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Adaptive L inear Procedures Under 
General Conditions 

LASZLG GYQRFI 

Abstract-Under mild condit ions on  the observat ion processes the al- 
most sure convergence propert ies of l inear stochastic approximation are 
summarized for least squares and  for some of its applications: adapt ive 
filtering, echo cancellation, detection of binary data in Gaussian noise, 
identification, and  linear classification. 

I. INTRODUCTION 

I N MANY adaptive linear communicat ion tasks a  least 
squares problem has to be  solved using a  realization of 

a  stationary process. Usually, in addition, it is supposed 
that the corresponding process is ergodic, in which case the 
problem is equivalent to a  mean  square m inimization and  
the solution is the root of the W iener-Hopf equation. For 
the sake of computational simplicity, recursive procedures 
are applied, the strong consistency of which were proved 
under  additional conditions on  the dependence structure of 
the process. 
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The  author is with the Technical University of Budapest,  1111  Buda- 

pest, Stoczek u. 2, Hungary.  

If the process is nonergodic then we show that the 
solution is the root of the general ized W iener-Hopf equa-  
tion, where in general  the root is random and  not unique. 

The  purpose of this paper  is to point out that there exists 
a  simple and  general  stochastic approximation theorem by 
which the strong consistency of adaptive procedures can be  
deduced when the observation process is not ergodic. For 
illustration the consequences of this theorem are shown in 
the usual examples of communication: adaptive filtering, 
echo cancellation, detection of binary data in Gaussian 
noise, identification, and  linear classification. 

II. STOCHASTIC APPROXIMATION FOR DEPENDENT 
OBSERVATIONS 

The  introduction of Robbins-Monro stochastic ap- 
proximation [22] resulted in new possibilities for statistical 
inference from a  sequence of random observations. In 
classical mathematical statistics the only point of view was 
to get the most efficient inference from the samples with no  
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regard to their required computational complexity. In real- 
life problems of communicat ion and  control the 
Robbins-Monro idea opened  the research area of defining 
and  analyzing recursive algorithms of much smaller com- 
putational complexity, which may therefore work in real 
time  with respect to the generat ion of the typically high 
speed observation sequences. 

In the classical studies of stochastic approximation ([l], 
[2], [5], [12], [14], [21], [22]), it was essentially assumed that 
the observations were independent,  which is a  very restric- 
tive assumption for almost all practical applications. The  
ma in question of interest for proving the strong con- 
sistency of stochastic approximation for dependent  sam- 
ples was how to find an  efficient technique for evaluating 
the joint effect of the iteration and  the random observa- 
tion. It turned out that the commonly used devices of 
conditional expectations, martingales, and  other techniques 
relied upon  sufficient conditions, e.g., that the observations 
are M-dependent  or m ixing with given rate ([3], [7]). These 
conditions were thought to be  far from necessary in many 
cases. In that direction Fritz [ll], L jung [18], [19], [20], 
Kushner and  Clark [16], Gyorfi [13], Eweda and  Macchi 
[6], and  Farden [lo] made  important steps: for linear 
regression Fritz [ll] formulated a  completely deterministic 
problem by which strong consistency can be  deduced if for 
the observation the strong law of large numbers is applied; 
therefore the conditions of strong consistency of linear 
stochastic approximation are as general  as the conditions 
of the strong law of large numbers.  Thus the effects of the 
randomness and  the iteration were separated. Similar 
motivations were successful for the celebrated Ljung sep- 
aration theorem [18] which operates for more general  mod-  
els. 

if, for example, in the case of a  Hilbert space where (3) is 
replaced by the restrictive condition that jlAl/ < 1  and  
ljAJ[ < 1 for i = 1,2, . . . , L jung [19, ex. 41  states that as a  
particular consequence of his separation theorem (5) is 
valid if (3) is weakened by the condition that l/nC;=JAill 
has finite lim it. Although everybody believes that it can be  
verified, unfortunately there is currently no  detailed check 
of his so called “boundedness condition,” therefore we 
cannot use the more general  form of (3). It implies that in 
the sequel we should assume that the observation process 
has finite fourth moments instead of second ones. 

In some of the applications the recursion (4) has been  
attempted to accelerate the rate of convergence in the 
following form: 

V n+l =v,- *C,,1M+lK - K+,> (6) 
2 

(V, is arbitrary), where ci and  c2 are positive constants and  
C,, is a  sequence of matrices. Assume (l), (2), (3), and  

limC, = C. (7) n  
If CA is symmetric and  positive definite, then the con- 
sistency of (6) is a  simple consequence of the theorem (see 
[13, th. 21). 

In general, (6) is not faster than (4). It may have a  better 
rate of convergence if C has an  appropriate relation to 
A-‘, for example, C = A-’ ([25], [27]). 

The  theorem shows the convergence of a  deterministic 
recursive algorithm. For stochastic recursion this theorem 
guarantees strong consistency on  that event on  which the 
conditions of the theorem are met. These conditions are 
usually verified by a  strong law of large numbers.  

In the sequel applications of linear stochastic approxi- 
mation are given based on  the following theorem. 

III. LEAST SQUARES 

Theorem: Assume a  sequence of L X L square matrices 
A,, A,, . . . , and  a  sequence of L-vectors W ,, W ,, . . . , such 
that 

Let D = (Xi, YJ, (X2, Y2), . . . , be  a  sequence of ran- 
dom pairs such that { Xi } are L-dimensional and  { Y } are 
scalar. An L-vector V is called coefficient vector and  the 
inner product (V, Xj) stands for a  linear estimate of Y 
where i = 1,2, . . . . These estimates are qualified by 

Ii;+ ,k ((V, X,) - q)’ (8) 
r=l 

if it exists. The  task of least squares problem is to m inimize 
this lim it in V. 

lim  i 5  Ai = A, 
i=1 

(1) 

and 

(3) 

exists and  is finite. If A is symmetric and  positive definite, 
and  V, is defined by 

V n+l =Vn-& (An+lK - W I+,> (4) 

(V, is arbitrary), then 

lim  V, = A-‘W . 
n (5) 

where Pis the u-algebra of invariant sets of the stationary 
process D (see Stout [26, th. 3.5.71). 

One  has to emphasize that in the nonergodic cases the 
least squares problem does not result in the usual mean  
square m inimization. On  the one  hand, the solution of least This theorem was proved by Gyorfi [13, th. 11. Fritz [ll] 

formulated this problem in a  Banach space and  proved (5) squares may be  random, but the expected asymptotic error 

Assume first that D is (strict sense) stationary with 
E]]XJ4 < cc and  E]Y12 < 00; then by the strong law of 
large numbers for stationary processes we get 

lim i ,k ((V, Xj) - q)‘= E(((V, X,) - Y,)‘/F) 
I=1 

a.s., (9) 
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of the least squares is less than the least mean square, since 

I mpE( E( ((V, X1) - Y,)2/F)) 

= miiE[ ((v, Xl) - Y,)2). 

Denote by Qopt the set of the solutions V of the follow- 
ing Wiener-Hopf equation 

E( XIX~/F)V = E( X,Y,/9-), (10) 
then the vectors V from Qopt minimize the error (9). If D is 
not ergodic then E(X,X1’/F) may be random, therefore 
there is no use to assume that E( X,X:/F) -’ exists al- 
most surely, or equivalently that the solution of (10) is 
unique almost surely. 

Let (h,, q+) i = 1,2,. . . , L be an eigensystem of the 
matrix E( X, XT/F), i.e., ‘pl, . . . , q)L are orthogonal solu- 
tions of the equation E( X, XT/g) qi = h ;‘p,, and X, 2 h 2 
2 ... 2 h, 2 0. Let 0 I L’ < L be the integer for which 
hi > 0 if i I L’ and hi = 0 if i > L’; then the conditional 
distribution of X, given Fiis concentrated into the sub- 
space RLr of RL spanned by ‘pl, . . . , (pL’. Put 

v= &;, E( X,Y,/F) = 5 u;rpi; 
i=l i=l 

then ui = 0 almost surely for i > L’ and V is a solution of 
(10) if ulhicpi = ui’pi where i = 1,. . . , L’. Thus 

r/= ~~,~~;u~=~,i=l,...,L’ as. 
i=l I I 

Based on (8), the obvious estimate of a solution is 

vn= $xixiT+B 
[ 1=1 

I-‘[ i jllxiT]> (11) 

where B is an arbitrary positive definite matrix ensuring 
that the inverse in (11) exists. It is surprising that c, tends 
to an element of Qp,, almost surely in general, even in the 
case when E( X,X,‘/F) -’ does not exist. However, in this 
latter case the inverse factor in (11) is divergent causing 
many computational difficulties. The proof of the con- 
sistency of (11) is similar to that of the proof of the 
recursive procedure (14) in the sequel. The consistency is 
guaranteed by the strong law of large numbers: 

li? i ,k Xix: = E( X,X:/F) as., (12) 
r=l 

lim I 2 Xir( = E(X,Y,/p) 
II n i=l 

a.s., (13) 

and by the fact that the projection of pn upon the subspace 
RL’ is convergent almost surely. 

Avoiding the computational difficulties of (ll), intro- 
duce the recursion 

bl = K - & Kx+l~ K> - r,+dx,+1 (14 

(V, is arbitrary), the strong consistency of which comes 

from the theorem for the notations A, = X,X,:, W, = X,, Y,, 
if E( X, XIT/F) ~’ exists, since by the strong law of large 
numbers 

(15) 
Therefore by (12), (13), and (15) the conditions of the 
theorem are met, thus 

lim vl, = E( XIXT/F)-lE( X,Y,/fl) as. n 
If the inverse of E( X1 XT/F) does not exist then observe 
that the correction term of (14) is an element of RL’ almost 
surely, since it is a scalar multiplication of X,,, 1 taking 
values in RL’ almost surely givens, therefore by induction 

V, = P,,,(K) + V, - P,,,(Vo) a.s., (16) 

where PLr stands for the projection operator upon Rr; 
P,.,(V,) defines an almost sure equivalent of V,, and the 
minimization problem has a unique solution in R”. Eq. 
(16) implies also that the limit y:, has the form 

L’ 
limV, = C 3~i + V, - P,,(V,) a.s. 

n i=l ‘i 

If D is ergodic and E( X,X:) -’ exists then the rate of 
convergence of y1 may be much worse than that of Tn. In 
this case the usually proposed accelerated version of (14) is 
as follows ([25], [27]): 

where 

and B is an arbitrary positive definite matrix; B,-’ can be 
calculated recursively and lim, B,; 1 = E ( Xl XT) ~ ’ almost 
surely. Thus by the consistency of (6) we get limJ$* = 
E ( Xl X;‘) ~ ‘E( X,Y,) almost surely. 

Notice that in the nonergodic case V,* tends also to an 
element of Qopt almost surely, however, B,-’ may be di- 
vergent. 

The stationary case can be generalized to periodic non- 
stationary (cyclostationary) observations, for which the 
multidimensional distributions are invariant for time shifts 
of multiples of the period T. In this case the sequence D 
can be decomposed into T stationary processes D, = 
{(q+jT, y+jT)j = 1,2, * * . } i = 1,2, . . . , T. Thus, for the 
error term 

li,? i ,$ ((Xi, V) - y)” 
r=l 

a.s., 

where 6 is the u-algebra of the invariant sets of the 
stationary process Di (i = 1,. . . , T). Here Qopt denotes the 



GYORFI:  ADAPTIVE LINEAR PROCEDURES UNDER GENERAL CONDITIONS 265  

solutions of the equation 

[~~lE(X,X:/s)]v=~~lE(*~,~)~ 

and  t,, V,, V,* as defined before tend to an  element of Qopt 
almost surely. 

For optimization the knowledge of the period T would 
be  very useful. Applying the decomposit ion idea let us 
generate the set of least squares solutions Q iopt for the 
observation Di (i = 1, . v . , T); then - 

(17) 
almost surely where V,,, E Q ,, and  P’&rt E Q iopt, i = 
1,.-e, T. For stationary observations the equality in (17) 
holds almost surely. In contrast to the stationary case for 
cyclostationary observations with a priori known period T 
it may be  worthy to generate T least squares optimization 
problems instead of one. 

The  only assumptions on  D were (12), (13) and  (15) 
which hold for nonstationary processes, where the non-  
stationarity is caused by random transients such that 
(X,, Y,) tends in some sense (for example a.s.) to a  sta- 
tionary process. 

IV. EXAMPLES 

Adoptive filter 
(v,+ ( 2”)) 

Fig. 1. Adaptive filtering. 

have the form (18). If the statistical properties of the source 
Y, are known as far as necessary, name ly, riPJ = E(yY,) 
i, j = 1,2, . * . L are known, then using (20) the adaptive 
filter may be  as follows: 

V n+1 =vn--& ( znzn’v, - w*), (24 

where W* = (E(Y,Z,_ M+r), i = 1,2,. * *, L)T = (rMmi, 
i = 1,2;.*, L )TandZ” = (ZnPM+i,..., Z,-M+L)T.Eq. 
(22) depends only on  the output of the channel. If the 
source is unknown and  the covariances 7; _  j = E( NiNj) of 
the channel  noise are known, then by (21) V, has the form 
(22). Here W* = (Z,Z,-,+i - ?,,,:Mi, i = 1, ... , L)T. 

For some communicat ion channels a  particular adaptive 
filtering problem is the adaptive equalization. Here it is 
usually assumed, that the channel  outputs are unknown 
linear filterings of the inputs with additive noise. If the 
covariances of the source and  noise are known then we 
have some chance to construct consistent procedures, where 
the observations are the outputs of the channel. (This is 
called adaptive equalizer.) However, the problem is still 
open  how to construct an  adaptive equalizer of complexity 
of (22) having strong consistency and  not having the 
run-away property of the usual decision-directed proce- 
dures (see Lucky [17]). 

Adaptive Filtering 
Echo Cancellation 

Consider the filtering problem for a  communicat ion 
channel  (Fig. 1). Assume that the output process Z  = {Z,,} 
of the channel  is observed and  one  has to estimate the 
input process Y = {Y,} in the form (V, X,). The  i th 
coordinate of X, equals to &( Z,, _  M+ i, . . . , Z, _  M+ L*)r 
where the filters $+ are measurable functions of their argu- 
ments (i = 1, . . . , L), (1 5  M , 1  5  L*). If M  > L*, then 
the filter is called prediction, otherwise it is called interpo- 
lation. In typical cases the { +i} are linear, for example ([4], 
[8], [23], [27]), L = L* and 

cp;(z,-*+l~-- 3  z,-,+,*I =  L&f+; i = 1,. . . , L. 

(18) 
If the optimal filtering is formulated as a  least square 
problem, then (14) may have the strong consistency prop- 
erty, provided that (X,, Y,) are second order and  sta- 
tionary. However, (14) uses both the input and  the output 
of the channel. An adaptive filter has to operate only with 
the output of the channel  ([15], [23], [27]). For this reason 
some additional assumptions are made.  Suppose that 

z, = Y, + iv, (19) 

Falconer and  Mue ller [9] investigated the problem of 
adaptive echo cancellation for the structure illustrated by 
F ig. 2, which is a  mode l of two-wire full-duplex data 
transmission. Source, produces S,, the output of Channel, 
is $,,, which is corrupted by the echo & of the symbol U, 
of Source,. G iven Z,, = $, + fin Jhe task of the Canceller, 
is to copy the channel  output S, in the form $  = Z, - 
(V, +(Un)) and  to find the vector V for which 

lifl ; ,i (S; - 3;)’ (23) 
r=l 

is m inimal. Here the filters $I are measurable functions of 
their arguments U” = (Ui, i I n)T. 

Assume that the sequence (U,, fin,, 4) is second order 
and  stationary with the invariant o-algebra9; (U,, &) and  
$, are independent given Sand E(&/g) = 0. 

sn = sn + on -(v, +(Lq) 
and 

where {Y, } and  {N, } are independent,  stationary, and  = E((& - $)‘/F) 
ergodic, and  E(N,) = 0. Then  

E( Z;yJ) = E( qI$, (20) 
= E((& + $ -(V,+(U’)))‘/P) -@f/P) 

E(Z,Z,) = E( ZJ) + E(N,T). (21) 
= lim tlci(Zl -(V,+(Ui)))’ - E($f/R) as. 

For the sake of simplicity assume that 9, (i = 1, . . . , L) (24) 
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Two-wire full -duplex channel / 
--___ --------I 

Fig. 2. Adaptive echo canceller. 

Thus the m inimization of (23) is equivalent to the m inimi- 
zation of the first term of the right-hand side of (24), 
therefore the procedure (14) has the form 

V n+l =V+$ 

giving a strong consistent estimate for one of the optimal 
coefficient vectors of Canceller,. 

Observe that, as far as the consistency property is con- 
cerned, the actual structures of the channels and the echo 
channels are irrelevant. A good choice of filters + providing 
an appropriate model for the echo ‘channel is relevant in 
order to get good cancellation. 

Detection of Binary Data in Gaussian Noise 

Consider the adaptive detection of binary pulse-ampli- 
tude modulation (PAM) signaling in additive Gaussian 
noise ([15], [23], [28]). The received signal is as follows: 

r(t) = zS,m(t - nT - Q) + t(t), 
n 

where the waveform m  is continuous on (0, T) and zero 
outside of [0, T], E(t) is a stationary, ergodic, and zero-mean 
Gaussian process of almost sure continuous sample func- 
tions, E(t) is independent of the -t 1 valued, zero-mean 
source { S, }. For the synchronous case take L samples in 
each bit time T, thus Z,, = (r(~,, + nT + (2i - 13/(2L)T) 
izl;.., L)? If M  denotes the vector of the samples of 
the waveform m  

then the optimal detector in the sense of error probability 
is 

S,l= sgn(V*, Z,), 
where V* is the solution of the equation KV = M . Here K 
stands for the covariance matrix of the sampled noise 
([((i/L)T) i = 1,. . . , L). Assume that K -’ exists. The 
adaptive detector uses only the output of the channel. It is 
possible applying the equality E(Z,ZT) = MMT  + K. 

Thus for the simple recursion 

V n+l = v, - &((5,+1z,‘+1 - M M ’)v, - M) 

we have 

limV, = K-l44 a.s. 
n 

For the asynchronous case assume a consistent syn- 
chronization, i.e., 7,: denotes an estimate of rrl such that 

lim( 7,’ - TV) = 0 a.s., (25) n 
then the corresponding samples of the received signals are 
ii = (~(7,’ + nT + (2i - 1)/(2L)T), i = 1,. . . , L)’ and 
the recursion is 

V’ n+l = v,l- -$((z;+lz;:l - hfw),, - M). 

Although Z; is nonstationary, V, and T/;,’ have the same 
lim it almost surely if 

liF+ ,$ (Z,ZT - Z/Z/‘) = 0 a.s. 
I=1 

or 

a.s. 

This comes from the Toeplitz theorem since by (25) apply- 
ing the continuity assumptions on m  and E we have almost 
surely lim ,JZ,, - ZJl* = 0. 

Identification 

Denote by { Z,, } and { Y, } the inputs and the outputs of 
a dynamic system, resp. Let the identification task be the 
best approximation of the output {Y,} in the form 
(V, $( Z”, Y”-l)), where + is an L-vector valued measur- 
able function of its argument Z”, Ynpl = {Z;, 5, i I n, 
j I n - l}. The optimization problem is formulated as the 
m inimization of 

which is also a simple least squares problem, and it m ight 
be solved by an algorithm like (14) for X, = +(Zn, Y,-l). 
Here the consistency property does not depend on the 
actual structure of the system to be identified. However, 
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for choosing appropriate function + usually some assump- 
tions are made  on  the structure of the system ([19], [24], 
[27]). The  typical structure is 5  = (V*, +(Zn, Ynpl)) + N, 
where $  is either a  linear function for a  linear mode l or it is 
a  vector with components being polynomials of Volterra 
series for nonlinear mode ls. 

For the observation it is enough  to suppose that 
{HZ”, yn-% r,} is second order and  stationary, however, 
for identification it may make sense to deal with the last 
problem of Section III, for which {Z,, Y,} is not sta- 
tionary, but (Z,, Y,) tends in some sense to a  stationary 
state. 

Linear Classifier 

The  classification problem is given by the stationary 
training sample D = {(Z,, Y,),(Z,, Y,), * . + }, where {Z,} 
are L’-vectors and  { Y } take the values f 1. For an  L-vec- 
tor V the decision on  Y, is defined sgn (V, +( Z,,)). Here +: 
RL’ -+ RL is a  measurable function. The  task is to m ini- 
m ize the asymptotic error rate 

where F iis the invariant u-algebra of D and I stands for 
the indicator. Unfortunately, this random function of V 
may have several local m inima. The  error rate has a  simple 
upper  bound  

li,t” + ,$ I 
1 n  

r=l (sgn(V,$J(Z,))+Y,} 5 I’,“; ,x wan) - Yj2> 
r=l 

the m inimization of which is a  least squares problem ([3], 
1271). 
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