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The Rate of Convergence of k, -NN Regression 
Estimates and Classification Rules 

LASZLb GYijRFI 

A bsrract- The rate of convergence of k, -NN regression estimates and 
the corresponding multiple classification error are calculated without as- 
suming the existence of the density of the observations. 

INTRODUCTION 

Cover and Hart [l] proved the convergence of the one-nearest- 
neighbor (1 -NN) and k-NN decision rules under some continuity 
condition on the a posteriori probabilities. Under the same condi- 
tions Gyiirfi and Gyarfi [2] showed the convergence of k,-NN 
rule. The mere use of a nonparametric, e.g., NN, estimate is 
normally a consequence of the partial or total lack of information 
about the underlying distributions. Therefore, it is important to 
prove their consistency without any condition on the distribu- 
tions and to prove their rate of convergence under mild condi- 
tions. Stone [3] proved the distribution-free consistency of the 
NN de. 

The rate of convergence was investigated under the assumption 
that the a posteriori probability functions are smooth enough, and 
the density of the observation exists (Cover [4], Gyijrfi [5], Beck 
[6], Wagner [lo], Fritz [ll]). Our purpose is to weaken these 
conditions. 

k, -NN REGRESSION ESTIMATE 

Let (X, Y) be a random vector taking values in Rd X R. If 
E,I Y I< + co then the regression function is defined by m(z) 
=&Y/X= z), z E Rd. p denotes the probability measure of X. 
en estimate of m(z) is calculated from a sample Z” 
= {(X,, Y,), . . . ,(X,, Y,)}, which is a sequence of independent 
and identically distributed random vectors having the same distri- 
bution as that of (X, Y). Assume that (X, Y) and Z” are indepen- 
dent. For a fixed zERd let (X;,,,Y;.),...,(X,z.,Y~.) be the 
nearest neighbor ordering of Z” according to increasing values of 
II Xi-z II. In case of a tie (4, K) precedes ( Xj, q) if i <j. Then 
the k, - NN estimate of m(z) is 

fiTI ix1 
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The main idea of previous developments was the following: if 
m is continuous and we have some values of m at a sphere S,,, 
centered at z with radius r, then their average is a good ap- 
proximation of m(z) for small r. However, this average is near to 
the expectation: 

and by the pointwise density theorem (Federer [7, theorem 2.9.81) 

is true in general for any (measurable) regression function. No 
continuity condition is required. On the one hand, this is a useful 
tool for proving the distribution-free (universal) consistency of 
NN rules [8], [9]; on the other hand, we can prove the rate of 
convergence under weak condition. 

Theorem: Suppose that E 1 Y) * < co and 

lim k,=oo, ntmm +=O. (1) n+az 

Assume a function K on Rd and cr > 0 such that 

for each r > 0 and for each z E Rd mod ~1. Then for all sequences 
C&1:0 

..min{&, ( ~)a’d}lm,,(X)m(X)j 30 (3) 

in probability. 
One has to emphasize that (2) is a smoothing condition, 

However, it does not imply that m is continuous mod p. 
If Jk7;= (n/k,)“/d, i.e., we choose 

k, = nV(~+(W4) 

then according to (3) the rate of convergence in probability is at 
least n - I/P+(d/a)) 

k, -NN DECISION RULE 

For the multiple classification rule the random vector X stands 
for the observation. Given X, we have to decide on the random 
variable 0, which takes values in { 1,2,. . . ,M). Let 

P,(z)aP(@=i/X=z), i=1,2;..,M, zERd, 

denote the a posteriori probabilities. The Bayesian decision rule 
minimizes the probability of misdecision: 

g,(x) =i if pi(x)‘P,(x)9 j<i 

pi(x)aP,(x)? j>i. 

Then 

L*(x)qgB(x)#o/x) 

= l- l$jyMw> 

= inf 
g:Rd’(l,2,...,M) 

pMx> #@/X). (4) 

Pi might be defined as the regression function of the indicator of 
the event {O=i} (i= 1,2;.. 
estimate of P, (i = 1,2; . . 

,M). Let Pi,, denote the k,-NN 
,M). Then the k,-NN decision rule is 
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as follows: 

363 

Devroye [9] proved that the finite limit 

hd 
g,(X)=i if 

pi,n(x>‘pi,n(x), jCi 

4,n(x) q,,(x), j>i. 

By the bound of Gyiirfi [5, lemma 41 

P(g,(X)#O/X,Z”)-L*(x)< 2 IPi(x)-p,,,(x)I. 
i=l 

Therefore, our theorem implies the following corollary. 
Corollary: Assume that 

lim k,= co, 
n-m 

,crnm +=O 

and the functions Pi satisfy (2) for some functions Xi (i = 
. . * ,M) and (Y > 0. Then for all sequences a, -+ 0 

::,n{&, ($ ja”} IP(g,(X)#O/X,Z”)-LL*(X)I~O 

in probability. 

PROOF 

If the density of the observation X does not exist, then the 
basic tool for proving the rate of convergence is a distribution-free 
(universal) rate of convergence of the distances of the nearest 
neighbors. 

Lemma: For each sequence a,, 3 0, if limn-oo (k,/n) = 0, 
then 

( 1 

‘/d 
a, t IIX-X~,“lI $0 (5) 

in probability. 

Proof: It is sufficient to deal with the case where l/6, 

k a,(Vk,) ‘id 5 co, since if lim n-m(k/n)=O, theni 

II X- X(,,II 40 as. 

If x stands for the indicator function, then for each e > 0 

I/d 
IIX-X~,.Il~~ 

= J( p XL,,, 6bn)d4 

~x~x,~s~,.~~~-% 
i=l 

(6) 

The random variable 

has the binomial distribution with expectation r~y(S,,,~,) and 
variance np( &a,)( 1 - p( SZ,cs,)). By the de Moivre-Laplace 
theorem 

(7) 

exists for all z E Rdmod lo and for all fixed r > 0. Thus we get 

(8) 

for all zmod CL. Therefore, (7) is true for all zmod p. Applying the 
Dominated Convergence Theorem, (6) and (7) imply (5). 

Proof of Theorem: Introduce the notations 

‘Yn(X)~llX-X~+,,nII 

and 
A*& {z;p((S,,,)>O,Vr>O}. 

Cover and Hart [l] proved that p(AT = 1. Thus 

+ X(xEA*,a,(x)>O) przzJ 

(9) 
For the first term of the right side of (9), introduce the notation 

62(z)=E((Y-m(X))2/X=z), zERd. 

Then 

_ k. 

= E$- ,z a2( X&) %ES~(X), n r=l (10) 

where in the last step the weak universal consistency of k,-NN 
regression was used (Stone [3], Devroye [9]). For the second term 
of (9), applying the same argument as that of Devroye [9, lemma 
2.11, we get 

supk,E k ,5 m(X[,)- 
n n r=l 

<SW. (11) 



For the third term of (9) we have from (2) that 

l/d 
I 
OL 

IIX-X,+,,nIl a.s. (12) 

and (lo)- (12) and the Lemma prove the Theorem. 
. 
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Asymptotic Efficiency of Classifying Procedures 
using the Hermite Series Estimate of 

Multivariate Probability Densities 
WEODZIMIERZ GREBLICKI 

Abstract-Pattern recognition procedures derived from a nonparametric 
estimate of multivariate probability density functions using the orthogonal is an estimate of 

Hermite system are examined. For sufficiently regular densities, the con- 
vergence rate of the mean integrated square error (MISE) is O(n -I+‘), aj ,,..., jP=E(hj,(X(‘))...hjJX(P))). 

r>O, where n is the number of observations and is independent of the 
dimension. As a consequence, the rate at which the probability of misclas- 

In our development we make use of the following three proper- 

sification converges to the Bayes probability of error as the length n of the 
ties of the Hermite system: 

learning sequence tends to infinity is also independent of the dimension of 
the class densities and equals 0( n - ‘I’+‘), S > 0. 

mya ) hj(y)l d C( j + 1)-“12, 

I. INTR~DUCTI~N ,zyA Ihj(Y>l sC,(j+ 1)-1’4, 

In this correspondence we consider a pattern recognition pro- 
cedure derived from the Hermite series estimate of a multivariate 

for any nonnegative A, and 

probability density function (pdf). The usage of an orthogonal 
series to estimate a density was proposed by (5encov [2], while 

mm IY 
lyla-4 

-‘/‘hj(y)l GD,( j-k 1)-“4 

for any positive A. 
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Schwartz [8] gave conditions for the consistency of the estimate 
employing a system of uniformly bounded orthogonal functions. 
The consistency with probability 1 was examined by Bosq [l]. 
For a recursive version of the estimate we refer to Rutkowski [7]. 
The rate at which the Hermite series estimate converges to a 
sufficiently smooth density was given by Schwartz [8] and im- 
proved by Walter [ 111. 

is the jth Hermite polynomial. Since, as is well-known, 

{hj (X (‘))h .(xc2)) . . *h .(x(P)); j,;. -,jp = 0, 1, *. -} 
(d,. . ‘,X (Pi; = x: E RP, ckstitutes a complete orthonormal sys- 
tem over RP, the estimate of f(x) considered in this correspon- 
dence is of the following form: 

&&‘),. . . ,-JP))= i 

j, =O 
. . . jioCj ,,;. .,j,hj,(x”‘) * . .hj,(X(‘)), 

P 

where q depends on n. The coefficient 


