) =
f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
.

The Stein Lemma below says that there are tests, for which both the
error of the first kind αn and the error of the second kind βn tend to 0, if
n →∞.

In order to formulate the Stein Lemma, we introduce the I-divergence
(called also relative entropy)

D(f0, f1) =

∫

Rd

f0(x) ln
f0(x)

f1(x)
dx, (7)

(cf. Section 2.2).
The I-divergence is always non-negative:

−D(f0, f1) =

∫

Rd

f0(x) ln
f1(x)

f0(x)
dx ≤

∫

Rd

f0(x)

(
f1(x)

f0(x)
− 1

)
dx = 0.

Theorem 3 (Stein [58]) For any 0 < δ < D(f0, f1), there is a test such
that the error of the first kind

αn → 0,
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and for the error of the second kind

βn ≤ e−n(D(f0,f1)−δ) → 0.

Proof. Construct a test such that accept the null hypothesis H0 if

f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ en(D(f0,f1)−δ),

or equivalently
1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
≥ D(f0, f1)− δ.

Under H0, the strong law of large numbers implies that

1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
→ D(f0, f1)

almost surely (a.s.), therefore for the error of the first kind αn, we get that

αn = P0

{
1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
< D(f0, f1)− δ

}
→ 0.

Concerning the error of the second kind βn we have the following simple
bound:

βn

= P1

{
f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ en(D(f0,f1)−δ)

}

=

∫
{

f0(x1)· ... ·f0(xn)
f1(x1)· ... ·f1(xn)

≥en(D(f0,f1)−δ)
} f1(x1) · . . . · f1(xn)dx1, . . . , dxn

≤ e−n(D(f0,f1)−δ)

∫
{

f0(x1)· ... ·f0(xn)
f1(x1)· ... ·f1(xn)

≥en(D(f0,f1)−δ)
} f0(x1) · . . . · f0(xn)dx1, . . . , dxn

≤ e−n(D(f0,f1)−δ).

2

The critical value of the test in the proof of the Stein Lemma used the I-
divergence D(f0, f1). Without knowing D(f0, f1), the Chernoff Lemma below
results in exponential rate of convergence of the errors.
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Theorem 4 (Chernoff [12]). Construct a test such that accept the null
hypothesis H0 if

f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ 1,

or equivalently
n∑

i=1

ln
f0(Xi)

f1(Xi)
≥ 0.

(This test is called maximum likelihood test.) Then

αn ≤
(

inf
s>0

∫

Rd

f1(x)sf0(x)1−sdx

)n

and

βn ≤
(

inf
s>0

∫

Rd

f0(x)sf1(x)1−sdx

)n

.

Proof. Apply the Chernoff bounding technique such that for any s > 0
the Markov inequality implies that

αn = P0

{
n∑

i=1

ln
f0(Xi)

f1(Xi)
< 0

}

= P0

{
s

n∑
i=1

ln
f1(Xi)

f0(Xi)
> 0

}

= P0

{
e

s
∑n

i=1 ln
f1(Xi)

f0(Xi) > 1

}

≤ E0

{
e

s
∑n

i=1 ln
f1(Xi)

f0(Xi)

}

= E0

{
n∏

i=1

(
f1(Xi)

f0(Xi)

)s
}

.
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Under H0, X1, . . . ,Xn are i.i.d., therefore

αn ≤ E0

{
n∏

i=1

(
f1(Xi)

f0(Xi)

)s
}

=
n∏

i=1

E0

{(
f1(Xi)

f0(Xi)

)s}

= E0

{(
f1(X1)

f0(X1)

)s}n

=

(∫

Rd

(
f1(x1)

f0(x1)

)s

f0(x1)dx

)n

.

Since s > 0 is arbitrary, the first half of the lemma is proved, and the proof
of the second half is similar. 2

Remark 2. The Chernoff Lemma results in exponential rate of convergence
if

inf
s>0

∫

Rd

f1(x)sf0(x)1−sdx < 1

and

inf
s>0

∫

Rd

f0(x)sf1(x)1−sdx < 1.

The Cauchy-Schwartz inequality implies that

inf
s>0

∫

Rd

f1(x)sf0(x)1−sdx ≤
∫

Rd

f1(x)1/2f0(x)1/2dx

≤
√∫

Rd

f1(x)dx

∫

Rd

f0(x)dx

= 1,

with equality in the second inequality if and only if f0 = f1. Morover, one
can check that the function

g(s) :=

∫

Rd

f1(x)sf0(x)1−sdx

is convex such that g(0) = 1 and g(1) = 1, therefore

inf
s>0

∫

Rd

f1(x)sf0(x)1−sdx = inf
1>s>0

∫

Rd

f1(x)sf0(x)1−sdx.
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The quantity

He(f0, f1) =

∫

Rd

f1(x)1/2f0(x)1/2dx (8)

is called Hellinger integral. The previous derivations imply that

αn ≤ He(f0, f1)
n

and
βn ≤ He(f0, f1)

n.

The squared Hellinger distance Dφ2(µ, ν) was introduced in Section 2.2. One
can check that

Dφ2(µ, ν) = 2 (1−He(f0, f1)) .

Remark 3. Besides the concept of α-level consistency, there is a new kind
of consistency, called strong consistency, meaning that both on H0 and on its
complement the tests make a.s. no error after a random sample size. In other
words, denoting by P0 (resp. P1) the probability under the null hypothesis
(resp. under the alternative), we have

P0{rejecting H0 for only finitely many n} = 1 (9)

and
P1{accepting H0 for only finitely many n} = 1. (10)

Because of the Chernoff bound, both errors tend to 0 exponentially fast,
so the Borel-Cantelli Lemma implies that the maximum likelihood test is
strongly consistent. In a real life problem, for example, when we get the
data sequentially, one gets data just once, and should make good inference for
these data. Strong consistency means that the single sequence of inference
is a.s. perfect if the sample size is large enough. This concept is close to
the definition of discernability introduced by Dembo and Peres [18]. For a
discussion and references, we refer the reader to Devroye and Lugosi [23].

19



3 Testing simple versus composite hypothe-

ses

3.1 Total variation and I-divergence

If µ and ν are probability distributions on Rd (d ≥ 1), then the total variation
distance between µ and ν is defined by

V (µ, ν) = sup
A
|µ(A)− ν(A)|,

where the supremum is taken over all Borel sets A. The Scheffé Theorem
below shows that the total variation is the half of the L1 distance of the
corresponding densities.

Theorem 5 (Scheffé [55]) If µ and ν are absolutely continuous with den-
sities f and g, respectively, then

∫

Rd

|f(x)− g(x)|dx = 2 V (µ, ν).

(The quantity

L1(f0, f1) =

∫

Rd

|f(x)− g(x)|dx (11)

is called L1-distance, cf. Section 2.2.)

Proof. Note that

V (µ, ν) = sup
A
|µ(A)− ν(A)|

= sup
A

∣∣∣∣
∫

A

f −
∫

A

g

∣∣∣∣

= sup
A

∣∣∣∣
∫

A

(f − g)

∣∣∣∣

=

∫

f>g

(f − g)

=

∫

g>f

(g − f)

=
1

2

∫
|f − g|.
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2

The Scheffé Theorem implies an equivalent definition of the total varia-
tion:

V (µ, ν) =
1

2
sup
{Aj}

∑
j

|µ(Aj)− ν(Aj)|, (12)

where the supremum is taken over all finite Borel measurable partitions {Aj}.
The information divergence (also called I-divergence, Kullback-Leibler

number, relative entropy) of µ and ν is defined by

I(µ, ν) = sup
{Aj}

∑
j

µ(Aj) ln
µ(Aj)

ν(Aj)
, (13)

where the supremum is taken over all finite Borel measurable partitions {Aj}.
If the densities f and g exist then one can prove that

I(µ, ν) = D(f, g) =

∫

Rd

f(x) ln
f(x)

g(x)
dx.

The following inequality, called Pinsker’s inequality, gives an upper bound
to the total variation in terms of I-divergence:

Theorem 6 ( Csiszár [14], Kullback [39] and Kemperman [38])

2{V (µ, ν)}2 ≤ I(µ, ν). (14)

Proof. Applying the notations of the proof of the Scheffé Theorem, put

A∗ = {f > g},
then the Scheffé Theorem implies that

V (µ, ν) = µ(A∗)− ν(A∗).

Moreover, from (13) we get that

I(µ, ν) ≥ µ(A∗) ln
µ(A∗)
ν(A∗)

+ (1− µ(A∗)) ln
1− µ(A∗)
1− ν(A∗)

Introduce the notations

q = ν(A∗) and p = µ(A∗) > q,
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and

hp(q) = p ln
p

q
+ (1− p) ln

1− p

1− q
.

then we have to prove that

2(p− q)2 ≤ hp(q),

which follows from the facts on the derivative:

d

dq
(hp(q)− 2(p− q)2) = −p

q
+

1− p

1− q
+ 4(p− q)

= − p− q

q(1− q)
+ 4(p− q)

≤ 0.

2

3.2 Large deviation of L1 distance

Consider the sample of Rd-valued random vectors X1, . . . ,Xn with i.i.d. com-
ponents such that the common distribution is denoted by ν. For a fixed
distribution µ, we consider the problem of testing hypotheses

H0 : ν = µ versus H1 : ν 6= µ

by means of test statistics Tn = Tn(X1, . . . ,Xn).
For testing a simple hypothesis H0 that the distribution of the sample is

µ, versus a composite alternative, Györfi and van der Meulen [31] introduced
a related goodness of fit test statistic Ln defined as

Ln =
mn∑
j=1

|µn(An,j)− µ(An,j)|,

where µn denotes the empirical measures associated with the sample X1, . . . ,Xn,
so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n
for any Borel subset A, and Pn = {An,1, . . . , An,mn} is a finite partition of
Rd. These authors also showed that under H0

P(Ln ≥ ε) ≤ e−n( ε2

8
+o(1)).

Next we characterize the large deviation properties of Ln:

22



Theorem 7 (Beirlant, Devroye, Györfi and Vajda [6]). Assume
that

lim
n→∞

max
j

µ(An,j) = 0 (15)

and

lim
n→∞

mn ln n

n
= 0. (16)

Then for all 0 < ε < 2

lim
n→∞

1

n
lnP{Ln > ε} = −gL(ε), (17)

where

gL(ε) = inf
0<p<1−ε/2

(
p ln

p

p + ε/2
+ (1− p) ln

1− p

1− p− ε/2

)
. (18)

Remark 4. Note that a lower bound for gL follows from Pinsker’s inequality
(14) such that

gL(ε) ≥ ε2/2.

The best known lower bound is due to Toussaint [61]:

gL(ε) ≥ ε2/2 + ε4/36 + ε6/280.

An upper bound ĝ(ε) of gL(ε) can be obtained substituting p by 1−ε/2
2

in
definition of gL(ε). Then

ĝ(ε) =
ε

2
ln

2 + ε

2− ε
≥ gL(ε)

(Vajda [66]). Further bounds can be found on p. 294-295 in Vajda [65].
Remark that also in Lemma 5.1 in Bahadur [2] it was observed that

gL(ε) =
ε2

2
(1 + o(1))

as ε → 0. The observations above mean that

P{Ln > ε} ≈ e−ngL(ε) ≤ e−nε2/2.

In the proof of Theorem 7 we shall use the following lemma.
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Lemma 2 (Sanov [54], see p. 16 in Dembo, Zeitouni [19], or Prob-
lem 1.2.11 in Csiszár and Körner [15]). Let Σ be a finite set (alphabet),
Ln be a set of types (possible empirical distributions) on Σ, and let Γ be a set
of distributions on Σ. If Z1, . . . , Zn are i.i.d. random variables taking values
in Σ and with distribution µ and µn denotes the empirical distribution then

∣∣∣∣
1

n
lnP{µ∗n ∈ Γ}+ inf

τ∈Γ∩Ln

I(τ, µ̄n)

∣∣∣∣ ≤
|Σ| ln(n + 1)

n
(19)

where |Σ| denotes the cardinality of Σ.

Proof. Without loss of generality assume that Σ = {1, . . . , m}. We shall
prove that

P{µn ∈ Γ} ≤ |Ln|e−n minτ∈Γ I(τ,µ)

and

P{µn ∈ Γ} ≥ 1

|Ln|e
−n minτ∈Γ I(τ,µ).

Because of our assumptions

P{Z1 = z1, . . . Zn = zn} =
n∏

i=1

P{Zi = zi}

=
n∏

i=1

µ(zi)

= e
∑n

i=1 ln µ(zi)

= e
∑n

i=1

∑m
j=1 Izi=j ln µ(zi)

= e
∑n

i=1

∑m
j=1 Izi=j ln µ(j)

= e
∑m

j=1 nµn(j) ln µ(j)

= e−n(H(µn)+I(µn,µ))

=: Pµ(zn
1 ),

where H(µn) stands for the Shannon entropy for the distribution µn. For
any probability distribution τ ∈ Ln we can define a probability distribution
Pτ (z

n
1 ) in this way:

Pτ (z
n
1 ) := e−n(H(µn)+I(µn,τ)).

Put
Tn(τ) = {zn

1 : µn(zn
1 ) = τ},
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then
1 ≥ Pτ{µn = τ} = Pτ{zn

1 ∈ Tn(τ)} = |Tn(τ)|e−nH(τ)

therefore
|Tn(τ)| ≤ enH(τ),

which implies the upper bound:

P{µn ∈ Γ} =
∑
τ∈Γ

Pµ{µn = τ}

≤ |Ln|max
τ∈Γ

Pµ{µn = τ}
= |Ln|max

τ∈Γ
|Tn(τ)|e−n(H(τ)+I(τ,µ))

≤ |Ln|max
τ∈Γ

e−nI(τ,µ)

= |Ln|e−n minτ∈Γ I(τ,µ).

Concerning the lower bound notice that for any probability distribution ν ∈
Ln

Pτ{µn = τ}
Pτ{µn = ν} =

|Tn(τ)|∏a∈Σ τ(a)nτ(a)

|Tn(ν)|∏a∈Σ τ(a)nν(a)

=
∏
a∈Σ

(nν(a))!

(nτ(a))!
τ(a)n(τ(a)−ν(a))

≥ 1.

This last inequality can be seen as follows: the terms of the last product are

of the forms m!
l!

(
l
n

)l−m
. It is easy to check that m!

l!
≥ lm−l, therefore

∏
a∈Σ

(nν(a))!

(nτ(a))!
τ(a)n(τ(a)−ν(a)) ≥

∏
a∈Σ

nn(τ(a)−ν(a)) = nn(
∑

a∈Σ τ(a)−∑
a∈Σ ν(a)) = 1.

It implies that
Pτ{µn = τ} ≥ Pτ{µn = ν}

and thus

1 =
∑

ν

Pτ{µn = ν}

≤ |Ln|Pτ{µn = τ}
= |Ln||Tn(τ)|e−nH(τ),
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consequently

|Tn(τ)| ≥ 1

|Ln|e
nH(τ).

This implies the lower bound:

P{µn ∈ Γ} =
∑
τ∈Γ

Pµ{µn = τ}

≥ max
τ∈Γ

Pµ{µn = τ}
= max

τ∈Γ
|Tn(τ)|e−n(H(τ)+I(τ,µ))

≥ 1

|Ln| max
τ∈Γ

e−nI(τ,µ)

=
1

|Ln|e
−n minτ∈Γ I(τ,µ).

Proof of Theorem 7. Introduce the notation

D(α‖β) = α ln
α

β
+ (1− α) ln

1− α

1− β
. (20)

Let µ̄n and µ∗n denote the restrictions of µ and µn to the partition Pn. We
apply (19) for

Σ = {An,1, . . . , An,mn}
such that

Γ = {τ : 2V (µ̄n, τ) ≥ ε}.
Then, according to (19),

∣∣∣∣
1

n
lnP{Ln ≥ ε}+ inf

τ∈Γ∩Ln

I(τ, µ̄n)

∣∣∣∣ ≤
mn ln(n + 1)

n

and therefore, under (16),

lim
n→∞

1

n
lnP{Ln > ε} = − lim

n→∞
inf

τ∈Γ∩Ln

I(τ, µ̄n).

It now remains to show that

lim
n→∞

inf
τ∈Γ∩Ln

I(τ, µ̄n) = g(ε).
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The distributions in Ln are possible empirical distributions, having compo-
nents of the form r

n
, where r is integer. Because of (15) we have that

mn →∞,

therefore because of the continuity of V (τ, µ̄n) and I(τ, µ̄n)

lim
n→∞

inf
τ∈Γ∩Ln

I(τ, µ̄n) = lim
n→∞

inf
2V (τ,µ̄n)≥ε

I(τ, µ̄n).

Here

I(τ, µ̄n) =
mn∑
j=1

τ(An,j) ln
τ(An,j)

µ(An,j)
.

Put
L = {j : µ(An,j) > τ(An,j)}

and
An = ∪j∈LAn,j.

Then
2V (τ, µ̄n) = 2(µ(An)− τ(An))

and, by the Information Processing Theorem of Csiszár [14] (cf. the definition
(13)),

I(τ, µ̄n) ≥ D(τ(An)‖µ(An)),

where the equality holds iff
τ(An,j)

µ(An,j)
is constant both on L and Lc. Thus

lim
n→∞

inf
2V (τ,µ̄n)≥ε

I(τ, µ̄n)

= inf
0<p<1−ε/2:τ(An)=p,µ(An)=p+ε/2

D(τ(An)‖µ(An)),

= inf
0<p<1−ε/2

(
p ln

p

p + ε/2
+ (1− p) ln

1− p

1− p− ε/2

)

= gL(ε),

and Theorem 7 is proved. 2

Biau and Györfi [10] provided an alternative derivation of gL(ε) and non-
asymptotic upper bound.

Theorem 8 (Biau and Györfi [10]). For any ε > 0,

P{Ln > ε} ≤ 2mne−nε2/2.
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Proof. By Scheffé’s theorem for partitions

Ln =
∑

A∈Pn

|µn(A)− µ(A)| = 2 max
A∈σ(Pn)

(µn(A)− µ(A)) ,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of
Pn. Therefore, for any s > 0, by the Markov inequality

P{Ln > ε} = P{Ln/2 > ε/2} = P{ensLn/2 > ensε/2} ≤ E{ensLn/2}
ensε/2

.

Moreover,

E{esnLn/2} = E{ max
A∈σ(Pn)

esn(µn(A)−µ(A))}

≤
∑

A∈σ(Pn)

E{esn(µn(A)−µ(A))}

≤ 2mn max
A∈σ(Pn)

E{esn(µn(A)−µ(A))}

= 2mn max
A∈σ(Pn)

E{esnµn(A)}e−snµ(A).

For any fixed Borel set A,

E{esnµn(A)} = E{es
∑n

i=1 IXi∈A} =
n∏

i=1

E{esIXi∈A} = (esµ(A) + 1− µ(A))n ,

where I stands for the indicator. Thus, for any s > 0, we have that

P{Ln > ε} ≤ 2mn

[
max

A∈σ(Pn)
e−s(µ(A)+ε/2) (esµ(A) + 1− µ(A))

]n

.

For fixed set A, choose

es =
µ(A) + ε/2

1− (µ(A) + ε/2)

1− µ(A)

µ(A)
,

then for this s,

e−s(µ(A)+ε/2) (esµ(A) + 1− µ(A)) = e−D(µ(A)+ε/2‖µ(A))

≤ e−ε2/2,
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where the last step follows from the Pinsker inequality. Thus,

P{Ln > ε} ≤ 2mne−nε2/2.

2

Remark 5. As a special case of relative frequencies, in the previous proof
the Chernoff inequality

P{µn(A)− µ(A) ≥ ε} ≤ e−nD(µ(A)+ε‖µ(A))

and the Hoeffding inequality is contained:

P{µn(A)− µ(A) ≥ ε} ≤ e−2nε2 . (21)

The Hoeffding inequality can be extended as follows: Let X1, . . . , Xn be
independent real-valued random variables, let a, b ∈ R with a < b, and
assume that Xi ∈ [a, b] with probability one (i = 1, . . . , n). Then, for all
ε > 0,

P

{∣∣∣∣∣
1

n

n∑
i=1

(Xi − E{Xi})
∣∣∣∣∣ > ε

}
≤ 2e

− 2nε2

|b−a|2 .

(Cf. Hoeffding [34].) A further refinement is the Berstein inequality such that
it takes into account the variances, too: let X1, . . . , Xn be independent real-
valued random variables, let a, b ∈ R with a < b, and assume that Xi ∈ [a, b]
with probability one (i = 1, . . . , n). Let

σ2 =
1

n

n∑
i=1

Var{Xi} > 0.

Then, for all ε > 0,

P

{∣∣∣∣∣
1

n

n∑
i=1

(Xi − E{Xi})
∣∣∣∣∣ > ε

}
≤ 2e

− nε2

2σ2+2ε(b−a)/3 .

(Cf. Berstein [9].)
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3.3 L1-distance-based strongly consistent test

Theorem 8 results in a strongly consistent test such that reject the null-
hypothesis H0 if

Ln > c1

√
mn

n
,

where
c1 >

√
2 ln 2 ≈ 1.177.

Moreover, assume that the sequence of partitions P1,P2, . . . is asymptotically
fine. (Cf. (6)). Then, under the null hypothesisH0 = {ν = µ}, the inequality
in Theorem 8 implies an upper bound on the error of the first kind

P
{

Ln > c1

√
mn

n

}
≤ 2mne−nc21mn/(2n) = e−mn(c21/2−ln 2) → 0

If mn/ ln n →∞ then

∞∑
n=1

P
{

Ln > c1

√
mn

n

}
< ∞,

therefore the Borel-Cantelli lemma implies that the goodness of fit test based
on the statistic Ln is strongly consistent under the null hypothesis H0, inde-
pendently of the underlying distribution µ.

Under the alternative hypothesis H1 = {ν 6= µ}, the triangle inequality
implies that

Ln =
mn∑
j=1

|µn(Anj)− µ(Anj)|

≥
mn∑
j=1

|µ(Anj)− ν(Anj)| −
mn∑
j=1

|µn(Anj)− ν(Anj)|.

Because of the argument above,

mn∑
j=1

|µn(Anj)− ν(Anj)| → 0,

a.s., while the condition (6) and {ν 6= µ} imply that

mn∑
j=1

|µ(Anj)− ν(Anj)| → 2 sup
B
|µ(B)− ν(B)| = 2V (µ, ν) > 0. (22)
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therefore
lim inf
n→∞

Ln ≥ 2V (µ, ν) > 0 (23)

a.s., therefore Ln > c1

√
mn/n a.s. for n large enough, and so the goodness

of fit test based on Ln is strongly consistent under the alternative hypothesis
H1, too.

In order to show (22) we apply the technique from Barron, Györfi and van
der Meulen [4]. Choose a measure λ which dominates µ and ν, for example,
λ = µ + ν, and denote by f the Radon-Nikodym derivative of µ − ν with
respect to λ. Then, on the one hand,

∑
A∈Pn

|µ(A)− ν(A)| =
∑

A∈Pn

∣∣∣∣
∫

A

f dλ

∣∣∣∣

≤
∑

A∈Pn

∫

A

|f | dλ

=

∫
|f | dλ

= 2 sup
B
|µ(B)− ν(B)|.

On the other hand, for uniformly continuous f , using (6),

∑
A∈Pn

∣∣∣∣
∫

A

f dλ

∣∣∣∣ →
∫
|f | dλ.

If f is arbitrary then, for a given δ > 0, choose a uniformly continuous f̃
such that ∫

|f − f̃ | dλ < δ.
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Thus

∑
A∈Pn

∣∣∣∣
∫

A

f dλ

∣∣∣∣ ≥
∑

A∈Pn

∣∣∣∣
∫

A

f̃ dλ

∣∣∣∣−
∑

A∈Pn

∣∣∣∣
∫

A

(f − f̃) dλ

∣∣∣∣

≥
∑

A∈Pn

∣∣∣∣
∫

A

f̃ dλ

∣∣∣∣−
∫
|f − f̃ | dλ

≥
∑

A∈Pn

∣∣∣∣
∫

A

f̃ dλ

∣∣∣∣− δ

→
∫
|f̃ | dλ− δ

≥
∫
|f | dλ− 2δ

= 2 sup
B
|µ(B)− ν(B)| − 2δ.

The result follows since δ was arbitrary.

3.4 L1-distance-based α-level test

Beirlant, Györfi and Lugosi [7] proved, under conditions

lim
n→∞

mn = ∞, lim
n→∞

mn

n
= 0,

and
lim

n→∞
max

j=1,...,mn

µ(Anj) = 0,

that √
n (Ln − E{Ln}) /σ

D→ N (0, 1),

where
D→ indicates convergence in distribution and σ2 = 1− 2/π.

Let α ∈ (0, 1). Consider the test which rejects H0 when

Ln > c2

√
mn

n
+

σ√
n

Φ−1(1− α) ≈ c2

√
mn

n
,

where
c2 =

√
2/π ≈ 0.798.

Then the test is asymptotically an α-level test.
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Comparing c2 above with c1 in the strong consistent test, both tests
behave identically with respect to

√
mn/n for large enough n, but c2 is

smaller.
Under H0,

P{√n(Ln − E{Ln})/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the asymptotically α-level test rejects the null hypothesis if

Ln > E{Ln}+
σ√
n

Φ−1(1− α).

Beirlant, Györfi and Lugosi [7] proved an upper bound

E{Ln} ≤
√

2/π

√
mn

n
.

3.5 I-divergence-based strongly consistent test

In the literature on goodness-of-fit testing the I-divergence statistic, Kullback-
Leibler divergence, or log-likelihood statistic,

In =
mn∑
j=1

µn(An,j) ln
µn(An,j)

µ(An,j)
,

plays an important role. We refer to Tusnády [62] and Barron [3] who first
discussed the exponential character of the tails of In. Kallenberg [37], and
Quine and Robinson [50] proved that, for all ε > 0,

P{In > ε} ≤
(

n + mn − 1

mn − 1

)
e−nε ≤ emn ln(n+mn)−nε. (24)

Applying Sanov’s Theorem, one can prove this bound similarly to that of
Theorem 7.

A strongly consistent test can be introduced such that the test rejects the
null hypothesis H0 if

In ≥ mn(ln(n + mn) + 1)

n
.
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Under H0, we obtain a non-asymptotic bound for the tail of the distribution
of In:

P
{

In >
mn(ln(n + mn) + 1)

n

}
≤ emn ln(n+mn)−n

mn(ln(n+mn)+1)
n = e−mn .

Therefore condition mn/ ln n →∞ implies

∞∑
n=1

P
{

In >
mn(ln(n + mn) + 1)

n

}
< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null
hypothesis.

Under the alternative hypothesis the proof of strong consistency follows
from Pinsker’s inequality:

L2
n ≤ 2In.

Therefore (6) and (23) imply that

lim inf
n→∞

2In ≥ lim inf
n→∞

L2
n ≥ 4 sup

C
|ν(C)− µ(C)|2 > 0

a.s., where the supremum is taken over all Borel subsets C of Rd. In fact,
under conditions (6), and

I(ν, µ) < ∞,

one may get
lim

n→∞
In = I(ν, µ) > 0

a.s.

3.6 I-divergence-based α-level test

Concerning the limit distribution, Inglot et al. [35], and Györfi and Vajda
[30] proved that under the conditions in the previous subsection,

2nIn −mn√
2mn

D→ N (0, 1).

This implies that for any real valued x,

P
{

2nIn −mn√
2mn

≥ x

}
→ 1− Φ(x),
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which results in a test rejecting the null hypotheses H0 if

2nIn −mn√
2mn

≥ Φ−1(1− α),

or equivalently

In ≥
Φ−1(1− α)

√
mn√

2n
+

mn

2n
≈ mn

2n
.

Note that unlike the L1 case, the ratio of the strong consistent threshold
to the threshold of asymptotic α-level test increases for increasing n.

4 Robust detection: testing composite versus

composite hypotheses

A model of robust detection may be formulated as follows: let f (1), . . . , f (k)

be fixed densities on Rd which are the nominal densities under k hypotheses.
We observe i.i.d. random vectors X1, . . . ,Xn according to a common density
f . Under the hypothesis Hj (j = 1, . . . , k) the density f is a distorted version
of f (j). This notion may be formalized in various ways. In this section we
assume that the true density f lies within a certain total variation distance of
the underlying nominal density. More precisely, we assume that there exists
a positive number ε such that for some j ∈ {1, . . . , k}

‖f − f (j)‖ ≤ ∆j − ε,

where ∆j
def
= (1/2) mini6=j ‖f (i) − f (j)‖. Here ‖f − g‖ =

∫ |f − g| denotes the
L1 distance between two densities. Recall that by Scheffé’s theorem half of
the L1 distance equals the total variation distance:

‖f − g‖ = 2 sup
A⊂Rd

∣∣∣∣
∫

A

f −
∫

A

g

∣∣∣∣ = 2

∫

{x:f(x)>g(x)}
(f(x)− g(x))dx ,

where the supremum is taken over all Borel sets of Rd. Thus, we formally
define the k hypotheses by

Hj =
{
f : ‖f − f (j)‖ ≤ ∆j − ε

}
, j = 1, . . . , k .

Introduce the empirical measure

µn(A) =
1

n

n∑
i=1

IXi∈A ,
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where I denotes the indicator function and A is a Borel set. Let A denote
the collection of k(k − 1)/2 sets of the form

Ai,j =
{
x : f (i)(x) > f (j)(x)

}
, 1 ≤ i < j ≤ k .

The proposed test is the following: accept hypothesis Hj if

max
A∈A

∣∣∣∣
∫

A

f (j) − µn(A)

∣∣∣∣ = min
i=1,...,k

max
A∈A

∣∣∣∣
∫

A

f (i) − µn(A)

∣∣∣∣ .

(In case there are several indices achieving the minimum, choose the smallest
one.) The main result of this section is the following:

Theorem 9 (Devroye, Györfi, Lugosi [22].) For any f ∈ ⋃k
j=1Hj

P{error} ≤ 2k(k − 1)2e−nε2/2.

Proof. Without loss of generality, assume that f ∈ H1. Observe that by
Scheffé’s theorem,

2 max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣ ≤ ‖f − f (1)‖
≤ ∆1 − ε

≤ 1

2
‖f (1) − f (j)‖ − ε

= max
A∈A

∣∣∣∣
∫

A

f (1) −
∫

A

f (j)

∣∣∣∣− ε

≤ max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣ + max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (j)

∣∣∣∣− ε

by the triangle inequality. Rearranging the obtained inequality, we get that

max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣ ≤ max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (j)

∣∣∣∣− ε .
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Therefore,

P{error}
= P

{
∃j > 1 : max

A∈A

∣∣∣∣
∫

A

f (j) − µn(A)

∣∣∣∣ < max
A∈A

∣∣∣∣
∫

A

f (1) − µn(A)

∣∣∣∣
}

≤ (k − 1) max
j>1

P
{

max
A∈A

∣∣∣∣
∫

A

f (j) − µn(A)

∣∣∣∣ < max
A∈A

∣∣∣∣
∫

A

f (1) − µn(A)

∣∣∣∣
}

= (k − 1) max
j>1

P
{

max
A∈A

∣∣∣∣
∫

A

f (j) − µn(A)

∣∣∣∣−max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣

< max
A∈A

∣∣∣∣
∫

A

f (1) − µn(A)

∣∣∣∣−max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣
}

.

The inequality derived above implies that

P{error}
≤ (k − 1) max

j>1
P

{
max
A∈A

∣∣∣∣
∫

A

f (j) − µn(A)

∣∣∣∣−max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (j)

∣∣∣∣ + ε

< max
A∈A

∣∣∣∣
∫

A

f (1) − µn(A)

∣∣∣∣−max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣
}

≤ (k − 1) max
j>1

P
{∣∣∣∣max

A∈A

∣∣∣∣
∫

A

f (j) − µn(A)

∣∣∣∣−max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (j)

∣∣∣∣
∣∣∣∣ >

ε

2

}

+(k − 1)P
{∣∣∣∣max

A∈A

∣∣∣∣
∫

A

f (1) − µn(A)

∣∣∣∣−max
A∈A

∣∣∣∣
∫

A

f −
∫

A

f (1)

∣∣∣∣
∣∣∣∣ >

ε

2

}

≤ 2(k − 1)P
{

max
A∈A

∣∣∣∣
∫

A

f − µn(A)

∣∣∣∣ >
ε

2

}

(by a double application of the triangle inequality)

≤ 2(k − 1)|A|max
A∈A

P
{∣∣∣∣

∫

A

f − µn(A)

∣∣∣∣ >
ε

2

}

≤ 2k(k − 1)2e−nε2/2 ,

where in the last step we used Hoeffding’s inequality [34] (cf. (21)). 2
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5 Testing homogeneity

5.1 The testing problem

Consider two mutually independent samples of Rd-valued random vectors
X1, . . . ,Xn and X′

1, . . . ,X
′
n with i.i.d. components defined on the same prob-

ability space and distributed according to unknown probability measures µ
and µ′. We are interested in testing the null hypothesis that the two samples
are homogeneous, that is

H0 : µ = µ′.

Such tests have been extensively studied in the statistical literature for spe-
cial parametrized models, e.g. for linear or loglinear models. For example,
the analysis of variance provides standard tests of homogeneity when µ and µ′

belong to a normal family on the line. For multinomial models these tests are
discussed in common statistical textbooks, together with the related problem
of testing independence in contingency tables. For testing homogeneity in
more general parametric models, we refer the reader to the monograph of
Greenwood and Nikulin [25] and further references therein.

However, in many real life applications, the parametrized models are ei-
ther unknown or too complicated for obtaining asymptotically α-level homo-
geneity tests by the classical methods. As explained in Pardo, Pardo and
Vajda [47], this is typically the case in electroencephalographic (EEG) and
electrocardiographic (ECG) biosignal analysis, or in speech source charac-
terization. In such situations parametric families cannot be adopted with
confidence, nonparametric tests should be used. For d = 1, there are non-
parametric procedures for testing homogeneity, for example, the Cramer-
Mises, Kolmogorov-Smirnov, Wilcoxon tests. The problem of d > 1 is much
more complicated, but nonparametric tests based on finite partitions of Rd

may provide a welcome alternative. In this context, Pardo, Pardo and Vajda
[47] recently presented a partition-based generalized likelihood ratio test of
homogeneity and derived its asymptotic distribution under the null hypothe-
sis, enabling to control the asymptotic test size. The results of these authors
extend former results of Read and Cressie [52], and Pardo, Pardo and Zo-
grafos [48] on disparity statistics.

In the present paper, we discuss a simple approach based on a L1 distance
test statistic. The advantage of our test procedure is that, besides being ex-

38



plicit and relatively easy to carry out, it requires very few assumptions on the
partition sequence, and it is consistent. Let us now describe our test statistic.

Denote by µn and µ′n the empirical measures associated with the samples
X1, . . . ,Xn and X′

1, . . . ,X
′
n, respectively, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n

for any Borel subset A, and, similarly,

µ′n(A) =
#{i : X′

i ∈ A, i = 1, . . . , n}
n

.

Based on a finite partition Pn = {An,1, . . . , An,mn} of Rd (mn ∈ N∗), we let
the test statistic comparing µn and µ′n be defined as

Tn =
mn∑
j=1

|µn(An,j)− µ′n(An,j)|.

5.2 L1-distance-based strongly consistent test

The following theorem extends the results of Beirlant, Devroye, Györfi and
Vajda [6], and Devroye and Györfi [20] to the statistic Tn.

Theorem 10 (Biau, Györfi [10].) Assume that conditions

lim
n→∞

mn = ∞, lim
n→∞

mn

n
= 0, (25)

and
lim

n→∞
max

j=1,...,mn

µ(Anj) = 0, (26)

are satisfied. Then, under H0, for all 0 < ε < 2,

lim
n→∞

1

n
lnP{Tn > ε} = −gT (ε),

where
gT (ε) = (1 + ε/2) ln(1 + ε/2) + (1− ε/2) ln(1− ε/2).

39



Proof. We prove only the upper bound

P{Tn > ε} ≤ 2mne−ngT (ε) ≤ 2mne−nε2/4.

For any s > 0, the Markov inequality implies that

P{Tn > ε} = P{esnTn > esnε} ≤ E{esnTn}
esnε

.

By Scheffé’s theorem for partitions

Tn =
∑

A∈Pn

|µn(A)− µ′n(A)| = 2 max
A∈σ(Pn)

(µn(A)− µ′n(A)) ,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of
Pn. Therefore

E{esnTn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ′n(A))}

≤
∑

A∈σ(Pn)

E{e2sn(µn(A)−µ′n(A))}

≤ 2mn max
A∈σ(Pn)

E{e2sn(µn(A)−µ′n(A))}

= 2mn max
A∈σ(Pn)

E{e2snµn(A)}E{e−2snµ′n(A)}.

Clearly,

E{e2snµn(A)} =
n∑

k=0

e2sk
(n

k

)
µ(A)k (1− µ(A))n−k

=
(
e2sµ(A) + 1− µ(A)

)n
,

and, similarly, under H0,

E{e−2snµ′n(A)} =
n∑

k=0

e−2sk
(n

k

)
µ(A)k (1− µ(A))n−k

=
(
e−2sµ(A) + 1− µ(A)

)n
.
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The remainder of the proof is under the null hypothesis H0. From above, we
deduce that

E{esnTn}
≤ 2mn max

A∈σ(Pn)

(
e2sµ(A) + 1− µ(A)

)n (
e−2sµ(A) + 1− µ(A)

)n

= 2mn max
A∈σ(Pn)

[(
e2sµ(A) + 1− µ(A)

) (
e−2sµ(A) + 1− µ(A)

)]n

= 2mn max
A∈σ(Pn)

[
1 + µ(A) (1− µ(A)) (e2s + e−2s − 2)

]n

≤ 2mn
[
1 + (e2s + e−2s − 2)/4

]n

= 2mn
[
1/2 + (e2s + e−2s)/4

]n
.

It implies that

P{Tn > ε} ≤ inf
s>0

E{esnTn}
esnε

≤ 2mn

[
inf
s>0

1/2 + (e2s + e−2s)/4

esε

]n

One can verify that the infimum is achieved at

e2s =
1 + ε/2

1− ε/2
,

and then
P{Tn > ε} ≤ 2mne−ngT (ε).

The Pinsker inequality implies that

gT (ε) ≥ ε2/4

therefore
P{Tn > ε} ≤ 2mne−nε2/4.

2

The technique of Theorem 10 yields a distribution-free strong consistent
test of homogeneity, which rejects the null hypothesis if Tn becomes large. We
insist on the fact that the test presented in Corollary 1 is entirely distribution-
free, i.e., the measures µ and µ′ are completely arbitrary.

Corollary 1 (Biau, Györfi [10].) Consider the test which rejects H0

when

Tn > c1

√
mn

n
,
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where
c1 > 2

√
ln 2 ≈ 1.6651.

Assume that condition (25) is satisfied and

lim
n→∞

mn

ln n
= ∞.

Then, under H0, after a random sample size the test makes a.s. no error.
Moreover, if

µ 6= µ′,

and the sequence of partitions P1,P2, . . . is asymptotically fine, (cf. (6)),
then after a random sample size the test makes a.s. no error.

Proof. Under H0, we easily obtain from the proof of Theorem 10 (cf.
(??) and (??)) a non-asymptotic bound for the tail of the distribution of Tn,
namely

P{Tn > ε} ≤ inf
s>0

E{esnTn}
esnε

≤ 2mne−ngT (ε) ≤ 2mne−nε2/4. (27)

Thus, by (??),

P
{

Tn > c1

√
mn

n

}
≤ 2mne

−ngT

(
c1
√

mn/n
)

= 2mne−nc21(mn/n)/4+no(mn/n)

= e−(c21/4−ln 2+o(1))mn ,

as n →∞. Therefore the condition mn/ ln n →∞ implies that

∞∑
n=1

P
{

Tn > c1

√
mn

n

}
< ∞,

and by the Borel-Cantelli lemma we are ready with the first half of the
corollary. Concerning the second half, in the same way as in Section 3.3 we
can show that by the additional condition (6),

lim inf
n→∞

Tn ≥ 2 sup
B
|µ(B)− µ′(B)| > 0 (28)

a.s. 2
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5.3 L1-distance-based α-level test

Similarly to Section 3.4, one can prove the following asymptotic normality:

Theorem 11 (Biau, Györfi [10].) Assume that conditions (25) and (26)
are satisfied. Then, under H0, there exists a centering sequence Cn = E{Tn}
such that √

n (Tn − Cn) /σ
D→ N (0, 1),

where σ2 = 2(1− 2/π).

Theorem 11 yields the asymptotic null distribution of a consistent ho-
mogeneity test, which rejects the null hypothesis if Tn becomes large. In
contrast to Corollary 1, and because of condition (26), this new test is not
distribution-free. In particular, the measures µ and µ′ have to be nonatomic.

Corollary 2 (Biau, Györfi [10].) Put α ∈ (0, 1), and let C∗ ≈ 0.7655
denote a universal constant. Consider the test which rejects H0 when

Tn > c2

√
mn

n
+ C∗ mn

n
+

σ√
n

Φ−1(1− α),

where

σ2 = 2(1− 2/π) and c2 =
2√
π
≈ 1.1284,

and where Φ denotes the standard normal distribution function. Then, under
the conditions of Theorem 11, the test has asymptotic significance level α.
Moreover, under the additional condition (6), the test is consistent.

Proof. According to Theorem 11, under H0,

P{√n(Tn − E{Tn})/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the α-level test rejects the null hypothesis if

Tn > E{Tn}+
σ√
n

Φ−1(1− α).
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However, E{Tn} depends on the unknown distribution, thus we apply an
upper bound on E{Tn}, and so decrease the error probability. The following
inequality is valid:

E{Tn} ≤ c2

√
mn

n
+ C∗ mn

n
,

(cf. Biau, Györfi [10]). Thus

α ≈ P

{
Tn > E{Tn}+

σ√
n

Φ−1(1− α)

}

≥ P

{
Tn > c2

√
mn

n
+ C∗ mn

n
+

σ√
n

Φ−1(1− α)

}
.

This proves that the test has asymptotic error probability at most α.
Under µ 6= µ′, the consistency of the test follows from (28). 2

Note that, by condition (25),

c2

√
mn

n
+ C∗ mn

n
+

σ√
n

Φ−1(1− α) = c2

√
mn

n
(1 + o(1)) ,

therefore the order of the threshold does not depend on the level α.

6 Testing independence

6.1 The testing problem

Consider a sample of <d×<d′-valued random vectors (X1,Y1), . . . , (Xn,Yn)
with independent and identically distributed (i.i.d.) pairs defined on the
same probability space. The distribution of (X,Y) is denoted by ν, while µ1

and µ2 stand for the distributions of X and Y, respectively. We are interested
in testing the null hypothesis that X and Y are independent,

H0 : ν = µ1 × µ2, (29)

while making minimal assumptions regarding the distribution.
We consider two main approaches to independence testing. The first is

to partition the underlying space, and to evaluate the test statistic on the
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resulting discrete empirical measures. Consistency of the test must then be
verified as the partition is refined for increasing sample size. Previous multi-
variate hypothesis tests in this framework, using the L1 divergence measure,
include homogeneity tests (to determine whether two random variables have
the same distribution), by Biau and Györfi [10]; and goodness-of-fit tests (for
whether a random variable has a particular distribution), by Györfi and van
der Meulen [31], and Beirlant et al. [7]. The log-likelihood has also been
employed on discretised spaces as a statistic for goodness-of-fit testing, by
Györfi and Vajda [30]. We provide generalizations of both the L1 and log-
likelihood based tests to the problem of testing independence, representing
to our knowledge the first application of these techniques to independence
testing.

We obtain two kinds of tests for each statistic: first, we derive strong
consistent tests — meaning that both on H0 and on its complement the tests
make a.s. no error after a random sample size — based on large deviation
bounds. While such tests are not common in the classical statistics litera-
ture, they are well suited to data analysis from streams, where we receive a
sequence of observations rather than a sample of fixed size, and must return
the best possible decision at each time using only current and past observa-
tions. Our strong consistent tests are distribution-free, meaning they require
no conditions on the distribution being tested; and universal, meaning the
test threshold holds independent of the distribution. Second, we obtain tests
based on the asymptotic distribution of the L1 and log-likelihood statistics,
which assume only that ν is nonatomic. Subject to this assumption, the
tests are consistent: for a given asymptotic error rate on H0, the probability
of error on H1 drops to zero as the sample size increases. Moreover, the
thresholds for the asymptotic tests are distribution-independent. We em-
phasize that our tests are explicit, easy to carry out, and require very few
assumptions on the partition sequences.

Additional independence testing approaches also exist in the statistics
literature. For d = d′ = 1, an early nonparametric test for independence,
due to Hoeffding [33], Blum et al. [11], De Wet [17] is based on the notion
of differences between the joint distribution function and the product of the
marginals. The associated independence test is consistent under appropriate
assumptions. Two difficulties arise when using this statistic in a test, how-
ever. First, quantiles of the null distribution are difficult to estimate. Second,
and more importantly, the quality of the empirical distribution function esti-
mates becomes poor as the dimensionality of the spaces <d and <d′ increases,
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which limits the utility of the statistic in a multivariate setting.
Rosenblatt [53] defined the statistic as the L2 distance between the joint

density estimate and the product of marginal density estimates. Let K and
K ′ be density functions (called kernels) defined on <d and on <d′ , respec-
tively. For the bandwidth h > 0, define

Kh(x) =
1

hd
K

(x

h

)
and K ′

h(y) =
1

hd′K
′
(y

h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of (X,Y) and
X are respectively

fn(x,y) =
1

n

n∑
i=1

Kh(x−Xi)K
′
h(y−Yi)andfn,1(x) =

1

n

n∑
i=1

Kh(x−Xi), (30)

with fn,2(y) defined by analogy. Rosenblatt [53] introduced the kernel-based
independence statistic

Tn =

∫

<d×<d′
(fn(x,y)− fn,1(x)fn,2(y))2dx dy. (31)

Further approaches to independence testing can be employed when par-
ticular assumptions are made on the form of the distributions, for instance
that they should exhibit symmetry. We do not address these approaches in
the present study.

6.2 L1-based strongly consistent test

Denote by νn, µn,1 and µn,2 the empirical measures associated with the sam-
ples
(X1,Y1), . . . , (Xn,Yn), X1, . . . ,Xn, and Y1, . . . ,Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi,Yi) ∈ A×B, i = 1, . . . , n},
µn,1(A) = n−1#{i : Xi ∈ A, i = 1, . . . , n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . , n},
for any Borel subsets A and B. Given the finite partitions Pn = {An,1, . . . , An,mn}
of Rd and Qn = {Bn,1, . . . , Bn,m′

n
} of Rd′ , we define the L1 test statistic com-

paring νn and µn,1 × µn,2 as

Ln(νn, µn,1 × µn,2) =
∑

A∈Pn

∑
B∈Qn

|νn(A×B)− µn,1(A) · µn,2(B)|.
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In the following two sections, we derive the large deviation and limit distri-
bution properties of this L1 statistic, and the associated independence tests.

For testing a simple hypothesis versus a composite alternative, Györfi
and van der Meulen [31] introduced a related goodness of fit test statistic Ln

defined as
Ln(µn,1, µ1) =

∑
A∈Pn

|µn,1(A)− µ1(A)|.

Beirlant et al. [6], and Biau and Györfi [10] proved that, for all 0 < ε,

P{Ln(µn,1, µ1) > ε} ≤ 2mne−nε2/2, (32)

(cf. Theorem 8). We now describe a similar result for our L1 independence
statistic.

Theorem 12 (Gretton, Györfi [26].) Under H0, for all 0 < ε1, 0 < ε2

and 0 < ε3,

P{Ln(νn, µn,1×µn,2) > ε1+ε2+ε3} ≤ 2mn·m′
ne−nε2

1/2+2mne−nε2
2/2+2m′

ne−nε2
3/2.

Proof. We bound Ln(νn, µn,1 × µn,2) according to

Ln(νn, µn,1 × µn,2) =
∑

A∈Pn

∑
B∈Qn

|νn(A×B)− µn,1(A) · µn,2(B)|

≤
∑

A∈Pn

∑
B∈Qn

|νn(A×B)− ν(A×B)|

+
∑

A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)|

+
∑

A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µn,1(A) · µn,2(B)|.

Under the null hypothesis H0, we have that

∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)| = 0.
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Moreover
∑

A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µn,1(A) · µn,2(B)|

≤
∑

A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µ1(A) · µn,2(B)|

+
∑

A∈Pn

∑
B∈Qn

|µ1(A) · µn,2(B)− µn,1(A) · µn,2(B)|

=
∑

B∈Qn

|µ2(B)− µn,2(B)|+
∑

A∈Pn

|µ1(A)− µn,1(A)|

= Ln(µn,1, µ1) + Ln(µn,2, µ2).

Thus, (32) implies

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3}
≤ P {Ln(νn, ν) > ε1}+ P {Ln(µn,1, µ1) > ε2}+ P {Ln(µn,2, µ2) > ε3}
≤ 2mn·m′

ne−nε2
1/2 + 2mne−nε2

2/2 + 2m′
ne−nε2

3/2.

2

Theorem 12 yields a strong consistent test of independence, which re-
jects the null hypothesis if Ln(νn, µn,1 × µn,2) becomes large. The test is
distribution-free, i.e., the probability distributions ν, µ1 and µ2 are com-
pletely arbitrary; and the threshold is universal, i.e., it does not depend on
the distribution.

Corollary 3 (Gretton, Györfi [26].) Consider the test which rejects
H0 when

Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)
≈ c1

√
mnm′

n

n
,

where
c1 >

√
2 ln 2 ≈ 1.177. (33)

Assume that conditions

lim
n→∞

mnm′
n

n
= 0, (34)

and

lim
n→∞

mn

ln n
= ∞, lim

n→∞
m′

n

ln n
= ∞, (35)
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are satisfied. Then under H0, the test makes a.s. no error after a random
sample size. Moreover, if

ν 6= µ1 × µ2,

and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn, A∩S 6=0

diam(A) = 0 (36)

and
lim

n→∞
max

B∈Qn, B∩S 6=0
diam(B) = 0, (37)

then after a random sample size the test makes a.s. no error.

Proof. Under H0, we obtain from Theorem 12 a non-asymptotic bound
for the tail of the distribution of Ln(νn, µn,1 × µn,2), namely

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)}

≤ 2mnm′
ne−c21mnm′

n/2 + 2mne−c21mn/2 + 2m′
ne−c21m′

n/2

≤ e−(c21/2−ln 2)mnm′
n + e−(c21/2−ln 2)mn + e−(c21/2−ln 2)m′

n

as n →∞. Therefore the condition (35) implies

∞∑
n=1

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′

n

n
+

√
mn

n
+

√
m′

n

n

)}
< ∞,

and the proof under the null hypothesis is completed by the Borel-Cantelli
lemma. For the result under the alternative hypothesis, we first apply the
triangle inequality

Ln(νn, µn,1 × µn,2) ≥
∑

A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)|

−
∑

A∈Pn

∑
B∈Qn

|νn(A×B)− ν(A×B)|

−
∑

B∈Qn

|µ2(B)− µn,2(B)|

−
∑

A∈Pn

|µ1(A)− µn,1(A)|.
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The condition in (34) implies the three last terms of the right hand side tend
to 0 a.s. Moreover, using the technique from Section 3.3 we can prove that
by conditions (36) and (37),

∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)| → 2 sup
C
|ν(C)− µ1 × µ2(C)| > 0

as n → ∞, where the last supremum is taken over all Borel subsets C of
Rd × Rd′ , and therefore

lim inf
n→∞

Ln(νn, µn,1 × µn,2) ≥ 2 sup
C
|ν(C)− µ1 × µ2(C)| > 0 (38)

a.s. 2

6.3 L1-based α-level test

Similarly to Sections 3.4 and 5.3, one can prove the following asymptotic
normality:

Theorem 13 (Gretton, Györfi [26].) Assume that conditions (34) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (39)

are satisfied. Then, under H0, there exists a centering sequence
Cn = E{Ln(νn, µn,1 × µn,2)} depending on ν such that

√
n (Ln(νn, µn,1 × µn,2)− Cn) /σ

D→ N (0, 1),

where σ2 = 1− 2/π.

Theorem 13 yields the asymptotic null distribution of a consistent inde-
pendence test, which rejects the null hypothesis if Ln(νn, µn,1×µn,2) becomes
large. In contrast to Corollary 3, and because of condition (39), this new test
is not distribution-free: the measures µ1 and µ2 have to be nonatomic.

Corollary 4 (Gretton, Györfi [26].) Let α ∈ (0, 1). Consider the test
which rejects H0 when

Ln(νn, µn,1 × µn,2) > c2

√
mnm′

n

n
+

σ√
n

Φ−1(1− α)

≈ c2

√
mnm′

n

n
,
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where
σ2 = 1− 2/π and c2 =

√
2/π ≈ 0.798,

and Φ denotes the standard normal distribution function. Then, under the
conditions of Theorem 13, the test has asymptotic significance level α. More-
over, under the additional conditions (36) and (37), the test is consistent.

Before proceeding to the proof, we examine how the above test differs
from that in Corollary 3. In particular, comparing c2 above with c1 in (33),
both tests behave identically with respect to

√
mnm′

n/n for large enough n,
but c2 is smaller.

Proof. According to Theorem 13, under H0,

P{√n(Ln(νn, µn,1 × µn,2)− Cn)/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the α-level test rejects the null hypothesis if

Ln(νn, µn,1 × µn,2) > Cn +
σ√
n

Φ−1(1− α).

As Cn depends on the unknown distribution, we apply an upper bound

Cn = E{Ln(νn, µn,1 × µn,2)} ≤
√

2/π

√
mnm′

n

n

(cf. Gretton, Györfi [26]). 2

6.4 I-divergence-based strongly consistent test

In the literature on goodness-of-fit testing the I-divergence statistic, Kullback-
Leibler divergence, or log-likelihood statistic,

In(µn,1, µ1) =
mn∑
j=1

µn,1(An,j) log
µn,1(An,j)

µ1(An,j)
,

plays an important role. For testing independence, the corresponding log-
likelihood test statistic is defined as

In(νn, µn,1 × µn,2) =
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) · µn,2(B)
.
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The large deviation and the limit distribution properties of In(νn, µn,1 ×
µn,2) can be derived from the properties of

In(νn, ν) =
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)
.

We have that under H0,

In(νn, ν)− In(νn, µn,1 × µn,2)

=
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

ν(A×B)

−
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
νn(A×B)

µn,1(A) · µn,2(B)

=
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
µn,1(A) · µn,2(B)

ν(A×B)

=
∑

A∈Pn

∑
B∈Qn

νn(A×B) log
µn,1(A) · µn,2(B)

µ1(A) · µ2(B)
,

therefore

In(νn, ν)− In(νn, µn,1 × µn,2)

=
∑

A∈Pn

∑
B∈Qn

νn(A×B)

(
log

µn,1(A)

µ1(A)
+ log

µn,2(B)

µ2(B)

)

=
∑

A∈Pn

µn,1(A) log
µn,1(A)

µ1(A)
+

∑
B∈Qn

µn,2(B) log
µn,2(B)

µ2(B)

= In(µn,1, µ1) + In(µn,1, µ1)

≥ 0.

A large deviation based test can be introduced such that the test rejects
the independence if

In(νn, µn,1 × µn,2) ≥ mnm
′
n(log(n + mnm

′
n) + 1)

n
.

UnderH0, (24) implies a non-asymptotic bound for the tail of the distribution
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of In(νn, µn,1 × µn,2):

P
{

In(νn, µn,1 × µn,2) >
mnm

′
n(log(n + mnm

′
n) + 1)

n

}

≤ P
{

In(νn, ν) >
mnm′

n(log(n + mnm′
n) + 1)

n

}

≤ emnm′
n log(n+mnm′

n)−n
mnm′n(log(n+mnm′n)+1)

n

= e−mnm′
n .

Therefore condition (35) implies

∞∑
n=1

P
{

In(νn, µn,1 × µn,2) >
mnm′

n(log(n + mnm′
n) + 1)

n

}
< ∞,

and by the Borel-Cantelli lemma we have strong consistency under the null
hypothesis.

Under the alternative hypothesis the proof of strong consistency follows
from the Pinsker’s inequality:

Ln(νn, µn,1 × µn,2)
2 ≤ 2In(νn, µn,1 × µn,2). (40)

Therefore,

lim inf
n→∞

2In(νn, µn,1 × µn,2) ≥ (lim inf
n→∞

Ln(νn, µn,1 × µn,2))
2

≥ 4 sup
C
|ν(C)− µ1 × µ2(C)|2 > 0

a.s., where the supremum is taken over all Borel subsets C of Rd × Rd′ .

6.5 I-divergence-based α-level test

Concerning the limit distribution, Inglot et al. [35], and Györfi and Vajda
[30] proved that under (25) and (26),

2nIn(µn,1, µ1)−mn√
2mn

D→ N (0, 1). (41)

This implies that for any real valued x, under the conditions (34) and (39),

P
{

2nIn(νn, µn,1 × µn,2)−mnm
′
n√

2mnm′
n

≥ x

}
≤ P

{
2nIn(νn, ν)−mnm

′
n√

2mnm′
n

≥ x

}

→ 1− Φ(x),
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which results in a test rejecting the independence if

2nIn(νn, µn,1 × µn,2)−mnm′
n√

2mnm′
n

≥ Φ−1(1− α),

or equivalently

In(νn, µn,1 × µn,2) ≥ Φ−1(1− α)
√

2mnm′
n + mnm′

n

2n
.

Note that unlike the L1 case, the ratio of the strong consistent threshold
to the asymptotic threshold increases for increasing n.
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