
Budapest University of Technology and Economics
Department of Computer Science and Information Theory

Advanced Techniques for the Implementation of
Model Transformation Systems

PhD Thesis

Gergely Varró
MSc in Technical Informatics

Supervisors:
Dr. Katalin Friedl, PhD

associate professor

Dr. Dániel Varró, PhD
assistant professor

Prof. Dr. rer. nat. Andy Schürr
professor

Budapest, April 2008

Nyilatkozat

Alulírott, Varró Gergely György, kijelentem, hogy ezt a doktori értekezést magam készítettem, és ab-
ban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint, vagy azonos
tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöl-
tem.

Budapest, 2008. április 16.

A dolgozat bírálatai és a védésről készült jegyzőkönyv a későbbiekben a Budapesti Műszaki és Gaz-
daságtudományi Egyetem Villamosmérnöki és Informatikai Karának Dékáni Hivatalában elérhetők.

Advanced Techniques for the Implementation of Model Transformation Systems

Gergely Varró

PhD thesis summary

Abstract

When developing software applications in a model-driven way by the MDD paradigm,
the high-level system models designed by software engineers are automatically converted
to platform-specific representations (such as J2EE, .NET, or CORBA) and later to program
code by model transformations. In the current thesis, I propose advanced support for execut-
ing complex model transformations. I also analyze the performance and the tool integration
capabilities of model transformation systems.

In software engineering, the leading trend of Model-Driven Development (MDD) aims at creat-
ing system models on various abstraction levels, and automatically transforming these models into
each other. In this process, a large number of modeling languages and tools are involved. Powerful
domain-specific modeling environments frequently provide rich support for developing editors, and
code generators, but the design of model transformations are usually not supported properly in these
industrial tools. This thesis primarily focuses on to provide advanced support for executing complex
model transformations within and between these modeling languages.

The MDD approach requires these transformations to be (i) captured by a high-level specifica-
tion language, (ii) automatically executed by efficient algorithms and techniques, and (iii) extensively
supported by industrial quality tools.

Though model transformations can be appropriately defined by the specification languages of the
Query/Views/Transformations (QVT) standard, several performance and tool integration related issues
are missing from both the design and the implementation of model transformation algorithms, tech-
niques and tools despite the fact that the declarative and rule-based paradigm of graph transformation
already provides a well-defined formal specification framework for implementing model transforma-
tions.

In the current thesis, I propose several advanced, graph transformation based techniques for the
implementation of model transformation systems by also assessing their performance and analyzing
their tool integration capabilities.

Benchmarking framework for graph transformation. I propose a benchmarking framework,
which enables quantitative performance analysis and comparison of graph transformation tools and
their optimization strategies.

Graph transformation in relational databases. I elaborate a provenly correct method for the im-
plementation of graph transformation built on top of a relational database, and I assess the performance
of the approach by using different databases and several parameter and optimization strategy settings.

Adaptive graph transformation. I present an adaptive method for executing model-specific search
plans in order to improve the performance of graph transformation in its pattern matching phase.

Incremental graph transformation. I elaborate a notification framework based incremental
method for graph pattern matching, which stores partial matchings explicitly in the main memory and
updates them incrementally, when notifications about model changes arrive. Additionally, I assess the
performance of the approach by comparing it to a traditional graph transformation tool.

Contents

Contents v
Acknowledgements . ix

1 Introduction 1
1.1 Model-Driven Engineering . 1
1.2 Model transformation . 2

1.2.1 Query/Views/Transformations – the model transformation standard 2
1.2.2 Model transformation tools . 3

1.3 Graph transformation as a model transformation approach 3
1.3.1 Architecture of a model transformation tool 4
1.3.2 Categorization of graph transformation tools 4

1.4 Problem statement . 5
1.5 The structure of the thesis . 6

2 Graph Models 9
2.1 Metamodels . 9
2.2 Instance models . 11
2.3 Metamodel and model representation in Java . 13

2.3.1 Java 2 Platform 5.0 Standard and Enterprise Editions 14
2.3.2 Mapping metamodels to EJB3 entity bean classes 14
2.3.3 Creating sample models as EJB3 entity bean instances 16

2.4 Conclusion . 16

3 Computing by Graph Transformation 17
3.1 Graph transformation . 17

3.1.1 Graph transformation rules . 17
3.1.2 A merged graphical representation for rule preconditions 19
3.1.3 Matchings . 22
3.1.4 Application of graph transformation rules . 23

3.2 Modeling a distributed mutual exclusion algorithm 25

v

vi CONTENTS

3.2.1 Metamodels and instance models . 26
3.2.2 Graph transformation rules . 26

3.3 Graph transformation tools . 28
3.4 Graph transformations tool representatives . 31
3.5 Implementation of graph transformations . 31
3.6 Conclusion . 33

4 Pattern Matching Strategies 35
4.1 A general purpose graph pattern matching algorithm 35

4.1.1 Search space tree . 36
4.1.2 Complexity analysis of pattern matching and updating phases 37

4.2 Search plan driven pattern matching . 39
4.2.1 Search graphs . 39
4.2.2 Adorned search graphs and search plans . 41
4.2.3 Formalization of adorned search graphs and search plans 41
4.2.4 A search plan description for constraint satisfaction based algorithms 43
4.2.5 Operations in search plan driven graph pattern matching 45
4.2.6 Implementing a search plan driven pattern matcher 47
4.2.7 General approximation for the size of the search space tree 49

4.3 Conclusion . 49

5 Benchmarking Framework for Graph Transformation 51
5.1 Motivation for benchmarking . 51
5.2 Benchmark features . 52

5.2.1 Definitions of benchmarking . 53
5.2.2 Paradigm features for graph transformation 53
5.2.3 Tool features . 54

5.3 A benchmark example: Distributed mutual exclusion algorithm 57
5.3.1 The STS test set . 57
5.3.2 The LTS test set . 60
5.3.3 The ’as long as possible’ test set . 63
5.3.4 Feature matrix . 65

5.4 The object-relational mapping as a benchmark example 65
5.5 Measurement results . 68
5.6 Conclusion . 72

6 Graph Transformation in Relational Databases 75
6.1 Motivation . 75
6.2 Informal overview . 77
6.3 Database operations . 82

6.3.1 Tables and views . 83
6.3.2 Query operations . 83
6.3.3 Data manipulation operations . 85

6.4 Graph transformation in relational databases . 86
6.4.1 Mapping metamodels and models to database tables 86
6.4.2 Views for rule graphs (LHS and NAC). 89
6.4.3 Left joins for preconditions of rules. 90

vii

6.4.4 Graph manipulation in relational databases 92
6.5 Measurement results . 95
6.6 Graph transformation with portable EJB QL queries 97

6.6.1 Enterprise Java Beans Query Language . 97
6.6.2 Graph pattern matching on EJB3 platform . 98

6.7 Conclusion . 100

7 Adaptive Graph Transformation 103
7.1 Motivation . 103
7.2 Collecting model statistics . 105
7.3 Generating model-specific search plans . 107

7.3.1 Model-specific search graphs and plans . 107
7.3.2 Algorithms for finding low cost search plans 111

7.4 Compile-time tasks of adaptive pattern matching . 113
7.4.1 Theoretical foundations of compile-time support for adaptivity 114
7.4.2 Compile-time tasks in EJB3-based adaptive pattern matching 115

7.5 Run-time tasks of adaptive graph transformation . 117
7.5.1 Adaptive graph pattern matching: An illustrative example 118
7.5.2 Run-time tasks in EJB3-based adaptive pattern matching 119

7.6 Performance evaluation . 119
7.7 Conclusions . 122

8 Incremental Graph Transformation 125
8.1 Motivation . 125
8.2 Concepts for supporting incremental pattern matching 128
8.3 Data structures for incremental pattern matching . 130

8.3.1 Matching snapshots and snapshot trees . 130
8.3.2 Binding arrays . 133
8.3.3 Invalidation edges . 133
8.3.4 Notification arrays . 134
8.3.5 Query results. 135

8.4 Operations for incremental pattern matching . 135
8.4.1 Incremental operations on an example . 137
8.4.2 Insert method . 139
8.4.3 Validate method . 139
8.4.4 Delete and invalidate methods . 141

8.5 Experimental Evaluation . 141
8.6 Incremental graph pattern matching in relational databases 143

8.6.1 Events and triggers . 143
8.6.2 Incremental view updates for rule graphs (LHS and NAC) 144
8.6.3 Incremental updates for preconditions of rules 147

8.7 Conclusion . 150

9 Conclusions 153
9.1 Fulfillment of objectives . 153
9.2 Utilization of new results . 154

9.2.1 Utilization of the benchmarking framework 154

viii CONTENTS

9.2.2 Utilization of RDBMS based graph transformation 154
9.2.3 Utilization of model-sensitive and adaptive pattern matching 155
9.2.4 Utilization of incremental graph pattern matching 155

9.3 Future directions . 155

A Proofs of Theorems 157

B Additional Algorithms 165

Bibliography 171

ACKNOWLEDGEMENTS ix

Acknowledgements

Prior to discussing the theoretical and practical details of implementing advanced model transformation
systems, I would like to cordially thank all those people who gave significant assistance to me during
the recent years.

The research that lead to the contributions of this thesis has been carried out in a very special
and unusual configuration of supervision and working environment, which resulted in a fruitful and
effective inter-department and international cooperation. Thus, I would like to say many thanks to all
those colleagues who participated in forming and maintaining this special alliance.

In this sense, first, I highly acknowledge Katalin Friedl, who undertook the supervision of my
research even under these very special circumstances. Her wonderful and always supportive personality
had a large role in creating and preserving the protected and cooperative working environment, which
helped me a lot to be able to focus on my research related tasks. I am grateful to Kati for the vivid
discussions on improving the details of algorithms, for her useful guidelines, thorough proofreading
and many hints in the process of writing precise, high quality, technical papers.

Though it would be the place for the acknowledgements, I cannot express in words how grateful I
am to my brother, Dániel Varró, who was a brother, a friend, a supervisor, a colleague, and a co-author
of many papers at the same time in one person. Five years ago he proposed and convinced me to stay
involved in the “family business” and to continue my research on model transformation. He suggested
me many of my high-level research goals, of which all are proved to be achievable (as demonstrated by
this thesis). Moreover, they really served as a guideline for me to find the lower level research goals and
solutions. I should highly acknowledge Dani for the many-hour discussions, which were always useful
and really inspiring; for teaching me the technique of writing research papers; for all the know-how I
acquired from him to sell my results on international forums and for encouraging me many times not
to give up my long-term plans.

In 2004, I was invited by Andy Schürr to spend five months as a visiting researcher at the Real-Time
Systems Lab of the Institute of Computer Engineering at the Technical University of Darmstadt with
the financial support of the SegraVis training network. I highly acknowledge Andy for teaching me to
notice the practice oriented aspects of software engineering problems and to solve them by also taking
into account many practical considerations. In this sense, I am very grateful for the idea of creating
the benchmarking framework, for guiding the complete process of the related research, for giving me
an overview on existing incremental techniques and for suggesting improvements to these algorithms.
Additionally, I say many thanks for the vivid, weekly discussions, for the comfortable and unperturbed
working environment, which helped me a lot to concentrate only on my research tasks, and finally, on
a rather personal background, for the trust to invite me to Darmstadt without knowing me personally.

András Recski is acknowledged for providing the warm, kind, friendly, open and bureaucracy free
environment at the Department of Computer Science and Information Theory (Budapest University of
Technology and Economics) as the head of the department. Since my presentation skills that proved to
be useful in conferences have been improved a lot while teaching Formal Languages practical courses,
I say many thanks to Iván Bach for inviting me to be a teaching assistant and to Judit Csima, Gergely
Lukácsy, Mátyás Naszódi, Ildikó Schlotter, Zsolt Terék and many others for being such wonderful and
helpful colleagues. My applications for many scholarships and other financial support could not be
successful without the administrative help of Katalin Czenkiné Boltizár.

Since my work was more closely related to the research areas of the Fault Tolerant Systems Re-
search Group at the Department of Measurement and Information Systems (Budapest University of
Technology and Economics), I am very grateful to András Pataricza for patronizing this fruitful inter-
department cooperation as the head of the group, and for being my supervisor in the period of my

x CONTENTS

undergraduate studies. On a more personal level, I say many thanks for his support and trust during
the recent years. Though I should acknowledge the help of many colleagues at the Fault Tolerant Sys-
tems Research Group, the discussions with András Balogh, István Ráth, Ákos Horváth, and Gábor
Bergmann on the development of the VIATRA2 model transformation framework were overridingly
useful for the contributions of this thesis as well.

There were many memorable moments during my visit in Darmstadt. I say many thanks to Janusz
Szuba for the common sightseeings and excursions, to Carsten Amelunxen for organizing the beer
tasting events, to Jan Schluchtmann for the interesting conversations, and to all the members of the
Real-Time Systems Lab for the “table soccer” tournaments and for the kindness preventing me to feel
alone.

At this point, I should acknowledge many researchers including at least Gernot Veit Batz (Uni-
versity of Karlsruhe), Marita Breuer (RWTH Aachen University), Rubino Geiß (University of Karl-
sruhe), Tom Mens (University of Mons-Hainaut), Arend Rensink (University of Twente), Olga Runge
(TU Berlin), Christian Schneider (University of Kassel), Adam Szalkowski (University of Karlsruhe),
Gabriele Taentzer (Philipps-Universität Marburg), Hans Vangheluwe (McGill University), Kang Zhang
(University of Texas at Dallas), Albert Zündorf (University of Kassel) for the fruitful discussions,
and/or their encouragement and support.

The current dissertation was partially supported by the SegraVis European Research Training Net-
work, the SENSORIA European IP (IST-3-016004), the Hungarian National Research Fund and the
National Office for Research and Technology (Grants No. T030804, T42559, and 67651, OTKA), and
the Péter Bizáki Puky Scholarship.

From my private life I would like to say many thanks to Noémi Ambrózy, Egmont Koblinger,
Zsófia Müller, and Eszter Sipos Szabó for their love, friendship and continuous support, and to Dániel’s
family: Szilvia, Balázs and Csaba for the fun moments during the recent years.

Finally, I acknowledge my beloved parents Győző and Mária. Without their love, encouragement
and support I would never succeed.

CHAPTER

1
Introduction

1.1 Model-Driven Engineering

Since the design of embedded systems and workflow management necessitate the handling of large
system models during the development process, the paradigm of Model-Driven Development (MDD)
has recently become a leading trend in software engineering. The aim of MDD is to carry out a thorough
system modeling before implementation. Key ideas of MDD are to create models of the software on
various abstraction levels and from various viewpoints and to support automatic code generation from
these models. The main advantages of the MDD concept are the reuse of high abstraction level models
and an increase in productivity by high degree of automation. The idea of MDD is not restricted to
software engineering domains, but also applicable e.g., to business modeling [41] and civil engineering
[19]. In this sense, MDD fits into the broader concept of Model-Driven Engineering (MDE), which
only prescribes the systematic use of models throughout the entire engineering lifecycle.

The best-known realization of both MDD and MDE principles is the Model-Driven Architecture
(MDA) [78, 101] initiative of the Object Management Group (OMG). The aim of MDA is to separate
software or business functionality from platform details, which is achieved as follows.

The conceptual design of functionalities of the software or business system is captured in the form
of a platform independent model (PIM), which constitutes a reusable model represented on a high
abstraction level. PIMs can survive changes in realization technologies and software architectures.

A platform-specific model (PSM) is also a model of the system under design, but in addition, it is
linked to an underlying technological platform such as a specific execution platform, software architec-
ture, operating system or database. In this sense, systems described in the CORBA Interface Definition
Language [104], business functionalities defined by Enterprise Java Beans [130] interfaces, or even
database schemas specified by Oracle specific data definition statements [107] can be considered as
platform-specific models.

According to the envisioned engineering process of MDA, the PIM is designed first. Then a PSM is
produced from the PIM by an automated model transformation [13]. Finally, program code is generated
automatically from the PSM to provide an implementation for the system.

MDA uses the following standards for specifying models of concrete systems and structural defini-
tions of application domains.

1

2 CHAPTER 1. INTRODUCTION

• Unified Modeling Language (UML) [139] provides a visual modeling language for the analysis,
design, implementation, deployment, and documentation of applications.

• Meta-Object Facility (MOF) [103] specifies repositories for domain-specific applications and
modeling languages by constructing structural descriptions called metamodels.

• XML Metadata Interchange (XMI) [105] is a metamodel-specific XML format for interchanging
models between different CASE tools;

• Common Warehouse Metamodel (CWM) [100] serves as a language for database integration in
data mining and warehousing.

MDA tools [86, 135] should provide support for (i) creating and editing models, (ii) checking
completeness and consistency, (iii) calculating metrics, (iv) transforming models to other models or
program code, (v) composing several source models, (vi) model-based testing, (vii) simulating the exe-
cution of the systems represented by models, and (viii) re-engineering by transforming legacy systems
to well-formed models.

In order to carry out all these tasks, a large number of modeling languages and tools are used in
a typical model-driven development process. Powerful domain-specific modeling environments (such
as the GMF in Eclipse, or the DSM framework of Microsoft Visual Studio) frequently provide rich
support for developing editors, and code generators. However, the design of model transformations
are usually not supported properly in these industrial tools. This thesis primarily focuses on to provide
advanced support for executing complex model transformations within and between these modeling
languages.

1.2 Model transformation

Model transformation plays a key role in the overall process of MDA. The aim of model transformation
is to carry out automated translations within and between modeling languages. The MDD approach
requires these transformations to be

• captured by a high-level, MOF-compliant, declarative specification language,
• automatically executed by efficient algorithms and techniques,
• incremental in nature by propagating modifications in the source model to the target model,
• bidirectional,
• traceable,
• defined by reusable and extendable transformation specifications,
• executed in a transactional context, and
• extensively supported by industrial quality tools.

1.2.1 Query/Views/Transformations – the model transformation standard

Query/Views/Transformations (QVT) [109] is a standard being published recently by the Object Man-
agement Group (OMG) for specifying multi-directional model transformations.

QVT consists of several specification languages providing both declarative and imperative ways to
define transformations.

Declarative languages. Declarative languages are organized in a two layer hierarchy based on their
level of abstraction. The more abstract, user-friendly Relations Language (i) enables the specification

1.3. GRAPH TRANSFORMATION AS A MODEL TRANSFORMATION APPROACH 3

of complex pattern matching tasks, (ii) provides a template-based object creation mechanism, and (iii)
creates trace classes implicitly. Furthermore, it defines both a graphical and a textual notation for its
concrete syntax. On the other hand, the Core Language is only a minimal extension to the Essential
MOF (EMOF) part of MOF 2.0 [103] and Object Constraint Language (OCL) [102], which describe
models and constraints on models, respectively. In the Core Language, only patterns with simple
structure can be matched.

Imperative languages. Imperative transformations can also be specified in QVT by its Operational
Mappings Language, which uses OCL expressions with side effects. This complements the Relations
Language by providing an equivalent, imperative description for its declarative relations.

Since QVT is a recent standard with a short history, only initial prototypes (e.g., mediniQVT [73],
MTF [2]) have been developed, and efficient implementations scaling up to complex model transfor-
mation are still missing.

While the model transformation community lacks QVT-based tools, a large variety of tools using
different concepts and techniques have already been implemented. An overview on these tools together
with their categorization is now presented.

1.2.2 Model transformation tools

Since [30] provides an excellent and wide range survey on the categorization of existing model trans-
formation tools, this subsection only gives a brief summary focusing on those groups that are related to
the topics discussed in the current thesis.

Based on the kind of input and output of the tool, several scenarios are distinguished including
model-to-model, model-to-code, code-to-model transformations and inter-model rewriting. Since a
well-defined abstract syntax for the program code (together with appropriate parsing methods) can
also be considered as a model, only the most general and challenging case, namely tools performing
model-to-model transformations are examined in the following.

Based on the categorizaton of [30], model-to-model transformation tools can be further grouped
to the following subcategories. (i) Direct manipulation approaches (like Jamda [18]) simply use an
internal representation for storing models and some APIs for manipulation. (ii) Relational approaches
(such as QVT [109]) specify transformations by stating relations between source and target model
elements. Related tools may apply logic programming [53] for implementation purposes. (iii) The
declarative and rule-based approach of graph transformation can also be an underlying implementation
technique for model transformation. Since the current thesis is built on this last technique, it is discussed
in details in Section 1.3. (iv) Hybrid approaches (like ATL [14]) combine different techniques from the
above-mentioned ones. In addition to the these categories, the transformation framework of Common
Warehouse Metamodel (CWM) specification [100] and translations, which use Extensible Stylesheet
Language Transformations (XSLT) [159] for the implementation also belong to the group of model-to-
model transformations.

1.3 Graph transformation as a model transformation approach

Graph transformation (GT) [38, 118] provides a declarative language for specifying the manipulation
of graph models by means of GT rules, which consist of a left-hand side (LHS) and a right-hand side
(RHS) graph. Model manipulation is performed by searching for such parts of the model that can be
matched to the LHS in the pattern matching phase, and by modifying these selected parts based on the
difference of LHS and RHS in the updating phase.

4 CHAPTER 1. INTRODUCTION

Due to its declarative and rule-based nature, graph transformation shows similarity to the Relations
Language of QVT, but GT additionally supports control structures for guiding the execution of elemen-
tary model transformation steps. Its history is dated back to the 1970s well before the MDD paradigm
has been evolved as indicated by [39]. Since then, graph transformation has proved its maturity in the
specification of visual languages [8, 9, 161] and the prototyping of visual language tools [96], and it
has become a popular technique for capturing model transformations as well [30, 40].

1.3.1 Architecture of a model transformation tool

The typical architecture of an exogeneous model transformation tool is presented in Fig. 1.1.

Model Transformation Engine

Model Transformation Plugin

Native
Source model

Native
Transformation Plugin

Native
Target model

Source

model

Source

metamodel

Target

model

Target

metamodel
Transformation rules

Transformation engine

Design time

Execution time

Figure 1.1: The architecture of an exogeneous model transformation tool

At design time, the transformation is specified by means of GT rules, which have left-hand side
and right-hand side graphs consisting of nodes and edges from both the source and target modeling
domains (i.e., from the metamodels). These rules drive the transformation engine by converting well-
formed models of the source domain to models of the target domain. In this case, both models and the
transformation engine itself can be considered as parts of the tool.

Since legacy applications with own source and target model representations often need transforma-
tion support as well, the architecture should be able to provide generated, native transformation plugins,
which can later be integrated into both standard and non-standard environments for execution purposes.

1.3.2 Categorization of graph transformation tools

Graph transformation tools can be categorized according to their execution mode and the underlying
pattern matching strategy. For further comparison of graph transformation approaches see [121].

Categorization of execution modes. Based on their execution mode, we distinguish between
interpreted and compiled approaches.1

• Interpreted approaches use an underlying graph transformation interpreter, which gets a compile-
time preprocessed, representation of GT rules for determining the activities to be executed at
run-time.

1Some tools are hybrid in a sense that they combine compilation with interpretation (e.g., PROGRES generates graph
machine byte code that is either interpreted or compiled into C or Java code).

1.4. PROBLEM STATEMENT 5

• Compiled approaches perform graph transformation by programs that are directly executable on
the target machine at run-time without the need for an underlying GT interpreter. At compile-
time, these approaches generate source code (e.g., C, C++, or Java) that describes the activities
to be performed during graph transformation. Then, this source code is compiled by a traditional
compiler.

As stated in [7], model transformation is becoming an engineering discipline, and, thus, it requires
conceptual and tool support for its entire life-cycle (including the specification, design, execution, val-
idation and maintenance of transformations). Since these tasks set up conflicting requirements, it is
difficult to find the best compromise. By using the above categorization, interpreted approaches have
a clear advantage during the validation (e.g., by interactive simulation) or the maintenance phase of
model transformations due to their flexibility. On the other hand, compiled approaches are advanta-
geous, when performance is the key issue like in case of transformation execution.

Categorization of pattern matching strategies. Pattern matching algorithms also have two
groups.

• Algorithms based on constraint satisfaction interpret LHS as a set of constraints, which should
be satisfied by the matchings provided by these algorithms.

• Algorithms based on local searches start from matching a single node and extending the match-
ing step-by-step by mapping neighboring nodes.

1.4 Problem statement

After examining several tools (which are going to be surveyed in Section 3.3) I have discovered the
following problems, which have become the challenges for my research.

• Lack of objective measurements for memory and time. Only estimates existed about the
memory usage and the run-time performance of model transformation tools, and their exact char-
acteristics have never been objectively assessed due to lack of measurements.

• Insensitivity of algorithms to models under transformation. Optimization of pattern match-
ing algorithms only exploited restrictions imposed by the problem domain, but ignored any ad-
ditional information about the model under transformation.

• Insensitivity of algorithms to transformation flow. Pattern matching algorithms were inflexi-
ble and insensitive to the transformation flow, although significant changes might be experienced
in the structure and size of instance models, while the transformation progresses from the begin-
ning to the end. Moreover, they could not either be tuned to efficiently handle the situation, when
models remained nearly intact while executing a few subsequent steps of the transformation,

• Performance problems when transforming large models. All the examined tools performed
in-memory translations, and no analysis investigated the transformation of huge system models,
which were unable to fit into the main memory.

• Integration of transformations to existing tools. Although a large variety of highly sophis-
ticated standalone graph transformation solutions were available, their integration into existing
MDA tools was inhibited by the missing support for transformation APIs.

6 CHAPTER 1. INTRODUCTION

As a conclusion, support for at least the above-mentioned performance and tool integration re-
lated issues was missing from both the design and the implementation of such model transformation
algorithms and tools that were aimed to be applied in industrial, software engineering projects.

Thesis objectives

In this thesis, I propose several advanced techniques for the implementation of model transformation
systems. More specifically, in addition to the elaboration of algorithmic aspects of the suggested ap-
proaches, my aim is to also examine their practical considerations including performance measurements
and the analysis of their tool integration capabilities.

My contributions are the following.

• Contribution 1. I propose a benchmarking framework to quantitatively assess the run-time per-
formance of graph transformation tools. This benchmarking framework identifies transformation
problem-specific and tool-specific characteristics, which have significant impact on the perfor-
mance of transformations. Additionally, it specifies benchmark examples for a model transfor-
mation and a simulation scenario.

• Contribution 2. I present a technique for implementing graph transformation built on top of
relational database management systems (RDBMS) by performing all the calculations on data
stored on disks. In the proposed approach, graph pattern matching is implemented by executing
queries, while the model updates are represented by performing data manipulation statements
(such as insert, delete, or update).

• Contribution 3. I establish model sensitivity by employing statistics being collected from con-
crete typical models of the domain for providing better cost functions for optimization. Addi-
tionally, I propose an adaptive approach, where the optimal strategy can be selected from pre-
compiled methods at run-time based on statistics of the model under transformation. These
suggestions enable the adaptive behaviour of pattern matching algorithms making them sensitive
to run-time models and to the transformation flow.

• Contribution 4. I propose an incremental approach, which stores the partial matchings of earlier
graph transformation steps in memory and updates these data structures in an incremental way in
response to model modification triggers. This solution significantly accelerates the graph pattern
matching phase for the price of increased memory usage, which is especially suitable for model
transformations, which only perform small manipulations in subsequent steps.

I demonstrate all the concepts and contributions of this thesis on well-known model transformation
problems like the object-relational mapping of [49], and the distributed mutual exclusion algorithm of
[60], which are going to be specified later in Sections 2.2 and 3.2, respectively.

1.5 The structure of the thesis

The current thesis is structured into nine main chapters (including this introduction) that contain
overviews and new results and two appendices complementing the main parts with additional infor-
mation.

• Chapter 2 gives an introduction to the basics of modeling language specification.

1.5. THE STRUCTURE OF THE THESIS 7

• Chapter 3 presents the technique of graph transformation.
• Chapter 4 introduces the basic principles of implementing graph transformation and discusses

considerations about the efficiency of pattern matching algorithms.
• Chapter 5 presents a benchmarking framework for model transformation tools (as suggested by

Contribution 1) to quantitatively assess and analyze their run-time performance and to compare
different optimization strategies used for of pattern matching.

• Chapter 6 proposes a novel approach for graph transformation built on top of standard relational
database management systems, which corresponds to Contribution 2.

• Chapter 7 presents a technique to implement adaptive and model-sensitive graph pattern match-
ing modules (as suggested by Contribution 3), which use the statistics of the instance model
under transformation to dynamically select the optimal from precompiled strategies.

• Chapter 8 presents the foundations of an incremental graph pattern matching engine (as proposed
by Contribution 4), which keeps track of existing matchings in an incremental way to reduce the
execution time of graph pattern matching.

• Finally, Chapter 9 concludes the main parts of the current thesis.

Notational guide

In order to obtain a consistence appearance of the thesis, the following rules are followed.

• This thesis is mainly written in third person singular. In conclusions after each chapter, I empha-
size my own contribution by first person singular or plural.

• Terms in formal definitions are printed in bold letters.
• New concepts, informal definitions and theorems are typeset in italics.
• Code extracts always appear as typewritten text in listings with grey background.
• For referring to texts in figures, sans serif fonts are used.

CHAPTER

2
Graph Models

In this chapter, the basics of modeling language specification are introduced. Concepts are presented
on the object-relational mapping [49], which is reused as a running example in later chapters. Finally,
in order to demonstrate the practical links of the theoretical concepts, a corresponding Java based
implementation is presented.

2.1 Metamodels

This section summarizes the foundations of modeling language specification. The abstract syntax of
a modeling language (or domain) is described by the metamodel. Nodes of the metamodel are called
classes. Inheritance may be defined between classes, which means that the inherited class has all the
properties its parent has, but it may further contain some additional ones. Associations define connec-
tions between classes. Both ends of an association may have a multiplicity constraint attached to them,
which declares the number of objects that, at run-time, may participate in an association. We consider
the most typical multiplicity constraints, which are the at most one (denoted implicitly by diamonds for
containment, or explicitly by the 0..1 notation for general associations at the corresponding line end),
and the arbitrary (denoted uniformly by line ends with * multiplicity).

While attribute handling is an important practical aspect, we decided not to include it in the formal-
ization of metamodels presented in the current chapter. Since the core ideas of the current dissertation
can be discussed without this issue, we believe that this simplification in the formal treatment does
not have significant impact. Note that attribute handling was, in fact, implemented in the relational
database approach (Chapter 6), and it was formally discussed in [151].

Example 1 For presenting metamodeling concepts, the object-relational mapping [49] has been se-
lected as a running example. In this domain, UML class diagrams are transformed to relational data
models, according to the following guidelines. Packages and classes of the class diagram are con-
verted one by one to database schemas and tables, respectively. Each association is transformed to
a corresponding table as well. Each table has a column with primary key for storing identifiers, and
one column for each attribute of the original class or association. Inheritance is reflected in relational
databases as foreign key constraints. Finally, structural well-formedness criteria defined by association
ends are also represented by foreign key constraints in the database.

9

10 CHAPTER 2. GRAPH MODELS

The metamodels of UML class diagrams and relational database schemas (following the CWM
standard [108]) are depicted in Fig. 2.1. In order to avoid complex figures, only the relevant parts of
the metamodel are presented.

Generalization

Attribute

SchemaTableColumn

PKeyFKey SFT

Package

Feature

PE

CF

EO
ModelElement

NamespaceUniqueKeyKeyRelship

Association

AssocEnd

CE

Ref

UF

KRF
Class

*

*

*

*

*

**

*

*

0..1 0..1

0..1

0..1

0..1

Figure 2.1: Metamodel of the problem domain

The metamodel consists of 16 classes including elements of UML class diagrams such as Feature,
Class, and Association, and of relational database concepts such as Table, Schema, and Column. Note
that the CWM standard derives database notions from UML notions by inheritance as in case of class
Column, which is inherited from class Attribute (see Fig. 2.1).

Association (structural feature type) SFT connects classes Feature and Class. An at most one mul-
tiplicity constraint can be found at the end of association SFT that is next to class Class expressing
that each Feature can have at most one Class as its type. However, in the other direction, an arbitrary
multiplicity constraint holds, which means that each Class may denote the type of many Features.

Furthermore, we use reference edges Ref (denoted by dashed lines in instance models) for connect-
ing source and target model nodes despite they are not included in the CWM standard.

Formalization

Now the formalization of concepts related to metamodels is presented by following the notation of
[151].

Definition 1 A directed graph (denoted by G = (VG, EG, srcG, trgG)) is a 4-tuple, where VG and EG

denote nodes and edges of the graph, respectively. Functions srcG : EG → VG and trgG : EG → VG

map edges to their source and target node, respectively.

Definition 2 A metamodel (denoted by MM) is a directed graph, where

• VMM and EMM denote nodes and edges of the metamodel;

• a class C is a node of the metamodel, formally, C ∈ VMM ;

• associations (Assoc) and generalization (inheritance) edges (Inher) constitute a (distinct and
complete) partition of edges, formally, EMM = Assoc ∪ Inher, Assoc ∩ Inher = ∅;

• associations can be further partitioned into ’many-to-many’ (AssocM2M) and ’many-to-
one’ (AssocM2O) associations, formally, Assoc = AssocM2M ∪ AssocM2O, AssocM2M ∩
AssocM2O = ∅

2.2. INSTANCE MODELS 11

– a many-to-many association A from source class Cs to target class Ct (denoted by
Cs

A→∗ Ct) is an edge from the set AssocM2M , where srcMM (A) = Cs ∈ Cls,
trgMM (A) = Ct ∈ Cls;

– a many-to-one association A from source class Cs to target class Ct (denoted by Cs
A→1

Ct) is an edge from the set AssocM2O, where srcMM (A) = Cs ∈ Cls, trgMM (A) =
Ct ∈ Cls;

• a generalization (inheritance) edge I leading from class Ct to class Cs (denoted as in UML by
Cs ^ Ct) is an edge of set Inher, formally, srcMM (I) = Ct ∈ Cls, trgMM (I) = Cs ∈ Cls,
and Cs ^ Ct ∈ Inher.

In the above definition, associations define binary relations between classes. In this thesis, we do
not handle association classes. In the following, the notation Cs

A→ Ct is used for a general association
of any kind that is A ∈ (AssocM2M ∪AssocM2O).

Inheritance graph. The inheritance hierarchy forms a lattice, which implies that the inheritance
graph is a directed acyclic graph (DAG), and there is a common root ancestor class for all classes.

Definition 3 The inheritance graph MMInher = (Cls, Inher, srcMM , trgMM) is the type graph
restricted to generalization (inheritance) edges, which forms a lattice.

Definition 4 Given a metamodel MM , class C1 is a (direct) superclass of class C2 (or, equivalently,
class C2 is a (direct) subclass of class C1) as denoted by C1 ^ C2, if and only if

• there is a generalization edge C1 ^ C2 ∈ Inher;

• there are no other classes in the inheritance hierarchy between C1 and C2, formally, @C ∈ VMM

such that C1 ^ C ^ C2.

Note that this definition does not imply that a class C2 has a single superclass C1, as multiple
inheritance is allowed in the inheritance graph. Since the superclass of a class may also have its own
superclass, it is useful to define the transitive closure of the superclass relation.

Definition 5 Given a metamodel MM , class C1 is an ancestor (class) of class C2 (or, equivalently,
class C2 is a descendant of class C1) (denoted by C1

∗
^ C2), if either C1 = C2, or ∃C ∈ VMM such

that C1 ^ C
∗
^ C2.

Capital letters from the beginning of the alphabet (e.g., C,Ds
A→ Dt) will be used for meta-level

graph elements (classes, associations).

2.2 Instance models

The instance model is a graph that describes concrete systems defined in a modeling language. Its nodes
and edges are called objects and links, respectively. The instance model is a well-formed instance of
the metamodel, which means the fulfillment of the following criteria.

• Objects and links are instances of metamodel level classes and associations, respectively.
• Source and target object of each link have to conform to source and target class of the association

from which the link has been instantiated.

12 CHAPTER 2. GRAPH MODELS

• Each object may have only one such outgoing link that has been instantiated from an association
with a many-to-one multiplicity constraint at its target end.

• No parallel links of the same type are allowed between any pair of objects.

Example 2 A well-formed instance model of this domain is presented by the concrete syntax of UML
class diagrams in Fig. 2.2(a) and by a corresponding abstract syntax representation in Fig. 2.2(b). The
instance model has a UML1 package p, which contains UML classes c1 and c2, and a UML association
a12. Containments are expressed by the element ownership edges EO. UML association a12 connects
UML classes c1 and c2. This connection is denoted by UML association ends e1 and e2, which are
contained by UML association a12 as classifier features CF, and which mark UML classes c1 and c2 as
their structural feature types SFT, respectively.

e1
c2c1

a12 e2

p

(a) UML class diagram (concrete syntax) repre-
sentation of Model1

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

(b) Model1

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO
s:Schema

:Ref

(c) Model2

Figure 2.2: Sample instance models

Formalization

Now the formalization of concepts related to instance models is presented.

Definition 6 The model element universe (denoted by U) is an infinite set that contains all the valid
identifiers that can appear in a model. The set of unused model element universe (denoted by UNU)
is such an infinite subset of the model element universe that contains those identifiers that have not yet
appeared in the model. Formally, UNU ⊆ U.

Definition 7 Given a metamodel MM , a well-formed instance model (graph) M of the metamodel
MM is a directed graph together with a direct type function (graph morphism) t : M → MM ,
which maps model M to metamodel MM according to the following rules

1To prevent confusion between metamodeling terms and class diagram notions we use the UML prefix for the latter.

2.3. METAMODEL AND MODEL REPRESENTATION IN JAVA 13

• Unambiguous mapping of objects: model nodes (called as objects) are mapped to metamodel
nodes, formally, ∀c ∈ VM : t(c) ∈ VMM ;

• Unambiguous mapping of links: model edges (called as links) are mapped to associations,
formally, ∀e ∈ EM : t(e) ∈ Assoc;

• Usage of identifiers for objects and links: objects and links are always picked from the model
element universe, but they never belong to its unused counterpart, formally, VM ⊆ U \UNU , and
EM ⊆ U \ UNU ;

• Type conformance of source objects: the direct type of the source object of a link is a descen-
dant of the source of the direct type of the same link, formally, ∀e ∈ EM : srcMM (t(e))

∗
^

t(srcM (e));

• Type conformance of target objects: the direct type of the target object of a link is a descen-
dant of the target of the direct type of the same link, formally, ∀e ∈ EM : trgMM (t(e))

∗
^

t(trgM (e));

• Multiplicity criterion for many-to-one associations: each object can have at most one link
of a given direct type originating from the same many-to-one association. Formally, ∀A ∈
AssocM2O, ∀e1, e2 ∈ EM : srcM (e1) = a ∧ trgM (e1) = b ∧ srcM (e2) = a ∧ trgM (e2) =
c ∧A = t(e1) = t(e2) =⇒ e1 = e2; and

• Non-existence of parallel edges of same type: No parallel edges are allowed, which means that
there cannot be any pair of links of the same type leading between the same pair of objects in a
given direction. Formally, ∀e1, e2 ∈ EM : srcM (e1) = srcM (e2) ∧ trgM (e1) = trgM (e2) ∧
t(e1) = t(e2) =⇒ e1 = e2.

Small letters from the beginning of the alphabet (e.g., c, a
e→ b) will be used for objects and links

of the instance model.
In the following, we use terms many-to-many link (denoted by a

e→∗ b), and many-to-one link
(denoted by a

e→1 b), if the direct type of the given link is a many-to-many association, and a many-to-
one association, respectively.

Type definition can be generalized in such way that all ancestors of a direct type are also implied.

Definition 8 Given a metamodel MM , a well-formed instance model M with a direct type function
t, the type of an object c (denoted by t∗(c)) consists of all ancestors of t(c). Formally, t∗(c) ={

C | C ∈ VMM ∧ C
∗
^ t(c)

}
.

Although our presented graph-based model lacks several advanced features (like the three layer
node inheritance of graph schemas [75], or the edge inheritance of type graphs [134]), it is still suitable
for transforming models used in practice as demonstrated by the running examples.

2.3 Metamodel and model representation in Java

Java 2 Standard Edition 5.0 (J2SE) [128] and Java 2 Enterprise Edition 5.0 (J2EE) [127] are used as
underlying implementation platform in order to demonstrate the strong practical links of the theoretical
concepts and algorithms presented in this thesis. Java 2 has been selected due to its “write once run
everywhere” philosophy, which makes Java programs portable by allowing their execution on a variety
of hardware platforms and operating systems.

14 CHAPTER 2. GRAPH MODELS

2.3.1 Java 2 Platform 5.0 Standard and Enterprise Editions

Java 2 Standard Edition enables the development and deployment of Java applications on desktops and
servers as well as embedded and real-time environments. It includes the Java Database Connectivity
(JDBC) API, which provides universal data access in Java from a large variety of sources including
relational databases, spreadsheets and flat files. In this sense, J2SE provides appropriate support, when
models are stored and manipulated in main memory, or when models are stored in an underlying rela-
tional database, but they are directly accessed and manipulated by low-level SQL commands.

Java 2 Enterprise Edition defines a layered architecture for scalable, distributed application devel-
opment including several Java standards and APIs. An enterprise application being developed on the
J2EE platform consists of Enterprise Java Beans (EJBs) as its most fundamental building blocks rep-
resenting business data and functionality. An enterprise application is deployed to and executed by an
application server, which provides many high-level services (such as transactions, security, persistence,
etc.) beyond the execution of applications.

The following three types of EJBs have been defined by J2EE.

• Entity beans are persistent objects representing business data, which are kept synchronized with
an underlying relational database by means of an object-relational mapping. Entity beans are
uniquely identified by their primary key and they can be in relationship with other entity beans
referring to each other by direct references (many-to-one or one-to-one relationships) or typed
collections (many-to-many or one-to-many relationships).

• Session beans implement the business functionality of the application. They can be considered
as simple collections of business methods. Depending on whether they should preserve any in-
formation between consecutive invocations of their methods, stateful and stateless session beans
are distinguished. As our approach does not require any transformation related information to be
stored, we use stateless session beans.

• Message driven beans are EJBs that provide asynchronous message processing functionality.
They can be considered as listeners to which application clients and other EJBs can send mes-
sages.

J2EE is used as an underlying platform, when models are stored in a relational database and they
are accessed and manipulated as plain old Java objects through transparent object-relational mapping
and persistence layers.

2.3.2 Mapping metamodels to EJB3 entity bean classes

Now I present a method for mapping metamodels to EJB3 entity bean classes. Although the concrete
example produces EJB3 entity beans as output, the generated interfaces show high similarity to both
(plain old) Java objects (POJOs) with property accessor methods and interfaces specified by relevant
modeling frameworks (such as Eclipse Modeling Framework (EMF) [136] and Java Metadata Interface
(JMI) [129]). As a result, the presented techniques could easily be adapted to one framework or the
other.

Based on the metamodel, entity bean classes are generated by using the standard object-relational
mapping of [130], which can be summarized as follows. A class of the metamodel is mapped to
an entity bean class. The inheritance relations between classes are maintained accordingly. Each
association end with an at most one (arbitrary) multiplicity constraint is mapped to a Java attribute
(collection) and two corresponding property accessor (i.e., a getter and a setter) methods in the entity

2.3. METAMODEL AND MODEL REPRESENTATION IN JAVA 15

bean class that represents the metamodel class being located at the opposite end of the association.
A Java attribute id representing the unique identifier and its two corresponding property accessor
methods are added to each entity bean class that does not have a superclass.

In order to specify how Enterprise Java Beans are deployed to the application server, we use Java
annotations for marking up class declarations, fields, methods, and other program elements in the
source code. In this sense, annotations @Entity or @Stateless at class declarations denote that
the given class should be handled as an entity bean or a stateless session bean, respectively. Annotation
@Inheritance influences how inherited classes are mapped in the underlying relational database.
Annotations @ManyToMany, @ManyToOne, @OneToMany, @OneToOne mark up getter methods
defined for each association end. to specify multiplicity criteria of the corresponding association.

Example 3 The skeleton of the entity bean class representing a Feature is shown by Listing 2.1.

@Entity // Feature is an entity bean.
@Inheritance(strategy = InheritanceType.JOINED) // A different table is used

// for each class
// in the inheritance hierarchy.

public class Feature extends ModelElement {
// Attributes
private Class cf;
private Class sft;
private Collection<UniqueKey> uf = new ArrayList<UniqueKey>();
private Collection<KeyRelationship> krf = new ArrayList<KeyRelationship>();

// Property accessor methods
@ManyToOne // Association CF has * multiplicity constraint on its Feature side,

// and 1 multiplicity constraint on its Class side.
public Class getCF() { return cf; }
public void setCF(Class cf) { this.cf = cf; }

@ManyToOne
public Class getSFT() { return sft; }
public void setSFT(Class sft) { this.sft = sft; }

@ManyToMany(mappedBy="uf") // Association UF has * multiplicity constraint
// on both its Feature and UniqueKey sides, and
// class on the other side (i.e., UniqueKey)
// is responsible for handling links of type UF.

public Collection<UniqueKey> getUF() { return uf; }
public void setUF(Collection<UniqueKey> uf) { this.uf = uf; }

@ManyToMany(mappedBy="krf")
public Collection<KeyRelationship> getKRF() { return krf; }
public void setKRF(Collection<KeyRelationship> krf) { this.krf = krf; }

}

Listing 2.1: Skeleton of the Feature entity bean class

As Feature is a subclass of ModelElement, the identifier attribute id has not been created. According
to the metamodel of Fig. 2.1, the Feature class has four incident edges. Consequently, the generated
code has four attributes and eight accessor methods.

In order to get an in-memory model space representation, which contains plain old Java objects,
only annotations have to be removed from the above specification.

16 CHAPTER 2. GRAPH MODELS

2.3.3 Creating sample models as EJB3 entity bean instances

Instance models representing the system under design are stored in an underlying database of the ap-
plication server. By using entity beans, objects of the instance model can be created, accessed and
manipulated exactly the same way as traditional (plain old) Java objects with the single exception that
these objects have to be explicitly persisted by calling the persist() method of the entity manager,
which in turn, provides the persistence context for the entity beans.

Example 4 The Java code that produces Model 1 of Fig. 2.2(b) in an application server is presented by
Listing 2.2.

1 @PersistenceContext
2 EntityManager em;
3 // Creating new objects
4 Package p = new Package();
5 Class c1 = new Class();
6 Class c2 = new Class();
7 Association a12 = new Association();
8 AssocEnd e1 = new AssocEnd();
9 AssocEnd e2 = new AssocEnd();

10 // Creating new links
11 c1.setEO(p);
12 c2.setEO(p);
13 a12.setEO(p);
14 e1.setCF(a12);
15 e1.setSFT(c1);
16 e2.setCF(a12);
17 e2.setCF(c2);
18 // Persisting new objects
19 entityManager.persist(p); entityManager.persist(a12);
20 entityManager.persist(c1); entityManager.persist(c2);
21 entityManager.persist(e1); entityManager.persist(e2);

Listing 2.2: Java code for generating Model 1 of Fig.2.2(b)

In Lines 1–2, the entity manager is initialized by the application server by injecting a persistence
context (by using the annotation @PersistenceContext) for the method that creates entity beans.
Then 6 objects and 6 links are created by Lines 3–9 and Lines 10–17, respectively. Finally, the new
objects are persisted by the underlying database of the application server while executing Lines 18–21.

2.4 Conclusion

In this chapter, modeling language specification has been surveyed by introducing metamodels for
describing modeling domains, and instance models for specifying concrete systems. These concepts
have been presented by using the object-relational mapping as a running example. Finally, metamodels
and models have been exemplified in an EJB3 environment to illustrate their practical applicability by
using entity bean classes and instances.

CHAPTER

3
Computing by Graph Transformation

In this chapter, it is demonstrated how model transformations between modeling languages can be spec-
ified by means of graph transformation. Concepts are again presented on the object-relational mapping
[49]. Additionally, a distributed mutual exclusion algorithm [60] is introduced as a second running ex-
ample to represent a different application scenario of graph transformation. Then graph transformation
tools are surveyed and some representatives are selected for being used in performance measurement
and analysis. Finally, the architecture of a modular graph transformation engine is presented.

3.1 Graph transformation

We present how model transformation between modeling languages can be specified by graph trans-
formation [38, 118]. In this dissertation, the single-pushout approach is used with injective rules and
matchings. Negative application conditions and additional constraints like multiplicities and the non-
existence of parallel edges of the same type are also considered. As already mentioned in Sec. 2.1,
attribute handling is not discussed in the formal treatment, since the core ideas of the current disserta-
tion can be presented without dealing with this issue.

3.1.1 Graph transformation rules

A graph transformation rule contains a left–hand side graph LHS, a right–hand side graph RHS,
and negative application condition graphs NAC [58] (depicted by crosses). The LHS and the NAC
graphs are together called the precondition of the rule. In the following, terms LHS, RHS, and NAC
patterns are used interchangeably with LHS, RHS, and NAC graphs, respectively. These new terms are
introduced only to avoid the excessive use of the word “graph” in the upcoming chapters and to ease
the identification of concepts that are part of graph transformation rules.

Example 5 The object-relational mapping can be described by 6 graph transformation rules as pre-
sented in Fig. 3.1.

(a) PackageRule (Fig. 3.1(a)) simply generates a database schema for a UML package.

17

18 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

P:Package

S:Schema

P:Package

Sn:Schema

PackageRule

rn:Ref r1:Ref

(a) PackageRule

C:Class

Tn:Table

P:Package

S:Schema

C:Class

Tc:Table

P:Package

S:Schema

Cc:ColumnPc:PKey

ClassRule

r1:Ref rn:Ref r1:Ref r2:Ref

eo1:EO eo1:EO

eo2:EO

cf:CF

eo3:EO

uf:UF

(b) ClassRule

Rel:Assoc

Tn:Table

P:Package

S:Schema

Rel:Assoc

Trel:Table

P:Package

S:Schema

Crel:ColumnPrel:PKey

AssociationRule

r1:Ref rn:Ref

eo1:EO

r1:Ref r2:Ref

eo1:EO

eo2:EO

cf:CF
eo3:EO

uf:UF

(c) AssociationRule

A:Attribute

Coln:Column

C:Class

T:Table

A:Attribute

Col:Column

C:Class

T:Table

AttributeRule

cf1:CFcf1:CF

r1:Ref r1:Ref r2:Refrefn:Ref

cf2:CF

(d) AttributeRule

G:General

Sub:Class

Tp:Table

Pp:PKey

GeneralizationRule

pe:PE ce:CE

r2:Refr1:Ref

rn:Ref

eo1:EO eo2:EO

cf2:CF

uf2:UF

k2:KRF

Cp:Column

uf1:UF

cf1:CF

Tb:Table

Pb:PKey

Cb:Column

Sup:Class

Fn:FKey

G:General

Sub:Class

Tp:Table

Pp:PKey

pe:PE ce:CE

r2:Refr1:Ref

r3:Ref

eo1:EO eo2:EO

cf2:CF

uf2:UF

eo3:EO

Cp:Column

uf1:UF

k1:KRFcf1:CF

Tb:Table

Pb:PKey

Cb:Column

Sup:Class

F:FKey

(e) GeneralizationRule

AE:AssocEnd

Rel:Assoc

Tc:Table

Pc:PKey

AssocEndRule

sft:SFT cf:CF

r2:Refr1:Ref

rn:Ref

eo1:EO

eo3:EO

Cc:Column

uf1:UF

cf1:CF

Fn:FKey

Trel:Table

C:Class

AE:AssocEnd

Rel:Assoc

Tc:Table

Pc:PKey

sft:SFT cf:CF

r1:Ref

r3:Ref

eo1:EO

k2:KRF

Cc:Column

uf1:UF

k1:KRF

cf1:CF

F:FKey

Trel:Table

C:Class

Crel:Column

cf2:CF

r2:Ref

(f) AssocEndRule

Figure 3.1: Rules describing the object relational mapping

(b) ClassRule (Fig. 3.1(b)) searches for a UML class in the UML package, for which there does not
exist a corresponding table in the database schema, and creates the corresponding table that has
a single column Cc, for which a primary key Pc is defined.

(c) AssociationRule (Fig. 3.1(c)) creates a new table in the database, if there has not been any table
assigned yet. This new table has again a single column Crel with a primary key Prel.

(d) A new column is created in the table assigned to the UML class that includes the unhandled
UML attribute. This is performed by the AttributeRule (Fig. 3.1(d)).

(e) The inheritance relation in the UML model is handled by appropriate foreign key constraints in
the database schema. This is expressed by the GeneralizationRule (Fig. 3.1(e)), which creates a
foreign key constraint on the identifier column Cb of the subclass table Tb for any unhandled
generalization node. The constraint will refer to the column Cp of the superclass table Tp that
has a primary key Pp.

(f) The AssocEndRule (Fig. 3.1(f)) selects an unhandled UML association end, and generates an
additional column Crel in the table Trel that has been created for the UML association itself.
Moreover, a foreign key constraint is added to the Trel table, which refers to the column Cc of the
table Tc that is associated with the UML class C.

3.1. GRAPH TRANSFORMATION 19

As it can be seen in Fig. 3.1, source and target nodes of reference edges represent concepts with
UML class diagram and relational database origin, respectively.

Formalization of graph transformation rules

Definition 9 Given a metamodel MM , a basic rule rb consists of a left–hand side graph LHS and a
right–hand side graph RHS and an injective partial morphism p : LHS → RHS where LHS and RHS
are well-formed instances of the metamodel MM .

Definition 10 Given a metamodel MM and a basic rule rb, a negative application condition of basic
rule rb (denoted by (NAC, pNAC)) consists of a negative application condition graph NAC (depicted by
crosses in figures), and an injective partial morphism pNAC : LHS → NAC where the NAC graph is a
well-formed instance of the metamodel MM .

Definition 11 Given a metamodel MM , a graph transformation rule r = (rb, { (NACi, pNACi) })
consists of a basic rule rb, and a set of its negative application conditions { (NACi, pNACi) }.

Definition 12 Given a metamodel MM and a graph transformation rule r, the precondition of rule r
(denoted by rPRE) is the LHS graph together with the set of its negative application conditions.

The LHS graph and the ith negative application condition graph NACi of a rule r are denoted by
rLHS and rNACi , respectively. For the nodes and edges of rules we always use small letters from the end
of the alphabet (e.g., x, u

z→ v).

3.1.2 A merged graphical representation for rule preconditions

As many of the above graph transformation related concepts are defined by two graphs and a cor-
responding morphism between them, we introduce a categorization for the nodes and edges of both
graphs depending on whether they participate in the morphism (mapped nodes and mapped edges) or
not (unmapped nodes and unmapped edges).

In order to minimize the overlapping of LHS and NAC patterns (and to later avoid multiple checks
caused by this overlapping), we suppose that each original NAC pattern is defined by its reduction,
which is such a subgraph of the original NAC pattern, which has the minimum number of mapped
nodes, and no mapped edges according to the partial morphism, which maps the LHS graph to the NAC
graph. As only reduced NAC patterns are used in the rest of this thesis, the word reduced is omitted
from now on.

In order to have a compact graphical notation for rule preconditions in the figures of this the-
sis, NAC patterns are graphically represented as if they were merged into the LHS pattern along their
mapped nodes. These mapped nodes of the NAC graphs are referred as shared nodes due to their visual
appearance.

Example 6 The relationship between the traditional and the corresponding merged precondition rep-
resentation is illustrated on ClassRule in Fig. 3.2. Note that except for Fig. 3.2(a), only the new notation
is going to be used in this thesis.

UML package P, UML class C and schema S can be considered mapped nodes according to both
morphisms p and pNAC in all the three patterns. Similarly, edge eo1 of type EO and reference edge r1
are mapped edges in the LHS, the RHS, and the NAC graph as well. Table Tn in the NAC pattern is an
unmapped node, as it has no origin in the LHS pattern according to morphism pNAC.

20 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

C:Class

S:Schema

C:Class

Tc:Table

P:Package

S:Schema

Cc:ColumnPc:PKey

r1:Ref r1:Ref r2:Ref

eo1:EO eo1:EO

eo2:EO

cf:CF

eo3:EO

uf:UF

C:Class

Tn:Table

P:Package

S:Schema

r1:Ref rn:Ref

eo1:EO

ClassRule

P:Package

LHS

NAC

RHS

p

pNAC

Shared

node

Reduction

of NAC

Unmapped

nodes and edges

Mapped

nodes and edges

(a) Traditional representation of ClassRule

C:Class

Tn:Table

P:Package

S:Schema

C:Class

Tc:Table

P:Package

S:Schema

Cc:ColumnPc:PKey

ClassRule

r1:Ref rn:Ref r1:Ref r2:Ref

eo1:EO eo1:EO

eo2:EO

cf:CF

eo3:EO

uf:UF

(b) Representation of ClassRule with merged precondition

Figure 3.2: The traditional and the merged visual precondition representation for ClassRule

Although the NAC pattern has four nodes and three edges, its reduction contains only UML class C,
table Tn, and the reference edge rn between them. UML class C is a shared node, as it is a mapped node
due to having an origin in the LHS graph according to morphism pNAC, and it has an outgoing unmapped
edge rn. The precondition of ClassRule is going to be graphically represented in the following in the
form of Fig. 3.2(b), which looks as if the reduced NAC pattern of Fig. 3.2(a) was merged with the LHS
graph along the shared UML class C.

Formalization of node and edge categorization

Definition 13 Given two directed graphs G1, G2, and a partial morphism p : G1 → G2, nodes and
edges of graphs G1 and G2 are classified as follows.

• Nodes of graph G1 unmapped by morphism p (denoted by VG1 \VG2) are such nodes of graph
G1 that do not have any image nodes in graph G2 according to morphism p, formally,

VG1 \ VG2 =
{

x ∈ VG1 |6 ∃x′ ∈ VG2 ∧ p(x) = x′ } .

• Nodes of graph G1 mapped by morphism p (denoted by VG1 ∩ VG2) are such nodes of graph
G1 that have a corresponding image node in graph G2 according to morphism p, formally,

VG1 ∩ VG2 =
{

x ∈ VG1 | ∃x′ ∈ VG2 ∧ p(x) = x′ } .

• Edges of graph G1 unmapped by morphism p (denoted by EG1 \EG2) are such edges of graph
G1 that do not have any image edges in graph G2 according to morphism p, formally,

EG1 \ EG2 =
{

u
z→ v ∈ EG1 |6 ∃u′ z′→ v′ ∈ EG2 ∧ p(u z→ v) = u′ z′→ v′

}
.

• Edges of graph G1 mapped by morphism p (denoted by EG1 ∩ EG2) are such edges of graph
G1 that have a corresponding image edge in graph G2 according to morphism p, formally,

EG1 ∩ EG2 =
{

u
z→ v ∈ EG1 | ∃u′ z′→ v′ ∈ EG2 ∧ p(u z→ v) = u′ z′→ v′

}
.

3.1. GRAPH TRANSFORMATION 21

• Nodes of graph G2 unmapped by morphism p (denoted by VG2 \VG1) are such nodes of graph
G2 that do not have any origin nodes in graph G1 according to morphism p, formally,

VG2 \ VG1 =
{

x′ ∈ VG2 |6 ∃x ∈ VG1 ∧ p(x) = x′ } .

• Nodes of graph G2 mapped by morphism p (denoted by VG2 ∩ VG1) are such nodes of graph
G2 that have a corresponding origin node in graph G1 according to morphism p, formally,

VG2 ∩ VG1 =
{

x′ ∈ VG2 | ∃x ∈ VG1 ∧ p(x) = x′ } .

• Edges of graph G2 unmapped by morphism p (denoted by EG2 \EG1) are such edges of graph
G2 that do not have any origin edges in graph G1 according to morphism p, formally,

EG2 \ EG1 =
{

u′ z′→ v′ ∈ EG2 |6 ∃u
z→ v ∈ EG1 ∧ p(u z→ v) = u′ z′→ v′

}
.

• Edges of graph G2 mapped by morphism p (denoted by EG2 ∩ EG1) are such edges of graph
G2 that have a corresponding origin edge in graph G1 according to morphism p, formally,

EG2 ∩ EG1 =
{

u′ z′→ v′ ∈ EG2 | ∃u
z→ v ∈ EG1 ∧ p(u z→ v) = u′ z′→ v′

}
.

The above node and edge categories are summarized in Table 3.1.

In graph G1 In graph G2

unmapped mapped unmapped mapped

nodes VG1 \ VG2 VG1 ∩ VG2 VG2 \ VG1 VG2 ∩ VG1

edges EG1 \ EG2 EG1 ∩ EG2 EG2 \ EG1 EG2 ∩ EG1

Table 3.1: Notational guide summary for the node and edge categories

Definition 14 Given directed graphs G1 and G2, and a partial morphism p : G1 → G2, shared nodes
of graph G2 (denoted by V sh

G2
) are such mapped nodes of graph G2, which have at least one incident

(incoming or outgoing) unmapped edge in graph G2. Formally,

V sh
G2

=
{

x ∈ VG2 ∩ VG1 | ∃y1
zin→ x ∈ EG2 \ EG1

}
∪
{

x ∈ VG2 ∩ VG1 | ∃x
zout→ y2 ∈ EG2 \ EG1

}
.

Shared nodes are referred as boundary nodes in the double pushout approach [35].

Definition 15 Given two directed graphs G1 and G2, and a partial morphism p : G1 → G2, the
reduction of graph G2 (denoted by Gr

2) is the subgraph of G2 induced by the shared nodes and the
unmapped nodes of graph G2. Formally, VGr

2
= V sh

G2
∪ (VG2 \ VG1), and

EGr
2

=
{

u
z→ v ∈ EG2 \ EG1 | u ∈ VGr

2
∧ v ∈ VGr

2

}
.

22 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

3.1.3 Matchings

A matching is an injective total graph morphism from a pattern graph to a model, which maps nodes
in a type conformant way, and which is source, target, and type preserving in case of edges. A partial
matching for a pattern graph is a matching for one of its subgraph. A maximal partial matching is a
non-extensible partial matching. A matching for a rule in a model is a matching for the LHS in the
model, provided that no matching exists for any embedded NAC graphs.

Example 7 The subgraph of the LHS pattern of ClassRule (Fig. 3.1(b)), which consists of pattern nodes
C and P, and the connecting EO edge can be matched to the subgraph of Model 1 (Fig. 2.2(b)) consisting
of UML class c1, UML package p, and the connecting EO link, respectively, as shown by the dotted
grey edges in Fig. 3.3(b). This set of mappings is a partial matching for the (complete) LHS pattern. It
is also a maximal partial matching as it cannot be further extended due to the fact that pattern node S
cannot be mapped to any schemas in Model 1. Due to similar reasons, the above set of mappings is not
a matching for the (complete) LHS pattern.

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

P:Package

PackageRule LHS

(a) Matching for the LHS of PackageRule
in Model 1

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

C:ClassP:Package

S:Schema

ClassRule LHS

r1:Ref

eo1:EO

(b) Matching for the LHS of ClassRule in
Model 1

Figure 3.3: Matchings for patterns in Model 1

On the other hand, if UML package p in Model 1 (Fig. 2.2(b)) is assigned to pattern node P of the
LHS of PackageRule as shown by Fig. 3.3(a), then this is also a matching for PackageRule, as UML
package p has no outgoing reference edges to any schemas.

Formalization of matchings

For the application of a rule we follow the single pushout approach [118] with injective morphisms.
However, the definitions are slightly adapted to the proof technique of Appendix A.

3.1. GRAPH TRANSFORMATION 23

Definition 16 A matching m for a graph G in a model M (denoted by mG) is an injective, type
conformant total morphism mG : G → M , which means that

• Type conformance of nodes. ∀x ∈ VG, ∃c ∈ VM : t(x)
∗
^ t(c) ∧mG(x) = c;

• Type conformance of edges. ∀u z→ v ∈ EG, ∃a e→ b ∈ EM : t(u)
∗
^ t(a) ∧ t(v)

∗
^

t(b) ∧ t(z) = t(e) ∧mG(u z→ v) = a
e→ b;

• Injective mapping of nodes. ∀x, y ∈ VG : mG(x) = mG(y) =⇒ x = y;

• Injective mapping of edges. ∀u z→ v, u′ z′→ v′ ∈ EG : mG(u z→ v) = mG(u′ z′→ v′) =⇒ z =
z′ ∧ u = u′ ∧ v = v′.

Definition 17 A partial matching msub
G for a graph G in a model M is a matching mGsub

for a
subgraph Gsub of G in model M .

Definition 18 A maximal partial matching max
mG for a graph G in a model M is

• a matching mGmax for a subgraph Gmax of G in model M , provided that

• no matchings exist in model M for any such subgraphs Gsub of G, which also contain Gmax as
a subgraph. (Gmax ⊆ Gsub ⊆ G)

The above definition permits several maximal partial matchings to co-exist.

Definition 19 A matching m for a rule r = (rb, {(NACi, pNACi)}) in a model M (denoted by mr) is

• a matching m for the LHS in model M , provided that

• no matching m′ exists for any NAC graph, formally, ∀NACi, @m′ : NACi → M , for which
∀x ∈ VLHS ∩ VNACi , ∀x′ ∈ VNACi ∩ VLHS : pNACi(x) = x′ =⇒ m′(x′) = m(x), and

∀u z→ v ∈ ELHS ∩ ENACi , ∀u′ z′→ v′ ∈ ENACi ∩ ELHS :

pNACi

(
u

z→ v
)

= u′ z′→ v′ =⇒ m′
(
u′ z′→ v′

)
= m

(
u

z→ v
)

.

3.1.4 Application of graph transformation rules

The application of a rule to an instance model replaces a matching of the LHS in the model by an image
of the RHS. This is performed in two phases.

• Pattern matching:

1. find a matching of LHS in the model (by graph pattern matching),

2. check the negative application conditions NAC, which prohibit the presence of certain ob-
jects and links

• Updating:

3. remove a part of the model that can be mapped to LHS but not to RHS to produce the
context model,

24 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

4. glue the context model with an image of the RHS by adding new objects and links (that can
be mapped to the RHS but not to the LHS) to obtain the derived model.

A graph transformation run is a sequence of rule applications starting from an initial model.

Example 8 Since pattern node P of the LHS of PackageRule (Fig. 3.1(a)) can be matched to UML
package p, it is applicable to Model 1 (Fig. 2.2(b)) as UML package p has not yet been transformed to a
schema. In this specific case, rule application means that a new schema s with its additional reference
link is added to the model. The derived instance model Model 2 is presented in Fig. 2.2(c).

Formalization of rule application

Definition 20 Given a matching m for a rule r in model M , the deletion phase of a rule application
of the rule r is executed on a matching m in the model M yielding the context model Mc, when

• we delete all objects, to which nodes appearing only in the LHS are mapped by m, formally,
VMc = VM \∆V −

M , where ∆V −
M = { c | ∃x ∈ VLHS \ VRHS ∧m(x) = c }; and

• we delete all links, to which edges appearing only in the LHS (but not in RHS) are mapped by
m, formally,

∆E−
1 =

{
a

e→ b | ∃u z→ v ∈ ELHS \ ERHS ∧m(u z→ v) = a
e→ b
}

;

• all dangling (i.e., incident) edges are deleted as well, formally,

∆E−
2 =

{
a

e→ b | ∃x ∈ VLHS \ VRHS ∧ (m(x) = a ∨m(x) = b)
}

.

Deletion of links is performed as EMc = EM \∆E−
M , where ∆E−

M = ∆E−
1 ∪∆E−

2 .

Definition 21 Given a matching m for a rule r in model M , the insertion phase of a rule application
of the rule r is executed on a matching m in the context model Mc yielding the model M ′, if a matching
mRHS can be prepared for the RHS to model M ′ in the following way.

• Each mapped node x′ of RHS is mapped by matching mRHS to the same object that has been
assigned to its origin node x by matching m, formally, ∀x′ ∈ VRHS ∩ VLHS, ∀x ∈ VLHS ∩ VRHS :
p(x) = x′ =⇒ mRHS(x′) = m(x).

• For each unmapped node x′ of RHS, a new object identifier c is picked and removed from the
unused model element universe, then an object c of type t(x′) is assigned to pattern node x′ by
matching mRHS, and finally, it is added to the set of inserted objects ∆V +

M , formally,

∀x′ ∈ VRHS \ VLHS, ∃c ∈ UNU : c /∈ U′
NU ∧ t(x′) = t(c) ∧mRHS(x′) = c ∧ c ∈ ∆V +

M .

• When all the inserted objects are collected, they are added to model M , formally,

VM ′ = VMc ∪∆V +
M .

• Each mapped edge u′ z′→ v′ of RHS is mapped by matching mRHS to the same link that has been

assigned to its origin edge u
z→ v by matching m, formally, ∀u′ z′→ v′ ∈ ERHS ∩ ELHS, ∀u z→

v ∈ ELHS ∩ ERHS : p
(
u

z→ v
)

= u′ z′→ v′ =⇒ mRHS

(
u′ z′→ v′

)
= m

(
u

z→ v
)

.

3.2. MODELING A DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 25

• For each unmapped edge u′ z′→ v′ of RHS, a new link identifier e is picked and removed from
the unused model element universe, then a link a

e→ b of type t(z′) is assigned to pattern edge

u′ z′→ v′ by matching mRHS in a source and target object preserving way, and finally, it is added
to the set of inserted links ∆E+

M , formally,

∀u′ z′→ v′ ∈ ERHS \ ELHS, ∃e ∈ UNU :

e /∈ U′
NU ∧ t(z′) = t(e) ∧mRHS

(
u′ z′→ v′

)
= a

e→ b ∧ a
e→ b ∈ ∆E+

M .

• When all the inserted links are collected, they are added to model M , formally,

EM ′ = EMc ∪∆E+
M .

Definition 22 Given a metamodel MM , and a matching m for a rule r in model M , rule r is applied
to the matching m in the model M yielding the derived model M ′, (denoted by M

r,m
=⇒ M ′)

if deletion and insertion phases are executed in this order, and derived model M ′ is a well-formed
instance of metamodel MM .

In the above definition, the well-formedness of the derived model is prescribed as a right application
condition [37]. In practice, this means that effects of rule application have to be rolled back, if the
derived model is not well-formed e.g., due to multiplicity constraint failure, or the existence of parallel
edges of the same type.

When modeling complex systems, naturally, more than a single graph transformation rule is re-
quired. A graph transformation system encapsulates a set of rules, which can be applied during the
evolution of the system model.

Definition 23 A graph transformation system SGT = (MM,R) is a tuple that consists of the meta-
model MM , and the set of graph transformation rules R.

Definition 24 Given a graph transformation system SGT = (MM,R), a graph transformation run
is a sequence of rule applications (denoted as MI

∗=⇒ Mn), which starts from an initial model MI and
which applies rules from the set R.

3.2 Modeling a distributed mutual exclusion algorithm

In this section, another running example describing a distributed mutual exclusion algorithm (with full
specification in [60]) is specified by graph transformation. Compared to the object-relational mapping,
this algorithm represents a different application scenario, in which the dynamic semantics of a visual
language is defined by means of graph transformation in an operational way. The dissimilar application
criteria and environment of this algorithm and its later reuse in this thesis are arguments for introducing
a second running example.

In this domain, processes try to access shared resources. One requirement of the algorithm is that
each resource may be accessed by at most one process at a time. This is achieved by using a token ring
of processes. In the consecutive phases of the algorithm, a process may issue a request on a resource,
the resource may eventually be held by a process, and finally, a process may release the resource. The
right to access a resource is modeled by a token. The algorithm also contains a deadlock detection
procedure, which has to track the processes that are blocked.

26 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

Process

Resource

next

blocked

Mutex

held_by releasetoken

request

*

*

*

0..1

**

*

*

0..1 0..1

0..10..1

(a) Metamodel for the mutual exclusion
problem

p1:Process p3:Process

ALAP Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(b) A sample instance model

Figure 3.4: Metamodel and model for the mutual exclusion problem

3.2.1 Metamodels and instance models

The metamodel of the mutual exclusion problem is depicted in Fig. 3.4(a). It has only two classes:
Process and Resource. Links of type next organize processes into a ring. The access right of a process
to a resource is symbolized by the association token. Associations release or request show if a process
releases or requests for a resource, respectively. A resource may also be held_by a process. Links of
type blocked express if processes are directly or indirectly blocked by an already used resource. No
inheritance is specified in the figure.

A well-formed instance model of this domain is shown in Fig. 3.4(b). It has four processes (p1
to p4) and four links (n1 to n4) of type next, which organize processes into a ring. Four resources (r1
to r4) also appear in the model. Each resource is held by a separate process, which can be expressed
by the four edges of type held_by (h1 to h4) connecting the resources to the corresponding processes.
Furthermore, the instance model of Fig. 3.4(b) obviously satisfies all multiplicity constraints of the
metamodel.

3.2.2 Graph transformation rules

The distribute mutual exclusion algorithm can be described by 13 graph transformation rules as pre-
sented in Fig. 3.5.

(a) NewRule (Fig. 3.5(a)) searches for two consecutive processes p1 and p2 in the token ring, and
places a new process p in between p1 and p2.

(b) KillRule (Fig. 3.5(b)) searches for three consecutive processes p1, p, and p2 in the token ring, and
removes process p from the middle.

(c) MountRule (Fig. 3.5(c)) seeks for a process p, creates a new resource r, and gives the initial access
right (modeled by a token link) of resource r to process p.

(d) UnmountRule (Fig. 3.5(d)) tries to find a process p, which has a token for resource r, and removes
the resource from the system.

(e) PassRule (Fig. 3.5(e)) gives the access right of process p1 for resource r to the following process
p2 in the token ring, if process p1 has not yet issued a request for resource r.

3.2. MODELING A DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 27

p1:Process

NewRule

n1:next

p2:Process

p1:Process

p:Process

p2:Process

n:next

n2:next

(a) NewRule

p1:Process

KillRule

n1:next

p2:Process

p1:Process

p:Process

p2:Process

n:next

n2:next

(b) KillRule

p:Process p:Process

r:Resource

MountRule

t:token

(c) MountRule

p:Processp:Process

r:Resource

UnmountRule

t:token

(d) UnmountRule

p1:Process

r:Resource

PassRule

req:request

n:next
p2:Process

t:token

p1:Process

r:Resource

n:next
p2:Process

t:token

(e) PassRule

r:Resource

p:Process

r:Resource

RequestRule

hb:held_by

reqn:request
req:request

rn:Resourcep:Process

NAC
1

NAC
2

(f) RequestRule

p:Process p:Process

r:Resource

TakeRule

t:token

r:Resource

req:request hb:held_by

(g) TakeRule

r:Resource

p:Process

r:Resource

ReleaseRule

hb:held_by

reqn:request
rel:release

rn:Resourcep:Process

(h) ReleaseRule

p1:Process

r:Resource

GiveRule

n:next
p2:Process

rel:release

p1:Process

r:Resource

n:next
p2:Process

t:token

(i) GiveRule

p1:Process

BlockedRule

req:request

p2:Process

p1:Process

r:Resource

p2:Process

hb:held_by

r:Resource

req:request

hb:held_by

b:blocked

(j) BlockedRule

p2:Processp1:Process

r2:Resource

WaitingRule

r1:Resource

p2:Processp1:Process

r2:Resource

r1:Resourcehb:held_by hb:held_byreq:request req:request

bn:blockedb:blocked

(k) WaitingRule

r:Resource

p:Process

r:Resource

IgnoreRule

b:blocked

hbn:held_by

rn:Resourcep:Process

(l) IgnoreRule

p:Process p:Process

r:Resource

UnlockRule

hb:held_by

r:Resource

b:blocked rel:release

(m) UnlockRule

Figure 3.5: Rules describing the mutual exclusion algorithm

28 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

(f) RequestRule (Fig. 3.5(f)) expresses that if resource r is not yet held by process p, and process p
has not issued a request for any other resources, then it requires resource r.

(g) TakeRule (Fig. 3.5(g)) gives access to a resource r for process p (expressed by a held_by edge from
r to p), if process p requested for such a resource r, for which it already had access right (i.e., a
token) as well.

(h) ReleaseRule (Fig. 3.5(h)) replaces the held_by edge connecting resource r to process p by a release
edge, if process p has no requests for any resources.

(i) GiveRule (Fig. 3.5(i)) passes the token for a resource r released by process p1 to the next process
p2 in the token ring.

(j) BlockedRule (Fig. 3.5(j)) expresses that if process p1 requests for a resource r already held by
another process p2, then process p1 gets blocked by resource r.

(k) WaitingRule (Fig. 3.5(k)) propagates the blocking of resource r2 from process p1 to process p2, if
p2 requests for a resource r1 held by process p1.

(l) IgnoreRule (Fig. 3.5(l)) liberates the blocking of resource r on process p, if process p has no access
to any resources.

(m) UnlockRule (Fig. 3.5(m)) detects a deadlock at process p, which has access to a resource r, which
causes a blocking for the same process p. UnlockRule unlocks the circular blocking by forcing
process p to release resource r.

For example, ReleaseRule (Fig. 3.5(h)) can be applied on the model that has been presented in
Fig. 3.4(b). Let us suppose that in the pattern matching phase, p, hb and r of the precondition of
ReleaseRule are mapped to p1, h1 and r1 of the model, respectively. Since the selected process p1 does
not have any associated requests, the negative application condition does not prohibit the execution of
the rule. In the updating phase, edge h1 is removed from the model, and a new edge rel1 of type release
is created.

3.3 Graph transformation tools

In the beginning of my research (in 2003), the following graph transformation tools, which can be
considered as successors of the first visual graph transformation environment of [54], represented the
state of the art, which are listed in alphabetical order.

• AGG [42] is a development environment for attributed graph transformation systems support-
ing an algebraic approach to graph transformation. It aims at specifying and rapid prototyping
applications with complex, graph structured data. The main strengths of AGG are its analysis
techniques, namely, the critical pair analysis [61] and consistency checking [62].

AGG may also be used as a general purpose, interpreted graph transformation engine, which has
a category theory based implementation written in Java. Its algorithm [119] interprets pattern
matching as a constraint satisfaction problem. AGG runs in main memory without using an
underlying database.

3.3. GRAPH TRANSFORMATION TOOLS 29

• AToM3 [31] is a tool for multi-paradigm modelling. Starting from metamodel specifications,
AToM3 can generate graphical tools for manipulating well-formed models. In addition, model
transformation is supported by means of graph transformation, whose rules can be specified
declaratively in the framework.

AToM3 has an interpreted, in-memory pattern matching engine written in Python, which uses a
local search based technique.

• BOTL [91] is a specification language and mechanism for the bidirectional transformation of
object-oriented models. Specification is based on the graph transformation concept, which is
complemented by algorithmic expressions, which relate object identities and attributes.

Tool support for BOTL is stated as an ongoing work in [21], so exact details of its pattern match-
ing algorithm are unknown.

• DiaGen [96] is a rapid prototyping tool for developing powerful diagram editors. It provides
support for specifying, editing, and analyzing diagrams, and for automatically generating visual
editors from diagram specifications, which are represented by graph transformation rules.

The main strength of DiaGen is its structural analysis module, which can validate syntactic cor-
rectness of diagrams on-line during the editing process. This module is based on interpreted
hypergraph transformation and it is supplemented by syntax highlighting and an interactive lay-
out facility to visualize the result of structural analysis.

• FUJABA [77] is an open source UML CASE tool, which focuses on the rule-based development
of Java applications with complex data structures. The envisioned development process with
FUJABA starts from specifications described by UML diagrams. In order to define the exact
behaviour of the system under design, UML diagrams are supplemented by further graphical
data structures such as graph transformation rules and story diagrams [44], which latter describes
control flow. These specifications are then used to guide the automatic code generation process,
which produces source code in Java.

FUJABA uses an in-memory, local search technique for pattern matching, and it belongs to the
group of compiled graph transformation tools.

• GREAT [1] is a language for graph rewriting and transformations, and a corresponding tool
for building model transformation applications inside the Generic Modeling Environment [83]
(GME) framework, which aims at creating domain-specific modeling and program synthesis
environments.

GREAT has a pattern specification, a graph transformation and a control flow language, which
define the behaviour of the pattern matcher, the rule executor, and the sequencer module, respec-
tively. This tool performs uni-directional transformation. Its pattern matching engine [158] is a
local search based approach, and it can run both in interpreted and in compiled mode, in which
C++ code is generated. The pattern matcher uses a breadth-first traversal strategy starting from
a set of nodes that are initially matched. This initial binding is referred to as pivoted pattern
matching in GReAT terminology.

• Groove [113] is a graph transformation based model checking approach. In this sense, graph
based models represent the states of the transition system, and graph transformation is used for
specifying transitions. Groove can be used for modeling the design-time, compile-time, and
run-time structure of object-oriented systems, and its main benefit is the ability to verify model

30 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

transformation and dynamic semantics through an (automatic) analysis of the resulting graph
transformation system.

From a technical point of view, Groove generates full state space by exhaustively applying all
enabled GT rules at each state. Each newly generated state is compared to all other states up to
isomorphism. The pattern matching module runs in interpreted mode and performs a local search
based algorithm.

• PROGRES [122] is an integrated set of tools, which supports programming with graph trans-
formation. It has a graph-oriented data model and a hybrid (textual and graphical) syntax for
specifying dynamic behaviour, which are backed by a syntax-directed graphical editor.

PROGRES operates on an underlying graph based database (GRAS) [76], and it has an inte-
grated interpreter, which translates specifications into intermediate code and executes this code
afterwards. PROGRES can also run in compiled mode as both C and Java code can be generated
from the specifications. This tool uses a local search based strategy for pattern matching.

• VIATRA2 [6] is a transformation-based verification and validation framework, which aims at im-
proving the quality of systems designed within the Unified Modeling Language by automatically
checking consistency, completeness, and dependability requirements like in case of [143]. This
feature is supported by automatically executable, provenly correct and complete model transfor-
mations [142, 144], which are specified by the mathematically precise rule-based specification
formalisms of graph transformation (GT) and Abstract State Machines (ASM).

The graph pattern matching module of VIATRA2 is an interpreted engine. Its earlier version
provided a CSP-based technique and it was written in Prolog, while the current version is written
in Java, and it performs local search in the pattern matching phase.

• VMTS [85] is a graphical metamodeling environment, which again enables model editing and
graph transformation in a single tool. The main strength of this tool is its full feature support
for validating OCL constraints [84]. These constraints are attached to the specification of graph
transformation rules, and they are checked at run-time by aspect-oriented constraint management
techniques.

VMTS is an interpreted approach as graph transformation is executed by the Visual Model Pro-
cessor module, and pattern matching is performed by a local search approach.

The recently developed graph transformation tools are the following.

• Graph Rewrite Generator (GrGen) [51] is a generative programming system for graph transfor-
mation, which originally aimed at finding patterns in graph-based intermediate representations
being used in compiler construction. GrGen represents models as uses attributed, typed, and
directed multigraphs with multiple inheritance on node and edge types.

GrGen has been recently reimplemented for the .NET framework. This new version generates
.NET assemblies by a generator written in Java, and it additionally contains a graph backend
written in C#.

• MOLA [69, 70] is a graphical and procedural model transformation language together with a
tool consisting of a Transformation Definition Environment and a Transformation Execution En-
vironment. Both environments use an underlying RDBMS based repository for storing models,
metamodels and transformations.

3.4. GRAPH TRANSFORMATIONS TOOL REPRESENTATIVES 31

• TefKat [82] implements a state-of-the-art declarative model transformation language suitable for
MDD. It is implemented as an Eclipse plugin that leverages the Eclipse Modeling Framework
(EMF) to handle models based on MOF, UML2, and XML Schema. Tefkat is specifically de-
signed for writing scalable and re-usable transformation specifications using high-level domain
concepts.

The transformation module of TefKat uses a search plan driven technique, in which operations
can be re-ordered based on efficiency and semantic correctness criteria.

3.4 Graph transformations tool representatives

We selected four graph transformation tools to participate in our analysis in later chapters. Our primary
aim in selecting tools was to include those with essentially different pattern matching strategies and
heterogeneous execution environments.

• AGG is an interpreted graph transformation tool written in Java, which directly follows a cat-
egory theory based implementation. It specifies pattern matching as a constraint satisfaction
problem to be solved. AGG runs in main memory without using any underlying databases.

• We selected the compiled version of PROGRES to run during performance measurements in the
form of C programs. PROGRES uses a local search based strategy for pattern matching, and it
operates on an underlying graph based database (GRAS) [76].

• FUJABA is a compiled GT tool, which performs the transformations as Java programs. FUJABA

operates in the main memory, and it uses a local search based technique for pattern matching.

• The database (DB) approach, which is going to be presented in Chapter 6 as a contribution of
this thesis, operates on a standard relational database by issuing join based queries for pattern
matching, which categorizes this approach among the interpreted graph transformation tools. It
communicates with the database via the standard JDBC interface.

3.5 Implementation of graph transformations

The typical architecture and the basic data structures of a graph transformation module implementation
are presented in Figures 3.6(a) and 3.6(b), respectively, and obtained by the analysis and the general-
ization of existing approaches.

At compile-time, a graph transformation module is built by using a graph transformation system
specification. For each rule in the specification, a corresponding rule executor is prepared, which
provides rule application functionality via its apply() method. Each rule executor has a pattern
matcher, which provides pattern matching functionality via its match() method for the precondition
of the rule, for which the corresponding executor has been generated.

A graph transformation module uses the additional data structure of Matchings during its oper-
ation. A Matching consists of Mappings, which can be considered as PatternNode-Object
pairs. Note that in the implementation, only nodes of the patterns and their corresponding matched
objects are stored explicitly in a Matching, while the mappings of edges are omitted from this data
structure as links do not have identities according to our assumptions.

At runtime, rule application is initiated by selecting a rule and invoking the apply() method
of its executor. An initial (partial) matching is also passed as input parameter. The behaviour of the
apply() method of a rule executor is presented by the sequence diagram of Fig. 3.7.

32 CHAPTER 3. COMPUTING BY GRAPH TRANSFORMATION

interface

IPatternMatcher

match

RuleExecutor

update

apply

GraphTransformationModule

patternMatcher1

(a) The structure of a graph transformation engine module

PatternNode

Mapping Matching

Object

0..1

0..*

value

0..*

1mappings

0..1

0..*

patternNode

(b) Basic data structures

Figure 3.6: Typical data structures of a graph transformation engine

pm:IPatternMatcher

actor

rule: RuleExecutor

if(matchingFound)

1.2: update

1: apply(Matching m)
1.1: match

Figure 3.7: Sequence diagram for the apply() method

As it can be seen, the apply() method shows a one-to-one correspondance to the theory based
definition of rule application. In this sense, activities correspond to the following two phases.

• Pattern matching. The match() method of the pattern matcher is invoked with the initial
matching as input parameter. This method completes the matching by adding appropriate map-
pings for initially unmatched pattern nodes.

• Updating. If a complete matching has been found in the pattern matching phase, the update()
method of the rule executor is invoked for handling the tasks of deletion and insertion phases.

As techniques for the implementation of the match() method are going to be discussed in details
in all the upcoming chapters, sample Java codes that implement this method can be found at several
locations (e.g., Listings 4.1 and 4.2 in Section 4.2.6). A Java program that describes the manipulation
of models has already been presented by Listing 2.2.

3.6. CONCLUSION 33

3.6 Conclusion

In this chapter, by using the object-relational mapping example, the paradigm of graph transformation
has been presented as a rule-based specification language for manipulating graph models. In addition, a
distributed mutual exclusion algorithm has been introduced to represent another application scenario of
graph transformation by providing a way to define the dynamic semantics of a visual language. Then
an overview has been given on state-of-the-art graph transformation tools, of which representatives
have been selected for our later performance measurements. Finally, a graph transformation module
implementation has been discussed by presenting its typical architecture and its basic data structures.

CHAPTER

4
Pattern Matching Strategies

This chapter serves as a framework of existing, graph transformation related concepts, techniques, and
heuristics, which is going to be used later for positioning the new results of this thesis. A skeletal, gen-
eral purpose graph pattern matching algorithm is presented, into which all the heuristics used by both
current and upcoming tools can be plugged. By analyzing this algorithm, complexity considerations
of pattern matching are examined both from a theoretical and practical viewpoint. Finally, the widely
used concept of search plan driven pattern matching is presented, which can be used for describing
heuristics.

4.1 A general purpose graph pattern matching algorithm

As a result of intensive research, several graph pattern matching algorithms have been developed during
the last decades. Some publications [25, 32, 46, 56, 89, 90, 92, 117, 131] proposed efficient pattern
matching techniques for restricted classes of graphs, while others developed algorithms [29, 81, 140,
141] for graphs without structural restrictions. In the graph transformation community, variants of
Ullmann [140] and VF2 [29] algorithms are used most frequently. In Algorithm 4.1, a skeleton is
presented to demonstrate the typical structure of all relevant pattern matching algorithms.

The pattern matching algorithm consists of a single recursive procedure match(k, m) which gets
the recursion level k and a matching m as its inputs. Procedure match(k, m) is initially invoked at
recursion level 1 with a partial matching m, which is specified outside the pattern matcher by the user,
and which contains mappings for a subset of pattern nodes. Since the procedure already tries to find
a mapping for the first unmapped pattern node at recursion level 1, it should also be checked in the
beginning by check(0,m) whether the initial partial matching m represents a graph morphism.

If matching m is complete, then it can be returned as a solution (Lines 1–2). If matching m is not
yet complete (Lines 3–11), then attempts are made to extend the matching. For this reason, a set of
mapping candidates P (k, m) is computed (Line 4), and then each candidate (n, o), which represents
the mapping of pattern node n of LHS (or NAC) to object o, is added to matching m resulting in a
matching m′ (Line 6). If this new matching m′ passes all the tests prescribed by check(k, m′) (Line
7), the procedure match() can be invoked recursively in Line 8 with parameters k + 1 and matching
m′.

35

36 CHAPTER 4. PATTERN MATCHING STRATEGIES

Algorithm 4.1 The skeletal pattern matching algorithm match(k, m)

PROCEDURE match(k, m) {k is the recursion level, and m is the initial partial matching}
Initially: k = 1 and check(0,m) = true {The algorithm is initially invoked at recursion level 1, and it checks

whether pattern edges that connect pattern nodes contained by the initial partial matching m can be mapped
to links in the model.}

1: if m represents a total morphism from LHS to model M then
2: return m
3: else
4: Compute the set of mapping candidates P (k, m)
5: for all (n, o) ∈ P (k, m) do
6: m′ := m ∪ (n, o) {Compute the morphism m′ obtained by adding (n, o) to m}
7: if check(k, m′){Verifies whether m′ is a morphism} then
8: return match(k + 1,m′)
9: end if

10: end for
11: end if

Implementations of the pattern matching algorithm (in different GT tools) typically differ from each
other in the technique of computing mapping candidates and checking extended matchings in Lines 4
and 7, respectively. In this sense, the above skeletal algorithm provides a uniform description for all
the existing and new pattern matching strategies and heuristics. In order to be able to analyze these
algorithm variants, we need an appropriate formalism for describing the search space being traversed
by Algorithm 4.1 during pattern matching.

4.1.1 Search space tree

For this reason, a snapshot is constructed from the input parameters (i.e., recursion depth level k and
matching m), whenever the match() method is invoked. These snapshots are then organized into a
search space tree by also taking into account the method invocation hierarchy of Line 8.

A search space tree (SST) is a tree having snapshots as its nodes. The root of the tree is on the 0th
level of recursion and it corresponds to the initial snapshot that has been prepared, when the match()
method is invoked from outside the pattern matcher (i.e., from the rule executor) with recursion level
1 and with the initial partial matching. A snapshot node s′ consisting of recursion level k + 1 and a
(partial) matching m′ appears on the kth level of the search space tree as a child of snapshot node s
representing recursion level k and (partial) matching m, if m′ has been obtained from m by executing
Line 6 on the kth recursion level at some time during pattern matching. Consequently, if a pattern has
l nodes to be matched (l ≤ |VLHS|), then the search space tree has at most l + 1 levels, and only nodes
on the lth level may denote complete matchings for the pattern.

Example 9 A sample search space tree is depicted by Fig. 4.1. This tree can be generated by a pattern
matching process, which tries to search for matchings for GiveRule of Fig. 3.5(i) in the instance model
of Fig. 3.4(b) by seeking mappings for pattern nodes in the P1, P2, R order.

In this case, the match() method has been invoked with the empty matching as it is shown by the
root of the tree. On the second level, such snapshots can be found, which correspond to matchings, in
which only pattern node P1 has been mapped. As it is shown by Fig. 4.1, pattern node P1 is mapped to
processes p1, p2, p3, and p4. Snapshots on the third level represent matchings, in which pattern nodes
P1, and P2 are already mapped. For each process assigned to pattern node P1, there is exactly one

4.1. A GENERAL PURPOSE GRAPH PATTERN MATCHING ALGORITHM 37

p3

P2

p2

RP1

p2

P2

p1

RP1

p1

P2

p4

RP1

p4

P2

p3

RP1

P2

p2

RP1P2

p1

RP1 P2

p4

RP1P2

p3

RP1

P2 RP1

Figure 4.1: A sample search space tree

following process in the ring that can be a mapping of pattern node P2. This is reflected in Fig. 4.1 by
the fact that each snapshot on the second level has exactly one child.

4.1.2 Complexity analysis of pattern matching and updating phases

From a theoretical viewpoint, no fast algorithms can be guaranteed to exist for graph pattern matching,
as it leads to the subgraph isomorphism problem, for which NP-completeness has been proved [5]. The
exponential worst-case complexity of the pattern matching phase can be easily demonstrated by the
following example.

Example 10 Let us suppose that (i) the metamodel has a single node and edge type, (ii) the instance
model is a directed complete graph, in which each pair of nodes is bidirectionally connected to each
other (as in Fig. 4.2(a)), and (iii) the LHS pattern is a path graph (like the one in Fig. 4.2(b)). In such a
situation, if all the matchings are aimed to be listed, then even this enumeration requires an exponential
number of steps, and no analysis and heuristics can help to speed-up the pattern matching process.

n1:Node

n2:Node

n3:Noden4:Node

n5:Node

n6:Node

N4:NodeN3:NodeN2:NodeN1:Node

(a) An instance model: a complete graph with 6 objects

n1:Node

n2:Node

n3:Noden4:Node

n5:Node

n6:Node

N4:NodeN3:NodeN2:NodeN1:Node

(b) An LHS pattern: a path graph with 4 nodes

Figure 4.2: Illustrative example for the complexity analysis of pattern matching

If injectivity checking is omitted from the pattern matching process and the evaluation order of LHS
nodes is fixed (e.g., to a left-to-right order in this case), the size of the SST can be estimated as follows.
The leftmost node of the LHS can be mapped to |VM | objects. For each such mapping, the second node
of the LHS can be independently fixed to |VM |−1 objects, and this argument can be repeated for all the
remaining nodes of the LHS. As a consequence, the size of the SST is in O

(
|VM ||VLHS|

)
, and each leaf

of the SST denotes a matching for the LHS pattern in the instance model. The situation is even worse,

38 CHAPTER 4. PATTERN MATCHING STRATEGIES

if nodes of the LHS are allowed to be processed in an arbitrary order, since this gives an additional
|VLHS|! factor for the size of the SST as each matching is enumerated that many times.

Fortunately, in practical model transformation problems of software engineering, search space can
be reduced due to several reasons.

• The size of LHS graphs are typically constant except for some rather exotic approaches like
shaped hypergraph transformations. This makes the time complexity to be bound by a polyno-
mial, in which the exponent is also constant but not necessarily small.

• Instance models from software engineering domains are always sparser than the one in
Fig. 4.2(a). In a typical situation, an object is connected via links to a couple of other objects, but
not to all objects in the model. As a consequence, if each object stores links to its neighbourhood
and navigation is always performed only to the neighbours of a given object, this can reduce the
search space significantly by the ratio of neighbouring objects and all objects.

• Metamodels typically contain more than one class and association, which means that only type
conformant objects and links have to be enumerated when a matching is being extended. In a
typical model repository, neighbours of an object are stored separately according to the type of
the connecting link. As a consequence, if navigation is performed only along links of a given
type, this can further cut the search space by simply omitting such neighbours that can only be
reached via a link of a different type.

• Instance models are typically less regular than the one in Fig. 4.2(a). Irregularities in instance
models and LHS patterns increase the gap between the size of search spaces that are traversed
according to different LHS node orders. This opens up the way to construct heuristics to reduce
the search space by fixing a good (or ideally an optimal) LHS node evaluation order for pattern
matching. Note that finding such an order constitutes a highly critical part in the process of
pattern matching.

• A fifth source of state space reduction stems from injectivity checking, which disallows different
LHS nodes of the same type to be mapped to the same object in the instance model.

By using the above techniques for typical model transformation problems from the software engi-
neering industry, the size of the SST (i.e., the “practical complexity” of graph pattern matching) can be
reduced to a scale, which can be overapproximated by a linear or quadratic function of the model size
in many applications.

The complexity of the updating phase is linear in the size of the graph transformation rule (i.e.,
O (|VLHS|+ |VRHS|+ |ELHS|+ |ERHS|)), even if only a rough estimate is used, as at most that many
objects and links can be deleted or created.

As a consequence of this short analysis, the rest of this thesis focuses on the performance issues
of the pattern matcher as it has significantly larger influence on the overall behaviour and performance
of the graph transformation module. This huge gap between the significance of the two phases is also
reflected by the detailedness of discussions on pattern maching and updating phases in each of the
upcoming chapters.

It is worth emphasizing that the above-mentioned theoretical complexity analysis does not take
into account several factors, which might cause significant performance degradation in practice, which
obviously affects the measurement results. These factors include the tasks related to querying and
updating indexes or to the administration of large number of objects and links, which might influence
both the pattern matching and the updating phase.

4.2. SEARCH PLAN DRIVEN PATTERN MATCHING 39

4.2 Search plan driven pattern matching

The generation of search plans [163] is a frequently used and efficient strategy to drive the execution of
(local search based) pattern matching algorithms. Informally, a search plan defines an order of pattern
nodes, in which they are bound to objects of the instance model during pattern matching. In addition
to simply specifying the binding order of pattern nodes, it often also includes an order of elemen-
tary operations that have to be executed to drive pattern matching. In the context of Algorithm 4.1,
this latter task means the appropriate (and recursion level dependent) definition of mapping candidate
computation (P (k, m) in Line 4) and matching checks (check(k, m′) in Line 7).

In this thesis, the process of search plan driven pattern matching is as follows. At compilation time,
a so-called search graph is constructed for each LHS and NAC patterns. At runtime, when bindings
of the input partial matching are known, the search graph is complemented by an adornment (i.e., a
binding pattern), which denotes if a given pattern node is initially bound or free. In the second step,
a search plan is generated from the adorned search graph. Finally, the search plan is used to drive the
pattern matching process.

In case of compiled graph transformation approaches, the overall process slightly differs as search
plans are usually prepared for all combinations of binding and pattern matching code fragments are
also generated and compiled for all search plans at compile-time. In this case, only the selection and
the execution of the appropriate code fragment remain a runtime task.

4.2.1 Search graphs

A search graph is a directed graph generated for each pattern specification.

(a) A search graph contains a single dummy node (denoted by a small circle) that represents a possi-
ble starting point for any search graph traversals.

(b) Each node of the pattern is mapped to a pattern node derivative (denoted by a large circle) in the
search graph.

(c) For each negative application condition of the pattern, a NAC node (denoted by a large rectangle)
is also added.

(d) Iteration edges are directed edges connecting the dummy node to every pattern node derivative.
(e) Each navigable direction of each pattern edge is mapped to a navigation edge in the search graph.

In a typical case, when a pattern edge is navigable in both directions, a pair of navigation edges
with end nodes connected in both directions is created for each such pattern edge.

(f) For each node shared between the pattern and the embedded negative application condition, a
NAC check edge, which connects the pattern node derivative to the NAC node is added to the
search graph.

A to-one (to-many) navigation edge represents a pattern edge navigation in a direction, in which the
navigation target has an at most one (arbitrary) multiplicity constraint. To-one and to-many navigation
edges are denoted by edges with labels 0..1 and *, respectively.

Example 11 Search graphs describing LHS patterns of graph transformation rules ReleaseRule of
Fig. 3.5(h) and GiveRule of Fig. 3.5(i) are depicted in Fig. 4.3(a) and 4.3(b), respectively. Note that not
only nodes and edges of the LHS, but also the negative application conditions (e.g., NAC in Fig. 4.3(a))
should be represented in the search graph.

40 CHAPTER 4. PATTERN MATCHING STRATEGIES

Pattern node derivative

Dummy node

NAC check edge

Iteration edge

Navigation edges

NAC node

NACPR

LHS

NAC

P R
n

(a) ReleaseRule

P
2

P
1

R

(b) GiveRule

Figure 4.3: Search graphs for the preconditions of different rules

Formalization of search graphs

Definition 25 Given a metamodel MM and a graph transformation rule r, the search graph SG =
(VSG, ESG, b) of the LHS pattern is a directed graph with nodes VSG and edges ESG, and a backward
mapping function (graph morphism) b : SG → rPRE, which maps nodes and edges of search graph SG
to the preconditions rPRE of rule r (see Definition 12). The structure of search graphs can be described
by the following rules:

• Nodes VSG of the search graph can be partitioned into (i) the singleton set { d } containing a
dummy node d, (ii) pattern node derivatives V P

SG, and (iii) NAC nodes V NAC
SG , formally, VSG =

{ d } ∪ V P
SG ∪ V NAC

SG , d /∈ V P
SG, d /∈ V NAC

SG , and V P
SG ∩ V NAC

SG = ∅. Mapping rules for nodes of the
search graph are as follows:

– A dummy node d (denoted by a small circle) is a node of the search graph without an
origin in the LHS graph, and it represents a possible starting point for any search graph
traversals. Formally, ∃d ∈ VSG, ∀x ∈ VLHS : b(d) 6= x.

– Each node x of the LHS pattern is mapped to a pattern node derivative x (denoted by a
large circle) in the search graph. Formally, ∀x ∈ VLHS, ∃x ∈ V P

SG : b(x) = x.

– Each negative application condition NACi of the LHS pattern is mapped to a NAC node ni

(denoted by a large rectangle) in the search graph, i.e., each NAC is represented by a single
“proxy” node. Formally, ∀NACi, ∃ni ∈ V NAC

SG : b(ni) = NACi.

• Edges ESG of the search graph can be partitioned into (i) iteration edges Eiter
SG , (ii) navigation

edges Enav
SG , and (iii) NAC check edges ENAC

SG , formally, ESG = Eiter
SG ∪ Enav

SG ∪ ENAC
SG , Eiter

SG ∩
Enav

SG = Eiter
SG ∩ ENAC

SG = Enav
SG ∩ ENAC

SG = ∅. Mapping rules for edges of the search graph are as
follows:

– The dummy node d is connected to each pattern node derivative x by an iteration edge
d

i→ x without an origin in the LHS pattern. Formally, ∀x ∈ V P
SG, ∃!d i→ x ∈ Eiter

SG .

4.2. SEARCH PLAN DRIVEN PATTERN MATCHING 41

– Each pattern edge u
z→ v of the LHS pattern connecting node u to node v is mapped to

a pair of navigation edges connecting corresponding end node derivatives u and v in both
directions (i.e., u

z→ v and v
zinv→ u). Formally,

∀u z→ v ∈ ELHS, ∃u z→ v ∈ Enav
SG , ∃v zinv→ u ∈ Enav

SG :(
b
(
u

z→ v
)

= u
z→ v ∧ b

(
v

zinv→ u
)

= u
z→ v
)

.

– For each node u of the LHS graph that is shared with the negative application condition pat-
tern NACi, a NAC check edge u

zi→ ni connecting the corresponding pattern node derivative
u to NAC node ni is added to the search graph. Formally, ∀NACi, ∀u ∈ VLHS∩VNACi , ∃u

zi→
ni ∈ ENAC

SG : b(u) = u ∧ b(ni) = NACi.

By using a similar construction, a search graph can be built for each negative application condition
itself. This way negative application conditions embedded into each other at an arbitrary depth can be
handled [114].

4.2.2 Adorned search graphs and search plans

An adorned search graph is a search graph, in which pattern node derivatives are adorned depending
on the initial binding of their pattern node origin. The set of derivatives that represent pattern nodes
that are already matched when the pattern matching starts are called bound nodes (B) and denoted by
circles surrounded with dashed boxes. The remaining (initially unmatched) pattern node derivatives
are called free nodes (F) and denoted by numbered circles.

A search plan is a traversal of such spanning trees of the adorned search graph that are rooted at
some bound nodes or at the dummy node. A traversal defines a sequence in which edges are traversed.
The position of a given edge in this sequence and the position of a free node in the corresponding
binding order are marked by increasing integers written on the black edges of spanning trees and inside
free nodes, respectively, as in Figs. 4.4(a) to 4.4(d). (Note that the number appearing on a search plan
edge should always and inherently be the same as the integer value located inside its target node.)

Example 12 Search plans being generated for the preconditions of ReleaseRule and GiveRule by PRO-
GRES and FUJABA are depicted in Fig. 4.4. It should be emphasized that these search plans are directly
derived from the generated (Java or C) source code as a result of manual code analysis, and multiplicity
constraints have not been considered during the generation of these search plans.

For example, the search plan of Fig. 4.4(b) has been generated for the case, when all input parame-
ters are free at the time of the pattern invocation. The spanning tree is denoted by the thick black lines,
and it is rooted at the dummy node. The search plan specifies that pattern nodes have to be mapped
in the R, P1, P2 order by traversing first the iteration edge leading to derivative R, then the navigation
edge connecting derivatives R to P1, and finally, the navigation edge linking derivatives P1 to P2.

By comparing Figures 4.4(a) and 4.4(c), it can be seen that PROGRES checks the negative appli-
cation condition at the end of the pattern matching process, while FUJABA performs the same check as
soon as pattern node P is already mapped.

4.2.3 Formalization of adorned search graphs and search plans

Definition 26 An adorned search graph ASG is a run-time representation of a search graph SG, in
which pattern node derivatives are further partitioned into bound nodes V B

SG and free nodes V F
SG de-

pending on whether the corresponding node of the LHS pattern is already bound when pattern matching
starts. Formally, V P

SG = V B
SG ∪ V F

SG, and V B
SG ∩ V F

SG = ∅.

42 CHAPTER 4. PATTERN MATCHING STRATEGIES

Pattern node derivative

Dummy node

Initially bound part

Starting point(s)
11

NAC check edge

Iteration edge

Navigation edges

Forest edge & free node

NAC node

PR

2 1

2

1

NAC

R
n

P 1

1

LHS

NAC

2

(a) PROGRES / ReleaseRule

P
2

P
1

R

21 3

3

1

2

(b) PROGRES / GiveRule

PR

2 1

2

1

NAC

R
n

P 1

1

LHS

NAC

1

(c) FUJABA / ReleaseRule

P
2

P
1

R

13 2

2

1

3

(d) FUJABA / GiveRule

Figure 4.4: Search plans of local search based tools

Definition 27 Given an adorned search graph ASG, a search forest ESF is a subset of edges of the
adorned search graph ASG such that for each free node exactly one of its incoming edges is selected as
an edge of the search forest. Formally, ESF ⊆ ESG such that

∀v ∈ V F
SG, ∃u z→ v ∈ ESF, ∀u′

z′→ v ∈ ESG :
(
u′

z′→ v ∈ ESF ⇐⇒
(
u = u′ ∧ z = z′

))
.

As a consequence, the search forest has as many edges as free nodes are contained by the adorned
search graph. Formally, |ESF| =

∣∣V F
SG

∣∣.
Definition 28 Given a search forest SF in an adorned search graph ASG, a search plan SP : VASG →
N|V F

SG| assigns non-negative integers up to the number of free nodes
∣∣V F

SG

∣∣ to nodes of adorned search
graph ASG such that:

• The dummy node is labelled by 0. Formally, SP(d) = 0.

• Bound nodes are labelled by 0. Formally, ∀x ∈ V B
SG : SP(x) = 0.

• Free nodes are labelled by positive integers. Formally, ∀x ∈ V F
SG : SP(x) > 0.

4.2. SEARCH PLAN DRIVEN PATTERN MATCHING 43

• NAC nodes are labelled by non-negative integers. Formally, ∀ni ∈ V NAC
SG : SP(ni) ≥ 0.

• Each positive label is attached to exactly one free node. Formally, ∀j ∈ N : 0 < j ≤
∣∣V F

SG

∣∣ =⇒(
∃x ∈ V F

SG : SP(x) = j ∧
(
∀y ∈ V F

SG : SP(x) = SP(y) =⇒ x = y
))

.

• Labels should always increase along search forest edges ESF. Formally, ∀u z→ v ∈ ESF :
SP(u) < SP(v).

• Labels cannot decrease along NAC check edges. Formally, ∀v ∈ V NAC
SG , ∀u z→ v ∈ ESG :

SP(u) ≤ SP(v).

4.2.4 A search plan description for constraint satisfaction based algorithms

Both constraint satisfaction and local search based strategies can be characterized by examining the
order in which objects are assigned to unbound pattern nodes during the pattern matching phase. Now
we present a notation for capturing the binding order uniformly for both kinds of strategies.

Algorithms that handle pattern matching as a constraint satisfaction problem do not directly involve
the concept of search plans. However, the underlying constraint solver engine also has to define a
variable binding order, which can be considered as a search plan derived dynamically at run-time. Now
the major differences between the original search plan interpretation and its generalized version are
discussed.

Both AGG and the DB approach unlike PROGRES and FUJABA treat links as autonomous en-
tities having their own identifiers. As a consequence, edges of LHS and NAC patterns should also be
considered as variables to which links should be assigned during pattern matching. In order to rep-
resent a variable binding order by a generalized search plan, not only nodes but also the edges of the
precondition pattern have to be mapped to pattern node derivatives. This extension yields obvious mod-
ifications in the interpretation of iteration and navigation edges. In case of iteration edges, it means that
iteration over all links of a given type is allowed (as in Fig. 4.5(d)). A generalized navigation edge can
be interpreted as a navigation possibility between two pattern node derivatives of which one represents
the pattern edge itself while the other denotes the adjacent source or target node of the edge.

AGG. By printing it into a text file, AGG directly supports the retrieval of the variable binding
order being generated for the LHS of rules (but not for the NAC). The generalized search plan can be
immediately constructed by using the retrieved binding order for the sequencing of pattern nodes.

Search plans being generated by AGG for the LHS of ReleaseRule and GiveRule are presented in
Figs. 4.5(a) and 4.5(b), respectively. These search plans (with only black nodes and edges) would
describe the worst case traversal of the search space tree in case of labelling without constraint propa-
gation. As constraints typically express the adjacency of pattern edges to their source and target nodes,
the propagation of such constraints would have an effect that is equivalent to the selection of the dark
grey navigation edges (as in Figs. 4.5(a) and 4.5(b)). Since constraints are evaluated at run-time, it is
impossible to derive a single static search plan, but it can be stated that concrete traversals would be
some combinations of activities expressed by labelling edges selected from iteration edges and domain
reduction edges selected from navigation edges.

DB approach. In case of the DB approach, the generalized search plans have been determined by
manually analyzing the corresponding query plan provided by the query optimizer of the database.
Search plans for preconditions of ReleaseRule and GiveRule are depicted in Figs. 4.5(c) and 4.5(e) and
in Figs. 4.5(d) and 4.5(f), respectively.

44 CHAPTER 4. PATTERN MATCHING STRATEGIES

Pattern node and edge

derivative

Dummy node

Initially bound part

Starting point(s)
11

NAC check edge

Iteration edge

Navigation edges

Forest edge & free node

NAC node

Labelling (AGG)

Domain reduction (AGG)

PhbR

32 1

3

12

3

NAC

(a) AGG / ReleaseRule

R n P
2

P
1

rel

13 4 5 2

1

2

54

3

(b) AGG / GiveRule

PhbR

2 1 0

2

3

1

NAC

3

RnreqnP

3 1

3

2

1

2

NAC

(c) DB1 / ReleaseRule

R n P
2

P
1

rel

32 1 4 5

1

2

543

(d) DB1 / GiveRule

PhbR

1 2 0

2 3

1

NAC

3

RnreqnP

3 2

3 2

1

1

NAC

(e) DB2 / ReleaseRule

R n P
2

P
1

rel

31 2 4 5

1

2 543

(f) DB2 / GiveRule

Figure 4.5: Tool-specific search plan interpretations

4.2. SEARCH PLAN DRIVEN PATTERN MATCHING 45

The DB approach is able to generate several static search plans (i.e., DB1 and DB2) for the same
pattern depending on the actual content of the database (i.e., the model under transformation), and it
constructs search plans separately for the LHS and NAC(s).

Search plans labelled with DB1 have been generated for the different rules, when the model is
the one presented in Fig. 3.4(b). By analyzing Fig. 4.5(d), it is worth examining release edges first
as the model has no such edges, consequently, the pattern matcher can immediately determine that no
matchings exist.

Search plans labelled with DB2 have been produced for those test models that did not contain
resources. In such cases, search plans, which start by testing resources first, detect pattern matching
failure earlier.

Search plans of Figures 4.5(c) and 4.5(e) can check negative application conditions at first (as
shown by the zeros in the NAC nodes) as matchings of the NAC pattern are available in a separate view
(as going to be presented in Sec. 6.4.2), and the emptiness of this view can immediately indicate that
each matching calculated for the LHS will be a matching for the whole rule as well.

4.2.5 Operations in search plan driven graph pattern matching

By definition, a search plan specifies the order of pattern nodes, in which they are mapped to ob-
jects during pattern matching. This order is directly denoted by the integers assigned to free nodes.
Additionally, a search plan may also define elementary operations and order them to completely and
precisely characterize the process of pattern matching. The search plan concept of this thesis supports
this behaviour as well by means of defining mapping candidate generation tasks (P (k, m)) and check
operations (check(k, m′)) in Lines 4 and 7 of Algorithm 4.1, respectively.

More specifically, mapping candidate generation tasks are defined by edges of the search forest,
while check operations are designated by such sets of search graph edges that have a common origin
and that remain unselected by the search forest.

Mapping candidate generation is controlled by the following three rules:

• Iteration. If the source node d of the search forest edge leading to the free node v with label k is
the dummy node, then pattern node b(v) is scheduled to be mapped on the kth level of recursion.
Objects that conform to the type of pattern node b(v) are iterated as candidates for the mapping
of pattern node b(v). Formally,

P (k, m) =
{

(b(v), c) | d z→ v ∈ ESF ∧ SP(v) = k ∧ c ∈ VM ∧ t(b(v))
∗
^ t(c)

}
• Navigation in forward direction. If the search forest edge u

z→ v connects pattern node deriva-
tive u to free node v with label k and goes in the same direction as its origin search graph edge
u

z→ v then pattern node v is scheduled to be mapped on the kth level of recursion. Possible
candidates for the mapping of pattern node v are such objects, which conform to the type t(v) of
the target pattern node v, and which can be reached from the object c mapped to source pattern
node u by navigating along edges of type t(z). Formally,

P (k, m) =
{

(b(v), d) | u z→ v ∈ ESF ∧ SP(v) = k ∧ u ∈ V P
SG ∧ b(u z→ v) = u

z→ v∧

∃c e→ d ∈ EM : m(u) = c ∧ t(v)
∗
^ t(d) ∧ t(z) = t(e)

}

46 CHAPTER 4. PATTERN MATCHING STRATEGIES

• Navigation in backward direction. If the search forest edge v
zinv→ u connects pattern node

derivative v to free node u with label k and goes in the opposite direction as its origin search
graph edge u

z→ v then pattern node u is scheduled to be mapped on the kth level of recursion.
Possible candidates for the mapping of pattern node u are such objects, which conform to the
type t(u) of the source pattern node u, and which can be reached from the object d being mapped
to target pattern node v by navigating along edges of type t(z) in reverse direction. Formally,

P (k, m) =
{

(b(u), c) | v zinv→ u ∈ ESF ∧ SP(u) = k ∧ v ∈ V P
SG ∧ b(v zinv→ u) = u

z→ v∧

∃c e→ d ∈ EM : m(v) = d ∧ t(u)
∗
^ t(c) ∧ t(z) = t(e)

}
The main check operation being executed on the kth level of recursion can be considered as the

conjunction (logical AND) of simple operations, each of which is either an edge existence validation or
a negative application condition check. Formally,

check(k, m) = checkedge(k, m) ∧ checkNAC(k, m)

The two types of simple operations are as follows.

• Checking edge existence. If pattern node derivative v has label k, which is, in turn, at least as
large as the label of pattern node derivative u, and these derivatives are bidirectionally connected
by such edges that have a common origin pattern edge u

z→ v, and that are not in search forest
SF, then this pattern edge u

z→ v is scheduled to be checked on the kth level of recursion. This
operation prescribes the existence of a link c

e→ d connecting object c to object d, which can be
mapped by the checked pattern edge u

z→ v in such a way that this mapping preserves the type
conformance of edges, source and target nodes. Formally,

checkv(k, m) = ∀u, v ∈ V P
SG, ∀u z→ v ∈ ESG\ESF, ∀v

zinv→ u ∈ ESG\ESF, ∀u
z→ v ∈ ELHS :

(SP(u) ≤ SP(v)) ∧ (SP(v) = k) ∧
(
b(u z→ v) = b(v zinv→ u) = u

z→ v
)

=⇒

∃c e→ d ∈ EM : m(u) = c ∧ t(u)
∗
^ t(c) ∧m(v) = d ∧ t(v)

∗
^ t(d) ∧ t(z) = t(e)

A similar formula can be written for the case, when pattern node derivative u has the possibly
larger label.

checku(k, m) = ∀u, v ∈ V P
SG, ∀u z→ v ∈ ESG\ESF, ∀v

zinv→ u ∈ ESG\ESF, ∀u
z→ v ∈ ELHS :

(SP(v) ≤ SP(u)) ∧ (SP(u) = k) ∧
(
b(u z→ v) = b(v zinv→ u) = u

z→ v
)

=⇒

∃c e→ d ∈ EM : m(u) = c ∧ t(u)
∗
^ t(c) ∧m(v) = d ∧ t(v)

∗
^ t(d) ∧ t(z) = t(e)

The overall formula for edge existence checks is the following

checkedge(k, m) =
∧

checku(k, m) ∧
∧

checkv(k, m).

• Checking negative application condition. For each NAC node with label k, a corresponding
NAC checking operation is scheduled on the kth level of recursion, which prescribes that the
execution of the full-featured pattern matching algorithm match (see Algorithm 4.1) for the

4.2. SEARCH PLAN DRIVEN PATTERN MATCHING 47

NAC pattern b(v) (denoted temporarily by matchNAC) being invoked with any initial matchings
m′ that map derivatives u of shared nodes b(u) to the same objects as matching m should return
an empty set as a result. Formally,

checkNAC(k, m) = ∀v ∈ V NAC
SG : SP(v) = k =⇒

∀m′ : Vb(v) → VM , ∀u z→ v ∈ ESG : m(b(u)) = m′(b(u)) =⇒ matchNAC(1,m′) = ∅.

4.2.6 Implementing a search plan driven pattern matcher

Note that Algorithm 4.1 has been presented as a recursive procedure only for presentation purposes. For
efficiency reasons, implementations of pattern matching engines typically use the iterative equivalents
of Algorithm 4.1. In case of compiled approaches, the procedure is represented as iterations embedded
into each other. Levels of iterations show a one-to-one correspondence to the levels of recursion in
such a way that the first level corresponds to the outermost loop, while the deepest level of recursion is
represented by the innermost loop.

Example 13 Listings 4.1 and 4.2 present typical program codes for the search plans of Figs. 4.4(b)
and 4.4(d), respectively.

1 // Level 1 -- Binds r : Resource
2 Iterator<Resource> iR = getAllResources();
3 while (iR.hasNext()) {
4 Resource r = iR.next();
5

6 // Level 2 -- Binds p1 : Process
7 Iterator<Process> iP1 = r.getReleaseTrg();
8 while (iP1.hasNext()) {
9 Process p1 = iP1.next();

10

11 // Level 3 -- Binds p2 : Process
12 Iterator<Process> iP2 = p1.getNextTrg();
13 while (iP2.hasNext()) {
14 Process p2 = iP2.next();
15 // p1, p2, and r now
16 // constitute a matching
17 }
18 }
19 }

Listing 4.1: Java program code equivalent of Fig. 4.4(b)

When the search plan of Fig. 4.4(b) is executed (by Listing 4.1), the pattern matching engine first
tries to find an appropriate Resource for the pattern node R by querying all the Resources in the model.
By supposing that the current model is the one presented in Fig. 3.4(b), the engine enumerates resources
r1, r2, r3, and r4 in the outermost loop.

When pattern node R has been bound to resource r1, the current partial matching (i.e., which con-
sists of the binding R to r1) is attempted to be extended by navigating along all release edges leading
out of the already bound resource r1. As no such edges exist, the second while loop is not executed.

Due to the iterative nature of the matching of node R, all other resources are also tested. As no
resources have outgoing release edges, each iteration ends with failure at the head of the second while
loop.

48 CHAPTER 4. PATTERN MATCHING STRATEGIES

The traversed search space tree while executing Listing 4.1 is depicted in Fig. 4.6(a). The root of
this SST corresponds to the initial empty partial matching. The second level contains those snapshots
that represent matchings produced by the outermost loop. As the second while loop has never been
executed, there are no snapshots on the third level.

As it can be seen in Fig. 4.6(a), the pattern matching engine using the search plan of Fig. 4.4(b)
tests 5 matching combinations altogether.

P1

r2

P2RP1

r1

P2R P1

r4

P2RP1

r3

P2R

P1 P2R

(a) SST1

p3

P2

p2

RP1

p2

P2

p1

RP1

p1

P2

p4

RP1

p4

P2

p3

RP1

P2

p2

RP1P2

p1

RP1 P2

p4

RP1P2

p3

RP1

P2 RP1

(b) SST2

Figure 4.6: Search space trees traversed while executing Listings 4.1 and 4.2

When the search plan of Fig. 4.4(d) is executed, matchings for pattern nodes are searched in the
P1, P2, R order as shown by Listing 4.2. The execution of this search plan produces 9 partial matching
combinations altogether (as shown by Fig. 4.6(b)) as it starts with an empty partial matching, then
pattern node P1 can be set to processes p1, p2, p3, and p4, which results in 4 independent combinations.
Additionally, each partial matching can be extended by mapping pattern node P2 to exactly one process,
which results in further 4 partial matchings.

1 // Level 1 -- Binds p1 : Process
2 Iterator<Process> iP1 = getAllProcesses();
3 while (iP1.hasNext()) {
4 Process p1 = iP1.next();
5

6 // Level 2 -- Binds p2 : Process
7 Iterator<Process> iP2 = p1.getNextTrg();
8 while (iP2.hasNext()) {
9 Process p2 = iP2.next();

10

11 // Level 3 -- Binds r : Resource
12 Iterator<Resource> iR = p1.getReleaseSrc();
13 while (iR.hasNext()) {
14 Resource r = iR.next();
15 // p1, p2, and r now
16 // constitute a matching
17 }
18 }
19 }

Listing 4.2: Java program code equivalent of Fig. 4.4(d)

As a consequence, the search plan of Fig. 4.4(b) is expected to recognize earlier the impossibility

4.3. CONCLUSION 49

of matching GiveRule on the model of Fig. 3.4(b).

4.2.7 General approximation for the size of the search space tree

In order to provide a general approximation for the time complexity of a given search plan (i.e., the
size of the state space being traversed during pattern matching), we may apply the cost estimation of
Sec. 7.3.1. If p, r, n and l denote the number of Processes, Resources, next edges and release edges in
the model, respectively, then the search plan of Fig. 4.4(b) expectedly hits r + r l

r + (r l
r)n

p matching
combinations as (i) there are r different choices for fixing pattern node R, (ii) on average l

r release

edges lead out of each resource resulting in r l
r for the approximation on the number of possible partial

matchings, which already bind pattern nodes R and P1, and (iii) for each such partial matching there are
on average n

p extension possibilities by navigating along next edges. As a result of a similar calculation
process, the search plan of Fig. 4.4(d) expectedly traverses p + pn

p + (pn
p) l

p combinations.
The above formulae can be simplified to r+ l+ ln

p and p+n+ ln
p , respectively. By comparing these

expressions, it can be determined which search plan is better for a model, which contains p processes,
r resources, n next edges, and l release edges.

4.3 Conclusion

In this chapter, a general purpose, graph pattern matching algorithm has been presented first, in which
mapping candidate calculation and matching check tasks could be customized providing a framework
for analyzing both the theoretical and practical complexity of all existing and upcoming heuristics.
Then, the technique of search plan driven pattern matching has been discussed by defining the concepts
of search graphs and search plans, by extending its heuristic description facilities towards constraint
satisfaction based algorithms, by formally specifying the exact pattern matching process, and by pre-
senting a Java implementation for the technique.

CHAPTER

5
Benchmarking Framework for
Graph Transformation

In this chapter, I present a benchmarking framework for graph transformation tools to be able to quan-
titatively assess, compare and analyze the run-time performance of (i) already existing approaches,
(ii) their optimization strategies, and (iii) also all the techniques and algorithms that are going to be
presented in later chapters.

5.1 Motivation for benchmarking

The aim of benchmarking is to systematically measure the performance of a system under different and
precisely defined circumstances (i.e., by using several parameter combinations and data sets for these
measurements). Such measurements help system engineers in decision making, i.e., when a choice has
to be made between different alternatives by providing a proper assessment on the system characteris-
tics. Although the graph transformation community has several specification examples for determining
the expressiveness of approaches, it lacks systematic benchmarks for measuring the performance of
different tools.

Related work

A good theoretical overview on software engineering benchmarks is provided by [123], which presents
the preconditions and the main consequences of a successful benchmarking process by using a case
study of the reverse engineering community.

There is a large variety of benchmarks and facilities supporting experiment design in different fields
of computer engineering.

• Artificial intelligence. In case of agent-based systems, the Common Lisp Analytical Statistics
Package (CLASP) [28] provides a formal, model-based methodology with powerful statistical
techniques for justifying the decisions made during the design of the agent architecture.

• Relational databases. TPC-C [137] is a benchmark issued by the Transaction Processing Per-
formance Council for measuring the performance of on-line transaction processing (OTLP) sys-
tems. Its current version comprises of a mix of five concurrent transactions and nine types of
tables with a wide range of record and population sizes.

51

52 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

• Rule-based expert systems. [20] presents a collection of test suites that can be used for as-
sessing the performance of rule-based expert systems. Among these benchmarks, Manners [74]
describes a depth-first search solution to the problem of seating arrangement for guests at a din-
ner party, Waltz is a diagram labeling problem, which gives a 3-dimensional interpretation of
2-dimensional lines, the Aeronautical Route Planner searches for the lowest cost route between
two points, and Weaver [68] is a VLSI channel and box routing algorithm.

Several specification examples (mappings such as UML-to-XMI in QVT [109], object-relational
[109], UML-to-EJB [78], UML-to-XSD [24]) exist for graph transformation approaches, but their main
goal is to demonstrate the expressiveness of the given approach, and they omit the performance aspects
of graph transformation tools.

Objectives

Thus, I propose a systematic method for quantitative benchmarking in order to evaluate the performance
of graph transformation tools. Typical features of the graph transformation paradigm and various opti-
mization strategies exploited in different tools are identified and categorized. Moreover, the speed-up
effects of these optimization strategies are measured and compared.

Since MOF metamodels and models are frequently formalized as graphs and graph transformation
is a popular technique for capturing model transformations as indicated by a large variety of tools pre-
sented in Sec. 3.3, conclusions being drawn from experiments on GT tools are expected to be valid for
model transformation tools as well. This statement is validated by [116], which proposes graph trans-
formation to be used for defining the semantics of QVT. Further considerations about the applicability
and the limitations of the benchmarking framework can be found in Section 5.6.

My objectives in the current chapter are the following.

• I define terms and concepts for graph transformation specific benchmarking in Section 5.2.1.

• I determine the most common features of graph transformation problems and tools in Sec-
tions 5.2.2 and 5.2.3. Based on tool-specific properties I identify various optimization strategies
that are used in several graph transformation tools.

• I design benchmarks for different application scenarios for model transformations. In this sense,
I propose a benchmark for simulating the dynamic behaviour of a system defined in a visual
language in Section 5.3. In addition, I specify a benchmark for a model refactoring scenario in
Section 5.4.

• In Section 5.5, measurements are executed on the benchmark of Sec. 5.3 by using carefully
selected parameter settings and combinations of optimization strategies, and measurement results
are presented. Then I shortly analyze the effects of optimization methods.

• Section 5.6 concludes this chapter with summarizing its theoretical and practical relevance.

5.2 Benchmark features

For presenting the tool related concepts of this chapter, we selected AGG (version 1.3.0), FUJABA

(version 4.3), PROGRES (version 11), and the DB approach of Chapter 6 as representatives as already
argued in Sec. 3.4.

5.2. BENCHMARK FEATURES 53

Now the benchmarking framework is introduced by proposing first the terminology and the most
common features of benchmarking for graph transformation systems.

The aim of benchmarking is to systematically measure the performance of a system under different,
precisely defined and deterministic (reproducable) circumstances. The criterion of determinism has
a strong impact on test set definition, since theoretically, both the next rule to be applied and the
matching on which the rule is applied are nondeterministically selected. In order to avoid both kinds
of nondeterminism, we define “checkpoints”, where the instance model must be the same for all runs.
Moreover, only an iterative execution of one rule is allowed between two checkpoints. Naturally, the
end of the whole transformation sequence should also be a checkpoint.

5.2.1 Definitions of benchmarking

By a scenario we mean a broad application field where the paradigm of graph transformation is ap-
plicable. In [153] three scenarios are mentioned such as model analysis, model transformation, and
simulation of visual languages with dynamic operational semantics. A scenario typically has some
informal characteristics (e.g., “the structure of the system does not significantly change during the
transformation process”).

A benchmark example is a well-known problem serving as an incarnation of a scenario as it fulfills
all the informal characteristics. For instance, the Mutex defined with its metamodel of Fig. 3.4(a) and
graph transformation rules of Fig. 3.5 can be considered as a benchmark example for the simulation of
visual languages as argued in Sec. 3.2. In technical terms, the metamodel and the graph transformation
rules of the problem are fixed for a benchmark example, but instance models and concrete transforma-
tion sequences are left undefined.1 In case of performance benchmarks, this decision can be justified
by the requirement that prescribes a precise execution environment for the measurements. The inves-
tigation of qualitative characteristics such as learning curves, readability, reusability, etc., would also
include the metamodel and the rules in the comparison.

A benchmark example may consist of several test sets. A test set is a complete, deterministic, but
parametric specification. In this sense, the structure of both the instance model and the transforma-
tion sequence is fixed up to numerical parameters, which characterize, for instance, the model size,
the length of the transformation sequence, etc. Moreover, we do not decide yet which optimization
strategies for different tool features (see Sec. 5.2.3) are turned on/off in a test set.

In a test case, characteristics of the model and the transformation are still parametric, but we fix
which optimization strategies (for details see 5.2.3) to turn on.

Finally, a test case is called a run, when even the runtime parameters are set. Thus, a run conforms
to the requirements of determinism for benchmarking, since it is completely characterized by all its
parameters and it is reproducable.

5.2.2 Paradigm features for graph transformation

A paradigm feature describes a characteristics of a problem. A feature value is a symbolic value
corresponding to a numerical interval. Thus, each test set, test case and run is defined by representative
feature values assigned to paradigm features. Note that it is difficult to determine crisp numbers for
separating intervals of feature values in general, thus, we only define their typical order of magnitude.
In case of graph transformation we identified the following paradigm features and feature values:

1To be precise, minor variations can be allowed in the metamodel within the same benchmark example due to practical
reasons.

54 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

• Pattern size, or in other words the number of nodes and edges in the LHS graph, is a highly
critical factor in the runtime behaviour of the pattern matching phase. As discussed in Sec. 4.1.2,
the worst case complexity of graph pattern matching algorithms is exponential in the size of the
pattern graph. On the other hand, in contrast to the size of patterns, RHS graph sizes have a linear
influence on the runtime performance.

Feature values: Since a benchmark problem may have several rules, the upper bound for the
pattern sizes of all rules will be used as the value of the feature. Based on software engineering
related considerations, large patterns typically consist of about 50 nodes and edges or more.
Similarly, patterns with at most 10 nodes and edges are considered as small.

• The maximum degree of nodes (fan-out) in the model is the number of edges that are adjacent
to a certain node. This feature has a significant impact on the complexity of a pattern matching
algorithm which starts at a certain node and extends the match by examining its direct neigh-
bourhood. To be more precise, only adjacent edges of the same type matter, since type checking
typically precedes the enumeration of potential continuations during the pattern matching phase.

Feature values: Values for this feature are also grouped into a small and a large category, which
mean at most 30 and at least 100 outgoing edges, respectively. The latter limit is typically
exceeded, if containment relations appear on the modeling level.

• The third feature of a test set is the number of matchings. In some cases it is sufficient to calculate
only the first matching of a rule, but in other situations all the matchings have to be determined. It
is obvious that in the latter case, this feature directly and seriously influences the overall runtime
of the pattern matching. Note also that even in the first case, when a single matching needs to
be calculated, the number of potential matchings to be checked can also significantly affect the
performance.

Feature values: The value of the feature is again the upper bound for the number of matchings
in the pattern matching phases of all rule applications. The term small (large) is used, if at most 5
(at least 10) matchings exist.

• The length of the transformation sequence also affects the overall execution time. The more rule
applications are performed, the longer it will take. However, this feature does not influence the
average time needed for a single rule execution.

Feature values: The value of this feature is the number of atomic rule executions performed.
The term short (long) sequence is used, if the length is at most (more than) 1000.

Paradigm features, feature values, and the corresponding intervals are summarized in Table 5.1.

5.2.3 Tool features

Up to this point, features were completely dependent only on problem descriptions. Now we identify
tool features, which are categories for typical optimization supported by different tools. For the moment
four tool features are identified.

Tool feature 1: Parallel rule execution

In case of parallel rule execution, all matchings of a rule are calculated in the pattern matching phase,
and then updates are performed as a transaction block on the collected matchings without re-evaluating

5.2. BENCHMARK FEATURES 55

Paradigm feature Feature value Interval
Pattern size small ≤ 10

large ≥ 50
Fan-out small ≤ 30

large ≥ 100
Number of matchings small ≤ 5

large ≥ 10
Transformation sequence length short ≤ 1000

long > 1000

Table 5.1: Paradigm feature summary

valid matchings during the transaction. For parallel rule executions we assume that the individual
matchings are independent of each other.

Tool support and effects on search plans: Pseudo parallel (in other terms, concurrent) rule appli-
cation is possible in all tools except for AGG,2 and this technique does not modify the applied search
plans. Pseudo parallel rule execution means that a transformation step could theoretically be performed
on different matchings in parallel, but the implemented transformation engine sequentially applies the
rule on the matchings due to architectural or other reasons. Note that none of the tools support real
parallelism.

Tool feature 2: ’As long as possible’ rule application

’As long as possible’ (ALAP) rule application means an iterative execution of the selected rule. A
standard graph rewriting step (with a pattern matching and an updating phase) is performed in each it-
eration as long as a matching can be found. A possible optimization strategy is to calculate independent
matchings concurrently, and then to call the same procedure recursively.

The termination of the iteration should be guaranteed by the transformation designer. Thus, in
order to avoid infinite loops, it must be ensured that the number of matching patterns always decreases,
which is the simplest sufficient criterion for termination. For further termination criteria see [36, 87].

Tool support and effects on search plans: Since none of the examined tools supports ALAP rule
application with optimized procedures, investigations on measuring the effects of this tool feature are
omitted from this thesis.

Tool feature 3: Multiplicity based optimization

Multiplicity based optimization is used, when a tool applies a different (and usually more powerful)
strategy in order to find matching objects when navigating along a pattern edge with 0..1 multiplicity
constraint on its target side. A typical strategy is to traverse 0..1 edges first in the pattern matching
phase, since it yields a search tree that is narrower at the top-most levels.

Tool support and effects on search plans: PROGRES and FUJABA provide different methods
for traversing edges with bounded multiplicity, while no such optimization strategies exist for AGG
and the DB approach.

2AGG supports parallel rule execution since version 1.6.2 as an experimental feature.

56 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

Search plans describing the optimized strategies of PROGRES and FUJABA for ReleaseRule and
GiveRule are presented in Fig. 5.1.

PR

1 2

2

1

NAC

R
n

P 1

1

LHS

NAC

2

0..1

*

(a) PROGRES / ReleaseRule

P
2

P
1

R

21 3

3

1

2
0..1 0..1

0..1*

(b) PROGRES / GiveRule

PR

2 1

2

1

NAC

R
n

P 1

1

LHS

NAC

1

0..1

*

(c) FUJABA / ReleaseRule

P
2

P
1

R

13 2

2

1

3

0..1 0..1

0..1*

(d) FUJABA / GiveRule

Figure 5.1: Effects of multiplicity based optimization strategies on search plans

Example 14 The program code representation of the unoptimized search plan of Fig. 4.4(b), which
has already been presented in Listing 4.1 is repeated in Listing 5.1(a). The code equivalent of the
search plan of Fig. 5.1(b) is presented in Listing 5.1(b). These code fragments are highly similar
as the same order has been defined by the search plans of Fig. 4.4(b) and 5.1(b). However, due to
multiplicity optimization, methods getReleaseTrg() and getNextTrg() now return a single
object in Listing 5.1(b), which makes the innermost two while loops of Listing 5.1(a) unnecessary.

Tool feature 4: Parameter passing

Parameter passing provided between consecutive rule applications means that pattern matching in the
subsequent rewriting steps is accelerated by directly reusing model elements passed as parameters
without recalculating them in the later steps.

Tool support and effects on search plans: Parameter passing is supported by all four tools taking
part in the measurements. Search plans, which have been generated by these tools for such versions of
ReleaseRule and GiveRule that are able to handle parameters being passed, are presented in Fig. 5.2.

Search plans of Fig. 5.2 use exactly the same notation that have been introduced in Sec. 4.2.2
and 4.2.4. Note that the examined tools can handle different number of incoming parameters as it is
expressed by the varying quantity of bound nodes.3

3FUJABA can handle more than one incoming parameters. However, in our implementation only a single parameter has
been passed.

5.3. A BENCHMARK EXAMPLE: DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 57

// Binds r : Resource
Iterator<Resource> iR =

getAllResources();
while (iR.hasNext()) {
Resource r = iR.next();

// Binds p1 : Process
Iterator<Process> iP1 = r.getReleaseTrg();
while (iP1.hasNext()) {
Process p1 = iP1.next();

// Binds p2 : Process
Iterator<Process> iP2 = p1.getNextTrg();
while (iP2.hasNext()) {
Process p2 = iP2.next();
// p1, p2, and r now
// constitute a matching

}
}

}

(a) Program code representation of Fig. 4.4(b)

// Binds r : Resource
Iterator<Resource> iR =

getAllResources();
while (iR.hasNext()) {
Resource r = iR.next();

// Binds p1 : Process

Process p1 = r.getReleaseTrg();

// Binds p2 : Process

Process p2 = p1.getNextTrg();
// p1, p2, and r now
// constitute a matching

}

(b) Program code representation of Fig. 5.1(b)

Listing 5.1: Effects of multiplicity based optimization strategies on the code generated for equivalent
search plans

Example 15 Listing 5.2 presents the program code equivalent of the search plan of Fig. 5.2(a).
In this case, pattern nodes R and P have already been fixed, and their bindings are received by the

pattern matching engine as input parameters in matching m. As a consequence, the engine simply has
to check the non-existence of matchings for the negative application condition.

Table 5.2 summarizes the tool support for the presented optimization strategies.
Label + denotes a situation, when a strategy is supported by a given tool, and label – indicates the

lack of support for a given optimization method. Since new heuristics can be discovered in the future,
this set of tool features cannot be complete, but it already includes all widely supported representatives.

5.3 A benchmark example: Distributed mutual exclusion algorithm

I propose to select a distributed mutual exclusion algorithm as a benchmark example for the scenario of
simulation of visual languages with dynamic operational semantics. This scenario can be characterized
by a nearly static graph structure, where only a small part of the model is modified, and by short
rewriting sequences that are executed many times during a simulation. Test sets are defined as rule
application sequences that describe different possible runtime behaviours of the system.

The metamodel and the set of graph transformation rules needed to specify this benchmark exam-
ple have already been introduced in Sections 3.2.1 and 3.2.2, respectively. For the mutual exclusion
algorithm, three test sets have been defined.

5.3.1 The STS test set

This test set can be characterized by small LHS graphs. The length of transformation sequences, the
number of fan-outs and the number of matchings are parameter dependent, so they are not distinguish-

58 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

Pattern node and edge

derivative

Dummy node

Initially bound part

Starting point(s)
11

NAC check edge

Iteration edge

Navigation edges

Forest edge & free node

NAC node

Labelling (AGG)

Domain reduction (AGG)

PR NAC

R
n

P 1

1

LHS

NAC

0

(a) PROGRES / ReleaseRule

PR

1

1 NAC

R
n

P 1

1

LHS

NAC

1

(b) FUJABA / ReleaseRule

PhbR

31 2

3

21

(c) AGG / ReleaseRule

PhbR

1 2 3

2 3

1

NAC

3

RnreqnP

3 2

3 2

1

1

NAC

(d) DB / ReleaseRule

Figure 5.2: Effects of parameter passing on search plans

1 // Resource r and Process p are specified as inputs in Matching m
2 boolean match(Matching m) {
3 // Copies the value of the shared pattern node p to matching mNAC
4 Matching mNAC = new Matching();
5 mNAC.set(p, m.get(p));
6

7 // Checks NAC
8 if (! nacMatcher.match(mNAC)) {
9 // If no matchings exist for the NAC,

10 // then r and p constitute a matching for the precondition
11 return true;
12 }
13 }

Listing 5.2: Program code equivalent of Fig. 5.2(a)

5.3. A BENCHMARK EXAMPLE: DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 59

Tool features AGG PROGRES FUJABA DB

parameter passing + + + +

0..1 multiplicities - + + -

parallel execution - + + +

as long as possible - - - -

Table 5.2: Tool support for optimization strategies

ing features of this test set.
Initial instance models only contain two processes and two links of type next connecting the pro-

cesses in both directions (as presented in Fig. 5.3(a)). The test set has one parameter N , which denotes
the maximum number of processes appearing in the instance model during a specific run.

p1:Process p2:Process

STS Init

n1:next

n2:next

(a) Initial model

p1:Process p2:Process

STS Step 1

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

(b) Model after the 1st step

p1:Process p2:Process

STS Step 2

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t1:token

(c) Model after the 2nd step

p1:Process p2:Process

STS Step 3

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t1:token

rq2:request

rq1:request

rq3:request

rq4:request

(d) Model after the 3rd step

p1:Process p2:Process

STS Loop

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t2:tokenrq1:request

rq3:request

rq4:request

(e) Model after the first loop execution

p1:Process p2:Process

STS Step 4

n5:next

n3:next
p3:Process

p4:Process
n6:next

n4:next

r:Resource

t5:token

(f) Model after the 4th step

Figure 5.3: Models in different phases of the STS test set when N = 4

The transformation sequence can be described as follows.

(a) NewRule (Fig. 3.5(a)) is applied first N–2 times in an arbitrary order. Since each application
of NewRule adds a process to the token ring, after this step the instance model has a ring struc-

60 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

ture consisting of exactly N processes that are connected by N links of type next as shown in
Fig. 5.3(b).

(b) The second step is to create a single resource by performing the MountRule (Fig. 3.5(c)) once.
This rule also gives access rights to one of the processes, which is modeled by a newly created
token link. The instance model is shown in Fig. 5.3(c).

(c) In the third step, each process issues a request for the single resource, which means the execution
of RequestRule (Fig. 3.5(f)) for N times. Regardless of the execution order, the final instance
model will be the one that is presented in Fig. 5.3(d). (So it is possible to apply RequestRule in
parallel.)

(d) The final step handles the requests that have been issued in the previous step. To handle a single
request TakeRule, ReleaseRule and GiveRule have to be applied in this specific order. In order to
speed up pattern matching, parameter passing is possible among the rules that belong to the same
loop.

TakeRule (Fig. 3.5(g)) assigns the process with the token to the resource by creating a held by
link. Then ReleaseRule (Fig. 3.5(h)) lets the resource to be released by the process. Finally,
the resource is released and the token is propagated to the next process in the token ring by the
execution of GiveRule (Fig. 3.5(i)). The instance model at this point is shown in Fig. 5.3(e).

Since all the N processes have already requested the resource, the above-mentioned 3 rules have
to be executed in a loop for N times, which results in a rule execution sequence of length 3N .
(Note that there exists only a single matching to which the subsequent rule can be applied at the
time when the rule application is scheduled, so the rule execution order of the fourth step is fully
deterministic.) In the end, the instance model will be the one that is depicted in Fig. 5.3(f).

The transformation sequence consists of 5N–1 rule applications altogether. The largest instance
model that appears during the rule application phase has N+1 objects and 2N+1 links (see Fig. 5.3(d)).

Optimization possibilities.

• Instead of having zero-to-many multiplicities on all association ends, it is possible to restrict
some of them to zero-to-one, as it is presented in the metamodel of Fig. 3.4(a). Since the model
contains only a single resource, knowing and using this fact may cause performance improve-
ments for some tools, since pattern matching can be started at this well-defined node.

• As it was already mentioned in the test set description, the three rules in the loop of the fourth
step may be applied in such a way that the selected processes and resources can be passed to
consecutive rules as input parameters, which may speed-up pattern matching.

5.3.2 The LTS test set

This test set can be characterized by small LHS graphs, and small fan-outs. The number of matchings
and the length of transformation sequences are parameter dependent, so they are not distinguishing
features of this test set.

The LTS test set can be considered as such an extension of the STS test set, which uses all the
rules defined by the benchmark example, and which has a separate parameter for setting the length of
transformation sequences.

5.3. A BENCHMARK EXAMPLE: DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 61

For this test set, two rules (namely, RequestRule and ReleaseRule) are modified in order to restrict
their applicability in certain situations and to get a deterministic transformation sequence. The modified
rules that ensure the deterministic request and release of resources are referred as RequestDetRule and
ReleaseDetRule and they are depicted in Figures 5.4(a) and 5.4(b), respectively.

r1:Resource

RequestDetRule

n:next
p2:Process

h1:held_by

p1:Process

r2:Resource

n:next
p2:Process

r2:Resource r1:Resource

h2:held_by

h1:held_by

h2:held_by

rqn:request rq:request

p1:Process

(a) RequestDetRule

r1:Resource

ReleaseDetRule

p2:Process

rq:request

p1:Process

r2:Resource

p2:Process

r2:Resource r1:Resource

h2:held_by

h1:held_by

h2:held_by

p1:Process

rq:request

rl:release

(b) ReleaseDetRule

Figure 5.4: Extra rules for the LTS test set

In this case, we have two runtime parameters (namely, N and R). N denotes the number of pro-
cesses and resources in the initial instance model, and it influences both the model size and the length
of the transformation sequence. We refer to a transformation sequence as a basic execution unit, if
instance models before and after execution are isomorphic, and the sequence can be executed several
times in a loop. The role of R is to determine how many times a basic execution unit is executed. As a
consequence, R has influence only on the length of the transformation sequence.

The initial instance model consists of 2N objects (N processes and N resources) and 2N links. N
links are of type next and they are used to organize processes into a token ring. The other N links mark
processes holding resources in such a way that no held by links have common ends (i.e., each resource is
held by at most one process and each process reserves at most one resource). A sample initial instance
model is presented in Fig. 5.5(a) for the N = 4 case.

The transformation sequence inside the basic execution unit is defined as follows.

(a) As a first step, RequestDetRule (Fig. 5.4(a)) is applied N times. RequestDetRule selects two
neighbouring processes each of which holding at least one resource, and the one that is ahead in
the token ring, issues a request on the resource that is held by the other process, if it has not issued
any requests yet on the same resource. The resulting instance model (see Fig. 5.5(b)) should be
identical after any sequence of rule applications during the first step, so this set of rules can be
applied in parallel.

(b) This step is a single execution of BlockedRule (Fig. 3.5(j)), which initiates the deadlock detection
algorithm by introducing a new blocked link. There are N matchings for this rule before its
application, so the graph transformation engine can choose freely on which matching the selected
rule is applied. The result of the rule application is something similar to Fig. 5.5(c).

(c) WaitingRule (Fig. 3.5(k)) is executed now N–1 times. Since the model contains only a single
blocked link, this sequence is fully deterministic. Moreover, it describes how the blocked link is
propagated in the token ring in the direction being marked by the set of next links. After this step,
the blocked edge makes a whole round in the token ring as it is depicted in Fig. 5.5(d).

(d) Now a single execution of UnlockRule (Fig. 3.5(m)) follows, which can be done only on a single
matching. This breaks the circular blocking situation that causes the deadlock by forcing a
process to release its resource. The result will be a model that is shown in Fig. 5.5(e).

62 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

p1:Process p3:Process

LTS Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(a) Initial model with parameter N = 4

p1:Process p3:Process

LTS Step 1

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

(b) Model after the 1st step

p1:Process p3:Process

LTS Step 2

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

b1:blocked

(c) Model after the 2nd step

p1:Process p3:Process

LTS Step 3

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request
b4:blocked

(d) Model after the 3rd step

p1:Process p3:Process

LTS Step 4

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

(e) Model after the 4th step

p1:Process p3:Process

LTS Step 5

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

b5:blocked

(f) Model after the 5th step

p1:Process p3:Process

LTS Step 6

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

rq1:request

rq2:request

rq4:request

rq3:request

b6:blocked

(g) Model after the 6th step

p1:Process p3:Process

LTS Step 7

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

rl2:release

h3:held_by

h4:held_by

rq1:request

h5:held_by

rq4:request

rq3:request

n3:next

(h) Model after the 7th step

p1:Process p3:Process

LTS Step 8

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

rl4:release

rq1:request

h5:held_by

h7:held_by

h6:held_by

n3:next

(i) Model after the 8th step

p1:Process p3:Process

LTS Step 9

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

t4:tokenrq1:request

h5:held_by

h7:held_by

h6:held_by

n3:next

(j) Model after the 9th step

p1:Process p3:Process

LTS Step 10

p2:Process

p4:Processr4:Resource

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

h8:held_by

h5:held_by

h7:held_by

h6:held_by

n3:next

(k) Model after the 10th step

Figure 5.5: Models in different phases of long transformation sequence

5.3. A BENCHMARK EXAMPLE: DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 63

(e) In the fifth step, BlockedRule (Fig. 3.5(j)) is executed once again, generating a new blocked link.
In this case, the rule can be applied on N–1 possible matchings. Since this is a nondeterministic
choice, the result will be something similar to Fig. 5.5(f).

(f) Now WaitingRule (Fig. 3.5(k)) is applied at most N–1 times. There exists only a single matching
on which next rule application can be performed until the point, when the blocked edge points
to the same process as the release edge (see Fig. 5.5(g)). From that point, no matchings can be
found. The ratio of successful and unsuccessful rule application steps depends on the context on
which the previous BlockedRule was executed.

(g) IgnoreRule (Fig. 3.5(l)) is executed once to restore the instance model we had after the fourth step
(Fig. 5.5(e)) by deleting the blocked link.

(h) The eighth step is an execution of a loop that contains GiveRule, TakeRule and ReleaseDetRule
in this specific order. The first execution of the loop yields the model of Fig. 5.5(h). In order
to accelerate pattern matching, parts of matchings can be passed as parameters to the successive
rule of the loop.

GiveRule (Fig. 3.5(i)) releases a resource that was held by a process, and gives the token to the
next process in the ring. During the execution of TakeRule (Fig. 3.5(g)), the process that has
a token for a requested resource, reserves it by introducing a held by edge between them. The
ReleaseDetRule handles the release of a resource in a special context to ensure a deterministic
execution order.

The loop is executed N–1 times altogether. Note that the cardinality of matchings of GiveRule is
decreased by one after each loop execution. The resulting model we get after the eighth step is
presented in Fig. 5.5(i).

(i) In the ninth step GiveRule is performed once on the single matching that still exists resulting in a
model that is depicted in Fig. 5.5(j).

(j) The final step is a single TakeRule application again on the only possible matching, and the result
(shown in Fig. 5.5(k)) will be isomorphic with Fig. 5.5(a). The single difference is that now each
resource is held by the process that is one step ahead of the one that reserved the resource before
the basic execution unit started.

A basic execution unit contains a transformation sequence of length 6N+1. During the execution
of such a basic unit the largest instance model has exactly 2N objects and at most 3N+1 links as can
be seen in Fig. 5.5(c). This unit was executed R times in our experiments resulting in the same upper
bound for the model size and a transformation sequence of length of R(6N+1).

5.3.3 The ’as long as possible’ test set

The test set can be characterized by small LHS graphs, and small fan-outs. The length of transformation
sequences and the number of matchings depend on the runtime parameter.

RequestRule has to be slightly modified again to ensure the appropriate behavior during the execu-
tion of this test set. The modified RequestRule will be referred to as RequestSimpleRule and it is depicted
in Fig. 5.6.

This test set uses N as its single runtime parameter. N denotes the number of processes and
resources in the system, and this parameter influences both the model size and the length of the trans-
formation sequence.

64 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

p:Process

RequestSimpleRule

t:token

r:Resource

reqn:request

p:Process

t:token

r:Resource

req:request

Figure 5.6: Simplified version of RequestRule

The initial instance model consists of 2N objects (N processes and N resources) and 2N links.
Processes are arranged into a token ring along N links of type next. Furthermore, each resource is
reserved by at most one process and each process holds at most one resource at a time. In the model,
this property is expressed by N links of type held by. A sample initial instance model is presented in
Fig. 5.7(a) for the case N = 4.

p1:Process p3:Process

ALAP Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(a) Initial model with parameter N = 4

p1:Process p3:Process

ALAP Step 1

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

rl2:release

rl3:release

rl4:release

(b) Model after the 1st step

p1:Process p3:Process

ALAP Step 2

p2:Process

p4:Processr4:Resource

t1:token

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

t2:token

t3:token

t4:token

(c) Model after the 2nd step

p1:Process p3:Process

ALAP Step 3

p2:Process

p4:Processr4:Resource

t1:token

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

t2:token

t3:tokent4:token

rq1:request

rq4:request

rq3:request

rq2:request

(d) Model after the 3rd step

p1:Process p3:Process

ALAP Step 4

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(e) Model after the 4th step

Figure 5.7: Models in different phases of ’as long as possible’ rule execution

The transformation sequence of the test set consists of 4 macro steps. Each macro step is an iterative
execution of a single rule.

(a) During the first step, ReleaseRule is executed N times, yielding a model (see Fig. 5.7(b)) where
all the resources are now connected to their corresponding processes via a release link.

5.4. THE OBJECT-RELATIONAL MAPPING AS A BENCHMARK EXAMPLE 65

(b) Then the execution of GiveRule follows, which is performed again N times. This rule enables
the next process in the ring to reserve the resource by giving the token to the process. The result
model is depicted in Fig. 5.7(c).

(c) The iterative execution of RequestRule initiates a process to issue a request on the resource for
which the process already has a token. As a result of an iteration of length N , we obtain the
model of Fig. 5.7(d).

(d) Finally, TakeRule is executed N times. This rule assigns a process to a resource if the process
has already reserved a token for the requested resource. The final instance model is isomorphic
to the initial model. However, in the final model, a given resource is held by the next process in
the token ring (see Fig. 5.7(e) vs. Fig. 5.7(a)).

Transformation sequence length and the number of matchings can be expressed as 4N and N ,
respectively.

Optimization possibilities.

• Since the order of rule applications inside a macro step is irrelevant, the specific rule can be
applied concurrently (in parallel) on different processes. As a consequence, if each macro step
consists of the parallel execution of the prescribed rule, then parallel and sequential transforma-
tions yield equivalent results.

• Moreover, each rule application of a macro step disables the execution of the same rule on the
same process, it leaves the enabledness of the same rule on other processes unchanged, and
finally, it enables the execution of the following rule on the same process. These observations
yield an ’as long as possible’ style application of rules appearing in the same macro step.

5.3.4 Feature matrix

A feature matrix summarizes the features of test sets. A sample feature matrix for the test sets of the
mutual exclusion benchmark example is shown in Table 5.3. Rows of the upper and the lower table
correspond to paradigm and tool features, respectively. Columns represent test sets. Moreover, these
test sets can be grouped to form a benchmark example. Identifiers of the benchmark example (Mutex)
and the test set (e.g., STS) are presented in the topmost two header fields of the column in turn. A field
in the table contains the feature value that characterizes the given feature of a test set.

As the domain of feature values differ for paradigm and tool features, the possible values in the fea-
ture matrices are also different. Paradigm features may have values that have been defined in Sec. 5.2.2,
or they may be parameter dependent (PD), which means that their categorization may vary depending
on the runtime parameter settings. Tool features can be characterized by three values. Label ON (OFF)
is used if the corresponding optimization strategy is applicable and it is switched on (off) in our mea-
surements. Label N/A denotes that the optimization strategy for the tool feature is not applicable.

5.4 The object-relational mapping as a benchmark example

The object-relational mapping can be considered as an incarnation of a typical model transformation
scenario, which can be characterized by a graph structure that always increases in size as the trans-
formation progresses, and by rules with such negative application conditions that inhibit the repeated

66 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

ALAP

execution

LHS size

(small/large)

fan-out

(small/large)

matchings

(few/many)

(short/long)

STS LTS

transformation

sequence length PD PD

Paradigm

features

PD

PD

Mutex

small small small

PD small small

PD PD

ALAP

execution

parameter passing ON/OFF OFF N/A

0..1 multiplicities ON/OFF OFF OFF

parallel execution OFF OFF ON/OFF

as long as possible N/A OFF OFF

STS LTS
Tool features

Mutex

Table 5.3: Paradigm and tool features of the mutual exclusion benchmark example

execution of the given rule on the same matching. The metamodel and the set of graph transformation
rules needed to specify this benchmark example have already been introduced in Sections 2.2 and 3.1,
respectively. For the object-relational mapping, only a single test set has been defined.

Test set specification

This test set can be characterized by patterns from the range between the small and the large categories.
The number of matchings, the maximum degree of nodes (i.e., the fan-out) and the length of the trans-
formation sequence are parameter dependent.

The single runtime parameter N denotes the number of Classes in the initial instance model, and it
influences both the model size and the transformation sequence length on a quadratic scale.

The initial instance model has a single Package that contains N Classes. An Association and two
AssociationEnds are added to the model for each pair of Classes, thus initially, we have N(N − 1)/2
Associations and N(N − 1) AssociationEnds. Associations are also contained by the single Package as
expressed by the corresponding links of type EO. Each AssociationEnd is connected to a correspond-
ing Association and Class by a CF and SFT link, respectively. A sample initial model is presented in
Fig. 5.8(a) for the N = 2 case.

The transformation sequence consists of 4 macro steps that are executed in this specific order.

(a) The first macro step is a single application of PackageRule (Fig. 3.1(a)), which results in a model
shown in Fig. 5.8(b).

(b) This is followed by a macro step that consists N(N − 1)/2 applications of AssociationRule
(Fig. 3.1(c)). The model at this point is depicted by Fig. 5.8(c).

(c) Then classes are transformed by the execution of ClassRule (Fig. 3.1(b)) for N times. The re-
sulting model after the intermediate step of the N = 2 case is presented in Fig. 5.8(d), while
Fig. 5.8(e) shows the model obtained at the end of this macro step.

5.4. THE OBJECT-RELATIONAL MAPPING AS A BENCHMARK EXAMPLE 67

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

(a) Initial model for the N = 2 case

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO
s:Schema

:Ref

(b) Model after the 1st macro step

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO
s:Schemat3:Table

p3:PKey

cl3:Column
:Ref :Ref

:EO

:EO

:UF

:CF

(c) Model after the 2nd macro step

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO
s:Schema

t1:Table

p1:PKeycl1:Column

t3:Table

p3:PKey

cl3:Column
:Ref

:Ref

:Ref

:EO

:EO

:CF

:EO
:EO

:UF

:UF

:CF

(d) Model under transformation during the 3rd
macro step

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

t2:Table

p2:PKeycl2:Column

s:Schema

t1:Table

p1:PKeycl1:Column

t3:Table

p3:PKey

cl3:Column
:Ref

:Ref

:Ref

:Ref

:EO

:EO

:EO

:CF

:CF

:EO
:EO

:EO

:UF

:UF

:UF

:CF

(e) Model after the 3rd macro step

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

t2:Table

p2:PKeycl2:Column

s:Schema

t1:Table

p1:PKeycl1:Column

t3:Table

p3:PKey

cl3:Column

cl4:Column f1:FKey

:Ref

:Ref

:Ref

:Ref

:Ref

:EO

:EO

:EO

:EO

:CF

:CF

:CF

:EO
:EO

:EO

:UF

:UF

:UF
:KRF:KRF

:CF

(f) Model under transformation during the 4th
macro step

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

t2:Table

p2:PKeycl2:Column

s:Schema

t1:Table

p1:PKeycl1:Column

t3:Table

p3:PKey

cl3:Column

cl4:Column

cl5:Column

f1:FKey

f2:FKey

:Ref

:Ref

:Ref

:Ref

:Ref

:Ref
:EO

:EO

:EO

:EO

:EO

:CF

:CF

:CF

:CF

:EO
:EO

:EO

:UF

:UF

:UF
:KRF:KRF

:KRF:KRF

:CF

(g) Model after the 4th macro step

Figure 5.8: Models in different phases of rule execution

68 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

(d) Finally, a macro step of length N(N − 1) follows, which prescribes the application of Assoc-
EndRule (Fig. 3.1(f)). Models resulted by the intermediate and final steps are depicted in Fig-
ures 5.8(f) and 5.8(g), respectively.

The transformation sequence consists of (3N2−N +2)/2 rule applications altogether. The largest
instance model has 4N2 + 2 objects and (21N2 − 7N + 4)/2 links as shown by Fig. 5.8(g).

Optimization possibilities.

• Since the order of rule applications inside a macro step is irrelevant, the specific rule can be
applied concurrently (in parallel). As a consequence, if each macro step consists of the parallel
execution of the prescribed rule, then parallel and sequential transformations yield equivalent
results.

• Since negative application conditions in the rule set of this benchmark example inhibit the re-
peated execution of the given rule on the same matching, an ’as long as possible’ style rule
application is allowed for each macro step.

5.5 Measurement results

In order to assess the acceleration effects caused by the different optimization strategies, measurements
have been carried out on all test sets of the mutual exclusion benchmark example described in Sec 5.3.
Test cases have been selected for these measurements according to the following principles.

(a) In order to obtain a feasible method, each optimization strategy is enabled only for the test set,
where the effect of optimization is the most significant.

(b) Only selected combinations of switching on and off tool optimization strategies are carried out,
since the analysis of all possible combinations would be practically infeasible as it requires un-
acceptably high effort even for a single test set.

By following the above guidelines, only 7 test cases have been selected for our measurements
instead of the original 32 test cases (that correspond to all possible combinations of ONs and OFFs).
Note that measurements for the ALAP style rule execution is omitted, since no optimization strategies
are built into existing tools.

In order to assess the performance of graph transformation tools, tests were performed on a 1500
MHz Pentium machine with 768 MB RAM. A Linux kernel of version 2.6.7 served as the underlying
operating system.

All the runs were executed without the GUI of tools, so rule applications were guided by Java
programs (except for the measurements for PROGRES, where C programs were used). This way, we
were doing programmed graph rewriting in each case for batch transformations.

Our general guideline for the execution of measurements was to use the standard services available
in the default distribution of the tools, fine-tuned according to the suggestions of different tool devel-
opers. For instance, we exploited a parameter passing strategy of AGG, which is only available in
programmed mode. In case of FUJABA, the models were slightly altered to provide better performance.
We used GRAS as being the default underlying graph-oriented database for the PROGRES tests, and
in addition, the Prolog-style cuts in the specification to make the execution deterministic. Moreover,
the graphical user interface of PROGRES was switched off during the measurements as we prepared

5.5. MEASUREMENT RESULTS 69

the compiled version of the specification. In case of database tests, MySQL (version 4.1.7) with the de-
fault configuration was used as the underlying relational database using the built-in query optimization
strategies.

Mutex Proc. Model TS

size length match update match update match update match update

(STS) # # # msec msec msec msec msec msec msec msec

multiplicity opt. OFF 10 32 49 2.89 2.24 0.40 0.09 0.18 0.15 5.02 31.42

param. passing OFF 100 302 499 5.18 10.58 0.31 0.20 0.27 0.14 7.10 33.38

parallel exec. OFF 1000 3002 4999 - - 0.63 0.26 0.35 0.03 4.26 32.13

multiplicity opt. ON 10 32 49 0.28 0.18 0.17 0.13

param. passing OFF 100 302 499 0.14 0.09 0.19 0.15

parallel exec. OFF 1000 3002 4999 0.49 0.28 0.08 0.03

multiplicity opt. OFF 10 32 49 3.16 1.54 0.26 0.06 0.19 0.22 18.99 48.38

param. passing OFF 100 302 499 3.12 9.11 11.71 0.18 0.70 0.17 12.87 55.86

parallel exec. OFF 1000 3002 4999 - - 249.23 1.25 2.11 0.04 32.86 49.99

multiplicity opt. ON 10 32 49 0.20 0.16 0.19 0.22

param. passing OFF 100 302 499 0.10 0.08 0.63 0.12

parallel exec. OFF 1000 3002 4999 0.48 0.29 2.10 0.04

multiplicity opt. OFF 10 32 49 2.65 1.87 0.16 0.08 0.14 0.23 7.32 51.48

param. passing ON 100 302 499 2.89 13.19 0.30 0.17 0.15 0.18 11.96 48.85

parallel exec. OFF 1000 3002 4999 - - 0.49 0.40 0.03 0.03 - -

multiplicity opt. ON 10 32 49 0.31 0.15 0.14 0.22

param. passing ON 100 302 499 0.12 0.07 0.15 0.12

parallel exec. OFF 1000 3002 4999 0.47 0.23 0.03 0.03

(LTS)

(ALAP)

multiplicity opt. OFF 10 50 40 19.37 5.93 0.34 0.08 2.21 0.18 7.38 33.56

param. passing OFF 100 500 400 7.02 7.57 20.08 0.37 0.56 0.17 8.81 50.52

parallel exec. OFF 1000 5000 4000 81.34 148.91 242.95 0.85 0.60 0.10 24.12 62.06

multiplicity opt. OFF 10 50 40 0.10 0.19 2.17 0.19 1.23 0.78

param. passing OFF 100 500 400 0.16 0.08 0.19 0.17 0.54 1.65

parallel exec. ON 1000 5000 4000 0.38 0.06 0.09 0.11 0.81 0.90

G
iv

e
R

u
le

R
e
le

a
s
e
R

u
le

R
e
le

a
s
e

param. passing

parallel exec.

AGG PROGRES Fujaba DB

R
e
le

a
s
e
R

u
le

269.58

4 21 2500 1.86

5001 60001 1116.34

multiplicity opt.

0.62 0.26

17.55 0.62 0.15 0.15

871.32 0.03 20.47 29.35

OFF

OFF

OFF

0.09 4.15 34.01

1000

Table 5.4: Experimental results

Table 5.4 presents the average of execution times measured in 3 runs.

• The head of a row (i.e., the first two columns) shows the name of the rule and the optimization
strategy configuration on which the average is calculated. (Note that a rule is executed several
times in a run.)

• The third column (Proc) depicts the number of processes in the run, which is, in turn, the runtime
parameter N for the test case.

• The fourth and fifth columns show the concrete values for the model size and the transformation
sequence length, respectively.

70 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

• Values in match and update columns depict the average times needed for a single execution of a
rule in the pattern matching and updating phase, respectively.

Execution times were measured on a microsecond scale, but a millisecond scale is used in Table 5.4
for presentation purposes. Light grey areas denote the lack of support for a combination of optimization
strategies by a given tool.

By evaluating the bare measured values, it can be observed that the execution times needed for
pattern matching and updating are frequently on the same order of magnitude (like e.g., in case of
FUJABA).

• This may be caused by the fact that sophisticated tools can prepare good search plans for graph
pattern matching in certain cases (even resulting in a linear execution time, which is compara-
ble to the theoretical time complexity of the updating phase), while in other cases graph pattern
matching is significantly slower. This observation, in turn, justifies that pattern matching heuris-
tics are worth being examined and optimized.

• In case of the DB approach, the transaction handling (and other consistency preservation) tasks,
which are typically performed in the updating phase, may be another reason for the comparable
values.

The further comparison of bare values could result in misleading consequences, due to the fact that
the examined tools use significantly different techniques for pattern matching as discussed in Chap-
ter 4. As a consequence, the remaining analysis focuses on the speed-up effects caused by the different
optimization strategies, which can be perfectly presented by normalized charts as in Fig. 5.9.

0.001

0.01

0.1

1

10 100 1000

AGG

10 100 1000

PROGRES

10 100 1000

FUJABA

10 100 1000

DB

(a) Effects of multiplicity based optimization for
GiveRule

0.001

0.01

0.1

1

10 100 1000

AGG

10 100 1000

PROGRES

10 100 1000

FUJABA

10 100 1000

DB

(b) Effects of multiplicity based optimization for Re-
leaseRule

0.001

0.01

0.1

1

10 100 1000

AGG

10 100 1000

PROGRES

10 100 1000

FUJABA

10 100 1000

DB

(c) Effects of parameter passing

0.001

0.01

0.1

1

10 100 1000

AGG

10 100 1000

PROGRES

10 100 1000

FUJABA

10 100 1000

DB

(d) Effects of parallel rule execution

Figure 5.9: Experimental results

5.5. MEASUREMENT RESULTS 71

Each subfigure of Fig. 5.9 shows the acceleration effect caused by a single optimization strategy
being switched on. Mainly the ReleaseRule has been used to present the measurement results as in Fig-
ures 5.9(b), 5.9(c), and 5.9(d) for the evaluation of multiplicity based optimization, parameter passing
and parallel rule execution, respectively. However, effects of multiplicity based optimization are also
examined on GiveRule as depicted in Fig. 5.9(a).

A block in a subfigure consists of similarly decorated columns, and it represents measurement re-
sults belonging to the same tool, whose name is also indicated under the block itself. Each column
corresponds to a run with a fixed run-time parameter setting being shown on the horizontal axis. Re-
call that model size and transformation sequence length are linear functions of the parameter in our
benchmark example.

For each tool and run-time parameter setting, the height of the corresponding column denotes the
ratio of the average execution times in optimized and unoptimized solutions required for the pattern
matching phase of a single application of the rule in turn. Note that reference levels with value 1
correspond to tool and run specific absolute execution time values being measured, which are typically
different for each column. Ratios are presented on a logarithmic scale. Missing columns in a whole
block denote the lack of support for an optimization strategy in a given tool. However, missing columns
for AGG and DB at model size 1000 in Fig. 5.9(c) show that the runtime limit has been exceeded in
those cases.

From the measurements of Figure 5.9, we can make the following observations.

Effects of multiplicity based optimization. The effect of multiplicity based optimization is unde-
tectable, if optimized and unoptimized versions of search plans are exactly the same. Such a situation
can be experienced in case of FUJABA (see the FUJABA block in Fig. 5.9(b)), when search plans being
created for the ReleaseRule are analyzed by comparing Figs. 5.1(c) and 4.4(c).

If strategies only differ in the applied navigation methods (see the small 0..1 on navigation edge
connecting P1 to P2 as the only difference between Figures 5.1(d) and 4.4(d)), then a moderately
growing trend of speed-up can be experienced as depicted in the FUJABA block of Fig. 5.9(a).

If the optimized and unoptimized search plans have structural differences as in case of PROGRES
for the ReleaseRule (being depicted in Figs. 5.1(a) and 4.4(a), respectively), then a heavily decreasing
tendency in average pattern matching time can be observed as in the PROGRES block of Fig. 5.9(b).

For the multiplicity based optimization techniques, as a general conclusion we may state that the
speed-up of pattern matching can be derived mostly from the restructuring of search plans.

Effects of parameter passing. The gain from parameter passing as shown in Fig. 5.9(c) is noticable
for FUJABA and PROGRES, while AGG and DB approaches cannot benefit from this tool feature. In
case of AGG, parameter passing is not officially supported, i.e., it was programmed manually for the
measurements. In the DB case, optimizations for parameter passing are carried out automatically by
the query optimizer of the database.

By analyzing search plans with parameter passing support (such as Fig. 5.2(a) for PROGRES,
Fig. 5.2(b) for FUJABA, Fig. 5.2(c) for AGG, and Fig. 5.2(d) for the DB approach) and pairwise com-
paring them to unoptimized versions (such as to Figures 4.4(a), 4.4(c), 4.5(a), and 4.5(e), respectively),
we can state the following:

(a) Local search based techniques can generally benefit more from parameter passing than strategies
based on constraint satisfaction.

72 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

(b) Any increase in the number of bound nodes, which also corresponds to the number of parameters
being passed, has a direct speed-up effect for the pattern matching.

Effects of parallel rule execution. The effect of parallel rule execution (as presented in Fig. 5.9(d))
is noticable in case of all tools that support this feature, but significant speed-up is produced only by
PROGRES and the DB approach.

Speed-up effects of parallel rule execution can be explained by the fact that the matching process
resumes from the last matching, while the iterative approach repeats the complete matching procedure
from the beginning repeatedly examining already processed partial matchings before finding a new
one. The DB approach can also benefit from the reduction of average time needed for overhead actions
ensuring the consistency of models. For instance, query plans have to be generated and table rows to
be modified need to be locked in each graph transformation step. This can be avoided in parallel rule
execution, when a single query plan is enough for the whole pattern matching phase and the influenced
rows can be locked in the beginning of the parallel rule application and released in the end (transaction
handling).

The speed-up of parallel rule execution is mainly caused by the fact that parallel rewriting loops
through all matchings of the rule in a single sweep, while the iterated approach restarts the pattern
matching process for each rule application and examines first all already processed nodes before find-
ing a new matching. As a result, the average execution time is reduced by a factor depending on the
number of matchings.

5.6 Conclusion

In the current chapter, I proposed a benchmarking framework, which enables quantitative performance
analysis and comparison of graph transformation tools and their optimization strategies.

• Definition and categorization of the features of graph transformation problems. By analyzing
typical scenarios described by graph transformation, I defined and categorized such character-
istics of graph transformation problems that have high influence on tool performance such as
pattern size, the maximum degree of nodes, the number of matchings and the length of transfor-
mation sequences (Sec. 5.2.2).

• Identification and categorization of the optimization strategies in graph transformation tools. By
analyzing the most popular graph transformation tools, I identified and categorized their typical
optimization strategies such as parallel rule execution, ’as long as possible’ rule application, mul-
tiplicity based optimization, and parameter passing, which have significant impact on execution
time (Sec. 5.2.3).

• Specification of benchmark examples. I adapted standard benchmarking terminology for graph
transformation, and I prepared benchmark example specifications for typical model interpretation
and model transformation scenarios (Sections 5.3 and 5.4).

• Quantitative comparison of the speed-up effects of optimization strategies in graph transforma-
tion tools. Based on the benchmarking framework, I carried out measurements on several tools
by using different parameter settings and combinations of optimization strategies. I used the
measurement results for assessing the acceleration effects of optimization strategies (Sec. 5.5).

The results of this chapter are based on [55, 147, 153, 154].

5.6. CONCLUSION 73

Relevance

As stated in [123], creation and widespread use of benchmarking within a research area is frequently
accompanied by rapid technical progress and community building. Our optimistic vision is to achieve
the same in the graph transformation community. The results of the current chapter can be considered
as the first step on this way, as our benchmarking framework is the first approach that provides a
systematic method for assessing the performance of graph transformation tools.

Although it is early to make any strict statements on the overall role of our benchmarking frame-
work in the process of community building, both the specifications and our published measurement
results have already been used by the developers of GrGen in [11, 12, 51, 132] to determine the per-
formance behaviour of their tool. Additionally, this benchmarking framework has been used for the
performance analysis of the techniques and algorithms to be presented in upcoming chapters of the
current thesis.

The proposed approach can obviously be extended by preparing new benchmark examples (e.g., for
the model analysis scenario) and by involving further graph transformation tools in the measurements
to provide a wider range comparison to the community. Additionally, in [52], developers of GrGen
proposed several improvements for the benchmarking framework on chronometry, evaluation technique
and rule design optimization issues, which can be considered as a first step in the community building
process.

The presented benchmarking framework has several graph transformation independent issues and
characteristics, which have also been identified and handled in benchmark approaches originating from
other fields of computer engineering. These common topics include the most basic concepts of bench-
marking, namely, to carry out repeatable performance measurements in a precisely defined environ-
ment, the methods of chronometry, and several operating system related issues like the time-sharing of
process executions, which might worsen the precision of measured values.

The experience gained from measuring the performance of tools can be used in the improvement
of pattern matching engines and their optimization strategies as in case [50] reported by the FUJABA

developers and in the development of model transformation tools that use declarative and rule-based
specification languages (like the Relations and Core languages of QVT). The latter direction should
be highly emphasized as for QVT, only initial prototypes (e.g., MTF [2]) have been developed, and
efficient product quality implementations are missing.

Further possible future tasks are to study the differences between navigation and constraint check-
ing based pattern matching approaches, to examine the performance effects of combining optimization
strategies, and to adapt and repeat our measurements and analysis for simulation and model transfor-
mation tools.

Limitations

The presented graph transformation benchmarking framework has several known limitations. First of
all, its direct applicability as a general model transformation framework is limited to those approaches
whose implementation is based on graph transformation. By considering the benchmarking framework
in a broader sense, this applicability restriction can be weakened to such transformations that can be
specified by declarative and rule-based transformation languages, which criterion is obviously fulfilled
by the tools based on the Relations and Core languages of the QVT standard. However, this extension
can be a non-trivial task due to the large variety of essentially different implementation techniques [30]
used in model transformation tools.

74 CHAPTER 5. BENCHMARKING FRAMEWORK FOR GRAPH TRANSFORMATION

Since the basic structure of graph transformation rules and QVT rules is similar, one possible way
to use the benchmarking framework for model transformations is to measure execution times with rule
application granularity without considering the separate handling of pattern matching and updating
phases. This strategy can be realized in a rather straightforward way by inserting codes with time
measuring functionality before and after the invocation of rule executions. However, note that even this
approach might easily fail in situations when transformation rules can call each other as the current
version of the benchmarking framework does not handle this case.

From graph transformation aspects, the strong focus on the pattern matching phase, and the rewrit-
ing of a single model can be considered as limitations of the framework. Furthermore, the current
quantitative analysis is limited to the isolated testing of different optimization strategies. Only the
combination of multiplicity based optimization and parameter passing is concerned in the presentation
of raw measurement results.

CHAPTER

6
Graph Transformation in Relational
Databases

In this chapter, I present a novel technique (referred previously as the DB approach) for implement-
ing graph transformation based on standard relational database management systems (RDBMSs). As
a result, a robust and fast transformation engine can be obtained, which is especially suitable for ex-
tending modeling tools with an underlying RDBMS repository and embedding model transformations
into large distributed applications where models are frequently persisted in a relational database and
transaction handling is required to handle large models consistently.

6.1 Motivation

As mentioned in Section 1.4, the transformation of huge, industrial size system models had never been
investigated despite the fact that all the state-of-the-art graph transformation tools in 2003 performed in-
memory translations, which suffered from memory shortage, when models of such size were processed.
A possible solution to overcome the problem of exceeding main memory limits is to perform all the
calculations on models stored on disks, which enables the handling of larger models for the price of
slower runtime operations. This idea can be realized by building graph transformation on top of a
relational database.

Additionally, several large distributed applications already exist in the software industry, in which
models are persisted in a relational database. If users aim at embedding model transformation support
into such systems, RDBMS based graph transformation can provide an implementation for this task.

Relational database management systems that serve as the storage medium for business critical data
for large companies are probably the most successful products of software engineering. A crucial factor
in this success is the close synergy between theory and practice. The Structured Query Language (SQL)
[49], which is built upon the precise mathematical foundations of relational algebra, enables declarative
specification for defining, manipulating and querying data in RDBMSs.

Since graph transformation rules can also be considered as a declarative specification for manipu-
lating graph-based models, the integration of graph transformation and relational database techniques
can improve the robustness of GT engines, which are built on top of RDBMSs by introducing transac-
tion support, by providing a formal background for verifying the correctness of rule applications, and
by always executing precise and well-founded operations on the database.

75

76 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

Related work

Intensive research has already been carried out for integrating graph transformation and relational
database techniques. However, these approaches have been focusing on how graph transformation
could be adapted as a visual query and data manipulation language for databases. The following list is
a brief selection of some main results in the field.

• In [3], a hybrid (visual and textual) query language is proposed together with a method, which
translates hybrid queries into traditional textual queries by graph transformation.

In this approach, the graphical part of hybrid queries is based on an Entity–Relationship (E/R)
diagram notation, while the target (textual) language is an object-relational extension of SQL.
The PROGRES tool [122] has been employed for graph transformation. Generated SQL queries
use the concept of subqueries for expressing restrictions posed by the graph structure.

• [67] proposes the use of triple graph grammars [120] for database re-engineering of legacy sys-
tems in their Varlet framework. PROGRES has been used again as a graph transformation
engine, and it translates the database schema described by an E/R diagram to an object-oriented
conceptual model.

It is common in all these approaches that they investigate how graph transformation can contribute
to object-relational database design or to other database related tasks, such as translating hybrid queries
to textual ones. Another common feature is that they all use a graph-oriented underlying database
(namely GRAS).

In contrast to the above approaches, our proposal is to examine how databases can potentially
contribute to the paradigm of graph transformation.

This direction has already been examined at the University of Aachen, where GRAS [75] has been
developed. GRAS is a graph-oriented database management system, which served as the underlying
database for the PROGRES [122] graph transformation tool.

On one hand, GRAS shares many functionalities with relational databases. Namely, it has a query
language, and it supports transaction handling, and consistency checking. On the other hand, GRAS
operates on an object-oriented data model (based on attributed graphs), instead of the relational data
model used in our approach. Recent versions of the GRAS database (namely GRAS/GXL and DRA-
GOS [17]) can already access underlying RDBMSs, but these versions still provide a graph based
interface to transformation tools (e.g., PROGRES), and in this sense, GRAS can be considered as a
highly sophisticated object-relational mapping layer.

From the application area aspects, GRAS provides a graph oriented model repository with many
advanced features for graph transformation tools, while our approach focuses on to provide a model
transformation plugin for legacy systems that already store models in relational databases.

Our choice for using a plain relational DBMS as an underlying database instead of object-oriented
or object-relational DBMSs was motivated by its large popularity in practical applications, the wide
range of implementations, and the mature theory based on the relational data model.

Objectives

I propose an approach to implement graph transformation built on top of standard relational database
management systems (RDBMSs). The essence of the approach is to create database views for each rule
and to handle pattern matching by inner join operations while handling negative application conditions
by left outer join operations. Furthermore, the model manipulation prescribed by the application of a

6.2. INFORMAL OVERVIEW 77

graph transformation rule is also implemented using elementary data manipulation statements (such as
insert, delete).

Furthermore, I implemented a prototype graph transformation engine, which uses open, off-the-
shelf relational databases (such as PostgreSQL [97] or MySQL [125]) as a backend to demonstrate the
practical feasibility of the proposed approach. For a detailed experimental evaluation, I assess how
the performance of the prototype is influenced by parallel rule applications, RDBMS-specific query
optimization techniques, and the choice of the underlying RDBMS.

Finally, I propose a database independent and portable GT engine implementation that uses the
declarative queries of the EJB QL standard in the pattern matching phase instead of SQL commands,
which aims at resolving the diversity of SQL dialects using standard J2EE technology.

Structure

The basic structure of the current chapter is the following.

• Section 6.2 informally summarizes the essence of our approach on an example prior to going
into deep mathematical details. This section assumes a basic knowledge of relational database
concepts.

• Section 6.3 surveys the main concepts of relational databases together with their formal defini-
tions.

• Section 6.4 presents the formalization of our approach to encode graph transformation rules into
relational databases. Formal proofs of correctness are listed in Appendix A.

• Section 6.5 investigates how the performance of graph transformation over a RDBMS depends
on the selection of the underlying database, on the application of the built-in query optimizer,
and on the usage of the parallel rule execution tool feature.

• Section 6.6 presents a portable, database independent GT engine implementation that uses
queries expressed on the Enterprise Java Beans Query Language (EJB QL) for specifying graph
pattern matching.

• Section 6.7 concludes the current chapter with emphasizing its relevance.

6.2 Graph transformation in relational databases: An informal
overview

An informal overview is provided on how graph transformation rules can be implemented by using
traditional relational database techniques. Concepts are presented on the running example of object-
relational mapping, which has already been introduced by Example 1 in Sec. 2.2, and by Example 5 in
Sec. 3.1. In the approach being presented in this chapter, attribute handling is not discussed in order to
preserve the notational consistency of the whole dissertation. However, the implementation is able to
handle attributes as shown by [151].

Mapping metamodels to database tables. In the first step, a standard mapping (for more details
see [49, 110]) is used to generate the schema of the database from the metamodel.

• Each class with k outgoing many-to-one associations is mapped to a table with k + 1 columns.
Column id will store the identifiers of objects of the specific class. All other columns will contain
the identifiers of target objects of such outgoing many-to-one links that have the corresponding
association as their direct type. If no such outgoing link exists in the model, the undefined
(NULL) value is used in the corresponding column. Additional foreign key constraints, whose

78 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

role is to guarantee the consistency of the database have to be defined for columns representing
many-to-one associations referring to the table assigned to the corresponding target class.

• A table with 2 columns storing the identifiers of source and target objects is assigned to each
many-to-many association. Additionally, foreign key constraints are defined for both columns
referring to the tables assigned to the corresponding source and target class, respectively.

• Inheritance is handled by a foreign key constraint defined for the identifier column id of the table
assigned to the subclass. This foreign key constraint maintains reference to the identifier column
id of the superclass table.

Database representation of instance models. Instance models representing the system under
design are stored in these database tables.

• A unique identifier is assigned to each object of the instance model.

• The identifier of each object has to appear in the column id of all tables that correspond to
ancestors of the object’s direct type.

• The database representation of a many-to-one link is a row in the table that corresponds to the
source class of the link’s type. This row should contain the identifiers of source and target objects
in the identifier column id and the column representing the many-to-one association, respectively.

• Each many-to-many link is represented in the database by a pair of source and target object
identifiers appearing in the table that corresponds to the direct type of the link.

Example 16 The model of Fig 5.8(d) (also shown in Fig. 6.1(b)) has been selected as an instance
model for the current running example, for which the corresponding database representation is depicted
in Fig. 6.1(c).

• A sample database representation of an object. The model of Fig. 6.1(b) contains a UML class
c1, which is identified by the key c1 in the database. As ModelElement, Namespace and Class are
ancestors of Class according to the metamodel of Fig. 2.1, all their corresponding tables should
have the key c1 in their identifier column id.

• A sample database representation of a many-to-one link. UML class c1 is contained by UML
package p. This containment is a many-to-one link of type EO going from UML class c1 to UML
package p. The database representation of this link is a row in the ModelElement table, which has
values c1 and p in columns id and EO, respectively.

• A sample database representation of a many-to-many link. The many-to-many link of type
UF connecting primary key p3 and column cl3 is represented by a corresponding row in table UF.

Views for LHS and NAC. The matching patterns of a graph transformation rule are calculated by
using views, which contain all matchings of the rule. More specifically, we introduce a separate view
for each LHS and NAC graph.

(a) The view generated for rule graphs (LHS and NAC) executes an inner join operation on tables
that represent either a node or an edge of the rule graph.

6.2. INFORMAL OVERVIEW 79

cl1

e1
c2c1

a12

e2

p

t3t1

s

cl3

(a) Concrete syntax of the instance model of Fig. 6.1(b)

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO
s:Schema

t1:Table

p1:PKeycl1:Column

t3:Table

p3:PKey

cl3:Column
:Ref

:Ref

:Ref

:EO

:EO

:CF

:EO
:EO

:UF

:UF

:CF

(b) The instance model of Fig. 5.8(d)

Class

id Ref EO id id src trg id id

p s NULL p c1 p1 cl1 cl1 p1

c1 t1 p c1 c2 p3 cl3 cl3 p3

c2 NULL p c2 a12

a12 t3 p a12 t1

e1 NULL NULL s t3 id id

e2 NULL NULL t1 cl1 p1

s NULL NULL t3 cl3 p3

t1 NULL s

p1 NULL t1 Table

cl1 NULL NULL id id id id

t3 NULL s p t1 a12 e1

p3 NULL t3 s t3 e2

cl3 NULL NULL

id

id CF SFT s

e1 a12 c1

e2 a12 c2

cl1 t1 NULL

cl3 t3 NULL

Feature

ModelElement

Package

Schema

Namespace UniqueKey

PrimaryKey

Attribute

Association AssocEnd

Column

UF

(c) The corresponding database representation

Figure 6.1: A sample instance model and its corresponding database representation

(b) The joined table is filtered by injectivity and edge constraints. Injectivity constraints express the
injective mapping of rule graph nodes and edges on the database level. Edge constraints define
restrictions imposed by the graph structure, which means that the source (target) node identifier
of the given edge should be found in tables representing the type of the edge and the type of the
source (target) node.

(c) Finally, a projection selects only those columns of the filtered joined table that represent node
identifiers. Information about the source and target nodes of edges is discarded during projection.
This information is unnecessary in the sequel, since requirements imposed by the graph structure
have already been checked and fulfilled.

Example 17 The essence of this approach is introduced by an example listing the view generated for
the LHS and NAC pattern of ClassRule (see Fig. 3.1(b)).

CREATE VIEW ClassRule_lhs AS -- an LHS view
SELECT c.id AS c, p.id AS p, s.id AS s -- with 3 columns
FROM Class AS c, ModelElement AS c_anc,

Package AS p, ModelElement AS p_anc,
Schema AS s

WHERE c.id = c_anc.id AND c_anc.EO = p.id -- EO edge eo1
AND p.id = p_anc.id AND p_anc.Ref = s.id -- Ref edge r1
AND p.id <> s.id -- injectivity constraint

-- for nodes p and s

CREATE VIEW ClassRule_nac AS
SELECT c.id AS c, tn.id AS tn
FROM Class AS c, ModelElement AS c_anc,

Table AS tn

80 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

WHERE c.id = c_anc.id AND c_anc.Ref = tn.id -- Ref edge rn
AND c.id <> tn.id -- injectivity constraint

-- for nodes c and tn

The LHS of ClassRule requires the presence of an EO edge that connects a UML class to a UML
package. Since EO edges are stored in the ModelElement table, it must also be included in the inner join
operation in addition to tables Class and Package. Since the source node of eo1 has to be a UML class,
only such source object identifiers of the column id of table ModelElement can participate in a matching
that can also be found in table Class as expressed by the edge constraint c.id = c_anc.id. A
similar edge constraint c_anc.EO = p.id requires possible target object identifiers of column EO
in table ModelElement to be equal to a value from the identifier column of table Package. A similar pair
of equalities express the edge constraints for the reference edge r1. Due to inheritance relations defined
in the metamodel, every schema is a UML package at the same time. Thus, pattern nodes S and P
are not allowed to be mapped to the same object. On the database level, this (injectivity) constraint is
expressed by the inequality p.id <> s.id.

c p s c tn c p s tn c p s

c1 p s c1 t1 c1 p s t1 c2 p s

c2 p s a12 t3 c2 p s NULL

a12 p s a12 p s t3

ClassRuleClassRule_lhs ClassRule_left_joinClassRule_nac

Figure 6.2: Database representation of matchings

The left part of Fig. 6.2 shows the contents of views that have been defined for the LHS and the
NAC parts of ClassRule.

For instance, c1 is a UML class in the UML package p and this UML package is connected to
schema s by a reference edge in Fig. 6.1(b), thus, a matching for the LHS of ClassRule is found, which
is represented by a corresponding row in the leftmost view of Fig. 6.2. Note that the LHS of ClassRule
has 2 further matchings as shown by the 2 additional rows in the same view.

Since UML class c1 is connected to table t1 by a reference edge in the model of Fig. 6.1(b), the
view generated for the NAC contains a corresponding row for this matching. This view has one further
row for representing the other matching.

Left joins for preconditions of rules. When the view for the precondition graph is calculated,
views of all its positive and negative application conditions are available. If the precondition has no
negative application conditions then the view defined for the LHS contains the database representation
of all matchings of the precondition graph.

(a) Each NAC view is left outer joined to the LHS view one by one. The join condition of this
operation expresses that columns representing the same shared node in the LHS and the NAC
graphs should be equal.

(b) For a matching of the precondition graph, we require (in the null condition) that columns of
NAC(s), which are shared with the LHS part, are filled with undefined values. This means that
there are no possible extensions of a matching of the LHS that is also a matching of (any) NAC
graph.

6.2. INFORMAL OVERVIEW 81

(c) Then a projection is performed, which displays only those columns that originate from LHS.

Example 18 To continue our running example, we present the view definition for the precondition of
ClassRule.

CREATE VIEW ClassRule AS
SELECT lhs.*
FROM ClassRule_lhs AS lhs

LEFT JOIN ClassRule_nac AS nac ON lhs.c = nac.c
WHERE nac.c IS NULL

The left part of Fig. 6.2 shows the contents of views that have been defined for the LHS and the NAC
of ClassRule, respectively. The third table of Fig. 6.2 presents the result of the left outer join operation,
while the last table corresponds to the precondition of ClassRule. Note that columns representing UML
class C are shared between LHS, NAC graphs, so these columns appear both in the join and in the
filtering condition.

After executing the left outer join operation, the result has 3 rows. Since rows with values c1, and
a12 in column c can be found in both LHS and NAC views, the corresponding 2 rows in the left outer
joined table are completely filled. On the other hand, the second row of the LHS view (i.e., with value
c2 in column c) has no corresponding row in the NAC view. As a consequence, the left outer joined
table has NULL value in column tn of its second row. As this is the only row that is not filtered out by
the null condition, it can also be found in the view generated for the whole precondition graph, which
means that a single matching has been found for ClassRule, and as a consequence, the rule is applicable
on that matching.

Model manipulation in relational databases. Operations in the graph manipulation phase can
be implemented by issuing several data manipulation commands (INSERT, DELETE, and UPDATE) in a
single transaction block. The transaction block is needed to ensure that a graph transformation step is
atomic, i.e., either all commands or none of them are executed to result in a consistent model after rule
application.

In the graph manipulation phase, deletions are followed by insertions.

• We further restrict the order of delete operations in such a way that edge deletions precede node
deletions.

– If a many-to-one link has to be deleted from the model, then the table that represents the
source class of the direct type association of the given link has to be updated. Specifically,
the value of the column corresponding to the many-to-one association has to be set to NULL

in the row that contains the source node identifier of the link in its column id.

– In case of a deletion of a many-to-many link, the row consisting of the source and the target
node identifiers of the link has to be removed from the table that corresponds to the direct
type of the given link.

• As the node identifier to be deleted can be found in tables representing the ancestors of the
object’s direct type, the deletion should proceed in a bottom-up order (to respect foreign key
constraints) by starting at the class, which is the direct type of the object.

During this iteration, additional attention is needed to consistently handle the removal of dangling
edges from the database. As a first step, all associations have to be determined, whose source
or target is the class, which is just being traversed by the iteration. Then we should perform the
above mentioned edge deletion procedure on all links that have the object to be deleted as their

82 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

source or target node and that are instances of associations collected in the previous step. The
final step of the iteration is the deletion of the object itself from the table that corresponds to the
class being traversed. This is performed by deleting the row of this table, which contains the
identifier of the given object in its column id.

For handling node and edge insertions on the database level in the graph manipulation phase, we
can use exactly the same procedures as for the initial table filling phase.

We state that the new content of database tables always corresponds to the derived model, thus it
can be proven that our approach performs graph transformation over an underlying relational database.

Example 19 We continue our sample graph transformation rule ClassRule with the model manipulation
parts. This rule prescribes the insertion of a new table that contains a single column with a primary
key. In addition, one many-to-many link and four many-to-one links have to be added to the model as
specified by Fig. 3.1(b).

On the database level, the same effect can be achieved by generating new identifiers t2, p2, and
cl2 for the new table, primary key, and column, respectively. For instance, identifier t2 is inserted
into all tables that represent the ancestors of Table. Identifiers of other new objects such as p2 and
cl2 are handled similarly. In order to respect foreign key constraints, insertions are executed in a top-
down order starting at the table corresponding to the most general ancestor. Insertion of the 4 new
many-to-one links appears as the 4 update operations presented in the listing below. Finally, the new
many-to-many link of type UF is added to the database by executing the corresponding insert operation.

-- Creating table t2
INSERT INTO ModelElement (id) VALUES (t2);
INSERT INTO Namespace (id) VALUES (t2);
INSERT INTO Class (id) VALUES (t2);
INSERT INTO Table (id) VALUES (t2);
-- Creating primary key p2
INSERT INTO ModelElement (id) VALUES (p2);
INSERT INTO UniqueKey (id) VALUES (p2);
INSERT INTO PrimaryKey (id) VALUES (p2);
-- Creating column cl2
INSERT INTO ModelElement (id) VALUES (cl2);
INSERT INTO Feature (id) VALUES (cl2);
INSERT INTO Attribute (id) VALUES (cl2);
INSERT INTO Column (id) VALUES (cl2);
-- Creating 5 links
UPDATE ModelElement SET Ref = t2 WHERE id = c2;
UPDATE ModelElement SET EO = s WHERE id = t2;
UPDATE ModelElement SET EO = t2 WHERE id = p2;
UPDATE Feature SET CF = t2 WHERE id = cl2;
INSERT INTO UF (src,trg) VALUES (p2,cl2);

When the execution of these graph manipulation commands terminates, the new content of database
tables corresponds to the derived model of Fig. 5.8(e).

6.3 Database operations

In our graph transformation engine a relational DBMS is used to represent metamodels as database
schemas, to store instance models and to perform modifications on such models. Now we summarize
the database terminology used throughout this chapter.

6.3. DATABASE OPERATIONS 83

6.3.1 Tables and views

The most basic entities of a database are tables that may have several columns and their role is to store
data in its rows.

Definition 29 A database table with n columns (denoted by T(n)(A1, . . . , An)) is an n-ary relation
over sets (C1 ∪ { ε }) , . . . , (Cn ∪ { ε }). T and Ai denote names of the table and of the ith column,
respectively. Column names definitely have to be unique in the scope of a single table, thus a table
cannot have columns sharing the same name. The ith column of the table may contain values from
the set Ci. Undefined (or null) values (denoted by ε) are also allowed in any columns. Formally,
T(A1, . . . , An) ⊆ (C1 ∪ { ε })× . . .× (Cn ∪ { ε }).

Definition 30 Since database tables are n-ary relations, their elements are n-tuples ~x = (x1, . . . , xn),
which are called rows in database terminology.

While the traditional relational DBMSs use multi-set semantics, we can simplify to set semantics
in the paper, since uniqueness of rows can be guaranteed by the algorithm that will be presented in
Sec. 6.4.

Definition 31 A direct column reference for a table T (denoted by T.Ai or simply by Ai (if the table
to which it refers can unambiguously be determined)) identifies the column of T that has a name Ai.

Definition 32 Given a table T with a column called Ai, a direct column reference for a row ~t ∈ T

(denoted by ~t[Ai]) identifies the element of ~t that can be found in the column T.Ai.

Definition 33 A primary key constraint for columns A1, . . . , Aj of table T(A1, . . . , An) guar-
antees the uniqueness of values in the selected set of columns. Formally, ∀~r,~s ∈ T :
(~r = ~s ⇐⇒ ∀i, 1 ≤ i ≤ j : ~r[Ai] = ~s[Ai]), where ~r[Ai] and ~s[Ai] (see Def. 32) refer to the elements
in column Ai of rows ~r and ~s, respectively.

Foreign key constraints are integrity constraints provided by the most RDBMSs. Their role is to
ensure that columns in different tables never contain inconsistent data. In our approach, these con-
straints are (mainly) used to guarantee that the database representation of an edge can never appear in
the database without its source and target nodes being already present.

Definition 34 A foreign key constraint for column R.A referring to column S.B (denoted by
R.A

FK→ S.B) declares that all values of column R.A should also be found in column S.B, or for-
mally R.A ⊆ S.B.

Definition 35 A view V is a relation calculated by applying the query operations of Sec. 6.3.2 on
tables.

Definition 36 The database schema (denoted by SDB) consists of the set of tables and views appear-
ing in the database.

6.3.2 Query operations

After introducing the basic entities (i.e., tables), query operations are discussed, which can be used to
define derived tables (i.e., views).

84 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

Definition 37 Given an ordered sequence of column references T.A1, . . . ,T.Ak for T, the projection
of a table T to columns A1, . . . , Ak (denoted by πA1,...,Ak

(T)) is a k-ary relation, which consists of
only the enumerated columns of T. Its formal definition is as follows

(x1, . . . , xk) ∈ πA1,...,Ak
(T) ⇐⇒ ∃(y1, . . . , yn) ∈ T :

k∧
i=1

xi = yAi ,

where
∧k

i=1 xi = yAi denotes the conjunction (logical AND) of equalities.

In SQL terms projection is implemented in the select statement as follows:

SELECT A1,. . .,Ak FROM R;

Definition 38 An atomic expression has a form αθβ, where α and β can be either a column of T or a
constant c. θ is a comparison operator, so θ ∈ {=, <, >,≤,≥, 6= }. A formula F is either an atom or
it is constructed from atoms using the logical and (∧), logical or (∨), and negation (¬) operators.

Definition 39 Given a formula F , selection (denoted by σF (T)) operates on a single table T and
collects the rows of T where F (y1, . . . , yn) holds. The formal definition of selection is

σF (T) = { (y1, . . . , yn) | (y1, . . . , yn) ∈ T ∧ F (y1, . . . , yn) = true } .

An obvious corollary is that σF (T) ⊆ T.

Selection operation can also be expressed in SQL, using a WHERE condition with F as its parameter.

Definition 40 The cross join of tables R(m) and S(n) (denoted by R × S) is a table with m + n
columns and it is the Cartesian product of the two tables. A row is in the result table, if its first m
values correspond to a row in R and its last n values corresponds to a row in S. Its formal definition is:

R× S = { (x1, . . . , xm, y1, . . . , yn) | (x1, . . . , xm) ∈ R ∧ (y1, . . . , yn) ∈ S } .

Cross join operation also exists in SQL, which can be formulated as:

SELECT * FROM R,S;

Column name uniqueness has only a table scope, so name clashes may occur in joint tables. In order
to avoid this uncomfortable consequence caused by join operations, we should be able to differentiate
between columns that originate from different base tables.

In RDBMSs name clashes are resolved by some renaming mechanisms. The SQL notation for
renaming depends on the actual RDBMS software that is being used. In this paper, we use the Post-
greSQL notation, namely the AS keyword for this purpose in SQL queries (e.g., T.id AS T). In our
mathematical formalism, column sets implement the table renaming functionality, while column re-
naming is performed implicitly by defining a new name for a column in the view definition.

Definition 41 Given two tables R(m) and S(n), a column set of a joint table R × S referring to the
base table R (denoted by Rcs) is the largest possible set of columns that originate from table R, which
is the first m columns of R× S in this case.

Definition 42 Given two tables R and S, an indirect column reference for the joint table T = R× S

(denoted by T.Rcs.Ai, or simply by Rcs.Ai) identifies a column of T by selecting a column set first and
then by using the direct column reference Ai on the column set.

6.3. DATABASE OPERATIONS 85

An indirect column reference for a row of the joint table can be similarly defined.

Definition 43 Given a formula F , the inner join of tables R and S (denoted by R
F
1 S) is a selection

from the Cartesian product filtered by formula F . Formally,

R
F
1 S = σF (R× S).

In this paper, only atoms of type A = B (two column names in equality relation) and the logical
AND operator will be used for basic atoms and for constructing formulae, respectively. Typically, A
and B are taken from different tables. It is useful from a practical point of view, if column names on the
different sides of the equality relation are from different tables. However, the general definition does
not require any such restrictions. SQL notation of the inner join operation is as follows.

SELECT * FROM R INNER JOIN S ON R.A=S.B;

Definition 44 Given a formula F , the left outer join of tables R and S (denoted by R
F
nS) (i) contains

all the rows of R
F
1 S, (ii) additionally contains all such rows of R, for which there does not exist

any row in S, where F (~x|~y) holds, and (iii) the latter rows are filled with undefined values in columns
originating from S.

The formal definition of left outer join is

R
F
n S = (R

F
1 S) ∪ { (~x, ε, . . . , ε) | ~x ∈ R ∧ @~y ∈ S for which F (~x|~y) = true } .

where F (~x|~y) denotes whether formula F is satisfiable if its unbound variables are replaced by the
corresponding values of rows ~x and ~y.

A sample query presenting the left outer join operation is

SELECT * FROM R LEFT JOIN S ON R.A=S.B;

6.3.3 Data manipulation operations

Finally, we define three data manipulation operations. T′ will mark the content of table T, after the
database operation has completed.

Definition 45 The delete operation

DELETE FROM T WHERE A1 = y1 AND . . . AND Ak = yk

removes those rows of table T, which contain values yi in their column Ai, respectively. Formally,
T′ = T \

{
~x ∈ T |

∧k
i=1 ~x[Ai] = yi

}
, where

∧k
i=1 ~x[Ai] = yi denotes the conjunction (logical AND)

of equalities.

Definition 46 The update operation

UPDATE T SET Aj = y WHERE Ai = x

sets the value of column Aj to y in all rows of table T(A1, . . . , An) where column Ai has value x.
Formally, T′ = (T \Minus) ∪ Plus, where

Minus = {~z ∈ T | ~z[Ai] = x }

86 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

and

Plus =

~znew | ∃~z ∈ Minus, ∀k ∈ Z+
n : ~znew[Aj] = y ∧

∧
j 6=k

~znew[Ak] = ~z[Ak]

 ,

where Z+
n denotes the set of positive integers up to n (i.e., 1 ≤ k ≤ n).

Definition 47 The insert operation

INSERT INTO T (A1, . . . , Ak) VALUES (y1, . . . , yk)

adds an n-tuple ~y to table T, if ~y is not yet contained. The tuple ~y has value yi in column Ai, respectively,
and it contains undefined values in all other columns. In other words, T′ = T∪{ ~y }, where ~y[Ai] = yi,
if 1 ≤ i ≤ k, and ~y[C] = ε, if C /∈ {A1, . . . , Ak }.

Definition 48 Given a sequence of database operations TA, a transaction is executed on a represen-
tation M resulting in an other representation M′ (denoted by M

TA=⇒ M′), if either all operations
of TA or none of them are executed.

6.4 Graph transformation in relational databases

We formally present how a graph transformation engine (following the single pushout [118] approach
with injective matchings) can be implemented using a relational database. First, we describe how an ap-
propriate database schema can be created based on the metamodel, and how the database representation
of the model can be generated (Sec. 6.4.1). Afterwards, the pattern matching phase of rule application
is implemented using database queries (Sections 6.4.2 and 6.4.3), finally data manipulation is handled
(in Sec. 6.4.4).

6.4.1 Mapping metamodels and models to database tables

Mapping of metamodels to database tables. Instance models representing the system under design
are stored in database tables. We use the standard bi-directional mapping (for more details see [49,
110]) to generate the schema of the database with BCNF property [27] from the metamodel.

• Let us first introduce a set called database identifier universe (denoted by Ud), which denotes the
set of all identifiers that might be stored in the database.

• Each class C with k outgoing many-to-one associations (C A1→1 C1, . . . , C
Ak→1 Ck) is mapped

to a table with k + 1 columns Cd(id, Ad
1, . . . , A

d
k).

– Column id will store the identifiers of objects of the specific class.

– Column Ad
i will contain the identifiers of target objects of such outgoing many-to-one links

that have association C
Ai→1 Ci as their direct type. If no such outgoing link exists in the

model, the undefined value ε is used in column Ad
i .

Additionally, we should define foreign keys ∀i ∈ [1..k] : Cd.Ad
i

FK→ Cd
i .id to respect the graph

structure in the database. Formally, Cd ⊆ Ud ×
(
Cd

1 ∪ ε
)
× . . .×

(
Cd

k ∪ ε
)
.

6.4. GRAPH TRANSFORMATION IN RELATIONAL DATABASES 87

• We assign a table Ad(src, trg) for each many-to-many association Cs
A→∗ Ct connecting classes

Cs and Ct in the metamodel. Columns src and trg contain identifiers of source and target
objects, respectively. Foreign keys Ad.src

FK→ Cd
s .id and Ad.trg

FK→ Cd
t .id should additionally

be defined to respect the graph structure (preserve the source and the target of edges) in the
database. In a more formal way, Ad ⊆ Cd

s × Cd
t .

• If a class C is inherited from a superclass D, then table Cd should be extended by a foreign key
constraint Cd.id

FK→ Dd.id.

We introduced the superscript d to uniformly denote database representations of all kinds of graph
transformation related entities. For instance, Cd, rd

LHS, and cd mark the entities that represent a class
C, a rule graph rLHS, and an object c in the database, respectively. This notation is always used as
a bi-directional mapping meaning that, e.g., Cd unambiguously identifies the database table that was
assigned to class C, and vice versa.

Mapping of instance models into rows. Now we define a bijective mapping, which assigns an iden-
tifier to each object of the instance model. The image of the mapping cd will be used as a primary key
that identifies object c in the database.

In order to appropriately represent an object in the database, its key has to be contained by all tables
that are assigned to an ancestor of the object’s type. Since inheritance relation in the metamodel (i.e.,
the type hierarchy) poses restriction (in the form of foreign key constraints) on exactly the same set of
tables, additional care has to be taken when inserting (or deleting) even a single key (identifier). The
order that handles insertion correctly is being defined now.

Definition 49 Given a metamodel MM with inheritance relations that are acyclic, a topological order
of a type t (denoted by TopologicalOrder(t)) is such a sequence of the ancestors of t in which a class
D cannot appear before an ancestor C in the order, if C

∗
^ D.

A natural consequence of the definition is that type t is the last element in its topological order.

Definition 50 Given a metamodel MM with inheritance relations that are acyclic, an inverse topolog-
ical order of a type t (denoted by InverseTopologicalOrder(t)) is a topological order of t traversed
in the opposite order.

A natural consequence of the definition is that type t is the first element in its inverse topological
order.

After fixing a certain topological and inverse topological order of a type to be used in the sequel,
Algorithm 6.1 derives the database representation of the initial model as follows.

• We suppose that all the tables are initially empty.

• A new identifier cd is generated for each object c of the instance model M . Then ancestors of the
type t(c) of object c are determined and furthermore they are ordered topologically according
to the inheritance relation. The ordering is done in a top-down manner, meaning that the “most
general” class is enumerated first. (The role of topological ordering is to avoid the violation of
foreign key constraints that have already been imposed on database tables.) The final step is
to insert the new identifier to all the tables that have been assigned to the enumerated ancestor
classes.

88 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

Algorithm 6.1 From instance model to its database representation

1: for all c ∈ VM {For all objects in model M} do
2: cd := GenerateNewIdentifier()
3: for all C ∈ TopologicalOrder(t(c)) do
4: INSERT INTO Cd (id) VALUES (cd) {Inserts the new identifier to all ancestor tables}
5: end for
6: end for
7: for all a

e→1 b ∈ EM {For all many-to-one links in model M} do
8: UPDATE src(t(e))d SET t(e)d = bd WHERE id = ad {Updates the value in column t(e)d to bd in

the row with identifier ad}
9: end for

10: for all a
e→∗ b ∈ EM {For all many-to-many links in model M} do

11: INSERT INTO t(e)d (src, trg) VALUES (ad, bd) {Inserts identifiers of end points a and b into the
table that corresponds to many-to-many association t(e)}

12: end for

• For each many-to-one link a
e→1 b of the instance model, the row in the table src(t(e))d, which

represents the source object a, is updated by replacing the value in column t(e)d by the identifier
bd of the target object b.

• For each many-to-many link a
e→∗ b of the instance model, the identifiers of the source and

target nodes (ad and bd) are inserted to the table t(e)d that has been assigned to the edge type
(association) t(e) of link e.

We introduce a new term that formalizes the consistent database representation of an instance
model.

Definition 51 Let a metamodel MM , and a database schema SDB be given together with the bidirec-
tional mapping d from MM to the tables of SDB .

A model M and a database representation M are consistent (M ∼= M), if

• each object of the instance model is represented in the database by one row in all the tables
that have been assigned to ancestors of the node type. Moreover, these rows must contain
the identifier of the object in their identifier column id. Formally, ∀C ∈ VMM ,∀c ∈ VM :(
C

∗
^ t(c) ⇐⇒ ∃~c ∈ Cd : ~c[id] = cd

)
,

• each many-to-one link of the instance model is represented in the database by exactly one
row in the table that corresponds to the source class of the type of the edge. This single
row must contain identifiers of source objects in the identifier column id and target objects in
the column corresponding to the direct type of the edge. Formally, a

e→1 b ∈ EM ⇐⇒(
∃~a ∈ src(t(e))d : ~a[id] = ad ∧ ~a[t(e)d] = bd

)
, and

• the identifiers of source and target nodes of each many-to-many link (edge) of the instance model
can be found exactly in the table that corresponds to the type of the edge. Formally, a

e→∗ b ∈
EM ⇐⇒

(
ad, bd

)
∈ t(e)d.

Finally, we formulate a theorem, which states that the database representation that has been created
by the above-mentioned initialization algorithm is consistent with the initial instance model.

6.4. GRAPH TRANSFORMATION IN RELATIONAL DATABASES 89

Theorem 1 The initial instance model M and its database representation M are consistent (see
Def. 51). Formally, M ∼= M.

PROOF Proofs of all theorems can be found in Appendix A.

6.4.2 Views for rule graphs (LHS and NAC).

As it is described in Sec. 6.2, the view generated for rule graphs (LHS and NAC) executes an inner join
operation on tables that have been assigned to types of nodes and edges appearing in the rule graph.
Then the joined table is filtered by injectivity and edge constraints. Finally, a projection selects only
those columns of the filtered joined table that represent node identifiers.

Formalization. In order to define pattern matching calculation for an LHS precisely, let us suppose
that nV = |VLHS| and nE = |ELHS|. Let us define a total order on the node and edge sets in which
nodes precede edges, and let xi and znV +j be the ith node and the jth edge according to this order,
respectively.

Now the view rd
LHS

(nV) for the LHS can be calculated as follows:

rd
LHS(ResCols) = πProjColRefs (σInj∧Edge (T))

• First the Cartesian product of tables Ti is calculated. Ti denotes the table that was assigned to
the type of the ith graph object of rLHS. Formally, T = T1 × · · · × TnV +nE , where

Ti =

t(xi)

d, when i ≤ nV and xi ∈ VLHS

src(t(zi))
d, when nV < i ≤ nV + nE and ui

zi→1 vi ∈ ELHS

t(zi)
d, when nV < i ≤ nV + nE and ui

zi→∗ vi ∈ ELHS

• Edge constraints. A pair of equations is defined for each edge of LHS. One such pair expresses
that the edge is incident to its source and its target node, respectively. (As the database represen-
tation of many-to-many and many-to-one links differ from each other, the corresponding pairs
of edge constraints have to be obviously different in their structure.) The conjunction of these
equations constitute edge constraints Edge. Formally,

Edgeone =
∧{

zcs.id = ucs.id ∧ zcs.t(z)d = vcs.id | u z→1 v ∈ ELHS

}
Edgemany =

∧{
zcs.src = ucs.id ∧ zcs.trg = vcs.id | u z→∗ v ∈ ELHS

}
The edge constraint of the view can be expressed as Edge = Edgeone ∧ Edgemany.

• Injectivity constraints. Inj are defined for all pairs of LHS nodes, for which the type of one node
is an ancestor of the type of the other. The role of injectivity constraints is to ensure the injective
mapping of graph objects.

Inj =
∧{

xcs
j .id 6= xcs

k .id | xj , xk ∈ VLHS ∧ t(xj)
∗
^ t(xk)

}
• Projection selects all the node identifier columns. Formally,

ProjColRefs = xcs
1 .id, . . . , xcs

nV
.id

90 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

• Finally, a renaming is executed. In the result view, the name of each column corresponds to
the node from which it originates. Moreover, it stores the identifiers of those objects that were
assigned to the original rule graph node by matchings. Note that the result view has as many
columns as many nodes its origin rule graph had.

ResCols = xd
1, . . . , x

d
nV

The view for the NACs can be calculated in exactly the same way, but using the NAC graphs in the
process. Now we define when a matching is consistent with its database representation.

Definition 52 Given a model M together with a database representation M, a matching m for a
pattern rG in model M is consistent with a row ~md of a view rd

G in database representation M

— denoted by (m|rG) ∼= (~md|rd
G) — (i) if the identifiers of all objects of instance model M that have

been selected by matching m for pattern rG can be found as an element in the corresponding position
of row ~md, and (ii) for each element of a row ~md in rd

G there is a node in pattern rG that is mapped
to the object that corresponds to the given element of the selected row by the matching m. Formally,
there exists a matching m for pattern G in model M ⇐⇒ ∃~md ∈ rd

G, ∀x ∈ VG : ~md[xd] = m(x)d.

Note that the above definition is asymmetric as pattern matching requires matching model elements
both for nodes and edges of the pattern, while the corresponding row in the view contains only the
identifiers of matching objects.

Definition 53 Given a model M together with a database representation M, a pattern rG is consistent
with a view rd

G (denoted by rG
∼= rd

G) if (i) for each matching m of a pattern rG in instance model M
there exists a row ~md in rd

G where matching m is consistent with row ~md and (ii) for each row ~md in
rd
G there exists a matching m of a pattern rG where matching m is consistent with row ~md. Formally,

• ∀m : G → M, ∃~md ∈ rd
G : (m|rG) ∼= (~md|rd

G)

• ∀~md ∈ rd
G, ∃m : G → M : (m|rG) ∼= (~md|rd

G)

Finally, a theorem is formulated, which states that each possible matching of a LHS (or NAC) rule
graph corresponds to exactly one row in the rd

LHS (or rd
NAC) view. Furthermore, the row in the view

contains the identifiers of objects that participate in the matching.

Theorem 2 Let d be a bidirectional mapping between SGT and SDB . If model M is consistent with
the database representation M, then a pattern rG (without negative application condition) in SGT is
consistent with view rd

G in SDB . Formally, M ∼= M =⇒ rG
∼= rd

G.

PROOF The proof is in Appendix A.

6.4.3 Left joins for preconditions of rules.

As it has been introduced in Sec. 6.2, the calculation of a view for the precondition of a rule proceeds
as follows. Each NAC is left outer joined to the LHS graph one by one by using join conditions,
which express that columns representing the same shared node in different rule graphs should be equal.
Additional filtering conditions require that columns of NAC(s), which are shared with the LHS part,
have to be filled with undefined values. Then a projection displays only those columns that originate
from LHS. Finally, a column renaming procedure performs an identical redefinition of column names.

6.4. GRAPH TRANSFORMATION IN RELATIONAL DATABASES 91

Formalization. We suppose that rule r consists of a LHS and k negative application conditions. As
before, nV is used for denoting the cardinality of VLHS.

The view generated for the precondition rPRE consists of nV columns and it can be calculated as
follows.

rd
PRE(ResCols) = πProjColRefs (σNull(Sk)) .

• Left outer join. Each rd
NACi

is left outer joined to rd
LHS one by one using a join condition Fi.

Formally, Sk = rd
LHS

F1

n rd
NAC1

F2

n . . .
Fk

n rd
NACk

• Join conditions. Fi express that shared nodes cannot be mapped to different objects in the model
M by matching functions m of rLHS and m′ of rNACi . Formally,

Fi =
∧{

rcs
LHS.xd

l = rcs
NACi

.xd | xl ∈ VLHS ∩ VNACi ∧ x ∈ VNACi ∩ VLHS ∧ pNACi(xl) = x
}

Note that the fact that column name xd appearing in several tables only denotes that those
columns represent the same (shared) node of the rule graph in tables rd

LHS and rd
NACi

.

• Null conditions. Null express that it is not allowed to have matchings for any rNACi in order to
have a matching for rPRE. Formally,

Null =
∧{

rcs
NACi

.xd = ε | i ∈ Z+
k ∧ x ∈ VNACi ∩ VLHS

}
In this expression, Z+

k denotes positive integers up to k.

• Projection selects all columns that originate from view rd
LHS. Formally,

ProjColRefs = rcs
LHS.xd

1, . . . , r
cs
LHS.xd

nV

• Finally, identical renaming is implemented. In the result view, the name of each column is the
same as the node of the LHS graph from which it originates. Moreover, it stores the identifiers of
those objects that were assigned to the LHS graph node by matchings. Note that the result view
has as many columns as many nodes rLHS had. Formally,

ResCols = xd
1, . . . , x

d
nV

As a result, each matching for precondition graph rPRE appears as exactly one row in the corre-
sponding view rd

PRE. A row consists of the identifiers of objects that are selected by the matching. In a
more formal way, the following theorem can be formulated.

Theorem 3 Let us suppose that there exists a bijective mapping from SGT to SDB . If model M is con-
sistent with the database representation M, then a pattern rPRE in SGT that has negative application
conditions is consistent with view rd

PRE in SDB . Formally, M ∼= M =⇒ rPRE
∼= rd

PRE.

PROOF The proof can be found in Appendix A.

92 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

Algorithm 6.2 Edge deletion

Require: ∃~r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (~r|rd)
1: for all udel

zdel→ 1 vdel ∈ ELHS \ ERHS do
2: UPDATE src(t(zdel))d SET t(m(zdel))d = ε WHERE id = m(udel)d

3: end for
4: for all udel

zdel→ ∗ vdel ∈ ELHS \ ERHS do
5: DELETE FROM t(zdel)d WHERE src = m(udel)d AND trg = m(vdel)d

6: end for

6.4.4 Graph manipulation in relational databases

Operations in the graph manipulation phase can be implemented by issuing several data manipulation
commands in a single transaction block as it has been explained informally in Sec. 6.2. Note that the
database updating algorithm parts should be executed in exactly the same order as it appears in the
current section.

Deletions. For each udel
zdel→ vdel ∈ ELHS \ERHS, the matched edge m(udel)

m(zdel)→ m(vdel) has to
be deleted from the model M . In the database the corresponding edge deletion is performed as follows.

• For each many-to-one edge udel
zdel→ 1 vdel of the ELHS \ ERHS set (line 1), an UPDATE command

should be executed on the table that corresponds to the source node src(t(zdel)) of the direct
type of the edge (line 2).

• For each many-to-many edge udel
zdel→ ∗ vdel of the ELHS \ERHS set (line 4), a DELETE command

should be executed on the table that corresponds to the type of the edge t(zdel) (line 5).

If xdel ∈ VLHS \ VRHS, then its image m(xdel) and all the dangling edges (i.e., all incident edges)
should be removed from the model M . On the database level even the deletion of a single node is
performed by issuing a sequence of DELETE operations. One reason why a single DELETE is insufficient
is that a node identifier can appear in several node tables because of inheritance in the metamodel.
Moreover, node identifiers may appear in tables that represent edges. These latter types of rows should
also be deleted in order to ensure that the instance model still remains a graph.

The node deletion algorithm (see Alg. 6.3) proceeds as follows.

• It iterates through all the nodes of VLHS \ VRHS (line 1).

• All types of each node belonging to the difference set are determined, and they get ordered
according to the inverse topological order (line 2) to prevent violating foreign key constraints
during deletion. (The inverse topological order is a bottom-up style enumeration of the ancestors
of a specific type.)

• All the outgoing many-to-many associations Aout that have class C as their source node have to
be determined. (line 3–5)

◦ The appropriate DELETE command can be executed on the tables that correspond to the
above-mentioned association. (line 4)

• All the incoming many-to-many associations Ain that have class C as their target node have to
be determined. (line 6–8)

6.4. GRAPH TRANSFORMATION IN RELATIONAL DATABASES 93

Algorithm 6.3 Node and dangling edge deletion

Require: ∃~r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (~r|rd)
1: for all xdel ∈ VLHS \ VRHS do
2: for all C ∈ InverseTopologicalOrder(t(m(xdel))){List ancestors of t(m(xdel)) in a bottom-

up order} do
3: for all C

Aout→ ∗ D1 ∈ AssocM2M {For all outgoing many-to-many associations Aout having
source class C} do

4: DELETE FROM Ad
out WHERE src = m(xdel)d

5: end for
6: for all D2

Ain→ ∗ C ∈ AssocM2O{For all incoming many-to-many associations Ain having
target class C} do

7: DELETE FROM Ad
in WHERE trg = m(xdel)d

8: end for
9: for all D3

Ain→ 1 C ∈ AssocM2M {For all incoming many-to-one associations Ain having
target class C} do

10: UPDATE Dd
3 SET Ad

in = ε WHERE Ad
in = m(xdel)d

11: end for
12: DELETE FROM Cd WHERE id = m(xdel)d {Deletes the object itself from Cd and all outgoing

many-to-one links, which have been stored in Cd}
13: end for
14: end for

◦ A similar DELETE command has to be executed on the tables that correspond to the above-
mentioned association. (line 7)

• All the incoming many-to-one associations Ain that have class C as their target node have to be
determined. (line 9–11)

◦ An UPDATE command has to be executed on the tables that correspond to the source nodes
of the above-mentioned associations. (line 10)

• Finally, the node itself can be deleted from class C (line 12), and the iteration should be continued
on the ancestors of C. Note that this step automatically deletes all outgoing many-to-one links,
which have been stored in table Cd.

Insertions. If a node xins appears only in RHS, but not in LHS, then a new object (denoted by
mRHS(xins)) of type t(xins) should be added to model M .

• The algorithm iterates over each node xins that appears only in RHS, but not in LHS (line 1–6).

• A new identifier mRHS(xins)d is generated (line 2).

• On each ancestor of t(xins) (line 3–5) an INSERT operation is executed (line 4).

If uins
zins→ vins ∈ ERHS \ ELHS, then a new link mRHS

(
uins

zins→ vins

)
of type t(zins) should be

added to the model M .

94 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

Algorithm 6.4 Node insertion

Require: ∃~r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (~r|rd)
1: for all xins ∈ VRHS \ VLHS do
2: mRHS(xins)d := GenerateNewIdentifier(){Generates identifier for the new node}
3: for all C ∈ TopologicalOrder(t(xins)){Top-down traversal of class hierarchy ending in

t(xins)} do
4: INSERT INTO Cd (id) VALUES (mRHS(xins)d) {Inserts the new object identifier into column

id, which stores identifiers of objects of type C}
5: end for
6: end for

Algorithm 6.5 Edge insertion

Require: ∃~r ∈ rd ∧ ∃mr ∧ (mr|r) ∼= (~r|rd)
1: for all uins

zins→ 1 vins ∈ ERHS \ ELHS do
2: UPDATE src(t(zins))d SET t(zins)d = mRHS(vins)d WHERE id = mRHS(uins)d

3: end for
4: for all uins

zins→ ∗ vins ∈ ERHS \ ELHS do
5: INSERT INTO t(zins)d (src, trg) VALUES (mRHS(uins)d,mRHS(vins)d)
6: end for

• For each many-to-one edge uins
zins→ 1 vins that can be found in ERHS \ ELHS (line 1–3),

an UPDATE command should be executed on the table that corresponds to the source node
src(t(zins)) of the direct type of the edge (line 2).

• For each many-to-many edge uins
zins→ ∗ vins of ERHS \ ELHS (line 4–6), an INSERT command

should be executed on the table that corresponds to the type of the edge t(zins) (line 5).

Now we can formulate the final statement that expresses the correct behaviour of our algorithm.
This states that if a model M was consistent with its database representation M, and if we perform
modifications on the model by a graph transformation rule and we execute the corresponding updating
algorithm in the database, then the resulting model M ′ and the database representation M′ will still
be consistent, yielding that our algorithm built on top of a relational database correctly performs graph
transformation.

Theorem 4 Let us suppose that there exists a bijective mapping d from SGT to SDB . If (i) model M
is consistent with the database representation M, (ii) we have a matching mr for rule r, together with
a corresponding row ~md in view rd, and m is consistent with ~md, (iii) rule r is applied on matching
mr resulting in M ′, and (iv) Algorithms 6.2–6.5 are executed in the database for ~md ∈ rd resulting in
a database representation M′, then M ′ ∼= M′.

Formally, if

(i) M ∼= M,
(ii) (mr|r) ∼= (~md|rd) for a pair (mr, ~md),

(iii) M
r,mr=⇒ M ′,

(iv) M
Alg. 6.2−6.5

=⇒ M′,

6.5. MEASUREMENT RESULTS 95

then M ′ ∼= M′.

PROOF The proof can be found in Appendix A.

6.5 Measurement results

The quantitative performance analysis of RDBMS based graph transformation already started in
Sec. 5.5, where the approach was compared to other tools. In the current experiments, we focus on
such properties of our approach that are expected to have a significant impact on run-time performance
or that are specific to our database related solution. The performance measurements of this chapter
have been executed on the object-relational mapping benchmark example, which has already been in-
troduced in Sec. 5.4.

According to the performance analysis of Sec. 5.5, the most significant speed-up could be observed
in case of a database related approach when parallel rule execution is used as an optimization strategy.
As a consequence, only this tool feature is included into the experiments of the current chapter.

An additional optimization possibility is identified, which is specific to a graph transformation ap-
proach that is based on top of a relational database. This database specific tool feature is the application
of the built-in query optimizer of the underlying RDBMS. Note that the query built for the precondition
of a graph transformation rule has a special structure, for which the built-in query plan generator may
not provide an optimal solution as it lacks the additional information about the structure of GT rules or
models. Since some relational databases allow the definition of such queries, for which the generated
plan can be influenced from outside the RDBMS, the examination of this optimization possibility has
been included in the measurements. The queries prepared for the own optimization strategy were made
by hand and they were based on the same application domain dependent engineering guidelines that
are used in many graph transformation tools.

As two orthogonal tool features have been identified, the measurements were performed on all the
four possible combinations of these features, which means that four test cases have been analyzed. The
runtime parameter N , which denotes the maximum number of processes during the run, was fixed to
10 and 30 in test cases where rules were executed sequentially, and N was set to 10, 30, 50 and 100 for
test cases with parallel rule application.

Two popular RDBMSs (namely MySQL version 4.1.7 and PostgreSQL version 8.0.3) took part in
our measurements, which were performed on a 1500 MHz Pentium machine with 768 MB RAM. A
Linux kernel of version 2.6.7 served as an underlying operating system. The execution time results are
shown in Table 6.1.

The head of a row (i.e., the first two columns) shows the name of the rule and the optimization
strategy settings for the single tool feature (i.e., parallel rule execution) on which the average is cal-
culated. (Note that a rule is executed several times in a run.) The third column (Class) depicts the
number of classes in the run, which is, in turn, the runtime parameter N of the test case. The fourth
and fifth columns show the concrete values for the model size and the transformation sequence length,
respectively. Heads of the remaining columns unambiguously identify the RDBMS used and the status
denoting whether the built-in query optimizer was used (db) or not (own). Values in match and update
columns depict the average times needed for a single execution of a rule in the pattern matching and
updating phase, respectively. Execution times were measured on a microsecond scale, but a millisec-
ond scale is used in Table 6.1 for presentation purposes. Light grey areas denote run-time failures due
to exceeding the default memory allocation limits of the operating system.

Our experiments can be summarized as follows.

96 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

Class Model TS

size length

match update match update match update match update

msec msec msec msec msec msec msec msec

10 1342 146 24.23 2.91 29.45 3.50 27.63 4.40 53.40 4.46

30 12422 1336 543.41 2.74 549.97 2.73 127.22 6.39 679.81 5.15

10 1342 146 0.23 3.28 0.23 3.39 2.60 6.23 1.00 4.07

30 12422 1336 0.13 2.83 0.40 2.40 0.40 5.97 0.80 6.14

50 34702 3726 0.37 3.93 0.14 5.22 0.26 4.77 1.53 5.34

100 139402 14951 0.12 4.24 0.12 4.68 0.58 7.69

10 1342 146 12.20 4.82 13.60 5.18 5.57 5.60 4.29 6.72

30 12422 1336 160.20 2.94 159.41 2.96 37.20 4.90 48.62 5.62

10 1342 146 0.38 4.43 0.26 6.13 0.22 6.05 0.26 5.61

30 12422 1336 0.12 2.91 0.11 2.98 0.08 5.90 0.09 3.77

50 34702 3726 0.10 2.71 0.10 3.24 0.08 8.19 0.08 8.03

100 139402 14951 0.08 4.43 0.07 4.88 0.06 6.39

10 1342 146 13.17 2.68 14.28 3.14 7.29 5.31 5.86 5.41

30 12422 1336 249.38 3.04 247.82 2.68 32.95 5.08 32.91 5.01

10 1342 146 1.33 2.94 1.35 2.94 0.82 4.81 0.81 4.86

30 12422 1336 7.41 2.38 7.44 2.35 1.25 4.07 1.09 4.12

50 34702 3726 39.78 1.99 38.32 2.04 1.99 3.80 2.00 3.74

100 139402 14951 262.40 2.00 268.99 1.95 8.37 3.62

OFF

ON

OFF

ON

MySQL PostgreSQL

OFF

ON

ObjRel

db own db own

A
s
s
o
c
E
n
d
R

u
le

A
s
s
o
c
ia

ti
o
n
R

u
le

C
la

s
s
R

u
le

parallel

parallel

parallel

parallel

parallel

parallel

Table 6.1: Experimental results

• In accordance with our assumptions, parallel rule execution has a dramatic effect on pattern
matching. The time increase for ClassRule can be explained by having a constant initialization
and resource allocation time, which is distributed over a relatively small number of rule applica-
tions.

• We have been forced to use temporary tables instead of views in case of MySQL version 4.1.7 as
it does not support the concept of views. This obligate choice has a strong negative impact in case
of sequential rule execution on the performance of the graph transformation engine as temporary
tables are always stored on disks in contrast to views (of PostgreSQL), which are calculated in
the memory in general.

• The update phase is slightly longer for PostgreSQL, but the difference cannot be considered
significant as the execution times for both databases are of the same order of magnitude.

• The results for query plans own being generated and injected by the GT engine may deviate in
both directions from the results of plans db that have been created by the query optimizer. This
observation indicates that it is possible to create queries with better performance than the ones
that are produced by RDBMS, which is an argument for doing further research on generating
special queries optimized for GT rules.

• In contrast to our assumptions, MySQL does not allow manual influence on query plan genera-
tion, which is indicated by the similar values in its db and own columns.

• Since the presented values are calculated as the average of the execution times measured while
applying the same rule for several times, Table 6.1 is inappropriate for assessing the exact distri-

6.6. GRAPH TRANSFORMATION WITH PORTABLE EJB QL QUERIES 97

bution of measured values. However, as a general observation, it may be stated that the updating
phase can typically be characterized by a balanced distribution, in which all the measured values
(including the extremes) can be covered by a 3 millisecond interval even in case of the largest
models. On the other hand, when pattern matching is performed on a relational database, all the
matchings are already available when the first matching is requested. As a consequence, the first
matching is calculated several orders of magnitude slower than all the consecutive matchings,
which could always be enumerated in 10 microseconds.

6.6 Graph transformation with portable EJB QL queries

As mentioned in Sec. 2.3.1, EJB3-based enterprise applications use the underlying relational database
of the application server to store business data. By using the DB approach already presented in this
chapter, business functionalities specified by graph transformation can also be performed by using SQL
queries. However, this solution would not be portable in an enterprise environment as the underlying
relational databases typically use different dialects of SQL.

In this section, we propose a database independent and portable GT engine implementation, which
uses the declarative queries of the Enterprise Java Beans Query Language (EJB QL) [130] in the graph
pattern matching phase instead of SQL commands, which aims at resolving the diversity of SQL di-
alects. Since this new proposal is highly similar to the DB approach in its concepts, only a less detailed
presentation of the graph pattern matching phase is given.

Basic concepts of Java based enterprise applications and their runtime execution environment have
been introduced in Sec. 2.3 together with the representation of metamodels and models. Now the
basics of the declarative query specification language of EJB3 is discussed, which is followed by the
presentation of the EJB QL based pattern matching approach.

6.6.1 Enterprise Java Beans Query Language

An application server has an entity manager unit, which provides operations for creating and removing
persistent entity instances, for finding entities by their primary key, and for querying over entities.

Queries can be specified in the declarative, object-oriented EJB Query Language (EJB QL) [130].
Only the structure of the SELECT statement is presented here in Listing 6.1 as it is the only construct
that is used in the upcoming section.

SELECT select_clause
FROM from_clause
WHERE where_clause

Listing 6.1: General structure of the SELECT statement in an EJB QL query

The SELECT clause denotes the result of the query by a comma separated list of identification
variables. An identification variable is a variable that can refer to a single instance of a particular entity
bean class.

The FROM clause designates the domain of the whole SELECT statement by a comma separated list
of identification variable declarations of the form type AS new_var. The type of an identification
variable new_var can be defined explicitly by using the name of an entity bean class, or implicitly
by navigating along links of type assoc from an already declared variable old_var. In the latter case,
the target class of assoc defines the type of identification variable new_var. Navigation is defined by

98 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

SELECT pattern_node_variables
FROM identification_variable_declarations
WHERE initial_matching_constraints AND type_checking_constraints
AND check_edge_constraints AND injectivity_constraints AND NAC_constraints

Listing 6.2: EJB QL query representing the pattern matching phase

path expressions old_var.assoc or IN(old_var.assoc), if the target end has an at most one or
arbitrary multiplicity constraint, respectively.

The optional WHERE clause is a Boolean expression, and it filters out those results of the query
that do not satisfy this expression. A Boolean expression is the conjunction (logical AND) of
Boolean valued factors, which may test the non-existence of results for a well-formed subquery (NOT
EXISTS (subquery)), the equality of simple factors (sf1=sf2), and the inequality of simple factors
(sf1<>sf2). A simple factor can be a constant, or a navigation operation (denoted by var.id) to
access the identifier id of an identification variable var.

6.6.2 Graph pattern matching on EJB3 platform

By using search plans of LHS and embedded NAC patterns, we construct and execute a single SELECT

EJB QL query that calculates and retrieves all the matchings of the precondition of a rule.
The general form of the query is as follows:
A pattern node variable is an identification variable being declared in the FROM clause of the EJB

QL query, which represents a pattern node. Identification variables that represent bound and free nodes
are called bound node variables and free node variables, respectively.

The SELECT clause of the query contains all pattern node variables in the form of a comma sepa-
rated list.

In order to handle the mappings of (initially matched) bound nodes, an identification variable decla-
ration of the form typebound AS bound is appended to the FROM clause. Additionally, an expression
of the form bound.id = obj is added as an initial matching constraint, in which obj denotes the
object to which bound node bound has been mapped by the initial matching.

If a free (pattern node) variable is reached by navigation in the FROM clause of an EJB QL query,
then the type of this pattern node variable may be an ancestor of the type prescribed by the pattern
node itself. This yields a situation where the pattern node variable has a possibly larger set of matching
objects than it is allowed by the type restriction set up by the pattern node. In order to resolve this
situation, an additional identification variable is declared for representing the same pattern node and a
type checking constraint is defined to narrow the set of matching objects for this pattern node.

Free node variable declarations and type checking constraints are generated during search plan
traversal while processing search plan edges in an increasing order.

• Processing iteration edges. If an iteration edge with a target node trg is being processed, then
an expression typetrg AS trg is added to the end of the FROM clause where typetrg is the type
of the pattern node trg.

• Processing to-one navigation edges. If a to-one navigation edge of type assoc connecting node
src to trg is being processed, then expressions src.assoc AS trg_sup and typetrg AS trg
are appended to the end of the FROM clause, and a subformula trg_sup.id = trg.id is also
added as a type checking constraint.

6.6. GRAPH TRANSFORMATION WITH PORTABLE EJB QL QUERIES 99

• Processing to-many navigation edges. If a to-many navigation edge of type assoc connecting
node src to trg is being processed, then terms IN(src.assoc) AS trg_sup, and typetrg

AS trg are appended to the FROM clause, and a subformula trg_sup.id = trg.id is also
added as a type checking constraint.

An edge checking constraint expresses a restriction, which is caused by a pattern edge that has
not been processed at all during the traversal of the search plan. For each pair of unnumbered naviga-
tion edges connecting nodes src and trg in both directions, we append a subformula src.assoc =
trg.id or trg MEMBER OF src.assoc to the WHERE condition by using a logical AND operator
for affixing, if src.assoc represents a to-one or a to-many navigation edge, respectively.

Injectivity constraints are defined for such pairs of pattern nodes where one member has a type that
conforms to a supertype of the other. For each such pair nodei and nodej , we add a subformula of the
form nodei.id <> nodej.id.

NAC constraints express restrictions formulated by NAC patterns that are embedded into the LHS
pattern being processed. For each embedded NAC pattern, we add a constraint of the form NOT
EXISTS (subquery), where subquery is the EJB QL query that is going to be generated for the
embedded NAC pattern. In case of NAC subqueries, bound node variables do not have to be declared
in the FROM clause, as their declarations are already contained by the embedding query of the LHS.
The NOT EXISTS constraint will be evaluated to true if and only if the subquery, which would list the
matchings of the NAC pattern has no rows.

Example 20 To continue our running example, we present the SELECT statement (Listing 6.3) that is
generated for the search plans of the LHS and NAC patterns of ClassRule (as depicted in the left and
right parts of Fig. 6.3, respectively). Note that in case of search plans prepared for EJB QL queries,
NAC nodes are always marked by the maximum possible value as the subqueries of NAC patterns are
always evaluated after matching the LHS pattern.

CP

2 3

NAC

T
n

C 1

1

LHS

NAC

3

0..1

*

1

2 3

1

S
0..1

0..1

0..1

0..1

s.ref

p.ref

p.eo

c.eo

c.ref

tn.ref

CP

2 3

NAC

T
n

C 1

1

LHS

NAC

3

0..1

*

1

2 3

1

S
0..1

0..1

0..1

0..1

s.ref

p.ref

p.eo

c.eo

c.ref

tn.ref

Figure 6.3: Sample search plans of the LHS and the NAC of ClassRule

Lines 1–9 of the query are generated during the traversal of the search plan of LHS, when its edges
are processed in increasing order as shown by the comments at the ends of lines. (Expressions in
parentheses denote the search plan edge processing method being used.) Since at least one edge is
selected from each pair of navigation edges, no edge checking constraints are needed in the query.
Metamodel class Schema is a subclass of class Package, so schema S cannot be mapped to the same
object as package P as expressed by Lines 8–9. The query for the NAC pattern (Lines 10–16) is
processed similarly with the single exception that C now counts as a bound node as a mapping for node
C has already been found.

100 CHAPTER 6. GRAPH TRANSFORMATION IN RELATIONAL DATABASES

1 SELECT s,p,c
2 FROM Schema AS s, -- 1 (iter)
3 s.ref AS p_sup, Package AS p, -- 2 (one)
4 IN(p.eo) AS c_sup, Class AS c -- 3 (many)
5 WHERE -- type checking constraints
6 p_sup.id = p.id AND c_sup.id = c.id
7 -- no edge checking constraints
8 -- injectivity constraints
9 AND s.id <> p.id

10 -- NAC constraint
11 AND NOT EXISTS (
12 SELECT c,tn
13 FROM c.ref AS tn_sup, Table AS tn -- 1 (one)
14 WHERE tn_sup.id = tn.id
15 AND c.id <> tn.id
16)

Listing 6.3: The EJB QL query describing the pattern matching defined by search plans of Fig. 6.3

6.7 Conclusion

In the current chapter, I elaborated a provenly correct method for executing graph transformation built
on top of a relational database, and assessed the performance of the approach in several measurement
settings involving different combinations of databases, parameters and optimization strategies.

• Graph pattern matching in relational databases. I elaborated a provenly correct method, which
automatically transforms graph patterns to SQL queries whose behaviour corresponds to the
pattern matching phase of graph transformation (Sections 6.4.2 and 6.4.3).

• Modification phase of graph transformation on top of relational databases. I elaborated a
provenly correct method, which generates such SQL commands, whose behaviour corresponds
to the updating phase of graph transformation (Sec. 6.4.4).

• Quantitative performance analysis of the method. By using the object-relational mapping as a
benchmark example, I examined the efficiency of this technique in several measurement settings
involving different combinations of databases, parameters and optimization strategies (Sec. 6.5).

• Portable queries for graph pattern matching. I proposed a database independent and portable
pattern matching approach that uses declarative EJB QL queries to implement graph pattern
matching (Sec. 6.6).

These results are reported in [145, 149, 150, 151].

Relevance

The relevance of the presented approach can be summarized by examining the motivation goals laid
out in Sec. 6.1.

As the RDBMS based graph transformation approach stores models on the disk, it has the ability
to handle larger models compared to pure in-memory GT engines. Performance experiments of Sec-
tions 5.5 and 6.5 demonstrate that relational databases provide a feasible candidate as an implementa-
tion framework for graph transformation engines with promising results especially for large models.

6.7. CONCLUSION 101

However, performance is not the only aspect one needs to consider from a practical point of view
when implementing model transformations. Our relational database approach automatically provides
persistence and transactional services without further programming effort.

Persistence is very important in the case of MDA tools storing their UML models in relational
databases as e.g., AMEOS of Aonix [4]. This tool offers powerful built-in means to capture model-
to-code transformations, but model-to-model transformations (including model manipulations) are not
supported, which could be complemented by our technique to provide a general solution.

When model transformation is used in an enterprise environment, transformation plugins are typi-
cally implemented as session beans whose methods are generally executed in a transaction block, which
should provide support for withdrawing the effects of rule execution. As RDBMSs are able to handle
transactions by default, our approach can easily integrated into an enterprise environment to function
as a model transformation plugin, in which pattern matching is expressed by (SQL or EJB QL) queries.

A further advantage of the presented technique is that it is also suitable for in-memory RDBMSs
like TimesTen [106], SQLite [124], Xcelerix [160], HSQLDB [65] without modification. In such an
approach, performance and model size are expected to be on the same order of magnitude as in case of
any other in-memory solutions.

The practical applicability of RDBMS based graph transformation has recently been confirmed in
[71] by the developers of the MOLA tool [69, 70], who used a similar approach for implementing their
Transformation Execution Environment module.

Limitations

The presented approach suffers from certain runtime overhead due to several reasons. The underlying
database performs statement parsing, optimization, table (or row) locking, and transaction handling
tasks during the execution of each query. Though repeated parsing can be partially avoided by prepared
statements, and both optimization and transaction handling can sometimes be guided by the pattern
matcher, each remaining task obviously increases the execution time of the pattern matching engine.

The application server also introduces performance degrading factors in case of EJB3-based pattern
matching solutions as the objects in the matchings returned are also cached in the main memory in ad-
dition to their original location on the disk, and the object-relational mapping service of the application
server has to synchronize these copies. Additionally, the application server usually provides transaction
handling services whose usage also worsens performance.

As a natural limitation of the EJB QL based approach, it is worth emphasizing the trade-off between
portability and run-time performance when database-specific query optimizations are switched on and
off.

CHAPTER

7
Adaptive Graph Transformation

In this chapter, I present a novel approach to implement adaptive, and model-sensitive graph pattern
matching modules. Based on the statistics of the instance model under transformation, these mod-
ules can dynamically select the optimal pattern matching strategy from a set of precompiled strate-
gies that have been generated from model-sensitive search plans by using estimates for their expected
performance on typical instance models available at transformation design time. As a result, a fast
transformation engine can be obtained, which can dynamically modify its behaviour at run-time in
the performance critical pattern matching phase by always selecting the strategy that is expected to be
optimal for the instance model under transformation.

7.1 Motivation

As model transformation is becoming an engineering discipline (transware), conceptual and tool sup-
port is necessitated for the entire life-cycle, i.e., the specification, design, execution, validation and
maintenance of transformations. However, different phases of transformation design frequently set up
conflicting requirements, and it is difficult to find the best compromise. For instance, interpreted MT
approaches have a clear advantage during the validation (e.g., by interactive simulation) or the main-
tenance phase due to their flexibility. On the other hand, the main driver in the execution phase is
performance, therefore, a compiled MT approach is advantageous as shown by survey [154].

The performance of the executable code is optimized at compile time by evaluating and optimizing
different search plans [163] for the traversal of the LHS pattern, which typically exploits the multiplicity
and type restrictions imposed by the metamodel of the problem domain.

Problem statement

• Lack of adaptivity. While in many cases, types and multiplicities provide a very powerful
heuristics to prune the search space, in practical model transformation problems, one has further
domain-specific knowledge on the potential structure of instance models of the domain, which is
typically not used in these approaches.

• Hard-wired pattern matching strategies. Furthermore, in case of intensive changes during
the evolution of models, the characteristic structure of a model may change as well, therefore a

103

104 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

pattern matching strategy that is generated a priori at compile time from a search plan might not
be flexible and powerful enough.

Objectives

I propose a method for generating model-sensitive search plans for pattern traversal (as an extension
to traditional multiplicity and type considerations of existing tools) by estimating the expected perfor-
mance of search plans on typical instance models that are available at transformation design time. I
also elaborate a method for finding low cost search plans with respect to the cost function that estimates
the performance of a given strategy.

Furthermore, I propose an adaptive approach for graph pattern matching, where the optimal strategy
can be selected from previously generated pattern matching strategies at run-time based on statistical
data collected from the instance model under transformation.

Finally, I present a technique for preparing adaptive, compiled, stand-alone plugins for representing
pattern matching strategies on the EJB 3.0 platform from model-sensitive search plans.

Related work

Sophisticated pattern matching strategies of the most advanced compiled graph transformation ap-
proaches are now surveyed.

• FUJABA [99] compiles visual specifications of transformations [44] into executable Java code
based on an optimization technique using search graphs with a breadth-first traversal strategy
penalizing many-to-many multiplicity constraints. Our approach is different from Fujaba in the
use of EJB3 beans instead of pure Java classes and the model-sensitive generation of search
plans.

• PROGRES [122] supports both interpreted and compiled execution (generating C code) of pro-
grammed graph transformation systems. It uses a sophisticated cost model [163] for defining a
priori costs of basic operations (like the enumeration of nodes of a type and navigation along
edges) for generating search plans. These costs are not domain-specific in the sense that they
are based on assumptions about a typical problem domain on which the tool is intended to be
used. Operation graphs of PROGRES, which are similar to search graphs of Sec. 4.2, addition-
ally support the handling of path expressions and attribute conditions. The compiled version of
PROGRES generates search plan at compile-time by a greedy algorithm, which is based on the
a priori costs of basic operations.

• The pattern matching engine of compiled GREAT [158] (generating C++ code) uses a breadth-
first traversal strategy starting from a set of nodes that are initially matched. This initial binding
is referred to as pivoted pattern matching in GREAT terms. This tool uses the Strategy design
pattern for the purpose of future extensions and not for supporting different pattern matching
strategies like in our approach.

Object-oriented database management systems also use efficient algorithms [126] for query opti-
mization, but their strategy significantly differs as queries are formulated as object algebra expressions,
which are later transformed to trees of special object manager operations during the query optimization
process.

In the graph transformation community, adaptivity has already been used with a completely dif-
ferent meaning, when adaptive star grammars [33] have been defined for applications, which are used

7.2. COLLECTING MODEL STATISTICS 105

for modeling and refactoring object-oriented programs. In this context, an adaptive star grammar is an
extension of graph grammars, and it consists of rule schemas, each of which can describe a potentially
infinite number of concrete rules.

Structure of the chapter

The proposed workflow of building an adaptive graph transformation engine is summarized in Fig. 7.1.

Graph

Pattern

Typical

Models

Search

Plans
Optim

Compiled

Algorithms
Cdgen

Model

Statistics

Current

Model

Adapt

Exec
New

Model

Current

PM Strategy

Design/Compile time

Execution time

Figure 7.1: Overview of the approach

• Section 7.2 extends model repositories by introducing statistical data collection from the instance
model under transformation in order to support model-specific concepts.

• Section 7.3 presents the optimization task (Optim), in which typical models of the domain are
collected (from transformation designers, end users, etc.) from which the optimizer generates
one search plan with the best average performance for each typical model at transformation
design time.

• Section 7.4 describes the code generation task (Cdgen), which produces adaptivity enabled,
compiled pattern matching strategies by generating methods for cost calculation beyond pat-
tern matching code fragments to support run-time performance estimation for these strategies
without their actual execution.

• Section 7.5 illustrates the behaviour of the adaptive engine at execution time. In the adaptation
phase Adapt, statistical data is collected on-the-fly from the current model under transformation.
Based on this data, a pattern matching strategy (i.e., an implementation of a search plan) is
selected which yields the best expected performance cost. Finally, in the execution phase Exec,
the transformation rule is applied on the instance model using the selected pattern matching
strategy.

• Section 7.6 examines and compares the run-time efficiency of Java, EJB3 and EJB QL based
implementations by using a fixed search plan as the pattern matching strategy and the object-
relational mapping as the benchmark example.

• Section 7.7 concludes this chapter and summarizes its relevance.

7.2 Collecting model statistics

Model-specific concepts require the model repository to support the maintenance of statistical data
collected from the model under transformation. For this reason, counters are introduced, whose role
is to count the number of objects (links) in the model that can be matched to a given pattern node

106 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

(edge). An object counter for a class maintains the total number of type conformant objects (denoted
by #(Class)) appearing in the model. A link counter for an association stores the number of links
that conform to the association, and that are further constrained by two additional classes, which pre-
scribe type conformance to their source and target objects, respectively. Link counters are denoted by
#(Association,SourceClass,TargetClass) in examples.

This model statistics will be heavily used both for the search plan optimization and the search plan
adaptation steps. Note that the overhead caused by the maintenance of these counters is relatively
cheap: one option is to use class-level (static) attributes and methods. In fact, in many cases, such
details are already provided by the execution environment (e.g., by a relational DBMS, if models are
persisted in a database).

The counters are declared in the repository according to the following rules.

• An object counter is added for the direct type of each pattern node.

• A link counter is added to the repository for the direct type of each pattern edge. This link counter
is restricted by the direct type of source and target nodes of the corresponding pattern edge.

Example 21 The object-relational mapping has been selected as a running example for the current
chapter as well. Its metamodel and the set of graph transformation rules have already been presented
in Figures 2.1 and 3.1. Concepts of the current chapter are going to be illustrated on the AssocEndRule,
which is shown in Fig. 3.1(f) and also repeatedly in Fig. 7.2(a). A set of sample models has been
defined by the corresponding test set in Fig. 5.8. For presentation purposes, models of Figures 5.8(c)
and 5.8(e) are repeated in Figures 7.3(a) and 7.3(b), respectively.

Since AssocEndRule contains a class C in its LHS, an object counter for Class is declared. This
counter stores the number of classes in the model, which is 4 in case of the model of Fig. 7.3(a). Note
that association a12 and table t3 should also be considered as classes due to the fact that Association and
Table are inherited from Class as specified by the metamodel of Fig. 2.1.

As the LHS of AssocEndRule has an edge r1 of type Ref connecting class C to table Tc, a link
counter #(Ref,Class,Table) is added for association Ref. The set of counted links of type Ref is restricted
by requiring their source and target objects to conform to classes Class and Table, respectively. Though
the model of Fig. 7.3(a) contains 4 links of type Ref, only two of them (namely the link connecting
association a12 to table t3 and the loop of table t3) fulfill the source and target class restrictions, thus,
#(Ref,Class,Table) = 2.

Now the formal definitions of counters are presented.

Definition 54 Given a metamodel MM , and a model M , an object counter for a class C (denoted by
#C) is a function that maps model M to the cardinality of the set consisting of such objects c in model
M whose direct type t(c) is a descendant of class C. Formally,

#C(M) =
∣∣∣{ c | c ∈ VM ∧ C

∗
^ t(c)

}∣∣∣ .
Definition 55 Given a metamodel MM , a model M , and classes S and T that are descendants of
the source and target classes of association Cs

A→ Ct, respectively, a link counter for an association
Cs

A→ Ct restricted by classes S and T (denoted by #(A,S,T)) is a function that maps model M to the
cardinality of the set consisting of such links a

e→ b of type A in model M whose source and target
objects conform to classes S and T , respectively. Formally,

#(A,S,T)(M) =
∣∣∣{ a

e→ b | a e→ b ∈ EM ∧ t(e) = A ∧ Cs
∗
^ S

∗
^ t(a) ∧ Ct

∗
^ T

∗
^ t(b)

}∣∣∣ .

7.3. GENERATING MODEL-SPECIFIC SEARCH PLANS 107

7.3 Generating model-specific search plans

Section 4.2 already introduced the overall approach of search plan driven pattern matching including
the constructs of search graphs and plans, and the pattern matching strategy generation process. In
the current section, this concept is extended by making search graphs and plans model-sensitive and
by introducing a cost model for search plans in order to generate better pattern matching strategies for
models that have been selected by the system designer as representatives of a transformation sequence
(Sec. 7.3.1). In addition, two algorithms are presented in Sec. 7.3.2 for generating low cost search plans
from model-specific search graphs.

7.3.1 Model-specific search graphs and plans

In the first phase of the search plan generation process, a search graph is created for the LHS and NAC
patterns of each rule in the same way as described in Sec. 4.2.1.

Example 22 Graph transformation rule AssocEndRule and its corresponding search graph are depicted
in Figures 7.2(a) and 7.2(b), respectively.

AE:AssocEnd

Rel:Assoc

Tc:Table

Pc:PKey

AssocEndRule

sft:SFT cf:CF

r2:Refr1:Ref

rn:Ref

eo1:EO

eo3:EO

Cc:Column

uf1:UF

cf1:CF

Fn:FKey

Trel:Table

C:Class

AE:AssocEnd

Rel:Assoc

Tc:Table

Pc:PKey

sft:SFT cf:CF

r1:Ref

r3:Ref

eo1:EO

k2:KRF

Cc:Column

uf1:UF

k1:KRF

cf1:CF

F:FKey

Trel:Table

C:Class

Crel:Column

cf2:CF

r2:Ref

(a) AssocEndRule

Tc

Rel Trel

AE

C

Pc

Cc

NAC

(b) Search graph for AssocEndRule

Figure 7.2: A sample graph transformation rule and its corresponding search graph

At this point, the transformation designer selects typical models from the problem domain, e.g.,
typical UML class diagrams and corresponding database schemas in our case. Node and edge statistics
of these typical models are available, so weights can be defined for the edges of the search graph based
on the statistical data collected from a model.

A weighted search graph is a search graph with numeric weights on its edges. (Weights are depicted
as labels of edges in Figures 7.3(c) and 7.3(d).) Informally, the weight of an edge can be considered as
an average branching factor of a possible search space tree at the level, when the given pattern edge is
selected for navigation. Such a choice for edge weights provides an easy to calculate cost function that
estimates the size of the search space.

Weight calculation rules can be summarized as follows.

• The weight of an iteration edge corresponds to the number of objects that conform to the type of
the pattern node that is represented by the target node derivative of the iteration edge. This value
is given by the object counter declared for the type of the target node derivative.

• In case of a navigation edge, first, the number of such links has to be determined that conform
to all type restrictions prescribed by the pattern edge (i.e., constraints on the type of the link,

108 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

the source object and the target object) that represents the navigation edge in turn. This value is
shown by a corresponding link counter, which is restricted by the type constraints of the pattern
edge. Since an average branching factor is aimed to be calculated for the weight, the value of the
link counter has to be divided by the number of objects that conform to the type of the source
node of the pattern edge, which is given by the object counter declared for this type.

Since the dynamic positioning of NAC checking operations requires more sophisticated techniques
(as pointed out by [64]), these operations are currently handled in a static way by always appending
them to the end of search plans. In this sense, they are also excluded from the model-sensitive search
plan generation process, which is reflected by the missing weights on NAC check edges in the weighted
search graphs. In the future, complex search plan operations (such as NAC checking and the invoca-
tion of recursive patterns [152]) are also aimed to be handled adaptively, and they are planned to be
integrated into the general framework of [64].

Example 23 Two models and their corresponding weighted search graphs are depicted in Fig. 7.3.

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO
s:Schemat3:Table

p3:PKey

cl3:Column
:Ref :Ref

:EO

:EO

:UF

:CF

(a) Model1

p:Package

c1:Class

:EO

:SFT

c2:Class

a12:Assoc

e2:AssocEnd

e1:AssocEnd

:CF

:CF

:SFT

:EO

:EO

t2:Table

p2:PKeycl2:Column

s:Schema

t1:Table

p1:PKeycl1:Column

t3:Table

p3:PKey

cl3:Column
:Ref

:Ref

:Ref

:Ref

:EO

:EO

:EO

:CF

:CF

:EO
:EO

:EO

:UF

:UF

:UF

:CF

(b) Model2

Tc

Rel Trel

AE

C

Pc

Cc

1 1 1 4 2 1 1

1

1

2

1

1

0.5

0.5

2

11

1

1
1

1

NAC

(c) Weighted search graph of the LHS pattern of GT rule
AssocEndRule based on the statistics of Model1

Tc

Rel Trel

AE

C

Pc

Cc

3 3 3 6 2 1 3

0.33

1

2

1

1

0.33

1

2

11

1

1
1

1

NAC

(d) Weighted search graph of the LHS pattern of GT rule
AssocEndRule based on the statistics of Model2

Figure 7.3: Sample instance models and corresponding weighted search graphs

The weight calculation rule is demonstrated on the navigation edge of Fig. 7.3(c) connecting free
node C to AE (denoted temporarily by a dashed line), which corresponds to the reverse traversal of
pattern edge sft of type SFT (i.e., from pattern node C to pattern node AE).

According to our statistics, Model1 contains 4 classes including classes c1 and c2, association a12,
and table t3. (Note that tables and associations should also be considered as classes according to the cor-
responding metamodel of Fig. 2.1.) Additionally, Model1 has 2 SFT links between association ends and
classes. As a consequence, if the pattern matching engine matches a Class to the pattern node C at some

7.3. GENERATING MODEL-SPECIFIC SEARCH PLANS 109

time during the execution, then the probability to find a valid AssocEnd for pattern node AE by navigat-
ing along an SFT edge is 0.5 derived by the formula #(SFT,AssocEnd,Class) / #(Class). In case of navi-
gation in the opposite direction, the formula can be expressed as #(SFT,AssocEnd,Class) / #(AssocEnd),
thus the corresponding weight is 1.

Definition 56 Given a metamodel MM and a graph transformation rule r, the weighted search graph
SGM of the LHS pattern based on the statistics of model M is the search graph SG of the LHS
pattern together with a model-dependent weight function wM : ESG → R+ that assigns non-negative
numbers to the edges of the search graph according to the following rules.

• The weight of an iteration edge d
i→ x connecting the dummy node d to pattern node derivative

x is the value of the object counter that has been declared for the direct type t(b(x)) of the origin

pattern node b(x). Formally, ∀d i→ x ∈ ESG : wM (d i→ x) = #t(b(x))(M).

• The weight of a navigation edge u
z→ v connecting pattern node derivative u to pattern node

derivative v is calculated as follows. The value of the link counter #(t(b(z)),t(b(u)),t(b(v))) declared
for the type t(b(z)) of the pattern edge b(z) restricted by direct types t(b(u)) and t(b(v)) of source
and target pattern nodes b(u) and b(v), respectively, is divided by the value of the object counter
#t(b(u)) declared for the direct type t(b(u)) of the source pattern node b(u). Formally,

∀u z→ v ∈ ESG : wM (u z→ v) =
#(t(b(z)),t(b(u)),t(b(v)))(M)

#t(b(u))(M)
.

• The weight of NAC check edges is irrelevant.

As mentioned in the overview of search plan driven pattern matching in Sec. 4.2, in case of com-
piled graph transformation approaches, search plans are prepared for all binding combinations and
pattern matching code fragments are generated and compiled for all search plans at compilation time.
The current chapter also uses this schedule for search plan driven pattern matching. In this sense, as
the following step in the search plan generation process, weighted search graphs get adorned for all
necessary binding combinations at compile-time. For presentation purposes, our current investigation
is restricted to the single adornment, in which all pattern node derivatives are free nodes.

At this point, an adorned weighted search graph is available for each typical model selected by the
domain engineer. A cost function is now defined for search plans to predict the performance of the
pattern matching strategy driven by them.

The cost of a search plan (denoted by c(SP)) is an estimation for the number of nodes in the search
space tree (SST), which would be generated during the execution of the pattern matching strategy
defined by the search plan. The total number of nodes can be calculated by summing the nodes of
the SST on a level-by-level basis. The number of nodes on the ith level of the SST is the product of
branching factors of such search forest edges whose target node is labelled by at most i according to
the search plan.

As weights denote branching factors, the minimization of a search plan with such a cost function
results in a SST that is expected to be small. Moreover, such a search plan fulfills the first-fail principle
criteria as it represents a SST that is narrow at the levels near to its root.

Example 24 Sample search plans on adorned, weighted search graphs are depicted in Fig. 7.4.
Both weighted search graphs are adorned by marking all their pattern node derivatives as free nodes,

thus, only the dummy node is surrounded by the dashed box showing the bound part of the weighted
search graph.

110 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

Tc

Rel Trel

AE

C

51 4 6 7

4 765

2

3

Pc

Cc

1

3

2

1 1 1 4 2 1 1

1

1

2

1

1

0.5

0.5

2

11

1

1
1

1

NAC

7

(a) Search plan defined for the adorned, weighted search
graph of Fig. 7.3(c) whose statistics is based on Model1

Tc

Rel Trel

AE

C

35 4 1 2

5

2

34

6

7

Pc

Cc

1

7

6

3 3 3 6 2 1 3

0.33

1

2

1

1

0.33

1

2

11

1

1
1

1

NAC

7

(b) Search plan defined for the adorned, weighted search
graph of Fig. 7.3(d) whose statistics is based on Model2

Figure 7.4: Sample search plans on adorned, weighted search graphs

Cost calculation is illustrated for the search plan of Fig. 7.4(a), which uses the statistics based on
Model1 (Fig. 7.3(a)). This search plan binds table Tc first. As shown by the weight on the search forest
edge leading to free node Tc with search plan label 1, a single object of type Table is expected to be
found in Model1. As a consequence, the SST has one node on its first level. Since weights of search
forest edges with labels 2 and 3 are also 1, the SST is expected to have 1 · 1 and 1 · 1 · 1 node on
its second and third level. Then the SST probably fork in two directions at level 4 as shown by the
corresponding weight, thus, the number of nodes on this level is 1 · 1 · 1 · 2. By following the same
procedure for the remaining search forest edges, and finally, by summing the SST nodes being found
on different levels, the grand total number of nodes is resulted. On this specific search plan, the cost is
c(SP) = 1+1 · 1+1 · 1 · 1+1 · 1 · 1 · 2+1 · 1 · 1 · 2 · 0.5+1 · 1 · 1 · 2 · 0.5 · 1+1 · 1 · 1 · 2 · 0.5 · 1 · 1 = 8.
The cost of the search plan of Fig. 7.4(b) whose statistics is based on Model2 of Fig. 7.3(b) is 12.

Note that the search plans of Fig. 7.4 are the ones that would be selected by the algorithms of
Sec. 7.3.2, but their optimality even for their corresponding models cannot be generally proven. How-
ever, in specific cases like the search plan of Fig. 7.4(a) prepared for Model1 the optimality can be easily
demonstrated.

• If the search plan started with node C, then the first and the second term in the sum would be
4 and 2, respectively. If the algorithm chose an edge with weight 1 at this point, the first three
terms would already give 8. As a consequence, only the other edge with weight 0.5 could be
selected at the third choice point. In this case, the sum of the first three terms is already 7, and
there are four more edges with weight 1 to be included in the search plan, which exceeds 8.

• If the search plan started with node AE, then the edge from C to Tc with weight 0.5 should be
included as soon as possible to decrease the term to be added to 1. This can happen in the third
round at earliest. Even in this case, the cost is already 5, and there are four more edges with
weight 1.

• If the search plan started with nodes Rel or Trel, then node Tc can only be reached via AE and
C, which adds 5 to the cost at some point. Since the first edge has weight 1, and there are three
additional similarly weighted edges, the cost of such search plans would be 9.

• The only remaining case is when the search plan starts with nodes on the left side (i.e., Tc, Pc,
Cc), which yields a number of equivalent search plans whose cost is 8.

Definition 57 Given an adorned, weighted search graph ASGM of the LHS pattern based on the statis-
tics of model M together with a corresponding search plan SP, the cost of search plan SP (denoted

7.3. GENERATING MODEL-SPECIFIC SEARCH PLANS 111

by c(SP)) is a non-negative number, which predicts the performance of the pattern matching strategy
that is driven by search plan SP. The cost of search plan SP is calculated as

c(SP) =
|V F

SG|∑
i=1

i∏
j=1

wj

where wj denotes the weight wM (u z→ v) of search forest edge u
z→ v ∈ ESF, which leads to free node

v labelled by j according to search plan SP (i.e., SP(v) = j). The terms are summed for all free nodes
V F

SG of adorned search graph ASGM .

7.3.2 Algorithms for finding low cost search plans

I adapted two traditional greedy algorithms to solve the problems of finding a low cost search forest for
a given adorned, weighted search graph and a low cost search plan for a given search forest. Note that
traditional minimum spanning tree algorithms operating on directed graphs use a different cost function
(i.e., the sum of weights) for determining the cost of a spanning tree, which means that their solutions
are not necessarily optimal in our case.

For finding a low cost search tree in a weighted search graph, the Chu-Liu / Edmonds algorithm
[26, 34] is used, which is outlined in Algorithm 7.1. This algorithm searches for a spanning tree in a
directed graph that has the smallest cost according to a cost function defined as the sum of weights.

Algorithm 7.1 The Chu-Liu / Edmonds algorithm

Given a weighted search graph.
Step 1: Discard the edges entering the dummy node or the bound nodes.
Step 2: For each free node, select an incoming edge with the smallest weight. Let the selected n − 1
edges be the set S.
Step 3: If there are no cycles formed by the edges of S, then the selected edges constitute a minimum
spanning tree of the graph and the algorithm terminates. Otherwise the algorithm continues.
Step 4: For each cycle formed, contract the nodes in the cycle into a pseudo-node k, and modify the
weight of each edge entering node j in the cycle from some node i outside the cycle according to the
following equation.

w(i, k) = w(i, j)− [w(x(j), j)−minl{w(x(l), l)}]

where w(x(j), j) is the weight of the edge in the cycle which enters j.
Step 5: For each pseudo-node, select the entering edge, which has the smallest modified weight. Re-
place the edge, which enters the same real node in S by the new selected edge.
Step 6: Go to step 3 with the contracted graph.

Example 25 Figure 7.5 presents how the Chu-Liu / Edmonds algorithm operates on the weighted
search graph of Fig. 7.3(c).

Since the dummy node has only outgoing edges, and no bound nodes exist in the adorned weighted
search graph, the first step is executed without discarding any edges. In the second step, for each free
node, the incoming edge with the smallest weight is selected as shown by the black edges of Fig. 7.5(a).
Since the circled part consisting of dotted edges bidirectionally connecting free nodes C and AE form

112 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

Tc

Rel Trel

AE

C

Pc

Cc

1 1 1 3.5 2 1 1

1

1

2

1

1

0.5

0.5

1.5

11

1

1
1

1

NAC

(a) Processing the first cycle

Tc

Rel Trel

Pc

Cc

1 1 1 2.5 1 1 1

1

1

1

1

0.5

1.5

11

1

1
1

1

NAC

(b) Processing the second cycle

Rel Trel

Pc

Cc

1 1 1 2.5 1 1 1

1

1

1

1

11

1

1
1

1

NAC

(c) No more cycles found

Tc

Rel Trel

Pc

Cc

1 1 1 3.5 2 1 1

1

1

2

1

0.5

1.5

11

1

1
1

1

NAC

(d) Restoring tree structure at the second cycle

Tc

Rel Trel

AE

C

Pc

Cc

1 1 1 4 2 1 1

1

1

2

1

1

0.5

0.5

2

11

1

1
1

1

NAC

(e) Restoring tree structure at the first cycle

Figure 7.5: Cycle elimination in the Chu-Liu / Edmonds algorithm

a cycle, it has to be contracted. Weights of edges (denoted by numbers surrounded with dotted boxes)
entering the contracted part have to be recalculated.

For the recalculation, the minimum weight in the cycle has to be determined first, which is 0.5 in
our case. Then for each node of the cycle, the difference of the weight of the incoming cycle edge and
the minimum value is calculated. For instance, the cycle edge leading to free node C has weight 1, thus,
the difference is 0.5. Finally, weights of edges entering the contracted part should be decreased by the
difference. By using this calculation method, the weight of edge connecting node Tc to C is reduced
by 0.5 from 2 to 1.5, while the edge connecting nodes Rel to AE remains unmodified as the difference
calculated for the edge entering AE is 0.

When weight recalculation is finished, the cycle gets contracted, and the edge with the smallest
weight entering the contract node is selected into the forest. In our case, the navigation edge connecting
free node Tc to C is chosen. When the first cycle is processed, the situation of Fig. 7.5(b) is resulted.

Since the new forest edge also forms a cycle together with the reverse navigation edge, the cycle
eliminating procedure has to be repeated resulting in a situation shown in Fig. 7.5(c), which is now
cycle free.

As the graph of Fig. 7.5(c) is already a forest, contracted nodes are now replaced with their origin
cycles in reverse order. In this sense, the second cycle is restored first as shown by Fig. 7.5(d). While

7.4. COMPILE-TIME TASKS OF ADAPTIVE PATTERN MATCHING 113

replacing contracted nodes, the tree structure has to be restored by removing the cycle edge from the
forest that leads to the same free node, to which the edge entering the cycle goes. In our case, the cycle
edge leading to Tc is removed from the tree. Finally, the same procedure is repeated for the first cycle
found, resulting in a search forest shown in Fig. 7.5(e).

In case of finding a low cost search plan in a given search forest, a simple greedy algorithm is used,
which is sketched in Algorithm 7.2.

Algorithm 7.2 A greedy algorithm for generating a low cost search plan

Given a search forest.
Step 0: Set the counter to 1 and let S be the set consisting of the dummy node and the bound nodes.
Step 1: Select the smallest forest edge e that goes out from S.
Step 2: Set the target node of e to the value of the counter.
Step 3: Increment the counter by 1 and add the target node of e to S.
Step 4: If the search forest still has a node that is not in S, then go back to Step 1.

We do not state that these simple algorithms provide optimal solutions for our special cost model,
but best engineering practice suggests that if edges with weights giving the minimum sum are selected,
then the search forest and the search plan consisting of the same edges also have low cost when our spe-
cial cost function is employed. Simplicity and speed are further arguments in favour of the successful
application of such algorithms.

Example 26 For illustrating the operation of Algorithm 7.2 on an example, the search forest of
Fig. 7.5(e) has been selected as a starting point. In the first iteration, since the algorithm has no alterna-
tives, it selects the iteration edge connecting the dummy node to free node Tc. In the second iteration,
3 outgoing forest edges can be found, namely the ones connecting node Tc to Cc, Pc, and C, respec-
tively. These forest edges are processed in this specific order as their weights form a non-decreasing
sequence,1 and no new outgoing forest edges get into the set of valid choices. After the fourth iteration,
the algorithm has no alternatives for forest edge selection, thus, it assigns labels 5, 6, and 7 as shown
in Fig. 7.4(a), which in turn depicts the resulting search plan.

7.4 Compile-time tasks of adaptive pattern matching

At this point, several search plans have been elaborated by either the model-specific approach of
Sec. 7.3, or any other search plan generation techniques.

In a traditional pattern matching approach, for each pair of LHS pattern and adornment, only one
search plan is selected and compiled in the code generation phase resulting in executable code on the
target platform. This approach is now extended to support adaptive execution by generating pattern
matching code for several search plans having been prepared for each LHS pattern and adornment
combination, and by defining a model-dependent cost function, which can be evaluated at run-time for
estimating the performance of the given pattern matching strategy before actually executing it.

1Edges leading to nodes Cc and Pc can be processed in a reverse order as well as they have the same weight.

114 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

7.4.1 Theoretical foundations of compile-time support for adaptivity

Our solution for code generation uses the Strategy design pattern [48] (see Fig. 7.6), which means that
a class extending the abstract PatternMatchingStrategy class is generated from each search
plan.

PatternMatchingStrategy

cost

match

StrategyFromModel2StrategyFromModel1

Figure 7.6: Strategy design pattern

The abstract class has two basic functionalities, which have to be supported by the generated classes
as well.

(a) One method (i.e., match()) implements the actual pattern matching algorithm. Since our aim
is to focus on the novelties of adaptation related topics, the generation of pattern matching algo-
rithms is not discussed in more details that has already been presented in Sec. 4.2.5.

(b) The other relevant functionality is the calculation of cost for the given pattern matching strategy
based on the statistics of the actual instance model available at run-time.

In order to support cost calculation functionality of pattern matching strategies, a model-dependent
cost function cSP(M) has to be specified for each search plan SP that drives the corresponding strategy.
In this thesis, we use the cost function

cSP(M) =
|V F

SG|∑
i=1

i∏
k=1

ck(M)

where operation cost ck(M) is defined by the following three rules.

• Cost of iteration. If the source node d of the search forest edge leading to the free node v with
label k is the dummy node, then the operation cost is given by the value of the object counter
#t(v) that has been defined for the direct type t(v) of pattern node v, which is the origin of free
node v, in turn. Formally,

∀k ∈ Z+ : 1 ≤ k ≤
∣∣V F

SG

∣∣ ∧ SP(v) = k ∧ d
z→ v ∈ ESF ∧ b(v) = v =⇒ ck(M) = #t(v)(M)

• Cost of forward navigation. If the search forest edge u
z→ v connects pattern node derivative u

to free node v with label k and goes in the same direction as its origin search graph edge u
z→ v,

7.4. COMPILE-TIME TASKS OF ADAPTIVE PATTERN MATCHING 115

then the operation cost is calculated as follows. The value of the link counter #(t(z),t(u),t(v))

declared for the type t(z) of the pattern edge z restricted by direct types t(u) and t(v) of source
and target pattern nodes u and v, respectively, is divided by the value of the object counter #t(u)

declared for the direct type t(u) of the source pattern node u. Formally,

∀k ∈ Z+ : 1 ≤ k ≤
∣∣V F

SG

∣∣∧SP(v) = k∧ u
z→ v ∈ ESF ∧ u ∈ V P

SG ∧ b(u z→ v) = u
z→ v =⇒

ck(M) =
#(t(z),t(u),t(v))(M)

#t(u)(M)

• Cost of backward navigation. If the search forest edge v
zinv→ u leading from pattern node

derivative v to free node u with label k goes in the opposite direction as its origin search graph
edge u

z→ v, then the operation cost is calculated as follows. The value of the link counter
#(t(z),t(u),t(v)) declared for the type t(z) of the pattern edge z restricted by direct types t(u) and
t(v) of source and target pattern nodes u and v, respectively, is divided by the value of the object
counter #t(v) declared for the direct type t(v) of the target pattern node v. Formally,

∀k ∈ Z+ : 1 ≤ k ≤
∣∣V F

SG

∣∣∧SP(u) = k∧v
zinv→ u ∈ ESF∧v ∈ V P

SG∧b(v zinv→ u) = u
z→ v =⇒

ck(M) =
#(t(z),t(u),t(v))(M)

#t(v)(M)

Note that the above-mentioned cost function is exactly the same as the one in Sec. 7.3.1 that has
been used for defining model-specific search graphs for typical models in the optimization phase. How-
ever, the application schedule of these cost functions completely differ as the one defined in the current
section is evaluated at run-time, while the other is calculated at compile-time. It is worth emphasiz-
ing that the presented adaptive pattern matching approach also requires the statistics support of the
underlying model repository as it uses object and link counters for cost calculations.

7.4.2 Compile-time tasks in EJB3-based adaptive pattern matching

We present how an EJB3-based pattern matching engine can be made adaptive. In this sense, code frag-
ments having been generated for a sample inherited concrete strategy class are shown, which implement
pattern matching and cost calculation functionalities.

Example 27 Pattern matching driven by the search plan of Fig. 7.4(a) is implemented by the code
presented in Listing 7.1. Note that this method is structurally similar to code fragments of Listings 4.1
and 4.2, which have been shown earlier in Sec. 4.2.5.

This strategy starts with iterating all tables and binding them to table Tc one-by-one (Lines 2–5).
For each table in the model, a corresponding column and primary key is sought by navigating along
links of type CF (Lines 6–9) and EO (Lines 10–13), respectively. At this point, the existence of a UF
link between the previously bound column and primary key is checked (Lines 14–15). Then the class,
which has been transformed to the table assigned to Tc is determined and it is bound to C (Lines 16–
17). Note that reference edges can be navigated without a while loop as at most one multiplicity
constraints have been defined for both ends of such edges in the metamodel. When AE, Rel, and Trel
are already bound to a corresponding association end, association, and table by code fragments of
Lines 18–21, 22–23, and 24–25, respectively, the checking of the NAC follows (Lines 26–29), which
requires a matching to be initalized with the mapping of AE. When the NAC check fails, mappings
of Tc, Cc, Pc, C, AE, Rel, and Trel constitute a complete matching, which can be returned as a result
(Lines 31–35).

116 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

1 public Matching match(Matching initialMatching) {
2 // Level 1 -- Binds tc : Table
3 Iterator<Table> iTc = getAllTables();
4 while (iTc.hasNext()) {
5 Table tc = iTc1.next();
6 // Level 2 -- Binds cc : Column
7 Iterator<Feature> iCc = tc.getCF();
8 while (iCc.hasNext()) {
9 Column cc = (Column) iCc.next();

10 // Level 3 -- Binds pc : PKey
11 Iterator<ModelElement> iPc = tc.getEO();
12 while (iPc.hasNext()) {
13 PKey pc = (PKey) iPc.next();
14 // Checks UF edge
15 if (pc.getUF().contains(cc)) {
16 // Level 4 -- Binds c : Class
17 Class c = (Class) tc.getRef();
18 // Level 5 -- Binds ae : AssocEnd
19 Iterator<Feature> iAE = c.getSFT();
20 while (iAE.hasNext()) {
21 AssocEnd ae = (AssocEnd) iAE.next();
22 // Level 6 -- Binds rel : Association
23 Association rel = (Association) ae.getCF();
24 // Level 7 -- Binds trel : Table
25 Table trel = (Table) rel.getRef();
26 // Checks NAC
27 Matching mNAC = new Matching();
28 mNAC.set("AE", ae);
29 if (! nacMatcher.match(mNAC)) {
30 // Prepares the result matching
31 Matching result = new Matching();
32 result.set("Tc",tc); result.set("Cc",cc); result.set("Pc",pc);
33 result.set("C",c); result.set("AE",ae); result.set("Rel",rel);
34 result.set("TRel",trel);
35 return result;
36 } } } } } } }

Listing 7.1: Program code equivalent of the search plan of Fig. 7.4(a)

Example 28 By using the search plan of Fig. 7.4(a), a corresponding cost calculation method is also
generated as shown by Listing 7.2.

The cost method processes search forest edges in an increasing order according to the label at-
tached to their target free node. Local variable term stores the product of the cost of such forest edges
that have already been processed, while variable result denotes the partial result of the addition. For
each forest edge, variable term is multiplied by the corresponding cost of the edge, then it is added
to the partial result. E.g., forest edge connecting Tc to Cc has label 2 at its target node derivative Cc,
so it is processed in the second round (Lines 8–11). This forest edge represents a backward navigation
along links of type CF starting from the table assigned to pattern node Tc, so its cost is calculated by
dividing the link counter #(CF,Column,Table) by the object counter #(Table) declared for the direct type
of the already fixed pattern node Tc.

7.5. RUN-TIME TASKS OF ADAPTIVE GRAPH TRANSFORMATION 117

1 public double cost() {
2 double term = 1.0;
3 double result = 0.0;
4 // Forest edge with label 1
5 // #(Table)
6 term *= cntTable();
7 result += term;
8 // Forest edge with label 2
9 // #(CF,Column,Table) / #(Table)

10 term *= cntCFColumnTable() / cntTable();
11 result += term;
12 // Forest edge with label 3
13 // #(EO,PKey,Table) / #(Table)
14 term *= cntEOPKeyTable() / cntTable();
15 result += term;
16 // Forest edge with label 4
17 // #(Ref,Class,Table) / #(Table)
18 term *= cntRefClassTable() / cntTable();
19 result += term;
20 // Forest edge with label 5
21 // #(SFT,Class,AssocEnd) / #(Class)
22 term *= cntSFTClassAssocEnd() / cntClass();
23 result += term;
24 // Forest edge with label 6
25 // #(CF,AssocEnd,Association) / #(AssocEnd)
26 term *= cntCFAssocEndAssociation() / cntAssocEnd();
27 result += term;
28 // Forest edge with label 7
29 // #(Ref,Association,Table) / #(Association)
30 term *= cntRefAssociationTable() / cntAssociation();
31 result += term;
32 return result;
33 }

Listing 7.2: Cost calculation program code based on the search plan of Fig. 7.4(a)

7.5 Run-time tasks of adaptive graph transformation

When compile-time tasks are completed, several pattern matching strategies are available in a compiled
form for each LHS pattern and adornment combination. By means of model-dependent cost functions,
these strategies also provide support for estimating their performance without actually executing them.

At run-time, when pattern matching is initiated for a given LHS pattern with a given adornment,
the model-dependent cost of all corresponding strategies is calculated (see the Adapt phase in Fig. 7.1).
Then the strategy with the best expected performance is executed (in the Exec phase of Fig. 7.1). Since
the cost of a single strategy may vary depending on the current instance model, the relationship between
costs of different strategies may change as transformation progresses. Note also that adaptivity only
pays off, if the runtime gain caused by the execution of a low cost strategy exceeds the time spent on
cost calculation, which is frequently the case for large models.

This observation also raises the problem of scheduling the invocations of run-time cost calculations.
In this section, search plan costs are calculated before each rule application, however, this might not
always be the best scheduling strategy as instance models typically do not change significantly during
consecutive rule applications. An alternative (and sometimes better) strategy could be to only recalcu-

118 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

late search plan costs periodically, and to use the selected low cost search plan for rule applications of a
certain, predefined length (e.g., 10 or 20). Note that the best scheduling strategy is typically application
domain dependent, and this topic is not discussed further in this thesis.

7.5.1 Adaptive graph pattern matching: An illustrative example

Adaptivity in graph pattern matching is illustrated by an example.

Example 29 Let us consider that Model1 of Fig. 7.3(a) is evolved into Model2 of Fig. 7.3(b) as a result
of some other rule applications. Let us further suppose that pattern matching strategies have been
compiled for the search plans of Figures 7.4(a) and 7.4(b).

Cost calculation for possible combinations of pattern matching strategies and instance models is
depicted in Fig. 7.7.

Tc

Rel Trel

AE

C

51 4 6 7

4 765

2

3

Pc

Cc

1

3

2

1 1 1 4 2 1 1

1

1

2

1

1

0.5

0.5

2

11

1

1
1

1

NAC

7

(a) Strategy defined by the search plan of Fig. 7.4(a) with edge
weights based on the model of Fig. 7.3(a)

Tc

Rel Trel

AE

C

35 4 1 2

5

2

34

6

7

Pc

Cc

1

7

6

1 1 1 4 2 1 1

1

1

2

1

1

0.5

0.5

2

11

1

1
1

1

NAC

7

(b) Strategy defined by the search plan of Fig. 7.4(b) with edge
weights based on the model of Fig. 7.3(a)

Tc

Rel Trel

AE

C

51 4 6 7

4 765

2

3

Pc

Cc

1

3

2

3 3 3 6 2 1 3

0.33

1

2

1

1

0.33

1

2

11

1

1
1

1

NAC

7

(c) Strategy defined by the search plan of Fig. 7.4(a) with edge
weights based on the model of Fig. 7.3(b)

Tc

Rel Trel

AE

C

35 4 1 2

5

2

34

6

7

Pc

Cc

1

7

6

3 3 3 6 2 1 3

0.33

1

2

1

1

0.33

1

2

11

1

1
1

1

NAC

7

(d) Strategy defined by the search plan of Fig. 7.4(b) with edge
weights based on the model of Fig. 7.3(b)

Figure 7.7: Illustrating adaptive graph pattern matching

In each subfigure, node labels and labelled black edges reflect the search plan which specified the
pattern matching strategy, while edge weights depend on the corresponding instance model. Subfigures
are organized in a tabular form based on the following guidelines.

• Rows represent points in the timeline of the transformation sequence being executed. Thus, each
row shares a common instance model that is used by different strategies for cost calculation. As
a consequence, edge weights are always the same in subfigures appearing in the same row.

• Each column represents a given strategy in different points of the transformation sequence. As
a consequence, the structure of node labels and labelled black edges are always the same in
subfigures appearing in the same column.

7.6. PERFORMANCE EVALUATION 119

Initially, when Model1 is active, costs of strategies represented by Figures 7.7(a) and 7.7(b) are 8
and 9, respectively, thus, the first strategy is selected for execution. On the other hand, when the model
has been evolved into Model2 by applying some other rules, a new situation appears, since costs of
strategies represented by Figures 7.7(c) and 7.7(d) are now 21 and 12, respectively. As a result, the
pattern matching engine executes the second strategy for Model2.

Note that this behaviour is not surprising as the first and second strategy have been prepared at
compile-time in such a way that corresponding search plans are optimized for typical models Model1
and Model2, respectively.

7.5.2 Run-time tasks in EJB3-based adaptive pattern matching

We present how run-time tasks of an adaptive EJB3-based pattern matching engine (including tasks in
the Adapt and Exec phases of Fig. 7.1) can be implemented.

For each LHS pattern and adornment combination, a stateless session bean is prepared, which
maintains references to the available, compiled pattern matching strategies. The stateless session bean
implements the match() method of the IPatternMatcher interface as presented by Listing 7.3.

1 boolean match(Matching m) {
2 // Finding the cheapest strategy
3 Strategy cheapestStrategy = strategies.get(0);
4 double cheapestCost = cheapestStrategy.cost();
5 for (int i=1; i < strategies.size(); i++) {
6 Strategy currentStrategy = strategies.get(i);
7 double currentCost = currentStrategy.cost();
8 if (currentCost < cheapestCost) {
9 cheapestCost = currentCost;

10 cheapestStrategy = currentStrategy;
11 }
12 }
13 // Executing the cheapest strategy
14 return cheapestStrategy.match(m);
15 }

Listing 7.3: Implementation of the match() method

The adaptation phase Adapt is reflected by Lines 2–12. This code fragment iterates over all pattern
matching strategies (Lines 5–12), by also maintaining references to strategies (Line 6) and their corre-
sponding costs (Line 7), and selects the cheapest strategy, which is later executed (in the Exec phase)
in Lines 13–14.

By using container managed transactions, the match() method also provides the transaction con-
text for pattern matching execution. This feature of the application server enables the parallel execution
of a given rule without any modification in the pattern matching code.

7.6 Performance evaluation

In this section, the performance of the adaptive graph pattern matching technique and different EJB3-
based transformation plugins is evaluated.

120 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

Performance analysis of the adaptive pattern matching approach. The quantitative performance
analysis of the adaptive graph pattern matching approach has been deferred for years due to the lack of
statistics support in underlying model repositories at the time of the development.

A recent report [12] examined the correlation of search plan costs and execution times in adaptive
pattern matching approaches. More specifically, the authors focused on the quality of heuristics by
checking whether low cost search plans also have short execution times.

In these experiments, three cost models have been examined and compared, namely, the heuristics
proposed in this chapter, the highly similar original approach in GrGen [10, 11], and a new heuristics
called Backtracking Lookup [12], which introduced costs for edge lookups as well. All search plans
were generated for a given rule precondition according to each heuristics while measuring the execution
time for each search plan. The exact experiment settings can be found in [12].

Based on the plots prepared for these measurements, the following statements could be made.

• On the Mutex STS test set of Sec. 5.3.1, all the heuristics (including the one presented in the
current chapter) always produced the optimal search plan.

• The execution times of the possible search plans have a rather unbalanced distribution, so there is
room for optimizations, which is confirmed by the development of the new Backtracking Lookup
heuristics, which provided better search plans on an example originating from the compiler con-
struction domain.

The memory consumption of graph transformation tools (including approaches using the adaptive
pattern matching technique) has been assessed at the AGTIVE Tool Contest on the Sierpiński triangle
benchmark example [133]. Note that this benchmark can only provide a inaccurate view on the perfor-
mance of the adaptive technique as this approach should not have a significant influence on memory
usage by its nature.

Quantitative performance analysis of transformation plugins. The performance of EJB3-based
transformation plugins (namely, the portable EJB QL based solution of Sec. 6.6 and the approach of
Sections 7.4.2 and 7.5.2 that operates on EJB3 entity beans) is evaluated by carrying out experiments on
the object-relational mapping benchmark example, which has already been introduced in Sec. 5.4. Our
main goal was to assess the overhead caused by an application server and the underlying persistence
layer (including the relational database) required to run EJB3 applications. Therefore, after fixing a
common pattern matching strategy, we executed measurements on three different approaches. In the
first case, the transformation is performed on models consisting of in-memory Java objects without
using an application server and a database. In the other two approaches, the transformation runs in an
application server as an Enterprise Java Bean, and the corresponding instance model consists of entity
beans, which are stored in the underlying database. The second approach executes pattern matching
imperatively in the way described by the match() method in Sec. 7.4.2, while the third approach uses
EJB QL queries in the pattern matching phase as presented in Sec. 6.6.

Since the optimization strategy of parallel rule execution is expected to have a significant impact
on the run-time performance of all these approaches, its effect has also been observed during the mea-
surements. Two test cases have been identified by switching this tool feature on and off. For each test
case, the parameter N , which denotes the number of classes in the run, was fixed to 10, 30, 50, and
100.

For our measurements, we used a 1500 MHz Pentium machine with 768 MB RAM and a Linux
operating system with kernel version 2.6.7 running Java SDK 1.5, JBoss application server version

7.6. PERFORMANCE EVALUATION 121

4.2.1, Hibernate object-relational persistence layer version 3.2.4, and MySQL relational database ver-
sion 4.1.7. The execution time results are shown in Table 7.1.

Class Model TS

size length match update match update match update

msec msec msec msec msec msec

10 1342 146 0.01 0.03 117.31 13.91 7.14 125.87

30 12422 1336 0.01 0.03 960.87 49.50 14.34 978.22

50 34702 3726 0.05 0.06 28.07 2767.67

100 139402 14951 0.01 0.01

10 1342 146 0.01 0.03 23.38 10.19 2.83 18.17

30 12422 1336 0.01 0.01 41.07 6.33 2.66 38.97

50 34702 3726 0.01 0.01 71.31 16.49 2.93 58.95

100 139402 14951 0.01 0.01 123.45 13.04 3.40 115.48

10 1342 146 0.04 0.03 100.95 10.98 8.59 68.82

30 12422 1336 0.03 0.01 796.00 25.84 7.73 478.06

50 34702 3726 0.06 0.01 9.32 1364.83

100 139402 14951 0.36 0.01

10 1342 146 0.01 0.03 7.94 5.39 2.30 5.41

30 12422 1336 0.01 0.03 7.54 5.91 2.25 5.34

50 34702 3726 0.01 0.02 10.79 5.29 2.30 7.71

100 139402 14951 0.01 0.04 24.14 4.72 2.32 15.48

10 1342 146 1.56 0.04 319.02 384.45 11.14 67.67

30 12422 1336 0.39 0.01 2253.24 3387.53 12.91 148.55

50 34702 3726 1.20 0.01 19.54 229.79

100 139402 14951 5.11 0.01

10 1342 146 0.04 0.03 16.58 11.79 4.11 11.82

30 12422 1336 0.02 0.01 51.10 43.32 4.08 34.47

50 34702 3726 0.01 0.01 134.87 118.27 3.89 69.38

100 139402 14951 0.01 0.01 402.06 358.67 3.95 215.93

OFF

ON

OFF

ON

OFF

ON

ObjRel

A
s
s
o
c
E
n
d
R

u
le

A
s
s
o
c
ia

ti
o
n
R

u
le

C
la

s
s
R

u
le

parallel

parallel

parallel

parallel

EJB QL

parallel

parallel

Java EJB

Table 7.1: Performance evaluation of EJB3 plugins

The head of a row (i.e., the first two columns) shows the name of the rule and the optimization
strategy settings for the single tool feature (i.e., parallel rule execution) on which the average is cal-
culated. (Note that a rule is executed several times in a run.) The third column (Class) depicts the
number of classes in the run, which is, in turn, the runtime parameter N of the test case. The fourth
and fifth columns show the concrete values for the model size and the transformation sequence length,
respectively. Heads of the remaining columns unambiguously identify the approach having been used.
Values in match and update columns depict the average times needed for a single execution of a rule
in the pattern matching and updating phase, respectively. Execution times were measured on a mi-
crosecond scale, but a millisecond scale is used in Table 7.1 for presentation purposes. Light grey areas
denote run-time failures due to exceeding the default limits of the application server on the number and
size of transactions.

Our observations can be summarized as follows.

• General performance related observations. On a given model size, the pure Java solution runs
three or four orders of magnitude faster than the enterprise applications during both the pattern
matching and the updating phase. The slowness of enterprise applications is caused mainly by
the overhead of disk-based storage, and transaction handling, and partially by the maintenance
of database connections.

122 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

• Performance degradation caused by the different data structures used by the model repos-
itory. There is a further factor, which causes a significant deceleration of enterprise applications
during the updating phase and in case of large models. This originates from the fact that the
most frequently applied model manipulation steps operate on different data structures. In this
sense, the pure Java solution stores neighbouring objects in linked lists, to which new objects can
be added in constant time, while the underlying relational database of application servers uses a
tree-based data structure, in which additions can only be performed in logarithmic time.

• Unsuitable proxy and transaction handling mechanisms in Hibernate and JBoss. An unac-
ceptably slow execution time and high resource demand have been detected in case of enterprise
applications, which have been caused by the current version of the proxy mechanism of Hiber-
nate and the transaction handling of JBoss.

7.7 Conclusions

In the current chapter, I elaborated an adaptive method for executing model-specific search plans in
order to improve the performance of graph transformation in its pattern matching phase.

• Costs and optimization mechanisms for model-specific search plans. I defined a cost function for
model-specific search plans which estimates the size of the search space that would be traversed
during search plan execution. In order to find a low cost search plan according to the special
cost function defined for model-specific search plans, I elaborated an optimization technique by
customizing traditional greedy algorithms (Sec. 7.3).

• Adaptive graph transformation engine. I elaborated an adaptive graph transformation engine
which is able to select the optimal pattern matching strategy at execution time from the set of
precompiled strategies by exploiting run-time model statistics (Sections 7.4.1 and 7.5.1).

• EJB3-based prototype engine. I prepared an EJB3-based prototype of the adaptive graph trans-
formation engine for the Java 2 Enterprise Edition (J2EE) platform by generating code for pattern
matching and cost calculation functionalities of concrete strategies, and by implementing a state-
less session bean that selects the optimal strategy at run-time (Sections 7.4.2 and 7.5.2).

• Quantitative evaluation of Java, EJB3 and EJB QL based pattern matching. After fixing a com-
mon search plan, I examined and compared the efficiency of Java, EJB3 and EJB QL based
pattern matching implementations on a benchmark example (Sec. 7.6).

The above-mentioned results are published in [7, 63, 64, 148, 152, 156]. The results of this chapter
have been integrated into the VIATRA2 model transformation framework [142, 143, 144].

Relevance

It is worth noting that the main contributions of the current chapter (i.e., model-specific search plans
and the adaptive pattern matching technique) constitute an orthogonal framework of novelties so their
relevance can be evaluated independently and also in combination.

Concepts of model-sensitive search plans are directly applicable to further fine-tune the perfor-
mance of any compiler-based GT approaches. This statement is confirmed in [51, 132] by the devel-
opers of GrGen tool who independently develop the same technique [10, 11] with minor differences
in operation cost assignment and search plan cost calculation. A recent paper [12] reported about a
new heuristics called Backtracking Lookup by introducing costs for edge lookups, which may further

7.7. CONCLUSIONS 123

accelerate pattern matching in scenarios originating from compiler construction application domain.
GrGen generates search plan driven strategies as C# code, in contrast to our approach, which produces
EJB3 compliant Java code. GrGen has no predefined scheduling strategies for cost recalculation. This
task can be initiated on request from the GrShell. Each time a search plan cost is recalculated, a cor-
responding pattern matching strategy is generated, which can later be dynamically linked into GrGen.
(For comparisons to sophisticated pattern matching strategies of compiled (but non-model-sensitive)
graph transformation approaches see Sec. 7.1.)

The combination of adaptive and model-sensitive pattern matching techniques can be used in in-
terpreted GT engines as well. If model-specific search graphs are used, then a single low cost search
plan can be dynamically prepared at run-time at each rule invocation by using the current adornment
and the statistics of the instance model under transformation. In this sense, the pattern matching is
always guided by a low cost strategy with respect to the current instance model in contrast to compiled
GT engines, which can only select the optimal from the set of precompiled pattern matching strategies.
As a common practical application field of this combined technique, the model transformation frame-
work of VIATRA2 should be mentioned as all these contributions are currently being built into its new
interpreted graph transformation engine.

The adaptive, model-sensitive pattern matching technique has been recently analyzed quantitatively
in [12] by using the benchmarking framework of Chapter 5. In this survey, the authors prove the
feasibility of the adaptive approach by demonstrating a strong correlation between search plan costs and
pattern matching execution time, which means that the cost model having been presented in Sec. 7.4.1
can be successfully used for estimating the performance of pattern matching.

In the future, adaptivity and model-specific search plans are aimed to be integrated into the generic
framework [64] of search plan operations to make its cost assignment dynamic and model dependent by
replacing the current static, heuristics-based method. In this sense, this generic framework enables the
proper and performance optimal positioning of complex search plan operations (such as NAC checking
and the invocation of recursive patterns [152]).

Limitations

It should be emphasized that this chapter presented practical heuristics for pattern matching. Neither
the technique of model-specific search plans, nor the approach of adaptive graph pattern matching can
be provenly optimal by their nature due to the following reasons.

First of all, counters of the model repository store aggregated statistical data, which obviously
cannot reflect the exact structure of the instance model. Even if all counters share the very same
values, the underlying instance models can produce significantly different number of matchings. As a
direct consequence, a low cost search plan cannot guarantee a small search space tree during execution.
As counters are used both at compile-time and at run-time for search plan optimization and for cost
calculation, respectively, the pattern matching strategy that is executed finally in the Exec phase is not
necessarily optimal. Refining data structures that store statistics in the model repository can be an
obvious way to improve the precision of both techniques, but such an approach can easily become
unfeasible due to increased storage or computation efforts caused by the refinement. Note that the
success of adaptive graph pattern matching is highly sensitive to the time spent on cost calculation,
which is based on the data structures of the repository.

The other problem stems from the special cost function that has been defined for search plans.
The customized greedy algorithms can only provide low cost, but not necessarily optimal search plans.
From a pure mathematical point of view, it is easy to find counterexamples for the optimality of the

124 CHAPTER 7. ADAPTIVE GRAPH TRANSFORMATION

presented algorithms, but these examples are rarely produced by real-life application domains and even
in such cases the generated low cost search plans provide good solutions.

Finally, as a general guideline, it can be stated that adaptivity only pays off, if the runtime gain
caused by the execution of a low cost strategy exceeds the time spent on cost calculation.

CHAPTER

8
Incremental Graph Transformation

In this chapter, I present the foundations of an incremental graph pattern matching engine for handling
rules with negative application conditions, which keeps track of existing matchings in an incremental
way to reduce the execution time of graph pattern matching.

8.1 Motivation

Despite the large variety of existing graph transformation tools, the implementation of their graph
transformation engine typically follows the same principle. First a matching occurrence of the left-
hand side of the graph transformation rule is searched by some sophisticated graph pattern matching
algorithm. Then potential negative application conditions are checked that might eliminate the previous
occurrence. Finally, the engine performs some local modifications to add or remove graph elements to
the matching pattern, and the entire process starts all over again.

As the information on a previous matching is lost when a new transformation step is initiated, the
complex and expensive graph pattern matching phase is restarted from scratch each time. This non-
incremental behaviour can be a performance bottleneck as demonstrated e.g., by our benchmarking
experiments [154] and by practical experience in model-based tool integration [80] based on triple
graph grammars [120].

Related work

Incremental updating techniques have been widely used in different fields of computer science. Now a
brief overview is given on incremental techniques that could be used for graph transformation.

• Rete networks. [22] proposed an incremental graph pattern matching technique based on the
idea of Rete networks [45], which stems from rule-based expert systems. In their approach, a
network of nodes is built at compile time from the LHS graph to support incremental operation.
Each node performs simple tests on the entities (i.e., nodes, edges, partial matchings) arriving to
its input(s). If the test succeeds, the node groups entities into compound ones, which are then
sent downwards in the network. On the top level of the network, there are nodes with a single
input that let such objects and links of a given type to pass that have just been inserted to or

125

126 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

removed from the model. On intermediate levels, network nodes with two inputs appear, each
representing a subgraph of the LHS. These nodes try to build matchings for the subgraph from the
smaller matchings located at the inputs of the node. On the lowest level, the network has terminal
nodes, which do not have outputs. They represent the entire LHS graph. Entities reaching the
terminals represent complete matchings for the LHS.

• PROGRES. The PROGRES [122] graph transformation tool supports an incremental tech-
nique called attribute updates [66]. At compile-time, an evaluation order of LHS nodes is fixed
by a dependency graph. At run-time, a bit vector is maintained for each object expressing whether
it can be bound to the nodes of the LHS. When objects are deleted, some validity bits are set to
false according to the dependency graph denoting the termination of possible partial matchings.
In this sense, PROGRES performs immediate invalidation of partial matchings. On the other
hand, validation of partial matchings are computed on request (i.e., when a matching for the LHS
is requested).

• TefKat. TefKat [82] is a declarative model transformation language together with an execution
engine implemented as an Eclipse plugin. The transformation engine performs an SLD resolu-
tion based interpretation during which a search space tree is constructed to represent the trace of
transformation execution. This tree is maintained incrementally in consecutive steps of transfor-
mations as described in [59].

• View updates. In relational databases, materialized views, which explicitly store their content
on the disk, can be updated by incremental techniques. Counting and DRed algorithms [57] first
calculate the delta (i.e., the modifications) for the view by using the initial contents of the view
and base tables and the deltas of base tables. Then the calculated deltas are performed on the
view.

These techniques only provide partial solutions for typical model transformation problems as PRO-
GRES supports pattern matching in such cases when the rule precondition is a connected graph [98],
while the Rete-based approach lacks the support for negative application conditions and inheritance.

Objectives

I propose foundational data structures and algorithms for incremental graph pattern matching where
all complete matchings (and also non-extensible partial matchings) of a rule are stored explicitly in a
tree according to a given search plan. This tree is updated incrementally triggered by the modifications
of the instance model. Negative application conditions are handled uniformly by storing all matchings
of the corresponding patterns. Additionally, we keep track if a matching of the negative condition
pattern invalidates the matching of the positive pattern. Furthermore, as the main conceptual novelty,
we introduce a notification mechanism by maintaining registries for quickly identifying those partial
matchings, which are candidates for extension or removal when an object or a link is inserted to or
deleted from the model.

Architectural overview

In Figure 8.1, an architectural overview is provided on the envisaged workflow of an incremental pattern
matching engine. Note that a main driver of this architecture is to allow easy adaptation to existing GT
engines.

8.1. MOTIVATION 127

Tool-specific

pattern generator

GT rule 1 GT rule n

Pattern 1 Pattern n

Pattern merger

and optimizer

Pattern 1*

Pattern k*

Model

traversal

Metamodel Model

Tool-specific

event converter

Modification

event

Query/

Result

Search plan and

code generator

Incremental

pattern matching

engine

Preprocessing phase Initialization phase Operation phase

Figure 8.1: Architectural overview of incremental pattern matching

Preprocessing. In a preprocessing phase, patterns are first extracted from graph transformation
rules (based upon the LHS and NAC of the rules). Since these patterns may be overlapping, this initial
set of graph patterns can be optimized by merging them along common parts to be maximized and by
extending overlapping areas to original individual patterns. Afterwards, search plans are derived for
the optimized pattern set, and template-based code generation is applied to implement the matching
tree tailored to the actual GT rules.

Initialization. In the initialization phase, the tree is constructed based upon a given initial model
and its metamodel. While this initialization step can be time consuming, this is only performed once,
prior to the actual transformations.

Operation. In the operation phase (which is the main focus of the current chapter), the incremental
pattern matching engine listens to the notifications sent by the GT engine on model modifications, and
keeps track of the changes in the tree. As a consequence, pattern matching queries coming from the
GT engine are executed in constant time.

The basic structure of the current chapter is the following.

• Section 8.2 introduces few new concepts to ease the presentation of incremental pattern matching.
• Section 8.3 presents data structures needed for maintaining, efficiently storing, invalidating, and

notifying partial matchings, and for accelerating the retrieval of complete matchings.
• Section 8.4 first presents the core algorithm of the incremental pattern matcher, which is invoked

whenever the model is changed, then it demonstrates the incremental operation on an example,
and finally, details of the main modification event handler methods are reviewed.

• Section 8.5 assesses the computational efficiency of the incremental approach, and compares it
to the run-time performance of FUJABA using the object-relational mapping of Section 5.4 as a
benchmark example.

• Section 8.6 presents an alternative method for incremental graph transformation by persistently
storing partial matchings in tables of an underlying relational database and by executing SQL
commands for reconstructing the database content based on the modifications of the instance
model.

• Section 8.7 concludes this chapter with summarizing its relevance.

128 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

8.2 Concepts for supporting incremental pattern matching

By using the terms defined in Sections 2.2, 3.1, and 4.2, few new concepts are now introduced to ease
the presentation of incremental pattern matching.

The kth partial plan of a search plan is the subgraph of the corresponding adorned search graph
induced by the dummy node, all bound nodes, and the free nodes labelled by the k smallest positive
integers. Search plan labels are preserved for the partial plans as well.

Recall that there is a one-to-one correspondance between nodes in a pattern and their derivatives
in the corresponding (adorned) search graph. The term kth subpattern is used for the subgraph of
the pattern being induced by the pattern node counterpart of the derivatives of the kth partial plan.
The term kth pattern node is used for the pattern node, whose derivative is labelled by k according to
corresponding search plan. Incoming and outgoing edges of the kth pattern node are referred informally
as incoming and outgoing condition edges, respectively.

Example 30 A search plan (Fig. 8.2(b)) is defined for the LHS pattern of ClassRule (Fig. 8.2(a)) by
fixing the (1) C, (2) P, (3) S order on pattern node derivatives. A search plan for the NAC pattern (not
shown in Figure 8.2) is (1) T, (2) C.1 The first, second, and third partial plan of the search plan of
Fig. 8.2(b) are shown by the unshaded parts of Figures 8.2(d), 8.2(f), and 8.2(h), while corresponding
subpatterns LHS1, LHS2, and LHS3 are depicted by Figures 8.2(c), 8.2(e), and 8.2(g), respectively.

The first, the second, and the third pattern node are represented as nodes with thick lines in Fig-
ures 8.2(c), 8.2(e), and 8.2(g), respectively, while their corresponding derivatives are denoted by dotted
free nodes in the figures on the right. The Ref edge (denoted by a thick line) connecting pattern node P
to S represents an incoming condition edge in Fig. 8.2(g).

The formalization of the concepts is now presented.

Definition 58 Given a search plan SP defined for an adorned search graph ASG, the kth par-
tial plan SPk of a search plan SP is the subgraph of adorned search graph ASG induced by
such search graph nodes, which are excluded from the set of NAC nodes, and which are la-
belled by integers not exceeding k according to search plan SP. Formally, SPk ⊆ ASG such
that ∀x ∈ VSG :

(
x ∈ VSPk

⇐⇒ x ∈ VSG \ V NAC
SG ∧ SP(x) ≤ k

)
, and ∀u z→ v ∈ ESG :(

u
z→ v ∈ ESPk

⇐⇒ u ∈ VSPk
∧ v ∈ VSPk

)
.

In other words, the node set of the kth partial plan consists of the dummy node, all bound nodes,
and such free nodes that have the k smallest positive integers as labels.

Definition 59 Given a search plan SP defined for the adorned search graph ASG of pattern graph
G, the kth subpattern Gk of pattern graph G is the subgraph of G induced by the origin pattern
nodes of such derivatives, which also appear in the kth partial plan SPk of search plan SP. Formally,
Gk ⊆ G such that ∀x ∈ VG :

(
x ∈ VGk

⇐⇒
(
∃x ∈ V P

SG ∩ VSPk
: b(x) = x

))
, and ∀u z→ v ∈ EG :(

u
z→ v ∈ EGk

⇐⇒ u ∈ VGk
∧ v ∈ VGk

)
.

Consequently, if a pattern graph G has n nodes to be matched during pattern matching (i.e., its
adorned search graph has n free nodes), then pattern graph G has n+1 subpatterns, namely, G0, . . . , Gn.

Definition 60 Given a search plan SP defined for the adorned search graph ASG of pattern graph G,
the kth pattern node vk of pattern graph G according to the search plan SP is the pattern node,
whose derivative vk has label k according to search plan SP. Formally, b(vk) = vk ∧ SP(vk) = k.

1Search plans of the current example have been selected manually for presentation purposes.

8.2. CONCEPTS FOR SUPPORTING INCREMENTAL PATTERN MATCHING 129

C:Class

Tn:Table

P:Package

S:Schema

ClassRule precondition

r1:Ref rn:Ref

eo1:EO

(a) Precondition of ClassRule

CPS

23 1

3 2

1

(b) A search plan prepared for the LHS of
ClassRule

C:Class

1st subpattern

(c) The first subpattern LHS1 of the LHS

CPS

23 1

3 2

1

(d) The first partial plan of Fig. 8.2(b)

C:ClassP:Package

2nd subpattern

eo1:EO

(e) The second subpattern LHS2 of the LHS

CPS

23 1

3 2

1

(f) The second partial plan of Fig. 8.2(b)

C:ClassP:Package

S:Schema

3rd subpattern

r1:Ref

eo1:EO

(g) The third subpattern LHS3 of the LHS

CPS

23 1

3 2

1

(h) The third partial plan of Fig. 8.2(b)

Figure 8.2: Subpatterns and partial plans

130 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

8.3 Data structures for incremental pattern matching

In this section, I present data structures needed for (i) maintaining, (ii) efficiently storing, (iii) invalidat-
ing, and (iv) notifying partial matchings, and for (v) accelerating the retrieval of complete matchings.
Algorithms of the incremental pattern matching engine, which operate on these data structures are
discussed later in Sec. 8.4.

Class diagrams depicting the different aspects of data structures being used by the incremental
pattern matching engine are shown in Fig. 8.3.

8.3.1 Matching snapshots and snapshot trees

The concept of snapshots has already been introduced for denoting matchings for subgraphs (i.e., par-
tial matchings for patterns) in Sec. 4.1.1, when pattern matching algorithms have been discussed in
general. Since the incremental algorithm is search plan driven, the interpretation of snapshots (denoted
by numbered circles in Fig. 8.4) is now restricted by only allowing matchings for subpatterns, which
constitute a special subset of subgraphs based on the currently active search plan. However, in any
other respects, this new definition still fully complies to the original concept.

ObjectPatternNode
PatternNodeDerivative

MatchingMapping Snapshot

0..1

0..*

value

0..*

1mappings

0..1

0..*

patternNode

1 0..*

matching

parent

0..1

0..*children

spNode 1

snapshot 1..*

invalidatedBy

0..*

0..*

invalidates

(a) Matchings

LabelNotificationKey

Object InsertKey

isSrc

DeleteKey

1 0..*

end

1

0..*

trg
1

0..*

src

10..*

label

(b) Event processing

Figure 8.3: Data structures of the incremental pattern matching engine

8.3. DATA STRUCTURES FOR INCREMENTAL PATTERN MATCHING 131

Since a snapshot is a logical representation of a (partial) matching, there is a one-to-one corre-
spondance between these terms, and consequently, these names could have been used interchangeably.
However, in the following, the term snapshot is used specifically for the data structure appearing in
the incremental algorithm, while the word (partial) matching denotes the actual (partial) morphism
between the pattern graph and the model.

To support incremental behaviour, a snapshot tree is maintained for each pattern graph, which
consists of snapshots being organized into a tree structure along parent-child edges (depicted by dashed
arcs in Fig. 8.4). The root of the tree (i.e., the single node on the first level) denotes the initial matching,
in which pattern nodes are only bound outside the pattern matching algorithm, and not by the algorithm
itself. Snapshots denoting matchings for a given subpattern can always be found on the same level of
the tree (marked by light grey areas in Fig. 8.4). The mapping of subpatterns to tree levels is guided by
the search plan having been fixed for the pattern graph. A tree node on the (k+1)th level (i.e., having
distance k from the root) represents a matching for the kth subpattern being specified by the search
plan. Each leaf represents a maximal partial matching for the pattern. If the pattern has n nodes to be
matched, then each leaf on the (n+1)th (i.e., deepest possible) level represents a (complete) matching.

Example 31 Sample models of Figures 8.4(c), 8.4(e), and 8.4(g) and the corresponding data struc-
ture contents are presented in Figures 8.4(d), 8.4(f), and 8.4(h), respectively. Figures 8.4(d), 8.4(f),
and 8.4(h) show snapshot trees in their top-right corner, they depict binding arrays at the bottom, while
notification arrays are presented in their left part.

Fig. 8.4(f) contains two snapshot trees representing the partial matchings of the LHS and the NAC
pattern, respectively. Snapshots 1 and 2 denote empty matchings. Snapshot 3 is located on the second
level of the tree defined for the LHS pattern, thus, it is a matching for the first subpattern LHS1, which
contains a single mapping that assigns object c1 to pattern node C. Snapshot 3 is a child of snapshot 1,
as the matching represented by the latter can be extended by the mapping of pattern node C.

In the context of Fig. 8.4(d), snapshot 3 is a maximal partial matching as it cannot be further
extended, due to the lack of outgoing EO edges leading out of class c1. On the other hand, snapshot 3
is not a maximal partial matching in Fig. 8.4(f) as it can be extended e.g., by mappings P to p and S to s
to get the matching represented by snapshot 5. This means a (complete) matching for the LHS pattern
as snapshot 5 is located on the lowest tree level LHS3.

Definition 61 The snapshot universe SG denotes all possible partial matchings for a pattern graph G.

Definition 62 Given a search plan SP defined for the adorned search graph ASG of a pattern graph G
and a model M , a snapshot sGk

of pattern graph G is a logical representation of a matching mGk
for

the kth subpattern Gk of pattern graph G in model M . Formally, sGk
∈ SG

In the following, superscript m is used for identifying the matching represented by a snapshot.

Definition 63 Given a search plan SP defined for the adorned search graph ASG of a pattern graph
G and a model M , a snapshot tree STG =

(
ST

G, rG, pG

)
is a data structure described by a triple

consisting of the following parts.

• Tree nodes ST
G are snapshots of the pattern graph G. Formally, ST

G ⊆ SG.

• The root node rG is a tree node, which represents the matching mG0 for the 0th subpattern G0

of pattern graph G in model M . Formally, ∃rG ∈ ST
G : rm

G = mG0 .

• The parent function p : ST
G → ST

G defines the parent node of each snapshot.

132 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

C:Class

Tn:Table

P:Package

S:Schema

ClassRule precondition

r1:Ref rn:Ref

eo1:EO

(a) Precondition of ClassRule

c3c2c1

v3v2v1

INSERT

entryInsertKey

DELETE

entryDeleteKey

Notational guide

LHS2

snapshot1

binding array

invalidation edge

connection

insert

notification array
parent-child edge

delete

notification array

snapshot tree

tree level for

subpattern LHS2

(b) Notational guide for data structures

p:Package

c1:Class

s:Schema
:Ref

(c) Model 1

c1

SPC

LHS NAC

CT

Package

*

Table

Class

INSERT

3type*

2type*

3EOc1

type 1*

Class

DELETE

type 3c1

LHS
0

1 2

3

LHS
1

LHS
2

LHS
3

NAC
2

NAC
1

NAC
0

(d) Data structure contents for Model 1

p:Package

c1:Class

:EO

s:Schema
:Ref

(e) Model 2

spc1

SPC

LHS NAC

CT

Schema

*

Package

*

Table

Class

INSERT

4type*

3type*

4Refp

2type*

3EOc1

type 1*

Schema

s

Package

p

Class

DELETE

5Refp

5types

4EOc1

4typep

type 3c1

1 2

3

4

5

LHS
0

LHS
1

LHS
2

LHS
3

NAC
2

NAC
1

NAC
0

(f) Data structure contents for Model 2

p:Package

c1:Class

:EO

s:Schema

t1:Table

p1:PKeycl1:Column

:Ref

:Ref

:EO:CF

:EO

:UF

(g) Model 3

c1

SPC

LHS NAC

st1

SPC

c1t1

CT

7t1Ref*

6Packagetype*

6*EOt1

9*Refs

Schema

Table

Class

INSERT

2type*

9type*

type 1*

6Classtypet1

Package

s

t1

Table

Class

DELETE

9EOt1

9types

7typet1

8Refc1

type 3c1

1 2

3 7

8

6

LHS
0

LHS
1

LHS
2

LHS
3

NAC
2

NAC
1

NAC
0

9

(h) Data structure contents for Model 3

Figure 8.4: Sample models and the corresponding data structures

8.3. DATA STRUCTURES FOR INCREMENTAL PATTERN MATCHING 133

The following restrictions ensure the well-formedness of the snapshot tree.

• Each tree node s except for the root rG has a parent. Formally, ∀s ∈ ST
G \ { rG } , ∃t ∈ ST

G :
p(s) = t, and @s ∈ ST

G : p(rG) = s.

• If tree node sGk
is not the root rG, and it represents a matching mGk

for the kth subpattern Gk

of pattern graph G in model M , then its parent sGk−1
must represent a matching mGk−1

for the
(k–1)th subpattern Gk−1 of pattern graph G in model M . Formally,

∀k ∈ N : 1 ≤ k ≤
∣∣V F

SG

∣∣ =⇒ (
∀sGk

∈ ST
G \ { rG } , ∀mGk

: sm
Gk

= mGk
=⇒(

∃sGk−1
∈ ST

G, ∃mGk−1
: sm

Gk−1
= mGk−1

∧ p(sGk
) = sGk−1

))
.

8.3.2 Binding arrays

In implementations, matchings are physically stored as one-dimensional binding arrays, which are
indexed by the pattern nodes. An entry in a binding array stores pattern node–object pairs in the
corresponding matching. When one matching is an ancestor of another one, their binding arrays can
be shared in order to reduce memory consumption as the ancestor matching contains a subset of the
mappings of the descendant matching. Consequently, for each pattern graph G with n variables, a
binding array match[n] of size n is used. In Fig. 8.4, binding arrays are connected to snapshots by
solid black lines.

Example 32 Since the LHS pattern has 3 nodes, snapshots of the LHS snapshot tree refer to binding
arrays having 3 entries as it is shown e.g., in the lower part of Fig. 8.4(f). Each column of the binding
array of the LHS snapshot tree represents a mapping, which shows the object (in the lower row) to
which the pattern node (in the upper row) has been mapped. Note that the array that contains mappings
C to c1, P to p, and S to s can be shared by snapshots 1, 3, 4, and 5, as they only consist of mappings of
the first 0, 1, 2, and 3 free nodes, respectively.

8.3.3 Invalidation edges

Invalidation edges (denoted by thick (red) arcs) represent the invalidation of partial matchings of a LHS
caused by (complete) matchings of a NAC.

Example 33 The red invalidation edge of Fig. 8.4(h) connecting snapshots 7 to 3 means that snapshot
7 represents a (complete) matching for the NAC pattern, which invalidates the partial matching of
snapshot 3 as both map the shared node C to the same object c1. As long as snapshot 3 is invalidated
(as shown by the incoming invalidation edge), it cannot be part of a (complete) matching for the LHS
pattern, which fact is marked by the empty subtree rooted at snapshot 3.

Definition 64 Given a model M and snapshot universes SLHS and SNAC defined for pattern graphs
LHS and NAC, respectively, by also using search plans defined for the corresponding adorned
search graphs, a snapshot sNAC invalidates snapshot sLHSk

(denoted by sNAC � sLHSk
), if all

shared nodes of NAC and LHS are mapped by matchings sm
NAC and sm

LHSk
defined for the NAC and

the kth subpattern LHSk of pattern graph LHS, respectively, and each shared node is mapped to
the same object in model M by both matchings. Formally, ∀sLHSk

∈ SLHS, ∀sNAC ∈ SNAC :(
sNAC � sLHSk

⇐⇒ V sh
NAC 6= ∅ ∧ ∀x ∈ V sh

NAC, ∃c ∈ VM : sm
LHSk

(x) = c ∧ sm
NAC(x) = c

)
.

134 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

Definition 65 Given a model M and snapshot trees STLHS and STNAC defined for pattern graphs
LHS and NAC, respectively, by also using search plans defined for the corresponding adorned
search graphs, a snapshot sNAC invalidates a subtree rooted at snapshot sLHSk

(denoted by
sNAC � 〈sLHSk

〉), if snapshot sLHSk
is invalidated by snapshot sNAC, but its parent p(sLHSk

)
is not invalidated by the same snapshot sNAC. Formally, ∀sLHSk

∈ ST
LHS, ∀sNAC ∈ ST

NAC :
(sNAC � 〈sLHSk

〉 ⇐⇒ sNAC � sLHSk
∧ ¬ (sNAC � p(sLHSk

))).

Definition 66 Given a model M and snapshot trees STLHS and { STNACi } defined for pattern graphs
LHS and {NACi }, respectively, by also using search plans defined for the corresponding adorned
search graphs, invalidation edges I denote the set of all such snapshot pairs (sNACi , sLHSk

), where the
first snapshot sNACi invalidates the subtree rooted at snapshot sLHSk

. Formally, I ⊆
⋃

i S
T
NACi

× ST
LHS,

and ∀i, ∀sNACi ∈ ST
NACi

, ∀sLHSk
∈ ST

LHS : (sNACi , sLHSk
) ∈ I ⇐⇒ sNACi � 〈sLHSk

〉.

8.3.4 Notification arrays

Since the transformation engine sends notifications on model changes, notification related data struc-
tures (shown in Fig. 8.3(b)) are also needed. The incremental pattern matching engine has a single
insert notification array and a single delete notification array consisting of notification entries.

• An entry in the insert notification array is a pair consisting of an insert key and a list of snapshots
to be notified. An insert key denotes a trigger condition for initiating incremental algorithms
when objects or links are inserted into the model.

• An entry in the insert notification array is a pair consisting of a delete key and a list of snapshots
to be notified. A delete key denotes a trigger condition for initiating incremental algorithms when
objects or links are removed from the model.

The exact role of insert and delete notification arrays is presented later by Algorithm 8.1.

Example 34 Sample notification arrays are presented e.g., in the left part of Fig. 8.4(d). The INSERT
notification array has 4 entries of which the first is triggered by the insert key [∗,type,Class] and
refers to snapshot 1. This entry means that snapshot 1 has to be notified, when an object, which
conforms to class Class is inserted into the model. Similarly, the first entry in the DELETE notification
array means that snapshot 3 must be notified, if object c1, which conforms to class Class is deleted.

Definition 67 Given a metamodel MM and a model M , insert keys KI denote trigger conditions
for initiating incremental algorithms when objects or links are inserted into model M . Insert keys
can be partitioned into three types (namely, K1

I , K2
I , and K3

I). Formally, KI = K1
I ∪ K2

I ∪ K3
I , and

K1
I ∩K2

I ∩K3
I = ∅.

• An insert key
[
∗ type→ C

]
of type K1

I is triggered, if an object that conforms to class C is inserted

into model M . Formally, K1
I ⊆ ({ ∗ } × { type } × VMM).

• An insert key
[
∗ A→ b

]
of type K2

I is triggered, if a link of type A leading into object b is inserted

into model M . Formally, K2
I ⊆ ({ ∗ } ×Assoc× VM).

• An insert key
[
a

A→ ∗
]

of type K3
I is triggered, if a link of type A leading out of object a is

inserted into model M . Formally, K3
I ⊆ (VM ×Assoc× {∗ }).

8.4. OPERATIONS FOR INCREMENTAL PATTERN MATCHING 135

Definition 68 The insert notification array INSERT : KI → 2S maps each insert key to the set of
such snapshots, which have to be processed by incremental algorithms.

Definition 69 Given a metamodel MM and a model M , delete keys KD denote trigger conditions for
initiating incremental algorithms when objects or links are deleted from model M . Delete keys can be
partitioned into two types (namely, K1

D, K2
D). Formally, KD = K1

D ∪K2
D, and K1

D ∩K2
D = ∅.

• A delete key
[
c
type→ C

]
of type K1

D is triggered, if an object c whose direct type is a descendant

of class C is deleted from model M . Formally, K1
D ⊆ (VM × { type } × VMM).

• A delete key
[
a

A→ b
]

of type K2
D is triggered, if a link of type A connecting object a to object b

is deleted from model M . Formally, K2
D ⊆ (VM ×Assoc× VM).

Definition 70 The delete notification array DELETE : KD → 2S maps each delete key to the set of
such snapshots, which have to be modified by incremental algorithms.

8.3.5 Query results.

A result set (not shown in figures) is also maintained for each LHS pattern to speed-up the queries of
complete matchings initiated by the GT tool that use the services of the incremental pattern matching
approach.

Definition 71 Given a model M and a snapshot tree STLHS defined for the LHS by also using the
search plan SP defined for the corresponding adorned search graph ASG, the result set RLHS for the
LHS graph consists of such snapshots of tree STLHS, which are located on its deepest possible level
without being invalidated by any snapshots of any NACs. Formally, RLHS ⊆ ST

LHS, and

∀sLHSk
∈ ST

LHS :

(
sLHSk

∈ RLHS ⇐⇒ LHSk = LHS ∧ ∀sNACi ∈
⋃
i

ST
NACi

: (sNACi , sLHSk
) 6∈ I

)
.

8.4 Operations for incremental pattern matching

During the incremental operation phase, the snapshot tree is maintained by four main methods.

(a) The insert() method (defined later by Algorithm 8.2) is responsible for the possible exten-
sion of the current matching for proper subpattern Gk to create a new matching for one larger
subpattern Gk+1.

(b) The validate() method (defined later by Algorithm 8.3) is responsible for the recursive ex-
tension of insert operations to all (larger) subpatterns.

(c) The delete() method (defined later by Algorithm B.1) removes the whole matching subtree
rooted at the current snapshot for subpattern Gk.

(d) The invalidate() method (defined later by Algorithm B.2) is responsible for the recursive
deletion of all children snapshots of the current snapshot.

These methods are called by the pattern matching engine (see Algorithm 8.1) when modification
events arrive from the model repository.

136 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

Algorithm 8.1 The core algorithm of the incremental pattern matching engine

1: for all a
e→ b ∈ ∆E−

M do

2: for all s ∈ DELETE

([
a

t(e)→ b

])
do

3: delete(s)
4: end for
5: end for
6: for all c ∈ ∆V −

M do
7: for all

{
C ∈ VMM | C ∗

^ t(c)
}

do

8: for all s ∈ DELETE
([

c
type→ C

])
do

9: delete(s)
10: end for
11: end for
12: end for
13: for all c ∈ ∆V +

M do
14: for all

{
C ∈ VMM | C ∗

^ t(c)
}

do

15: for all s ∈ INSERT
([
∗ type→ C

])
do

16: insert(s, c)
17: end for
18: end for
19: end for
20: for all a

e→ b ∈ ∆E+
M do

21: for all s ∈ INSERT

([
a

t(e)→ ∗
])

do

22: insert(s, b)
23: end for
24: for all s ∈ INSERT

([
∗ t(e)→ b

])
do

25: insert(s, a)
26: end for
27: end for

8.4. OPERATIONS FOR INCREMENTAL PATTERN MATCHING 137

• Delete notification. If a link a
e→ b of type t(e) connecting object a to b is removed from

the model, then the delete() method is invoked with every snapshot being notified by

the entry DELETE

([
a

t(e)→ b

])
(lines 1–5). If an object c of type t(c) is removed from the

model, then the delete() method is invoked with every snapshot being notified by the entries
DELETE

([
c
type→ C

])
, in which C iterates over all ancestors of t(c) (lines 6–12).

• Insert notification. If an object c of type t(c) is added to the model, then for all ancestors
C of type t(c) the insert() method is invoked with object c as a second parameter, and all
snapshots being notified by the entries INSERT

([
∗ type→ C

])
as first parameter (lines 13–19). If

a link a
e→ b of type t(e) connecting object a to b is added to the model, then the insert()

method is invoked with every matching defined by entry INSERT

([
a

t(e)→ ∗
])

and with object b

as its parameters (lines 21–23). Then the same method is invoked with every matching defined

by entry INSERT

([
∗ t(e)→ b

])
and with object a as its parameters (lines 24–26).

8.4.1 Incremental operations on an example

Prior to the detailed discussion of the algorithms, we first exemplify the process by using our running
example of Fig. 8.4. Let us suppose that a class c1 is added to package p in the model by user interaction
initiated by the system designer. The pattern matching engine is notified about this activity in two steps.
First a notification arrives about the insertion of an object c1 of type Class (see Fig. 8.4(c)) followed
by the insertion of an EO link connecting c1 to p (see Fig. 8.4(e)). Modifications are denoted by thick
lines.

Step 1. When the object c1 of type Class is inserted, the pattern matching engine looks up entries
retrieved by insert keys [∗,type,ModelElement], [∗,type,Namespace], and [∗,type,Class].

The last entry triggers the possible extension of snapshot 1 by mapping pattern node C to object c1
by invoking the insert() method with snapshot 1, and object c1 as parameters. As this is a matching
for subpattern LHS1, a new snapshot 3 is created and added to the (snapshot) tree as a child of snapshot
1, and the mapping C to c1 is recorded.

Then snapshot 3 is inserted into the delete notification array with delete key [c1,type,Class].
This means that whenever object c1, which conforms to class Class (i.e., the object that has been just
added) is removed, this snapshot should be deleted.

Effects of adding a new snapshot to the tree are recursively extended to find matchings for larger
subpatterns by calling validate(). Snapshot 3 can be further extended (as shown by corresponding
new entries being added to the insert notification array pointing to snapshot 3), whenever an EO link
leading out of c1 or a new Package is added to the model in the future.

As also the current content of the model may extend snapshot 3, we initiate the possible extensions
of this matching by checking the existence of at least the EO links leading out of object c1.2 As no such
links exist in our example, the algorithm terminates with the snapshot tree presented in Fig. 8.4(d).

2Note that the insert key generation and the possible further extension of snapshot 3 are guided by the one larger subpat-
tern LHS2.

138 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

Step 2. When the EO link connecting c1 to p is inserted (as shown by the thick line of Fig. 8.4(e)),
snapshot 3 is first extended to a new snapshot 4 by mapping pattern node P to object p and by executing
a sequence of insert() and validate() method calls as shown in Fig. 8.5.

pm:IPatternMatcher

5-LHS3: Snapshot

Step 2: Notification

from GT tool: EO edge

from "c1" to "p" has

been inserted

3-LHS1: Snapshot

Complete matching

found for LHS

(repr. by LHS3)

4-LHS2: Snapshot

1.1.1.1: validate()

1: insert()

1.1.1: insert()
1.1: validate()

Figure 8.5: Sequence diagram showing edge insertion into the LHS pattern

This time, matching extension is propagated to another new snapshot 5 by assigning pattern node
S to object s by invoking the insert() method with snapshot 4 and object s as parameters, as the
current model already contained a schema s and a Ref link connecting p to s.

In addition, both new snapshots are appropriately registered in both the insert and delete notification
arrays, and the binding array is updated accordingly. The corresponding snapshot tree is shown in
Fig. 8.4(f).

At this point, snapshot 5 represents a (complete) matching for the LHS pattern, so the GT rule
ClassRule can be applied.

Step 3. The result of applying ClassRule on the matching represented by snapshot 5 can be observed
in Fig. 8.4(g) after the insertion of 3 objects and 5 links, processed one by one by the pattern matching
engine.

Let us suppose that table t1 is inserted first. At this point, the insert notification array is consulted by
retrieving snapshots that can be found at locations [∗,type,ModelElement], [∗,type,Namespace],
[∗,type,Class], and [∗,type,Table]. The latter two returns snapshots 1 and 2, respectively, so the
insert() method is invoked with these snapshots and table t1 as input parameters. When snapshot 1
is processed, nothing changes in the snapshot tree. On the other hand, when snapshot 2 is trying to be
extended, then snapshot 6 is created as a child.

In the following step, snapshot 7 is added as a child of snapshot 6, if the Ref link connecting class
c1 to table t1 is inserted next into the model. As snapshot 7 represents a (complete) matching for the
NAC pattern, snapshot 3 must be invalidated by deleting all its descendant snapshots in the tree. When
all the new elements are added, the data structure will reflect the situation in Fig. 8.4(h).

8.4. OPERATIONS FOR INCREMENTAL PATTERN MATCHING 139

8.4.2 Insert method

The insert method (shown by Algorithm 8.2) is responsible for the possible extension of the current
partial matching for proper subpattern Gk to compute a new partial matching for subpattern Gk+1.
If the current snapshot represents a complete matching for pattern G, then the method immediately
terminates as matchings for pattern G can never be further extended.

Algorithm 8.2 The snapshot insertion algorithm insert(sGk
, c)

PROCEDURE insert(sGk
, c)

1: if Gk ⊂ G then
2: {If sm

Gk
is a matching for a proper subpattern Gk, and, thus, it is not a matching for pattern G}

3: if checkGraphMorphism(sGk
, c) then

4: {If matching sm
Gk

can be successfully extended by mapping the (k+1)th pattern node vk+1 to
object c}

5: sGk+1
:= copyMatchings(sGk

, c) {Copy current matchings to the new matching}
6: addDeleteEntries(sGk+1

) {New delete entries for matchings of condition edges}
7: if 6 ∃sNAC ∈

⋃
i S

T
NACi

: (sNAC, sGk+1
) ∈ I then

8: validate(sGk+1
) {Extend the new matching if not invalidated by any NACs}

9: end if
10: end if
11: end if

• The insert method is invoked with the current snapshot sGk
and an object c, which is supposed to

be the mapping of the (k+1)th pattern node in a new potential matching, which also contains all
mappings defined by the matching for subpattern Gk being represented by the current snapshot.

• Since the current snapshot already represents a matching for the kth subpattern Gk, only
mappings of the (k+1)th pattern node and its incoming and outgoing condition edges, which
have just been defined by the new potential matching, are required to be checked by the
checkGraphMorphism() method.

• If the potential matching is a correct graph morphism (and the checkGraphMorphism()
returns true), the potential matching can be considered as a new matching for subpattern
Gk+1. As such, a new snapshot is created and inserted into the snapshot tree by invoking the
copyMatchings() method with the current snapshot sGk

and object c as input parameters.

• The new snapshot is added to the delete notification array at all locations defined by the mappings
of the (k+1)th pattern node and its incoming and outgoing condition edges.

• If the new snapshot is being invalidated by any (complete) matchings of any NAC patterns, then
the insert() method terminates.

• Otherwise, the validate() method is invoked on the new snapshot trying to recursively ex-
tend the matching it represents.

8.4.3 Validate method

The validate method (shown by Algorithm 8.3) is responsible for the recursive extension of insert
operations. It is invoked either when a new snapshot has been inserted into the snapshot tree and its

140 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

further extensions have to be checked (see Algorithm 8.2), or when extensions of the current matching
possibly become valid due to the removal of a (complete) matching for an embedded NAC pattern (by
the invalidate() method).

Algorithm 8.3 The snapshot validation algorithm validate(sGk
)

PROCEDURE validate(sGk
)

1: if Gk = G then
2: {If sm

Gk
is a (complete) matching for pattern G}

3: if G = LHS then
4: {If sm

Gk
is a (complete) matching for an LHS pattern}

5: R′
LHS := RLHS ∪ { sGk

} {Add the snapshot to the results}
6: else
7: {If sm

Gk
is a (complete) matching for a NAC pattern}

8: for all
{

s ∈ ST
LHS | sGk

� 〈s〉 ∧ (sGk
, s) /∈ I

}
do

9: if ∀sNAC ∈
⋃

i S
T
NACi

: (sNAC, s) 6∈ I then
10: invalidate(s) {If snapshot s has not been invalidated yet by any other snapshots

sNAC, then invalidate s.}
11: end if
12: I′ := I ∪ { (sGk

, s) }
13: end for
14: end if
15: else
16: {If sm

Gk
is a partial matching for pattern G}

17: addInsertEntries(sGk
) {Add insert entries}

18: propagateInsert(sGk
) {Propagate it to find a mapping of the next pattern node}

19: end if

• If snapshot sGk
represents a (complete) matching for a LHS pattern, then the current snapshot is

inserted into the result set RLHS.

• If snapshot sGk
represents a complete matching for a NAC pattern, then all snapshots s of the

LHS pattern whose partial matching maps the shared pattern nodes to the same objects as the
current matching have to be invalidated, if they have not been invalidated yet.

• By invoking the addInsertEntries() method, the current snapshot sGk
is added to the

insert notification array at locations defined by the one larger subpattern Gk+1. In this sense, the

snapshot is inserted at locations
[
∗ type→ t(vk+1)

]
,
[
sm
Gk

(u)
t(z)→ ∗

]
, and

[
∗ t(z)→ sm

Gk
(w))

]
defined

by the (k+1)th pattern node vk+1 and its incoming and outgoing condition edges u
z→ vk+1 and

vk+1
z→ w, respectively.

• In the propagateInsert()method, insertion is attempted to be propagated to a matching for
the one larger subpattern Gk+1. In this sense, an arbitrary incoming or outgoing condition edge
of the (k+1)th pattern node is selected from subpattern Gk+1. If an incoming condition edge
has been chosen, then we lookup all type conformant links leading out of the matched source
object sm

Gk
(u) of condition edge u

z→ vk+1 and try to extend the current matching by mapping

8.5. EXPERIMENTAL EVALUATION 141

the (k+1)th pattern node vk+1 to the target object of all iterated links, which is represented by
the invocation of the insert() method with the current snapshot sGk

and target object b as
input parameters. Similarly, if an outgoing condition edge is selected, then we lookup all type
conformant links leading into the matched target object sm

Gk
(w) of condition edge vk+1

z→ w
and try to extend the current matching by mapping the (k+1)th pattern node vk+1 to the source
object of all iterated links, which is represented by the invocation of the insert() method
with the current snapshot sGk

and source object a as parameters. If the (k+1)th pattern node
vk+1 is unconnected, then the insert() method is invoked with the current snapshot sGk

, and
all objects c in the model that conform to the type t(vk+1) of pattern node vk+1.

8.4.4 Delete and invalidate methods

Delete and invalidate methods implement the inverse operation of insert and validate methods, respec-
tively.

The delete() method removes the whole subtree rooted at the current snapshot by removing
all snapshots of the subtree from the notification arrays and the result set, and erasing all “dangling”
invalidation links.

The invalidate() method deletes the whole subtree excluding the current snapshot, thus, it
starts recursive deletion at its children. Another difference is that in case of validate method, the current
snapshot is only removed from the insert notification array, and it remains in the delete notification
array.

If the current snapshot represents a (complete) matching of an LHS then the invalidate()
method removes the snapshot from the result set. If it represents a (complete) matching of a NAC
pattern, then it (re)validates all snapshots invalidated previously by the current snapshot. On the im-
plementation level, delete and invalidate methods mutually invoke each other, while descending in the
tree for recursive matching removal. Algorithms for the delete() and invalidate() methods
(as well as all auxiliary algorithms) are listed in Appendix B.

8.5 Experimental Evaluation

In order to assess the performance of our incremental approach, we performed measurements on the
object-relational mapping benchmark example already introduced in Sec. 5.4. As a reference for the
measurements, we selected Fujaba [44] as it is among the fastest non-incremental GT tools.

Only the test case in which rules are executed sequentially is used in the measurements. The
parameter N was fixed to 10, 30, 50 and 100 for the runs.

Measurements were performed on a 1500 MHz Pentium machine with 768 MB RAM. A Linux
kernel of version 2.6.7 served as an underlying operating system. The execution time results are shown
in Table 8.1. Note that this table only contains measurement results for the operation phase of the
incremental pattern matcher. Preprocessing and initialization phases are not analyzed quantitatively as
they only run once, and our aim in this experimental evaluation was to compare the regular behaviour
of non-incremental and incremental graph transformation.

The head of a row shows the name of the rule on which the average is calculated. (Note that a rule
is executed several times in a run.) The second column (Class) depicts the number of classes in the
run, which is, in turn, the runtime parameter N for the test case. The third and fourth columns show
the concrete values for the model size (meaning the number of objects and links in the model) and the
transformation sequence length, respectively. Heads of the remaining columns unambiguously identify
the approach having been used. Values in match and update columns depict the average times needed for

142 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

Class Model TS

size length match update match update

msec msec msec msec

10 1342 146 0.201 0.479 0.026 5.439

30 12422 1336 0.287 0.052 0.023 56.116

50 34702 3726 0.171 0.012 0.021 221.955

100 139402 14951 0.278 0.011 0.042 2067.462

10 1342 146 0.937 0.148 0.019 1.665

30 12422 1336 2.488 0.101 0.032 4.510

50 34702 3726 3.371 0.032 0.022 6.849

100 139402 14951 11.959 0.030 0.039 26.684

10 1342 146 0.875 0.107 0.043 0.592

30 12422 1336 3.896 0.045 0.016 1.108

50 34702 3726 5.975 0.025 0.023 1.948

100 139402 14951 24.057 0.028 0.068 9.353A
s
s
o
c
E
n
d
R
u
le

IncrementalFujaba

A
s
s
o
c
R
u
le

C
la
s
s
R
u
le

Table 8.1: Experimental results

a single execution of a rule in the pattern matching and updating phase, respectively. Execution times
were measured on a microsecond scale, but a millisecond scale is used in Table 8.1 for presentation
purposes.

Our experiments can be summarized as follows.

• In accordance with our assumptions, the incremental engine executes pattern matching in con-
stant time even in case of large models, while the traditional engine shows significant increase
when the LHS of the pattern is large as in case of AssocEndRule.

• Incremental techniques by their nature suffer time increase in the updating phase due to the book-
keeping overhead caused by the additional data structures, and the fact that even the insertion of
a single edge may generate (or delete) a significant amount of matchings. Its detrimental perfor-
mance effects are reported in the updating phase of ClassRule, when also the matchings of the
other rules have to be refreshed. On the other hand, the traditional engine executes the update
phase in constant time as it can be expected.

• By taking into account both phases in the analysis, it may be stated that the incremental strat-
egy provides a competitive alternative for traditional engines as the total execution times of the
incremental approach are of the same order of magnitude in case of the frequently applied rules
(i.e., AssociationRule and AssocEndRule).

• The benefits of the incremental approach are the most remarkable when rules have complex LHS
graphs as the pattern matching of Fujaba gets slow in this case and when the dependency between
rules is weak as this leads to fast updates in incremental engines.

As a consequence, we may draw that the incremental approach is a primary candidate for such
application domains of graph transformation where complex transformation rules are used and where

8.6. INCREMENTAL GRAPH PATTERN MATCHING IN RELATIONAL DATABASES 143

all matchings of a rule have to be accessed rapidly, which is a typical case for analysis/verification
tools. In addition, incremental graph transformation might be applicable to model-to-model translations
where the synchronization of models has to be ensured, and to rule-based pattern recognition for image
processing purposes [16].

8.6 Incremental graph pattern matching in relational databases

Chapter 6 proposed an approach for representing graph transformation in relational databases. In this
approach, objects and links of the instance model have been persistently stored in database tables as
presented in Sec. 6.4.1. Graph pattern matching has been defined by queries specifying one database
view for each LHS pattern, NAC pattern, and rule precondition as discussed in Sections 6.4.2 and 6.4.3.
The updating phase has been implemented by executing data manipulation commands, which modify
the tables that store the instance model as shown in Sec. 6.4.4.

Now I present how incremental techniques can be used when graph transformation is defined on
top of a relational database. The goal is still to avoid the complete recalculation of matchings, which
can be achieved by persistently storing matchings in views, and by tracking how modifications in tables
representing objects and links of the instance model are propagated as changes in the views expressing
LHS patterns, NAC patterns and rule preconditions.

Since the proposed RDBMS based incremental technique uses the definitions and algorithms of the
non-incremental approach of Chapter 6, only concepts needed for the incremental behaviour are now
discussed.

8.6.1 Events and triggers

An incremental approach operating in relational databases has to be able to detect modifications in
tables and views, and to handle these changes by propagating modifications to other views.

• Tables and views report on changes in their content in the form of events, which identify the set
of modified rows, and contain an event type descriptor for marking the kind of modification. As
the content of tables and views can be altered by adding rows, by removing rows and also by
modifying values in rows, these changes are reported by insertion, deletion, and update events,
respectively. Events can be filtered by a formula by keeping only those modified rows, which
fulfill the formula that specifies the filtering condition.

• Change propagation is controlled by triggers, which express compile-time dependencies of views
on tables or on other views. The condition part of a trigger indicates when its action part has to
be executed. A trigger condition is typically specified by an event issued by a table or view,
while the action part describes modifications in the content of the depending view by means of
queries. As this approach only allows for having row additions and removals in the action part,
corresponding triggers are referred as insert and delete operation triggers, respectively.

Definition 72 Given a database table T(A1, . . . , An) with n columns, on which a data manipulation
(insert, delete, or update) operation has been executed resulting in a table content T′, an event issued by
table T (denoted by (e,∆T)) is a notification being sent when the content of table T is changed, and it
consists of an event type descriptor from the set { INSERT, DELETE, UPDATE } identifying the reason
for the modification, and a set of modified rows (denoted by ∆T). Modified rows always constitute a
subset of those rows that might be stored in table T. Formally, ∆T ⊆ (C1 ∪ { ε })× . . .× (Cn ∪ { ε }),
where Ci denotes the set of values allowed in the ith column Ai of table T (see Definition 29).

144 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

Based on the type of data manipulation operation performed, events can be partitioned into the
following three groups.

• An insertion event (INSERT,∆T+) is issued, whenever rows ∆T+ are added to table T resulting
in a content T′. Formally, ∆T+ = T′ \ T, and (INSERT,∆T+) ⊆ EINSERT

T , where

EINSERT
T = { INSERT } × (C1 ∪ { ε })× . . .× (Cn ∪ { ε }) .

• A deletion event (DELETE,∆T−) is issued, whenever rows ∆T− are removed from database
table T resulting in a content T′. Formally, ∆T− = T \ T′, and (DELETE,∆T−) ⊆ EDELETE

T ,
where

EDELETE
T = { DELETE } × (C1 ∪ { ε })× . . .× (Cn ∪ { ε }) .

• An update event
(
UPDATE,∆TAi

new

)
on column Ai is issued, whenever only the value in column

Ai of rows ∆TAi
old of table T are modified resulting in rows ∆TAi

new in a table content T′. For-
mally, ∆TAi

new = {~znew ∈ T′ | ∃~zold ∈ T, ∀k ∈ Z+
n : (i 6= k ⇐⇒ ~znew[Ak] = ~zold[Ak]) }, and(

UPDATE,∆TAi
new

)
⊆ EUPDATE

T , where

EUPDATE
T = { UPDATE } × (C1 ∪ { ε })× . . .× (Cn ∪ { ε }) .

The set of all possible events can be described formally by ET = EINSERT
T ∪ EDELETE

T ∪ EUPDATE
T .

Definition 73 Given a formula F , an event filtered by formula F (denoted by (e, σF (∆T))) contains
only such modified rows of event (e,∆T), for which F (y1, . . . , yn) holds. Formally,

(e, σF (∆T)) = { (e, y1, . . . , yn) | (e, y1, . . . , yn) ∈ (e,∆T) ∧ F (y1, . . . , yn) = true } .

An obvious corollary is that (e, σF (∆T)) ⊆ (e,∆T).

Definition 74 Given database tables S and T, an insert operation trigger specified by query Q+

for table T on event (e,∆S) being issued by table S (denoted by S ` (e,∆S) / Q+ → T) means
that result rows of query operation Q+ are calculated and added to table T whenever an event (e,∆S)
arrives. Formally, T′ = T ∪Q+.

Definition 75 Given database tables S and T, a delete operation trigger specified by query Q− for
table T on event (e,∆S) being issued by table S (denoted by S ` (e,∆S) / Q− → T) means that
result rows of query operation Q− are calculated and removed from table T whenever an event (e,∆S)
arrives. Formally, T′ = T \Q−.

In the following, notation Q [T → U] denotes the query Q, in which all the occurrences of table T

have been replaced by table U.

8.6.2 Incremental view updates for rule graphs (LHS and NAC)

Section 6.4.2 already described how views for rule graphs (LHS and NAC) could be generated from
tables that stored objects and links of the instance model. Now I present the process that updates these
views incrementally by using events being issued when the content of tables is changed.

For each pattern node and edge of each LHS graph, a pair consisting of an insert and a delete
operation trigger is specified for the view defined for the LHS. These triggers process events issued by
the table representing the pattern node and edge in turn.

Trigger conditions. Conditions of triggers are defined by the following guidelines.

8.6. INCREMENTAL GRAPH PATTERN MATCHING IN RELATIONAL DATABASES 145

• As objects are represented by individual rows in the corresponding tables as shown in Sec. 6.4.1,
the addition and the removal of such objects appear as insertion and deletion events issued by
these tables, respectively.

To handle these events during incremental operation, an insert and a delete operation trigger
have to be declared, respectively, for each pattern node of each LHS (NAC) graph. These triggers
propagate changes in the table representing the type of the pattern node to the view being assigned
to the LHS (NAC) graph.

• Each many-to-one link is stored in the table that corresponds to its source object, and represented
by the identifier of its target object in the column that has been assigned to the type of the link. In
this case, modifications of such links are reported by update events, which inform on changes in
the column associated with the link type. However, as link addition and removal are described by
setting and clearing the corresponding target object identifiers, respectively, update events have
to be filtered accordingly.

In incremental mode, for each many-to-one link of each LHS (NAC) graph, an insert and a delete
operation trigger are defined to process filtered update events, which report on setting and clear-
ing values, respectively, in the column representing the link type.

• A many-to-many link is represented by an individual row in a corresponding table, the addition
and the removal of such links are reported by insertion and deletion events, respectively. These
events can be handled by a corresponding insert and delete operation trigger, respectively, which
are defined for each many-to-many pattern edge of each LHS (NAC) graph.

Trigger actions. Recall that the non-incremental approach of Sec. 6.4.2 used a separate view for
calculating the matchings of each LHS and NAC graph. Each view has been specified by a query
consisting of the following sequence of operations. An inner join operation is executed first on tables
that represent either a node or an edge of the rule graph. The joined table is then filtered by injectivity
and edge constraints, and finally, columns that represent node identifiers are selected by a projection.

In the incremental approach, the above-mentioned overall query structure is preserved for defining
trigger actions, only the table, which issues the events processed by the trigger, is replaced with the
modified rows of the same event.

Example 35 For exemplifying the incremental operation in RDBMSs, the database equivalent of
ClassRule is monitored, when database representatives of class c1 and EO link connecting class c1
to package p are added to the model as depicted by Figures 8.4(c), and 8.4(e), respectively.

As the LHS of ClassRule has three nodes and two many-to-one edges, there are five insert and five
delete operation triggers defined for view ClassRule_lhs. Each pair of triggers handles events arriving
from the table that represents the type of either a pattern node or a pattern edge.

This running example focuses only on those triggers that are actually used during the above-
mentioned transformation. In this sense, when class c1 is added to the instance model, the insert
operation trigger, which handles insertion events of table Class is invoked. The trigger action is de-
scribed by the query of Listing 8.1.

During the actual query execution, the question mark in Listing 8.1 has to be substituted with the
database identifier of the class being inserted, which is c1 in this case. This query gives an empty result
as the equation c_anc.EO = p.id fails due to the lack of EO links in the model of Fig. 8.4(c). As
a consequence, view ClassRule_lhs is not extended now.

When the EO link connecting class c1 to package p is added to the model as shown by Fig. 8.4(e),
table ModelElement is modified in its column EO by modifying NULL value to p. This change is detected

146 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

INSERT INTO ClassRule_lhs (c,p,s) -- Insert operation
SELECT c.id AS c, p.id AS p, s.id AS s -- Non-incremental query
FROM Class AS c, ModelElement AS c_anc,

Package AS p, ModelElement AS p_anc,
Schema AS s

WHERE c.id = c_anc.id AND c_anc.EO = p.id
AND p.id = p_anc.id AND p_anc.Ref = s.id
AND p.id <> s.id
AND c.id = ? -- Execution restricted to

-- IDs of new classes
-- in incremental mode

Listing 8.1: Query handling the insertion of classes

by the insert operation trigger defined for view ClassRule_lhs, which handles such events that signal an
update on column EO, during which a NULL value has been replaced by a non-NULL value. The action
defined by this insert operation trigger is depicted in Listing 8.2.

INSERT INTO ClassRule_lhs (c,p,s)
SELECT c.id AS c, p.id AS p, s.id AS s
FROM Class AS c, ModelElement AS c_anc,

Package AS p, ModelElement AS p_anc,
Schema AS s

WHERE c.id = c_anc.id AND c_anc.EO = p.id
AND p.id = p_anc.id AND p_anc.Ref = s.id
AND p.id <> s.id
AND c_anc.id = ? -- "c1"
AND c_anc.EO = ? -- "p"

Listing 8.2: Query handling the insertion of EO links

When the query of Listing 8.2 is executed, question marks are replaced with identifiers c1 and p
denoting source and target objects of the new EO link, respectively. As a result, a triple consisting of
values c1, p, and s is added to view ClassRule_lhs, which corresponds to a new matching for the LHS
graph of ClassRule.

Formalization. Recall that notational shorthands nV = |VLHS| and nE = |ELHS| have been intro-
duced for denoting the number of pattern nodes and edges. Additionally, a total order has been defined
for the node and edge sets in which nodes precede edges, and xi and znV +j are the ith node and the jth
edge in this order, respectively.

Recall further that the view rd
LHS for the LHS has been defined in Sec. 6.4.2 by the following query

Q = πProjColRefs (σInj∧Edge (T1 × . . .× Ti × . . .× TnV +nE)) ,

in which table Ti has been assigned to the type of the ith pattern node or edge of rLHS. Formally,

Ti =

t(xi)

d, when i ≤ nV and xi ∈ VLHS

src(t(zi))
d, when nV < i ≤ nV + nE and ui

zi→1 vi ∈ ELHS

t(zi)
d, when nV < i ≤ nV + nE and ui

zi→∗ vi ∈ ELHS

8.6. INCREMENTAL GRAPH PATTERN MATCHING IN RELATIONAL DATABASES 147

Edge constraints Edge, injectivity constraints Inj, and projection column references ProjColRefs
are expressed in exactly the same way as in Sec. 6.4.2.

In order to incrementally update view rd
LHS for rule graph rLHS, insert and delete operation triggers

are defined, which handle events arriving from tables representing the types of pattern nodes and edges.
Queries of these triggers always use such versions of query Q, which restrict calculations only on the
set of modified rows reported by arriving events instead of using the complete table.

• Triggers for pattern nodes. For each pattern node xi, an insert operation trigger is specified by
query Q

[
t(xi)d → ∆(t(xi)d)+

]
for view rd

LHS on insertion event
(
INSERT,∆(t(xi)d)+

)
issued

by the table t(xi)d representing the type t(xi) of pattern node xi.

Additionally, for each pattern node xi, a delete operation trigger is specified by query
Q
[
t(xi)d → ∆(t(xi)d)−

]
for the same view rd

LHS on deletion event
(
DELETE,∆(t(xi)d)−

)
is-

sued by the same table t(xi)d.

• Triggers for many-to-one pattern edges. In order to avoid complex formulae when specifying
triggers for many-to-one pattern edge ui

zi→1 vi, let Si temporarily denote the table src(t(zi))d,
in which many-to-one links of type t(zi) are stored in the database. Since target objects of these
links are represented by values in column t(zi)d, the database trigger monitoring changes in this

column can be expressed by update events with modified rows ∆(Si)
t(zi)

d

new .

For each many-to-one pattern edge ui
zi→1 vi, an insert operation trigger is speci-

fied by query Q
[
Si → σt(zi)d 6=ε

(
∆(Si)

t(zi)
d

new

)]
for view rd

LHS on filtered update event(
UPDATE, σt(zi)d 6=ε

(
∆(Si)

t(zi)
d

new

))
issued by the table Si. By performing the selection σt(zi)d 6=ε

on update event
(
UPDATE,∆(Si)

t(zi)
d

new

)
, only those modified rows are kept, in which the value in

column t(zi)d has been changed from undefined (NULL) to a non-NULL value.

Additionally, for each many-to-one pattern edge ui
zi→1 vi, a delete operation trigger is spec-

ified by query Q
[
Si → σt(zi)d=ε

(
∆(Si)

t(zi)
d

new

)]
for the same view rd

LHS on deletion event(
UPDATE, σt(zi)d=ε

(
∆(Si)

t(zi)
d

new

))
issued by the same table Si. In this case, the filtered event

identifies such rows, in which the value in column t(zi)d has been modified from a non-NULL

value to undefined (NULL).

• Triggers for many-to-many pattern edges. For each many-to-many pattern edge ui
zi→∗ vi, an

insert operation trigger is specified by query Q
[
t(zi)d → ∆(t(zi)d)+

]
for view rd

LHS on insertion
event

(
INSERT,∆(t(zi)d)+

)
issued by the table t(zi)d representing the type t(zi) of pattern edge

ui
zi→∗ vi.

Additionally, for each many-to-many pattern edge ui
zi→∗ vi, a delete operation trigger

is specified by query Q
[
t(zi)d → ∆(t(zi)d)−

]
for the same view rd

LHS on deletion event(
DELETE,∆(t(zi)d)−

)
issued by the same table t(zi)d.

Insertion and deletion triggers for views representing the NACs can be specified in exactly the same
way, but using the NAC graphs in the process.

8.6.3 Incremental updates for preconditions of rules

As it has been introduced in Sec. 6.2, the calculation of a view for the precondition of a rule proceeds
as follows in the non-incremental case. Each NAC is left outer joined to the LHS graph one by one

148 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

by using join conditions, which express that columns representing the same shared node in different
rule graphs should be equal. Additional filtering conditions require that columns of NAC(s), which are
shared with the LHS part, have to be filled with undefined values. Finally, a projection displays only
those columns that originate from LHS.

In the incremental approach, for each rule precondition view, a pair of insert and delete operation
triggers are defined. Insertion and deletion events of the view for the LHS graph contained by the
precondition in turn are handled by these triggers, respectively. Similarly, a pair of insert and delete
operation triggers have to be specified for each precondition view for handling events arriving from
each NAC view of the precondition. However, since new matchings for a NAC can narrow the set
of solutions for the precondition, the dependency has to be transposed meaning that insert and delete
operation triggers should handle deletion and insertion events, respectively.

The four possible cases of modifications are now discussed in details.

• Augmenting LHS views. When rows are added to the view defined for the LHS graph, the above-
mentioned query has to be evaluated on the new rows resulting in a possible new set of rows to
be inserted into the rule precondition view. This behaviour can be achieved by defining an insert
operation trigger for the precondition view, which handles insertion events that arrive from the
LHS view.

• Narrowing LHS views. When rows are removed from the LHS view, their counterparts in the
precondition view also have to be removed, which is expressed by a delete operation trigger that
handles deletion events of the LHS view.

• Augmenting NAC views. When a NAC view is augmented, then the region being blocked by
these new rows has to be determined and removed from the precondition view. The blocked
region consists of such rows of the LHS view, which can be inner joined to the new rows of the
NAC view.

This case can be handled by a delete operation trigger, which processes insertion events of the
NAC view.

• Narrowing NAC views. When rows are removed from the NAC view, then the precondition view
defining query has to be re-evaluated by substituting the LHS view with the region that has been
blocked by such rows of the NAC view that have just been deleted. This is expressed by an insert
operation trigger that handles deletion events of the NAC view.

Example 36 By continuing the previous running example, modifications in view ClassRule are now
examined. When the database representation of class c1 has been added to table Class, the content of
LHS view ClassRule_lhs is not changed. However, in the second round, when EO link connecting class
c1 to package p is added, a new row appears in view ClassRule_lhs, which consists of identifiers c1, p,
s, which represent a matching for the LHS graph in turn.

The appearance of this new row generates an insertion event issued by view ClassRule_lhs, which is
processed by an insertion trigger of precondition view ClassRule, which executes the following query
as an action.

In the above query, question marks are substituted with identifiers c1, p, and s, respectively, which
originate from the new row, whose creation is reported by the insertion event. By evaluating the query,
the same row is added to view ClassRule as well denoting a new matching for the precondition in turn.

8.6. INCREMENTAL GRAPH PATTERN MATCHING IN RELATIONAL DATABASES 149

CREATE VIEW ClassRule AS
SELECT lhs.*
FROM ClassRule_lhs AS lhs
LEFT JOIN ClassRule_nac AS nac ON lhs.c = nac.c

WHERE nac.c IS NULL
AND lhs.c = ? -- "c1"
AND lhs.p = ? -- "p"
AND lhs.s = ? -- "s"

Listing 8.3: Query handling insertion events issued by view ClassRule_lhs

Formalization. Recall that the view rd
PRE, which represents the precondition rPRE consisting of a sin-

gle LHS and k negative application conditions has been calculated by the following query in Sec. 6.4.3.

P = rd
PRE = πProjColRefs

(
σNull

(
rd

LHS

F1

n rd
NAC1

F2

n . . .
Fk

n rd
NACk

))
In this query, column references ProjColRefs, null conditions Null, and join conditions Fi are the
same as in Sec. 6.4.3. Recall also that view rd

PRE constitutes a subset of view rd
LHS.

Definition 76 Given the query P = πProjColRefs

(
σNull

(
rd

LHS

F1

n rd
NAC1

F2

n . . .
Fk

n rd
NACk

))
, which is

used for calculating view rd
PRE, a region blocked by view rd

NACi
contains such rows of view rd

LHS, which
should be invalidated by left joining view rd

NACi
by using formula Fi. The blocked region consists of

such rows of view rd
LHS, which can be successfully inner joined to view rd

NACi
by using filtering formula

Fi. Formally,
RNACi = πProjColRefs

(
σFi

(
rd

LHS × rd
NACi

))
⊆ rd

LHS.

Based on the above definition and the structure of query P , a row might be invalidated by several
NAC views rd

NACi
, so blocked regions might overlap each other. On the other hand, blocked regions are

always disjoint with view rd
PRE as this latter contains exactly such rows of view rd

LHS that have not been
invalidated by any NAC views rd

NACi
.

It is worth emphasizing that a NAC view rd
NACi

cannot influence which rows of view rd
LHS to exclude

from the result set outside its blocked region RNACi . This observation is useful, when rows ∆
(
rd

NACi

)−
are deleted from view rd

NACi
as they can only enable such rows of view rd

LHS for possible re-inclusion,

which have been previously blocked by the rows ∆
(
rd

NACi

)− to be deleted.

• Triggers for tracking modifications in views representing LHS. If rows ∆
(
rd

LHS

)+ are added to

view rd
LHS as reported by the insertion event

(
INSERT,∆

(
rd

LHS

)+), then query P has to be

recomputed by using only the inserted rows ∆
(
rd

LHS

)+ in the leftmost position of the left join
operation instead of the complete view rd

LHS. This can be expressed by

P+
LHS = πProjColRefs

(
σNull

(
∆
(
rd

LHS

)+ F1

n rd
NAC1

F2

n . . .
Fk

n rd
NACk

))
.

If rows ∆
(
rd

LHS

)− are removed from view rd
LHS as reported by the deletion event(

DELETE,∆
(
rd

LHS

)−), then these rows must be removed from the result view rd
PRE as well.

The required changes can be expressed by query P−
LHS = ∆

(
rd

LHS

)−.

150 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

For appropriately tracking the above-mentioned modifications of view rd
LHS, an insert and a delete

operation trigger should be specified by queries P+
LHS and P−

LHS for view rd
PRE on insertion event(

INSERT,∆
(
rd

LHS

)+) and deletion event
(
DELETE,∆

(
rd

LHS

)−), respectively.

• Triggers for tracking modifications in views representing NAC. If rows ∆
(
rd

NACi

)+ are added to

view rd
NACi

as reported by the insertion event
(
INSERT,∆

(
rd

NACi

)+), then all such rows of view

rd
LHS, which can be successfully (inner) joined to new rows ∆

(
rd

NACi

)+ of view rd
NACi

, should be
removed from view rd

PRE, which can be expressed by the following query

P−
NACi

= RNACi

[
rd

NACi
→ ∆

(
rd

NACi

)+
]

= πProjColRefs

(
σFi

(
rd

LHS ×∆
(
rd

NACi

)+
))

.

If rows ∆
(
rd

NACi

)− are removed from view rd
NACi

as reported by the deletion event(
DELETE,∆

(
rd

NACi

)−), then first, those rows of view rd
LHS have to be identified, which might

reappear in view rd
PRE due to the deletion of rows ∆

(
rd

NACi

)−. These rows are in the re-

gion that has been blocked by deleted rows ∆
(
rd

NACi

)−, which can formally be described by

RNACi

[
rd

NACi
→ ∆

(
rd

NACi

)−]. Then query P has to be re-evaluated on the rows of the blocked

region RNACi

[
rd

NACi
→ ∆

(
rd

NACi

)−] to provide the set of rows from view rd
LHS that have to be

added to view rd
PRE. Formally,

P+
NACi

= πProjColRefs

(
σNull

(
RNACi

[
rd

NACi
→ ∆

(
rd

NACi

)−] F1

n rd
NAC1

F2

n . . .
Fk

n rd
NACk

))
,

where RNACi

[
rd

NACi
→ ∆

(
rd

NACi

)−] = πProjColRefs

(
σFi

(
rd

LHS ×∆
(
rd

NACi

)−)).

For appropriately tracking the above-mentioned modifications of view rd
NACi

, a delete and an
insert operation trigger should be specified by queries P−

NACi
and P+

NACi
for view rd

PRE on insertion

event
(
INSERT,∆

(
rd

NACi

)+) and deletion event
(
DELETE,∆

(
rd

NACi

)−), respectively. Note that

there is a negative dependency between modifications in views rd
NACi

and rd
PRE, as an insertion

into view rd
NACi

leads to a deletion in view rd
PRE and vice versa.

8.7 Conclusion

In the current chapter, I elaborated a notification framework based incremental method for graph pattern
matching. Additionally, I assessed the performance of the approach by comparing it to a traditional
graph transformation tool.

• Data structures for in-memory incremental graph transformation. In order to support incremen-
tal graph transformation, I proposed data structures for maintaining, efficiently storing, invali-
dating, and notifying partial matchings, and for accelerating the retrieval of complete matchings
(Sec. 8.3).

• Algorithms for in-memory incremental graph transformation. By using these data structures,
I elaborated algorithms for incremental graph pattern matching, in which complete and partial

8.7. CONCLUSION 151

matchings of LHS and NAC patterns of a rule are stored explicitly in a snapshot tree in the main
memory, and they are updated incrementally when the instance model is modified by also taking
into account invalidations due to matchings of negative condition patterns (Sec. 8.4).

• Quantitative performance analysis of incremental graph transformation. By using a benchmark
example, I examined and compared the run-time performance of the incremental and the tradi-
tional graph transformation approaches (Sec. 8.5).

• Incremental graph transformation in relational databases. I elaborated a method for incremen-
tal graph transformation, which maintains and stores partial matchings of graph transformation
rules in relational database tables, which are updated incrementally, when the instance model is
changed (Sec. 8.6).

These results are reported in [145, 146, 155, 157].

Relevance

Compared to other graph transformation related incremental techniques, the main distinguishing feature
of the presented approach is the novel notification mechanism, which can be characterized by the
maintenance of registries for quickly identifying those partial matchings, which are candidates for
extension or removal when an object or a link is inserted to or removed from the model.

Users can typically exploit the benefits of incrementality in synchronization tasks. A brief list of
such application domains is now given.

• Transformation rules in the Relations language of the Query/Views/Transformations (QVT)
[109] standard have multiple domains and these rules can be executed in several directions de-
pending on the target domain being fixed before rule application. If matchings for domains
of rules are sought by an incremental graph pattern matcher, the overall model transformation
engine can significantly benefit from incrementality.

• A recent study [112] in the field of domain-specific modeling languages suggested the gener-
alization of the mapping between the graphical concrete and the abstract syntax by introducing
a declarative framework to give complete freedom to the language engineer in the visualiza-
tion of models. The implementation of such a declarative framework can also be considered as
a synchronization problem, in which incremental graph transformations can provide a suitable
technique for improving run-time performance.

• Another recent paper [93] suggests an approach to use a so-called Cognitive Process [94] as a
central knowledge-processing entity within artificial cognitive units, which perform co-operative
guidance of multiple uninhabited aerial vehicles in assistant systems. This Cognitive Process is
implemented by a rule-based approach, for which incremental transformations are applicable to
provide an efficient runtime environment.

The Rete network based technique of [22] shows close correspondance to our approach, as levels
of snapshot trees can be considered as nodes in the Rete network. Although, it is not a one-to-one map-
ping as one level of the snapshot tree corresponds to several Rete nodes, two significant consequences
can be drawn from this similarity. All techniques (e.g., the handling of common parts of different LHS
patterns at the same network node [95]) that have already been invented for Rete-based solutions are
also applicable to our approach. The idea of notification arrays can speed-up traditional Rete-based ap-
proaches used in a graph transformation context as these arrays help identifying those partial matchings
that may participate in the extension of the matching. Thus, it is subject to our future investigations.

152 CHAPTER 8. INCREMENTAL GRAPH TRANSFORMATION

Based on the experience collected while carrying out the research reported in the current chapter, a
Rete-based incremental pattern matching engine has been developed by a graduate student. This pro-
totype engine now provides an alternative for the traditional, non-incremental pattern matcher module
of the VIATRA2 model transformation framework.

The performance analysis of the view-based incremental pattern matching approach of Sec. 8.6
belongs to the future tasks.

Limitations

Certain limitations of the presented algorithms have also been identified.
First of all, the efficiency of the incremental pattern matching engine highly depends on the selec-

tion of search plans as even a single insertion (or deletion), which affect matchings located at upper
levels of the tree (i.e., near to its root) may trigger computation intensive operations. As a consequence,
further investigations on creating good search plans for the incremental pattern matching engine have
to be carried out.

Our current solution provides a suboptimal solution, when patterns contain a large number of loop
edges. This is related to the fact that our approach currently stores only the matchings of the nodes but
not the edges (i.e., edges do not have identifiers), which assumption can be relaxed in the future.

At first glance, it can be strange that NACs are handled independently of the LHS (i.e., all matchings
of the NAC are calculated). The goal of our approach is to support the reusability of patterns when the
same pattern can be used once in the LHS and once as a NAC, or the same NAC is a negative condition
for multiple LHSs (as in VIATRA2 [6]).

CHAPTER

9
Conclusions

As a final conclusion, I compare the results presented in the current thesis with the main objectives (of
Sec. 1.4). Additionally, I report on how these results have been used in practical applications. I also
outline some future directions of basic research and applications.

9.1 Fulfillment of objectives

Objective 1 After analyzing typical scenarios and the most popular tools from the field of graph
transformation, I set up a benchmarking framework by identifying and categorizing the characteris-
tics of the transformation problems themselves and of typical optimization strategies. The proposed
framework consists of a model transformation and a simulation benchmark example originating from
the software engineering application domain. The framework is used to quantitatively assess the run-
time performance of model transformation systems and the acceleration effects of their optimization
strategies in practice-oriented environments.

Objective 2 In order to ensure the transformation of large models, I presented a provenly correct
method for implementing graph transformation built on top of relational database management sys-
tems, which operates on models stored on disks by executing SQL queries and data manipulation com-
mands to perform pattern matching and updating phases, respectively. Additionally, I examined the
run-time efficiency of the proposed method on the object-relational mapping benchmark example by
using different databases and several parameter and optimization strategy settings. Finally, I extended
the method to EJB QL queries to make the RDBMS-based model transformation approach portable and
database independent by bridging the gap caused by the different dialects of the SQL standard used in
database implementations, and to adhere to the J2EE standard.

Objective 3 In order to improve graph pattern matching heuristics, I introduced model sensitivity by
employing statistics collected from concrete typical models of the domain for defining more precise
functions for assessing the costs of elementary search plan operations. For the optimization of model-
specific search plans, I proposed to customize traditional greedy algorithms.

Moreover, I elaborated an adaptive approach, where the optimal strategy is selected at run-time
from precompiled methods by using statistics from the model under transformation.

153

154 CHAPTER 9. CONCLUSIONS

Additionally, I prepared an EJB3-based prototype of the adaptive graph transformation engine by
generating code for pattern matching and cost calculation functionalities of concrete strategies, and by
implementing a stateless session bean that selects the optimal strategy at run-time. Finally, I examined
and compared the efficiency of Java, EJB3 and EJB QL based pattern matching implementations.

Objective 4 In order to speed-up graph pattern matching for the price of increased memory usage,
I proposed data structures and algorithms for incremental graph pattern matching, in which partial
matchings of earlier transformation steps are stored explicitly in the main memory, and these match-
ings are updated incrementally in response to model modification triggers. To avoid exceeding main
memory limitations caused by the numerous partial matchings being stored, I additionally elaborated
the technique of RDBMS-based incremental pattern matching, in which partial matchings are stored
on disk in relational database tables.

Finally, I examined and compared the run-time efficiency of incremental and traditional approaches
by using the object-relational benchmark example.

9.2 Utilization of new results

Now I summarize how results of this thesis have been used in practical applications.

9.2.1 Utilization of the benchmarking framework

As reported in [51], the benchmarking framework has been directly used by the developers of GrGen for
measuring the run-time performance of their tool. In addition, in [52] they suggested several improve-
ments for the framework itself, for the benchmark implementations, and for chronometry issues. The
benchmarking framework is mentioned in several papers [47, 162] and Master’s theses [43, 72, 88, 132]
as well.

9.2.2 Utilization of RDBMS based graph transformation

The Transformation Execution Environment of the MOLA tool performs RDBMS based graph transfor-
mation by generating and executing SQL queries and commands. According to [71], MOLA is similar
to our approach presented in Chapter 6 in the sense that both (i) use underlying relational databases, (ii)
have a fixed schema, and (iii) perform graph pattern matching by executing SQL queries. In contrast
to our approach, which uses a predefined database schema for representing the metamodel, MOLA
stores the meta information in tables resulting in more dynamicity and flexibility when the metamodel
changes, and slightly more complex queries for pattern matching as type constraints must also be
checked by the queries. Negative application conditions are expressed by NOT EXISTS subqueries,
and not by left joins as in our case. The RDBMS-based graph transformation approach of Chapter 6
has a clear advantage when the metamodel is fixed in advance and if it contains inheritance as type
checking can be faster and model consistency can be more easily ensured due to the built-in foreign
key constraint support of relational databases.

Contributions that are related to RDBMS based graph transformation have been cited by papers
[23, 88, 132].

9.3. FUTURE DIRECTIONS 155

9.2.3 Utilization of model-sensitive and adaptive pattern matching

Results of Chapter 7 are directly utilized in the development of the VIATRA2 model transformation
framework. Adaptive and model-sensitive techniques have already been built into the pattern matching
module of Release 3. Unfortunately, the underlying model repository currently lacks the statistical data
collection support, which prevented us from testing all the concepts in their full functionality.

The code generation module of FUJABA has recently been improved by putting a stronger emphasis
on performance issues as reported in [50]. The original search plan and optimization concepts [164]
have been extended by introducing a tree-based representation for search plans, and a sibling permu-
tation heuristic for accelerating pattern matching. Though the current version of the code generation
module only uses static cost estimation for search plan operations, the authors mention that the adaptive
and model-sensitive approach of Chapter 7 can be easily integrated into their tool as well.

The optimization technique [10, 11] of GrGen is highly similar to the adaptive and model-specific
pattern matching approach of Chapter 7 with minor differences in operation cost assignment and search
plan cost calculation. The developers have recently confirmed the feasibility of the technique by per-
forming a quantitative analysis reported in [12], which also used the benchmarking framework of
Chapter 5. According to [12], the adaptive approach can be an order of magnitude faster than any
other known graph transformation systems.

The international acknowledgement of the model-sensitive pattern matching technique is indicated
by papers [15, 88, 111].

9.2.4 Utilization of incremental graph pattern matching

Based on the experience on incremental pattern matching techniques, a Rete-based approach has been
developed by a graduate student. This prototype engine is now an alternative of the non-incremental
pattern matching module of VIATRA2 to be used for domain-specific editors.

Moreover, the technique presented in Chapter 8 have been cited by [79, 93, 115, 138].

9.3 Future directions

An ongoing activity aims at implementing a graph pattern matching module for the VIATRA2 model
transformation framework, which is able to handle several advanced pattern composition concepts such
as alternate choices and recursion ensuring a scalable and re-usable model transformation engine. A
possible research subtask in the development process is the generalization of search plans to support
the correct and performance optimal ordering of non-binary constraints.

Further activities aim at integrating traditional and incremental pattern matching engines providing
a feature to dynamically adjust time-space trade-off properties of the algorithms based on the actual
requirements of the application scenario.

The incremental approach has further potentials to accelerate graph transformation. On one hand,
since the definition of subpatterns in Sec. 8.2 corresponds to a linear RETE structure, which is inher-
ently suboptimal, a non-linear layout could improve the performance of consistency restoration. On the
other hand, since rules might share subgraph structures in their LHS patterns in a typical application
scenario, the RETE nodes that correspond to the common parts can also be merged, thus, reducing the
memory consumption of the approach.

Though the adaptive graph transformation technique can theoretically be used in any search plan
driven approaches, its widespread usage is set back by the missing statistics support in standard model
repositories (like the ones based on EMF). As the introduction of such a support would cause a constant

156 CHAPTER 9. CONCLUSIONS

increase in the complexity of model handling tasks in the repository, this simple step could result in
a significant speed-up for model transformations. Additionally, as recent performance experiments
[12] showed, there might always be further potential to accelerate pattern matching by developing new
heuristics for model-sensitive search plans.

Finally, since graph pattern matching has several independently executable subtasks, the develop-
ment of a parallel and distributed graph transformation engine could be a new direction of research in
the future.

APPENDIX

A
Proofs of Theorems

Theorem 1 The initial instance model M and its database representation M are consistent (see
Def. 51). Formally, M ∼= M.

PROOF In order to prove the consistency of M and M, we have to check whether statements in Defi-
nition 51 hold in both directions for all classes and associations.

Nodes. =⇒ First we check the property that should be hold for the classes. Let us select an arbitrary
class C ∈ VMM .

According to the left part of Def. 51, ∃c ∈ VM such that C
∗
^ t(c). Since topological order

(Def. 49) enumerates all the ancestors of t(c), C will surely appear in the topological order of t(c).
But Alg. 6.1 iterates over all objects (lines 1–6), then over all classes appearing in the topological order
(lines 3–5), line 4 is also executed for the object c, class C pair, which means that the identifier cd

generated for c in line 2 should be contained by table Cd in column id after the termination of Alg. 6.1.
The same statement is valid for any arbitrary class of the metamodel.

Many-to-one edges. =⇒ Now we have a many-to-one link a
e→1 b ∈ EM . When Alg. 6.1

reaches line 7, the source object a of this link has already a database representation, which means
that there exists a row ~a with ~a[id] = ad in all tables that correspond to ancestors of class t(a). As
src(t(e))

∗
^ t(a) holds according to the type conformance requirements of Def. 7 for source objects,

there exists a row ~a with ~a[id] = ad in table src(t(e))d. But the update operation in line 8 of Alg. 6.1 is
executed for our selected many-to-one link, which sets~a[t(e)d] to bd, thus we have found an appropriate
row ~a required by Def. 51.

Many-to-many edges. =⇒ It can be assumed that we have a many-to-many link a
e→∗ b ∈ EM .

Since lines 10–12 are executed for all many-to-many links of the instance model, it should also be
executed for a

e→∗ b as well, which includes the insertion of tuple (ad, bd) to table t(e)d in line 11. But
we are ready now, since (ad, bd) got into the table t(e)d as it is required in the right side of Def. 51.

Nodes. ⇐= Let us select an arbitrary class C ∈ VMM again. By using the statement of consistency
definition (Def. 51) for a class C, it may be assumed that ∃~c ∈ Cd such that ~c[id] = cd, thus there is a
row ~c in table Cd that contains the value cd in column id. Since table Cd was empty in the beginning,
the only possibility for cd to appear in the table is that it should be inserted during the execution of
lines 1–6 of Alg. 6.1. But this could only happen, if object c and class C have been enumerated in
line 1 and in line 3, respectively. Since class C has to be in the topological order of t(c), this means

157

158 APPENDIX A. PROOFS OF THEOREMS

that C
∗
^ t(c). But in this case we have found an object c for which C

∗
^ t(c) holds, so it fulfils

the requirements appearing in the left part of Def. 51. Since in the beginning an arbitrary class was
selected, our proof is valid for all other classes as well.

Many-to-one edges. ⇐= It can be assumed that table T, which corresponds to a class in the
metamodel, has a row ~a for which ~a[id] = ad and ~a[t(e)d] = bd hold. Since all tables were initially
empty and only line 8 of Alg. 6.1 is able to modify such table T in columns other than id, this part of
the algorithm has to be executed. But this can only happen, if there exists a many-to-one link a

e→1 b
in model M .

Many-to-many edges. ⇐= We know that there exists a row ~e = (ad, bd) in a table t(e)d. Since
tables were empty initially, ~e had to be inserted during one execution of lines 10–12 of Alg. 6.1, which
means that there should exist a many-to-many link a

e→∗ b in the original instance model M for which
the corresponding INSERT operation could be executed in line 11. ut

Theorem 2 Let d be a bidirectional mapping between SGT and SDB . If model M is consistent with
the database representation M, then a pattern rG (without negative application condition) in SGT is
consistent with view rd

G in SDB . Formally, M ∼= M =⇒ rG
∼= rd

G.

PROOF (=⇒) When proving in this direction, we may assume that we have a matching m for rule
graph rG in model M , and we want to prove that there exists a corresponding row in view rd

G.
Since M ∼= M we know that the instance model has a correct representation in the database. During

the proof we first examine what the contents of database tables are, and then we apply operations
defined in the query for rd

G step-by-step, and our aim is to prove that the result (namely the rd
G view)

will contain a row ~r with object identifiers defined by matching m.
Consequences of M ∼= M. Having a matching m means that for all nodes and edges of the G

graph have a type conform image in the model M .
Let us use the consistency definition (Def. 51) in left to right direction for any object m(x) ∈ VM

that participates in the matching m. We get that a corresponding row ~mx with ~mx[id] = m(x)d should
be contained not only by table assigned to its own direct type t(m(x))d but also by all its ancestor
tables, and as such ~mx ∈ t(x)d as well. By applying the consistency definition for many-to-one link
a

e→1 b assigned to an edge u
z→1 v of rule graph G by matching m, we get that table src(t(e))d

has a row ~mz for which ~mz[id] = ad and ~mz[t(e)d] = bd hold. Since t(e) = t(z), ~mz appears in
src(t(z))d as well. By using the consistency definition for many-to-many link a

e→∗ b assigned to an
edge u

z→∗ v of rule graph G by matching m, we get that table t(e)d has a row ~mz = (ad, bd). It is
worth to emphasize that at this point we already know the contents of all database tables that are used
in the query of rd

G.
Construction of the joined table. Now, if we enumerate nodes and edges of G in their

natural order (and also take care of nodes being ahead of edges in the enumeration), and we
select exactly the same rows from the tables that were mentioned above, then a row ~s =(

~mx1 , . . . , ~mxnV
, ~mz1 , . . . , ~mznE

)
will appear in the joined table T = t(x1)d × · · · × t(xnV)d ×

t(z1)d × · · · × t(znE)d. In the following, it is examined why row ~s is not filtered out by injectivity and
edge constraints of the selection operation.

Checking injectivity constraints. Let us suppose by contradiction that ~s has been filtered out
because of violating an injectivity constraint in the query (e.g. xcs

j .id 6= xcs
k .id for some different

xj , xk ∈ VG where t(xj)
∗
^ t(xk) holds). Violating the constraint means that values should be equal

in columns xcs
j .id and xcs

k .id for all rows the joined table contains, and as such this equation must
also hold for the corresponding elements of ~s. By taking care of construction rules of ~s it yields to

159

m(xj)d = ~mxj [id] = ~mxk
[id] = m(xk)d. Since d is bijective, the equation could hold only if, the

origins in model M were the same (m(xj) = m(xk)). But in this case we have different rule graph
nodes that have been mapped to the same object of the model by m, which is an immediate violation of
injective mapping requirements for m. As a consequence, we may state that if m takes care of injective
mapping, then the injectivity filtering condition will also take care of this requirement for the database
representation.

Checking edge constraints. Let us select an arbitrary many-to-one edge u
z→1 v ∈ EG and

let us further suppose that it is mapped to link a
e→1 b by matching m. As a consequence of the

query construction algorithm, we know that ~s[zcs.id] = ~mz[id] = ad, and similarly, ~s[zcs.t(z)d] =
~mz[t(z)d] = bd. Since u and v are rule graph nodes in G, there should exist columns ~s[ucs.id] and
~s[vcs.id] originating from ~mu[id] and ~mv[id] with values ad and bd, respectively. Summarizing our
previous statements result in ~s[ucs.id] = ad = ~s[zcs.id] and ~s[vcs.id] = bd = ~s[zcs.t(z)d]. Recall the
edge constraint that has been defined for edge u

z→1 v. Note that this specific edge constraint prescribes
the equation of exactly the same columns, whose equation has just been proved for ~s.

Let us select an arbitrary many-to-many edge u
z→∗ v ∈ EG and let us further suppose that it has

been mapped to a
e→∗ b by matching m. By using a similar reasoning, we get equalities ~s[ucs.id] =

ad = ~s[zcs.src] and ~s[vcs.id] = bd = ~s[zcs.trg], which means that ~s fulfils the edge constraints defined
for edge u

z→ v.
Since ~s satisfies all the injectivity and edge constraints we may state that ~s ∈ σInj∧Edge(T).
Performing projection. By using the definition of projection to columns being defined in

Sec. 6.4.2, we get ~r =
(
m(x1)d, . . . ,m(xnV)d

)
∈ rd

G, which means that we have found a row in
rd
G that contains all the identifiers of nodes that have been selected by the specific matching. ut

PROOF (⇐=) When proving in this direction, we may assume that table rd
G having nV columns con-

tains a row ~r, for which ∀x ∈ VG : ~r[xd] = cd. Now our goal is to define an appropriate matching m
for rule rG in model M .

In this case the idea of the proof goes rather in a backward direction. We already know that the
joined table S contains a row ~s from which ~r could originate during its calculation, but since the joined
table has more columns than the result table, some values in row ~s are unknown initially. By using
edge constraints, we are able to calculate some further values, resulting in a row ~s that has more values
filled in than ~r. Then we define the matching m based on the values in row ~s, and finally we prove that
this matching must also satisfy injectivity constraints together with its original database representation.

Following the projection and selection operations in backward direction. Now we have a row
~r in rd

G. If an operation (such as projection and selection) cannot increase the number of rows, then
it is sure that if we have a row in the result table, then this row should have an origin in the table, on
which operations were performed. Formally, it is obvious (by using the definitions of projection and
selection) that ∃~s ∈ σInj∧Edge(S) ⊆ S = T1 × · · · × TnV +nE , where Ti is the table that corresponds
to the ith graph object (node or edge) of the pattern G as defined by the query construction algorithm.
By investigating the columns to which projection was applied, we can calculate what the values of row
~s should have been before the projection was performed. More precisely, ∀x ∈ VG : cd = ~r[xd] =
~s[xcs.id].

Matching definition for rule graph nodes. Let us examine an arbitrary node x of pattern G.
According to the definition of S, the column set xcs that corresponds to x should originate from table
t(x)d that was assigned to class t(x). As a consequence, there should exist a row ~tx in table t(x)d such
that ~s[xcs.id] = ~tx[id] = cd. Since our tables contain unique identifiers of objects in columns id, there
should exist a single object c whose identifier is cd. Now the consistency definition (Def. 51) can be
used in right to left direction, which means that the direct type t(c) of object c is a descendant of t(x),

160 APPENDIX A. PROOFS OF THEOREMS

so it is allowed to map node x to object c by matching m. So we can define the matching m for rule
graph node x as m(x) := c.

Matching definition for many-to-one rule graph edges. Let us select an arbitrary many-to-one
edge u

z→1 v from pattern G. Recall how edge constraints look like for this specific edge. These
constraints are zcs.id = ucs.id, and zcs.t(z)d = vcs.id. Note that since u and v are nodes in pattern G,
~s[ucs.id] and ~s[vcs.id] have some values ad and bd being identifiers of objects a and b, respectively, as
we determined earlier. Furthermore, we know that t(u)

∗
^ t(a) and t(v)

∗
^ t(b). Edge constraints must

hold for all rows of S and as such ~s should also satisfy them, resulting in ~s[zcs.id] = ~s[ucs.id] = ad

and ~s[zcs.t(z)d] = ~s[vcs.id] = bd. We know that the column set zcs of S should originate from the
table src(t(z))d that was assigned to class src(t(z)). Since ~s is in the joined table S, src(t(z))d should
have a row ~tz such that ~tz[id] = ~s[zcs.id] = ad and ~tz[t(z)d] = ~s[zcs.t(z)d] = bd. The consistency
definition (Def. 51) for many-to-one links in right to left direction states that ∃a e→1 b ∈ EM such that
t(z) = t(e). But this edge is an appropriate candidate to which pattern edge u

z→1 v can be mapped by
matching m.

Matching definition for many-to-many rule graph edges. Let us select an arbitrary many-to-
many edge u

z→∗ v from pattern G. Edge constraints for this specific edge are zcs.src = ucs.id and
zcs.trg = vcs.id. Since u and v are nodes of pattern G, ~s[ucs.id] and ~s[vcs.id] have some values ad

and bd that are identifiers of objects a and b, respectively. Moreover, we know that t(u)
∗
^ t(a) and

t(v)
∗
^ t(b). Edge constraints must be satisfied by row ~s, which means that ~s[zcs.src] = ~s[ucs.id] = ad

and ~s[zcs.trg] = ~s[vcs.id] = bd should hold. We know that column set zcs of S derives from table t(z)d,
which has been created for association t(z). Since ~s is in table S, there should exist a row ~tz in table
t(z)d such that ~tz[src] = ~s[zcs.src] = ad and ~tz[trg] = ~s[zcs.trg] = bd. The consistency definition
(Def. 51) for many-to-many links in right to left direction states that there exists a link a

e→∗ b ∈ EM

such that t(z) = t(e). Now we may define matching m for edge u
z→∗ v as m(u z→∗ v) := a

e→∗ b.
Injectivity constraint check. Finally, we check that the matching m we have just defined cannot

map different nodes (edges) to the same object (link).
Let us suppose by contradiction, that there are two different nodes xj , xk in G such that t(xj)

∗
^

t(xk) and m maps them to the same object c. Formally, m(xj) = m(xk) = c. Since d is bijective,
these objects have the same identifier in the database, formally m(xj)d = m(xk)d = cd. We have
some further knowledge about this identifier, namely ~s[xcs

j .id] = cd = ~s[xcs
k .id]. Recall that injectivity

constraints prescribed inequality for exactly the same columns, namely xcs
j .id 6= xcs

k .id. Injectivity
constraints should be satisfied by row ~s in order to be the origin of row ~r, which is a contradiction,
since we found equality of elements in the mentioned columns in case of row ~s.

Different pattern edges cannot be mapped to the same link, as in such a situation the pattern could
not be a well-formed instance of the metamodel, since it would violate the non-existence of parallel
edges. ut

Corollary 1 If we calculate the left outer join of tables R(m) and S(n), then for each row ~r of R there

exists a row ~t in the joined table that contains row ~r in its first m columns. Formally, if T = R
F
n S then

∀~r ∈ R,∃~t ∈ T such that ~t[i] = ~r[i] for all the columns of ~r.

In the following, notation Si will be used for rd
LHS

F1

n rd
NAC1

F2

n . . .
Fi

n rd
NACi

. With this notation Sk

corresponds to the table that has to be calculated for the view rd
PRE.

Theorem 3 Let us suppose that there exists a bijective mapping from SGT to SDB . If model M is con-
sistent with the database representation M, then a pattern rPRE in SGT that has negative application
conditions is consistent with view rd

PRE in SDB . Formally, M ∼= M =⇒ rPRE
∼= rd

PRE.

161

PROOF (=⇒) The basic idea is to prove that Sk should contain a row ~s that has defined values only in
columns that originate from view rd

LHS, and all other values are undefined. This is done in an iterative
process starting from S0, which corresponds to view rd

LHS. In each step in order to generate Si, rd
NACi

is attached to Si−1 by a left outer join operation using the formulae Fi for join condition. Finally, we
show that the projection and selection performed in the last phases of rd

PRE calculation does not filter
out row ~s from the set of results, yielding to an appropriate row ~r in view rd

PRE.
Since m is a matching for pattern rPRE, it is also a matching for rLHS. By using Theorem 2, this

means that ∃~t0 ∈ rd
LHS = S0.

Lemma. Let us suppose by induction that we have already calculated ~ti−1 ∈ Si−1 and ~ti−1 =
(~t0[xd

1], . . . , ~t0[xd
nV

], ε, . . . , ε). In other words the first nV columns of ~ti−1 contains the same values as
~t0, while all the remaining values are undefined. We want to prove that ~ti has similar structure and that
~ti can also be found in table Si.

Proof of the lemma. Let us calculate Si. By using Corollary 1, it can be stated that columns
of ~ti that originate from Si−1 have the same values as ~ti−1 independently of the fact whether the join
condition Fi holds or not. The only thing to be checked is whether the last nVi columns of ~ti (originating
from rd

NACi
) are filled with undefined values.

Let us suppose by contradiction that there exists ~ri in view rd
NACi

that can be attached to ~ti−1 by
left outer join in such way that Fi holds. By using Theorem 2 there should exist a matching m′ for the
graph objects of rNACi .

If x is an arbitrary shared node of NACi with an origin xl in the LHS (thus xl ∈ VLHS ∩ VNACi ,
x ∈ VNACi ∩ VLHS, and pNACi(xl) = x), then because of the construction algorithm of views rd

LHS and
rd

NACi
, they have a column that represents node xl and its shared node image x, respectively. But we

assumed that Fi is satisfied, which means that rcs
LHS.xd

l = rcs
NACi

.xd should hold for all the rows, and as
such for ~ti as well. By summarizing our knowledge about ~ti we get

~t0[xd
l] = ~ti−1[rcs

LHS.xd
l] = ~ti[rcs

LHS.xd
l] = ~ti[rcs

NACi
.xd] = ~ri[xd].

~t0[xd
l] and ~ri[xd] define the identifiers of objects to which x was mapped by m and m′, respectively.

Thus, m(xl)d = ~t0[xd
l] = ~ri[xd] = m′(x)d. Since d is bijective, m(xl) = m′(x), which means that

each shared node of NACi had to be mapped onto the same object, which was assigned to their origin
in LHS.

At this point we know that all the shared nodes of NACi and their origins in LHS are mapped to
the same objects by matchings m′ and m, respectively. If the definition of matching for rule rPRE is
recalled from Sec. 6.4.3, then it can be seen that m cannot be a matching, since m and m′ together
violate the second part of the definition, which prohibits the existence of a matching for NACi. So our
initial assumption to have a row ~ri that satisfies Fi together with ~ti−1 failed. But if there are no such
row ~ri for which Fi could hold, then only the second part of the left join definition could have been
used when calculating ~ti, which means that the columns of ~ti originating from rd

NACi
must be padded

with undefined values. At this point we may conclude that we have found a row ~ti in view Si that has
the prescribed structure. ut

Consequence of the lemma. By using our lemma k times, we get that there is a row ~tk ∈ Sk, which
contains defined values in columns originating from view rd

LHS and all the other values are undefined.
The effect of selection. Since null conditions Null of the selection operation pose restrictions only

on columns originating from negative application condition views rd
NACi

, ~tk surely satisfies all of them,
since it contains undefined values in all such columns.

The effect of projection. The last operation is the projection, which selects the first nV columns of
~tk resulting in a row ~r ∈ rd

PRE. Note that the first nV columns of ~tk are the ones that contain identifiers

162 APPENDIX A. PROOFS OF THEOREMS

originating from rd
LHS, and they are never undefined. It can be now concluded that a row ~r is found in

the view that represents rPRE. ut

PROOF (⇐=) We know that there exists a row ~r in view rd
PRE and an appropriate matching m for rule

rPRE is to be found.
Proof by contradiction I. Let us suppose by contradiction that we have ~r ∈ rd

PRE, but no matching
m exists for the LHS rule graph (rLHS).

If no matchings exist for rLHS, then Theorem 2 yields to an empty rd
LHS view. But note that this

view appears at the leftmost position of left join operations in the definition of rd
PRE, which means that

rd
PRE should also be empty. But this contradicts to our initial assumption, since ~r ∈ rd

PRE.
Proof by contradiction II. Let us suppose by contradiction that we have ~r ∈ rd

PRE, and a matching
m for rLHS, and there is also a matching m′ for a rule graph rNACi such that each node and edge are
mapped to the same object and link, respectively, by both m and m′.

By using Theorem 2 for matchings m and m′, we get that ~s0 ∈ S0 = rd
LHS and ~ri ∈ rd

NACi
. Let

us suppose that row ~sk of view Sk was calculated by using ~s0 and ~ri. For the sake of simplicity, let us
focus only on columns of ~sk that originate from rd

NACi
. Our statement is that this portion of ~sk agrees

with ~ri.
The portion of ~sk originating from rd

NACi
is introduced when Si is calculated, and afterwards it is left

unchanged by left outer join operations. But when the ith left outer join is executed its join condition
Fi holds, and in this case inner join has to be executed resulting in our statement mentioned above. The
only thing to be checked is why Fi is satisfied. Note that Fi is defined on the shared nodes of rNACi ,
and their corresponding origins in rLHS. Each shared node x and its origin xl is mapped to the same
object c by matchings m′ and m, respectively, so ~si−1[rcs

LHS.xd
l] = cd = ~ri[xd], which means that we

found correspondence in all columns of ~si−1 and ~ri for which correspondence was prescribed by Fi.
Note that null conditions require the image of shared nodes of rNACi to be undefined in columns

of ~sk that originate from rNACi , which is immediately violated, since they got their values just in the
previous paragraph. So ~sk violates null conditions of the selection operation, and as a consequence it
should be filtered out inhibiting ~sk to be the origin of ~r. It means that under the supposed circumstances
no origin of ~r exists in view σNull(Sk), which is a contradiction.

Final consequence. At this point we know that there should exist a matching m for rLHS, but
no matching m′ for any rNACi . Recalling the definition of matching of rPRE, we get that the above-
mentioned situation is the one that fulfills all the requirements, so matching m is also good for rPRE.
ut

Theorem 4 Let us suppose that there exists a bijective mapping d from SGT to SDB . If (i) model M
is consistent with the database representation M, (ii) we have a matching mr for rule r, together with
a corresponding row ~md in view rd, and m is consistent with ~md, (iii) rule r is applied on matching
mr resulting in M ′, and (iv) Algorithms 6.2–6.5 are executed in the database for ~md ∈ rd resulting in
a database representation M′, then M ′ ∼= M′.

Formally, if

(i) M ∼= M,
(ii) (mr|r) ∼= (~md|rd) for a pair (mr, ~md),

(iii) M
r,mr=⇒ M ′,

(iv) M
Alg. 6.2−6.5

=⇒ M′,

then M ′ ∼= M′.

163

PROOF The model manipulation phase of a rule application can be divided into a deletion and an
insertion step. Our first goal is to prove that context model Mc is consistent with database representation
Mc resulted by the execution of Alg. 6.2 and 6.3. Then the consistency of derived model M ′ and
database representation M′ is proven based on the consistency of Mc and Mc. Since skeletons of the
proofs are exactly the same in these steps, we only present the technique for the more difficult (i.e., the
deletion) step.

The proof of the deletion step is bidirectional and it has 7 cases in each direction, which use exactly
the same technique and which have to be checked one by one. The 7 cases correspond to the deletion
of (i) objects; (ii) many-to-one and (iii) many-to-many dangling links leaving an object to be deleted;
(iv) many-to-one and (v) many-to-many dangling links leading into an object to be deleted; and (vi)
many-to-one and (vii) many-to-many links selected by matching m for an edge z ∈ ELHS \ ERHS. We
may identify a well-defined part of Alg. 6.2 and 6.3 for each case where the specific case is handled
by these algorithms in the database. Table A.1 presents the cases and their corresponding handling
routines.

Case Object/link Reason of selection DB operation
(i) object selected by m line 12 of Alg. 6.3
(ii) many-to-one link dangling/outgoing line 12 of Alg. 6.3
(iii) many-to-many link dangling/outgoing line 4 of Alg. 6.3
(iv) many-to-one link dangling/incoming line 10 of Alg. 6.3
(v) many-to-many link dangling/incoming line 7 of Alg. 6.3
(vi) many-to-one link selected by m line 2 of Alg. 6.2
(vii) many-to-many link selected by m line 5 of Alg. 6.2

Table A.1: Different cases and corresponding lines of Alg. 6.2 and 6.3 participating in the proof

In order to avoid tedious and lengthy proofs of the same style, we only sketch the skeleton of the
proof technique and we present a complete proof for only one case (i.e., for the deletion of nodes) in
both directions. The proofs for the other cases can be derived from the presented complete proof by
replacing object and lines of Algorithms 6.2 and 6.3 by a corresponding kind of link and lines of the
same algorithms, respectively, as defined in Table A.1 for the given case.

PROOF (=⇒) The skeleton of the proof is as follows. We select an object (a link) from context model
Mc. Since only deletions are performed on model M , M should also contain the same object (link).
Then the consistency of M and M is used in left to right direction to ensure that the object (link) is
represented in the database (i.e., in M). Finally, it is examined why the database representation of the
object (link) cannot be deleted from M during the execution of Alg. 6.2 and 6.3.

Nodes. Let us select an object c from context model Mc and an arbitrary class C ∈ VMM such that
C

∗
^ t(c). Object c has to appear in model M as only deletions have been performed on model M in

the deletion phase. By using the consistency of model M and database representation M (Def. 51) for
objects in left to right direction, we get that ∃~c ∈ Cd such that ~c[id] = cd.

The only position where either Alg. 6.2 or Alg. 6.3 can delete row ~c from Cd is line 12 of Alg. 6.3.
(All other database operations either delete rows from tables assigned to many-to-many associations,
or updates tables assigned to classes in columns not equal to id.) Line 12 of Alg. 6.3 would delete row
~c, if ∃x ∈ VLHS \VRHS such that m(x) = c, but the existence of such node x would yield to the deletion
of object c from model M , which is impossible as context model Mc still contains c. The result of this

164 APPENDIX A. PROOFS OF THEOREMS

reasoning is that ~c could not be deleted by Alg. 6.2 and 6.3, which means that ~c ∈ Cd also in database
Mc. ut

PROOF (⇐=) Now the proof proceeds in the other direction. We have a row in a table of Mc, which
was assigned to a class (many-to-many association). Since Alg. 6.2 and 6.3 can delete rows or set
undefined values to columns with name not equal to id, src, trg, it is sure that a row with the same
value in column id (in columns src and trg) can be found in the same table of M. In this case, we may
apply the consistency of M and M for objects or many-to-one links (for many-to-many links) in right
to left direction, resulting in a corresponding object or many-to-one link (many-to-many link) in model
M . Finally, it is investigated why this object or many-to-one link (many-to-many link) is not deleted
in the deletion phase of GT rule application.

Nodes. We have a row ~c′ ∈ Cd′ with ~c′[id] = cd where Cd′ represents a table that was assigned to
a class C ∈ VMM and that has a content according to the database representation Mc. Since only row
deletions and updates in columns with name not equal to id could be performed on table Cd during
the execution of Alg. 6.2 and 6.3, it is sure that ∃~c ∈ Cd such that ~c[id] = ~c′[id] = cd. By using the
consistency of model M and database representation M (Def. 51) for objects in right to left direction,
we get that ∃c ∈ VM such that C

∗
^ t(c).

Let us suppose by contradiction that there is a node x ∈ VLHS \ VRHS such that m(x) = c and
t(x)

∗
^ t(c). Since C

∗
^ t(m(x)) = t(c), class C should have been enumerated in the inverse

topological order of t(m(x)), and as a consequence, line 12 of Alg. 6.3 should have been executed on
table Cd with condition id = cd, which means that ~c should have been removed, as ~c[id] = cd. This is
a contradiction, since ~c remained in table Cd in database content Mc.

So @x ∈ VLHS \ VRHS that is mapped to c by m. But in this case c is not removed from model M ,
thus, c remains in context model Mc. ut

APPENDIX

B
Additional Algorithms

Algorithm B.1 The snapshot deletion algorithm delete(sGk
)

PROCEDURE delete(sGk
)

1: if G0 ⊂ Gk then
2: ST

G
′ := ST

G \ { sGk
}

3: removeDeleteEntries(sGk
)

4: for all (s, sGk
) ∈ I do

5: I′ := I \ { (s, sGk
) }

6: end for
7: invalidate(sGk

)
8: end if

165

166 APPENDIX B. ADDITIONAL ALGORITHMS

Algorithm B.2 The snapshot invalidation algorithm invalidate(sGk
)

PROCEDURE invalidate(sGk
)

1: if Gk = G then
2: {If sm

Gk
is a (complete) matching for pattern G}

3: if G = LHS then
4: {If sm

Gk
is a (complete) matching for an LHS pattern}

5: R′
G := RG \ { sGk

} {Remove the snapshot from the results}
6: else
7: {If sm

Gk
is a (complete) matching for a NAC pattern}

8: for all
{

s ∈ ST
LHS | (sGk

, s) ∈ I
}

do
9: if ∀sNAC ∈

⋃
i S

T
NACi

: (sNAC, s) 6∈ I ∨ sNAC = sGk
then

10: validate(s) {If snapshot s was invalidated only by sGk
, then validate s.}

11: end if
12: I′ := I \ { (sGk

, s) }
13: end for
14: end if
15: else
16: {If sm

Gk
is a partial matching for pattern G}

17: removeInsertEntries(sGk
) {Remove insert entries}

18: propagateDelete(sGk
)

19: end if

167

Algorithm B.3 The copyMatchings(sGk
, c) method

PROCEDURE copyMatchings(sGk
, c)

Require: Gk ⊂ G
1: ST

G
′ := ST

G ∪
{

sGk+1

}
2: p(sGk+1

) := sGk

3: for all v ∈ VGk
do

4: sm
Gk+1

(v) := sm
Gk

(v) {Mappings of pattern nodes contained by the kth subpattern are copied to
the new matching sm

Gk+1
prepared for the (k+1)th subpattern}

5: end for
6: for all u

z→ v ∈ EGk
do

7: sm
Gk+1

(u z→ v) := sm
Gk

(u z→ v) {Mappings of pattern edges contained by the kth subpattern are
copied to the new matching sm

Gk+1
prepared for the (k+1)th subpattern}

8: end for
9: sm

Gk+1
(vk+1) := c {The (k+1)th pattern node vk+1 is now mapped to object c by matching sm

Gk+1
}

10: for all u
z→ v ∈ EGk+1

{For all incoming edges of the (k+1)th pattern node vk+1} do
11: for all

{
a

e→ c ∈ EM | t(z) = t(e) ∧ sm
Gk

(u) = a
}

do

12: {Due to the non-existence of parallel edges, only a single link a
e→ c is enumerated here}

13: sm
Gk+1

(u z→ vk+1) := a
e→ c {Pattern edge u

z→ vk+1 is now mapped to link a
e→ c}

14: end for
15: end for
16: for all vk+1

z→ w ∈ EGk+1
{For all outgoing edges of the (k+1)th pattern node vk+1} do

17: for all
{

c
e→ b ∈ EM | t(z) = t(e) ∧ sm

Gk
(w) = b

}
do

18: {Due to the non-existence of parallel edges, only a single link c
e→ b is enumerated here}

19: sm
Gk+1

(vk+1
z→ w) := c

e→ b {Pattern edge vk+1
z→ w is now mapped to link c

e→ b}
20: end for
21: end for
22: return sGk+1

168 APPENDIX B. ADDITIONAL ALGORITHMS

Algorithm B.4 The propagateInsert(sGk
) method

PROCEDURE propagateInsert(sGk
)

Require: Gk ⊂ G
1: if ∃u z→ vk+1 ∈ EGk+1

then
2: {If the (k+1)th pattern node vk+1 has at least one incoming edge}
3: for all

{
a

e→ b ∈ EM | t(z) = t(e) ∧ sm
Gk

(u) = a
}

do
4: insert(sGk

, b) {Snapshot sGk
is trying to be extended by mapping the (k+1)th pattern node

vk+1 to target object b}
5: end for
6: else if ∃vk+1

z→ w ∈ EGk+1
then

7: {If the (k+1)th pattern node vk+1 has at least one outgoing edge}
8: for all

{
a

e→ b ∈ EM | t(z) = t(e) ∧ sm
Gk

(w) = b
}

do
9: insert(sGk

, a) {Snapshot sGk
is trying to be extended by mapping the (k+1)th pattern node

vk+1 to source object a}
10: end for
11: else
12: {If the (k+1)th pattern node vk+1 is unconnected}
13: for all

{
c ∈ VM | t(vk+1)

∗
^ t(c)

}
do

14: insert(sGk
, c) {Snapshot sGk

is trying to be extended by mapping the (k+1)th pattern node
vk+1 to a type conformant object c}

15: end for
16: end if

Algorithm B.5 The propagateDelete(sGk
) method

PROCEDURE propagateDelete(sGk
)

Require: Gk ⊂ G
1: for all

{
sGk+1

∈ ST
G | p(sGk+1

) = sGk

}
do

2: delete(sGk+1
) {Delete all children of snapshot sGk

}
3: end for

169

Algorithm B.6 The addInsertEntries(sGk
) method

PROCEDURE addInsertEntries(sGk
)

Require: Gk ⊂ G
1: {For the (k+1)th pattern node vk+1}

2: INSERT
([
∗ type→ t(vk+1)

])′
:= INSERT

([
∗ type→ t(vk+1)

])
∪ { sGk

}

3: for all u
z→ vk+1 ∈ EGk+1

{For all incoming edges of the (k+1)th pattern node vk+1} do

4: INSERT

([
sm
Gk

(u)
t(z)→ ∗

])′
:= INSERT

([
sm
Gk

(u)
t(z)→ ∗

])
∪ { sGk

}

5: end for
6: for all vk+1

z→ w ∈ EGk+1
{For all outgoing edges of the (k+1)th pattern node vk+1} do

7: INSERT

([
∗ t(z)→ sm

Gk
(w)
])′

:= INSERT

([
∗ t(z)→ sm

Gk
(w)
])

∪ { sGk
}

8: end for

Algorithm B.7 The removeInsertEntries(sGk
) method

PROCEDURE removeInsertEntries(sGk
)

Require: Gk ⊂ G
1: {For the (k+1)th pattern node vk+1}

2: INSERT
([
∗ type→ t(vk+1)

])′
:= INSERT

([
∗ type→ t(vk+1)

])
\ { sGk

}

3: for all u
z→ vk+1 ∈ EGk+1

{For all incoming edges of the (k+1)th pattern node vk+1} do

4: INSERT

([
sm
Gk

(u)
t(z)→ ∗

])′
:= INSERT

([
sm
Gk

(u)
t(z)→ ∗

])
\ { sGk

}

5: end for
6: for all vk+1

z→ w ∈ EGk+1
{For all outgoing edges of the (k+1)th pattern node vk+1} do

7: INSERT

([
∗ t(z)→ sm

Gk
(w)
])′

:= INSERT

([
∗ t(z)→ sm

Gk
(w)
])

\ { sGk
}

8: end for

Algorithm B.8 The addDeleteEntries(sGk
) method

PROCEDURE addDeleteEntries(sGk
)

Require: G0 ⊂ Gk

1: {For the kth pattern node vk}

2: DELETE
([

sm
Gk

(vk)
type→ t(vk)

])′
:= DELETE

([
sm
Gk

(vk)
type→ t(vk)

])
∪ { sGk

}

3: for all u
z→ vk ∈ EGk

{For all incoming edges of the kth pattern node vk} do

4: DELETE

([
sm
Gk

(u)
t(z)→ sm

Gk
(vk)

])′
:= DELETE

([
sm
Gk

(u)
t(z)→ sm

Gk
(vk)

])
∪ { sGk

}

5: end for
6: for all vk

z→ w ∈ EGk
{For all outgoing edges of the kth pattern node vk} do

7: DELETE

([
sm
Gk

(vk)
t(z)→ sm

Gk
(w)
])′

:= DELETE

([
sm
Gk

(vk)
t(z)→ sm

Gk
(w)
])

∪ { sGk
}

8: end for

170 APPENDIX B. ADDITIONAL ALGORITHMS

Algorithm B.9 The removeDeleteEntries(sGk
) method

PROCEDURE removeDeleteEntries(sGk
)

Require: G0 ⊂ Gk

1: {For the kth pattern node vk}

2: DELETE
([

sm
Gk

(vk)
type→ t(vk)

])′
:= DELETE

([
sm
Gk

(vk)
type→ t(vk)

])
\ { sGk

}

3: for all u
z→ vk ∈ EGk

{For all incoming edges of the kth pattern node vk} do

4: DELETE

([
sm
Gk

(u)
t(z)→ sm

Gk
(vk)

])′
:= DELETE

([
sm
Gk

(u)
t(z)→ sm

Gk
(vk)

])
\ { sGk

}

5: end for
6: for all vk

z→ w ∈ EGk
{For all outgoing edges of the kth pattern node vk} do

7: DELETE

([
sm
Gk

(vk)
t(z)→ sm

Gk
(w)
])′

:= DELETE

([
sm
Gk

(vk)
t(z)→ sm

Gk
(w)
])

\ { sGk
}

8: end for

Algorithm B.10 The checkGraphMorphism(sGk
, c) method

PROCEDURE checkGraphMorphism(sGk
, c)

Require: Gk ⊂ G{Assert that sm
Gk

is a matching for the proper subpattern Gk, and thus, it is only a
partial matching for pattern G}

1: if ¬t(vk+1)
∗
^ t(c) then

2: return false {Return false, if object c does not conform to the (k+1)th pattern node vk+1.}
3: end if
4: for all u

z→ vk+1 ∈ EGk+1
{For all incoming edges of the (k+1)th pattern node vk+1} do

5: if @a
e→ c ∈ EM : t(z) = t(e) ∧ sm

Gk
(u) = a then

6: return false {Return false, if no links a
e→ c exist in model M , which could be matched to

pattern edge u
z→ vk+1}

7: end if
8: end for
9: for all vk+1

z→ w ∈ EGk+1
{For all outgoing edges of the (k+1)th pattern node vk+1} do

10: if @c
e→ b ∈ EM : t(z) = t(e) ∧ sm

Gk
(w) = b then

11: return false {Return false, if no links c
e→ b exist in model M , which could be matched to

pattern edge vk+1
z→ w}

12: end if
13: end for
14: return true {Returns true as matching sm

Gk
together with the mapping that assigns object c to the

(k+1)th pattern node vk+1 can be a matching for the (k+1)th subpattern Gk+1}

Bibliography

[1] Aditya Agrawal, Gabor Karsai, and Feng Shi. Graph transformations on domain-specific models.
Technical Report ISIS-03-403, Institute for Software Integrated Systems, Vanderbilt University,
November 2003.

[2] IBM Alphaworks. Model transformation framework, 2004. http://www.alphaworks.
ibm.com/tech/mtf/.

[3] Marc Andries and Gregor Engels. A hybrid query language for the extended entity relationship
model. Journal of Visual Languages and Computing, 8(1), 1997.

[4] Aonix. Ameos framework. http://www.aonix.com/ameos.html.

[5] Mikhail J. Atallah, editor. Algorithms and Theory of Computation Handbook. CRC Press, 1999.

[6] András Balogh and Dániel Varró. Advanced model transformation language constructs in the
VIATRA2 framework. In Proc. of the 21st ACM Symposium on Applied Computing, pages
1280–1287, Dijon, France, April 2006. ACM Press.

[7] András Balogh, Gergely Varró, Dániel Varró, and András Pataricza. Compiling model transfor-
mations to EJB3-specific transformer plugins. In Proc. of the 21st ACM Symposium on Applied
Computing, pages 1288–1295, Dijon, France, April 2006.

[8] Roswitha Bardohl, Karsten Ehrig, Claudia Ermel, Anilda Qemali, and Ingo Weinhold. Speci-
fying visual languages with GenGED. In Proc. of APPLIGRAPH Workshop on Applied Graph
Transformation, pages 71–81, Grenoble, France, April 2002.

[9] Roswitha Bardohl, Mark Minas, Gabriele Taentzer, and Andy Schürr. In [38], chapter Applica-
tion of Graph Transformation to Visual Languages, pages 105–180. World Scientific, 1999.

[10] Gernot Veit Batz. Graphersetzung für eine Zwischendarstellung im übersetzenbau. Master’s
thesis, Universität Karlsruhe, 2005.

[11] Gernot Veit Batz. An optimization technique for subgraph matching strategies. Technical Report
2006-7, Universität Karlsruhe, April 2006.

171

172 BIBLIOGRAPHY

[12] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. A first experimental evaluation of search
plan driven graph pattern matching. In Manfred Nagl and Andy Schürr, editors, Proc. of the 3rd
International Workshop on the Applications of Graph Transformation with Industrial Relevance,
Kassel, Germany, October 2007.

[13] Jean Bézivin. On the unification power of models. Software and Systems Modeling, 4(2):171–
188, May 2005.

[14] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine Rougui. First
experiments with the ATL model transformation language: Transforming XSLT into XQuery. In
Online Proc. of the 2nd OOPSLA Workshop on Generative Techniques in the Context of MDA,
2003. http://www.softmetaware.com/oopsla2003/bezivin.pdf.

[15] Lars Birkedal, Troels Christoffer Damgaard, Arne John Glenstrup, and Robin Milner. Matching
of bigraphs. Technical Report TR-2006-88, IT University of Copenhagen, June 2006.

[16] Dorothea Blostein. Application of graph rewriting to document image analysis. In Proc. of the
6th International Workshop on Theory and Applications of Graph Transformations, Paderborn,
Germany, November 1998.

[17] Boris Böhlen. Specific graph models and their mappings to a common model. In Proc of the
2nd International Workshop on Applications of Graph Transformation with Industrial Relevance
(AGTIVE), volume 3062 of LNCS, pages 45–60. Springer-Verlag, September 2003.

[18] Paul Boocock. Jamda: The Java Model Driven Architecture, May 2003. http://
sourceforge.net/projects/jamda/.

[19] Adam Borkowski, Ewa Grabska, and Janusz Szuba. On graph-based knowledge representation
in design. In Computing in Civil Engineering, pages 1–10, 2002.

[20] David A. Brant, Timothy Grose, Bernie Lofaso, and Daniel P. Miranker. Effects of database size
on rule system performance: Five case studies. In Proc. of the 17th International Conference on
Very Large Data Bases (VLDB), pages 287–296, 1991.

[21] Peter Braun and Frank Marschall. BOTL the bidirectional object oriented transformation lan-
guage. Technical Report TUM-I0307, Technische Universität München, 2003.

[22] Horst Bunke, Thomas Glauser, and T.-H. Tran. An efficient implementation of graph grammar
based on the RETE-matching algorithm. In Proc. Graph Grammars and Their Application to
Computer Science and Biology, volume 532 of LNCS, pages 174–189, 1991.

[23] Fabian Büttner and Martin Gogolla. Realizing graph transformations by pre- and postcondi-
tions and command sequences. In Leila Ribeiro and Ugo Montanari, editors, Proc. of the 3rd
International Conference on Graph Transformation, volume 4178 of Lecture Notes in Computer
Science, pages 398–413, Natal, Rio Grande do Norte, Brazil, September 2006. Springer.

[24] David Carlson. Modeling XML Applications with UML: Practical e-Business Applications. Ad-
dison Wesley Professional, 2001.

[25] Li Chen, Amarnath Gupta, and Mevlüt Erdem Kurul. Efficient algorithms for pattern matching
on directed acyclic graphs. In Proc. of the 21st International Conference on Data Engineering,
pages 384–385, 2005.

173

[26] Yoeng-Jin Chu and Tseng-Hong Liu. On the shortest arborescence of a directed graph. Science
Sinica, 14:1396–1400, 1965.

[27] Edgar Frank Codd. A relational model for large shared data bank. Communications of the ACM,
13(6):377–387, June 1970.

[28] Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, Mas-
sachusetts, 1995.

[29] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 26(10):1367–1372, October 2004.

[30] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation approaches.
In Online Proc. of 2nd OOPSLA Workshop on Generative Techniques in the context of
Model Driven Architecture, Anaheim, California, USA, October 2003. http://www.
softmetaware.com/oopsla03/czarnecki.pdf.

[31] Juan de Lara and Hans Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling. In
Fundamental Approaches to Software Engineering: 5th International Conference, FASE 2002,
volume 2306 of Lecture Notes in Computer Science, pages 174–188, Grenoble, France, April
2002. Springer-Verlag.

[32] Heiko Dörr. Efficient Graph Rewriting and Its Implementation, volume 922 of LNCS. Springer-
Verlag, 1995.

[33] Frank Drewes, Berthold Hoffmann, Dirk Janssens, Mark Minas, and Niels van Eetvelde. Adap-
tive star grammars. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and
Grzegorz Rozenberg, editors, Proc. of the 3rd International Conference on Graph Transforma-
tion, volume 4178 of Lecture Notes in Computer Science, pages 77–91, Natal, Brazil, September
2006. Springer Verlag.

[34] Jack Edmonds. Optimum branchings. Journal Research of the National Bureau of Standards,
pages 233–240, 1967.

[35] Hartmut Ehrig. Graph-Grammars and Their Application to Computer Science and Biology,
volume 73, chapter Introduction to the Algebraic Theory of Graph Grammars (A Survey), pages
1–69. Springer Verlag, 1979.

[36] Hartmut Ehrig, Karsten Ehrig, Juan de Lara, Gabriele Taentzer, Dániel Varró, and Szilvia Varró-
Gyapay. Termination criteria for model transformation. In Maura Cerioli, editor, Proc. of 8th
International Conference on Fundamental Approaches to Software Engineering, volume 3442
of Lecture Notes in Computer Science, pages 49–63, Edinburgh, United Kingdom, April 2005.

[37] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Algebraic
Graph Transformation. Springer Verlag, 2006.

[38] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors. Hand-
book on Graph Grammars and Computing by Graph Transformation, volume 2: Applications,
Languages and Tools. World Scientific, 1999.

174 BIBLIOGRAPHY

[39] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. Graph-grammars: An algebraic
approach. In Proc. of the 14th Annual Symposium on Switching and Automata Theory, pages
167–180. IEEE, October 1973.

[40] Karsten Ehrig, Esther Guerra, Juan de Lara, László Lengyel, Tihamér Levendovszky, Ulrike
Prange, Gabriele Taentzer, Dániel Varró, and Szilvia Varró-Gyapay. Model transformation by
graph transformation: A comparative study. In Proc. of the International Workshop on Model
Transformation in Practice, 2005.

[41] Hans-Erik Eriksson and Magnus Penker. Business Modeling with UML: Business Patterns at
Work. John Wiley & Sons, Inc., February 2000.

[42] Claudia Ermel, Michael Rudolf, and Gabriele Taentzer. In [38], chapter The AGG-Approach:
Language and Tool Environment, pages 551–603. World Scientific, 1999.

[43] Kerstin Falkowski. Modelltransformationsansätze im Kontext Modellgetriebener Softwareen-
twicklung. Master’s thesis, University of Koblenz-Landau, November 2005.

[44] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story diagrams: A new graph
rewrite language based on the Unified Modeling Language. In Gregor Engels and G. Rozenberg,
editors, Proc. of the 6th International Workshop on Theory and Application of Graph Transfor-
mation, volume 1764 of LNCS, pages 296–309. Springer Verlag, 1998.

[45] Charles L. Forgy. RETE: A fast algorithm for the many pattern/many object match problem.
Artificial Intelligence, 19:17–37, 1982.

[46] James Jianghai Fu. Directed graph pattern matching and topological embedding. Journal of
Algorithms, 22:372–391, 1997.

[47] Christian Fuss, Christof Mosler, Ulrike Ranger, and Erhard Schultchen. The jury is still out: A
comparison of AGG, Fujaba, and PROGRES. In Karsten Ehrig and Holger Giese, editors, Proc.
of the 6th International Workshop on Graph Transformation and Visual Modeling Techniques,
volume 6 of Electronic Communications of the EASST, pages 183–195, Braga, Portugal, 2007.

[48] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1st edition, 1995.

[49] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Com-
plete Book. Prentice Hall, 2001.

[50] Leif Geiger, Christian Schneider, and Carsten Reckord. Template- and modelbased code genera-
tion for MDA-tools. In Holger Giese and Albert Zündorf, editors, Proc. of the 3rd International
Fujaba Days, pages 57–62, Paderborn, Germany, September 2005. ftp://ftp.upb.de/
doc/techreports/Informatik/tr-ri-05-259.pdf.

[51] Rubino Geiß, Veit Batz, Daniel Grund, Sebastian Hack, and Adam M. Szalkowski. GrGen: A
fast SPO-based graph rewriting tool. In Proc. of the 3rd International Conference on Graph
Transformation, pages 383–397, Natal, Brazil, September 2006. Springer Verlag.

[52] Rubino Geiß and Moritz Kroll. On improvements of the Varró benchmark for graph transforma-
tion tools. Technical Report 2007-7, Universität Karlsruhe, IPD Goos, July 2007.

175

[53] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood. Transformation:
The missing link of MDA. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grze-
gorz Rozenberg, editors, Proc. of the 1st International Conference on Graph Transformation,
volume 2505 of Lecture Notes in Computer Science, pages 90–105, Barcelona, Spain, October
2002. Springer.

[54] Herbert Göttler. Graph-Grammars and Their Application to Computer Science, volume 153 of
Lecture Notes in Computer Science, chapter Attributed Graph Grammars for Graphics, pages
130–142. Springer Verlag, 1983.

[55] Graph transformation benchmarks. Webpage. http://www.cs.bme.hu/~gervarro/
benchmark/.

[56] Arvind Gupta and Naomi Nishimura. Characterizing the complexity of subgraph isomorphism
for graphs of bounded path-width. In Proc. of the 15th Annual Symposium on Theoretical As-
pects of Computer Science, volume 1046 of Lecture Notes in Computer Science, pages 453–464.
Springer Verlag, 1997.

[57] Ashish Gupta, Inderpal Singh Mumick, and Venkatramana S. Subrahmanian. Maintaining views
incrementally. In ACM SIGMOD Proceedings, pages 157–166, Washington, D.C., USA, 1993.

[58] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with negative applica-
tion conditions. Fundamenta Informaticae, 26(3/4):287–313, 1996.

[59] David Hearnden, Michael Lawley, and Kerry Raymond. Incremental model transformation for
the evolution of model-driven systems. In Oscar Nierstrasz, Jon Whittle, David Harel, and
Gianna Reggio, editors, Proc. of the 9th International Conference on Model Driven Engineering
Languages and Systems, volume 4199 of Lecture Notes in Computer Science, pages 321–335,
Genova, Italy, October 2006. Springer.

[60] Reiko Heckel. Compositional verification of reactive systems specified by graph transformation.
In Fundamental Approaches to Software Engineering: First International Conference, FASE
1998, volume 1382 of LNCS, pages 138–153. Springer, 1998.

[61] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of typed attributed graph
transformation systems. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grze-
gorz Rozenberg, editors, Proc. of the 1st International Conference on Graph Transformation,
volume 2505 of Lecture Notes in Computer Science, pages 161–176, Barcelona, Spain, October
2002. Springer. http://tfs.cs.tu-berlin.de/~gabi/gHKT02b.pdf.

[62] Reiko Heckel and Annika Wagner. Ensuring consistency of conditional graph rewriting – a
constructive approach. In Andrea Corradini and Ugo Montanari, editors, Proc. of Joint COM-
PUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation, volume 2 of Elec-
tronic Notes in Theoretical Computer Science, pages 118–126, Volterra, Pisa, Italy, August 1995.
Elsevier.

[63] Ákos Horváth, Dániel Varró, and Gergely Varró. Automatic generation of platform-specific
transformation. Híradástechnika, 2006.

176 BIBLIOGRAPHY

[64] Ákos Horváth, Gergely Varró, and Dániel Varró. Generic search plans for matching advanced
graph patterns. In Karsten Ehrig and Holger Giese, editors, Proc. of the 6th International Work-
shop on Graph Transformation and Visual Modeling Techniques, volume 6 of Electronic Com-
munications of the EASST, pages 57–68, Braga, Portugal, March 2007.

[65] HSQLDB. http://hsqldb.org/.

[66] Scott E. Hudson. Incremental attribute evaluation: an algorithm for lazy evaluation in graphs.
Technical Report 87-20, University of Arizona, 1987.

[67] Jens H. Jahnke, Wilhelm Schäfer, Jörg P. Wadsack, and Albert Zündorf. Supporting iterations in
exploratory database reengineering processes. Science of Computer Programming, 45(2-3):99–
136, 2002.

[68] Rostam Joobbani and Daniel P. Siewiorek. WEAVER: A knowledge-based routing expert. In
Hillel Ofek and Lawrence A. O’Neill, editors, Proc. of the 22nd ACM/IEEE Conference on
Design Automation, pages 266–272, Las Vegas, Nevada, USA, 1985. ACM.

[69] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model transformation language MOLA. In
Proc. of Model Driven Architecture: Foundations and Applications, pages 14–28, Linköping,
Sweden, June 2004.

[70] Audris Kalnins, Edgars Celms, and Agris Sostaks. Model transformation approach based on
MOLA. In Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt, editors, Proc. of
the International Workshop on Model Transformation in Practice (MTiP 2005), October 2005.
http://sosym.dcs.kcl.ac.uk/events/mtip05/.

[71] Audris Kalnins, Edgars Celms, and Agris Sostaks. Simple and efficient implementation of pat-
tern matching in MOLA tool. In Proc. of the 7th International Baltic Conference on Databases
and Information Systems, pages 159–167, Vilnius, Lithuania, July 2006.

[72] Martin Karlsch. A model-driven framework for domain specific languages demonstrated on
a test automation language. Master’s thesis, Hasso-Plattner Institute of Software Engineering
Systems, 2007.

[73] Jörg Kiegeland and Hajo Eichler. Enabling comprehensive tool support for QVT. Eclipse Sum-
mit Europe, October 2007.

[74] Gerald Kiernan, Christophe de Maindreville, and Eric Simon. Making deductive databases a
practical technology: A step forward. In Hector Garcia-Molina and H. V. Jagadish, editors, Proc.
of the 1990 ACM SIGMOD International Conference on Management of Data, pages 237–246,
Atlantic City, New Jersey, USA, May 1990. ACM Press.

[75] Norbert Kiesel, Andy Schürr, and Bernhard Westfechtel. Design and evaluation of GRAS, a
graph-oriented database system for engineering applications. In Hing-Yan Lee, Thomas F. Reid,
and Stan Jarzabek, editors, Proc. of the 6th International Workshop on Computer-Aided Software
Engineering, pages 272–286. IEEE Computer Society Press, 1993.

[76] Norbert Kiesel, Andy Schürr, and Bernhard Westfechtel. GRAS, a graph-oriented database
system for (software) engineering applications. Information Systems, 20(1):21–25, 1995.

177

[77] Thomas Klein, Ulrich Nickel, Jörg Niere, and Albert Zündorf. From UML to Java and back
again. Technical report, University of Paderborn, 2000.

[78] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley, April 2003.

[79] Barbara König and Vitali Kozioura. AUGUR2 – a new version of a tool for the analysis of
graph transformation systems. In Roberto Bruni and Dániel Varró, editors, Proc. of the 5th
International Workshop on Graph Transformation and Visual Modeling Techniques, pages 195–
204, Vienna, Austria, April 2006.

[80] Alexander Königs and Andy Schürr. MDI: A rule-based multi-document and tool integration
approach. Software and Systems Modeling, 5(4):349–368, December 2006.

[81] Javier Larrosa and Gabriel Valiente. Graph pattern matching using constraint satisfaction. In
Joint APPLIGRAPH and GETGRATS Workshop on Graph Transformation Systems, pages 189–
196, April 2000.

[82] Michael Lawley and Jim Steel. Practical declarative model transformation with Tefkat. In Jean
Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt, editors, Proc. of the International
Workshop on Model Transformation in Practice (MTiP 2005), October 2005. http://sosym.
dcs.kcl.ac.uk/events/mtip05/.

[83] Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles Thomason,
Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi. The Generic Modeling Environment. In
Proc. of the IEEE International Workshop on Intelligent Signal Processing, Budapest, Hungary,
May 2001.

[84] László Lengyel, Tihamér Levendovszky, and Hassan Charaf. Constraint validation in model
compilers. Journal of Object Technology, 5(4):107–127, 2006.

[85] László Lengyel, Tihamér Levendovszky, Gergely Mezei, and Hassan Charaf. Model transforma-
tion with a visual control flow language. International Journal of Computer Science, 1(1):45–53,
2006.

[86] Kevin Leopold. Tool support for Model Driven Development: Both commercial prod-
ucts and scientific prototypes, 2007. http://seal.ifi.uzh.ch/fileadmin/
User_Filemount/Vorlesungs_Folien/Seminar_SE/SS07/SemSE07-Kevin_
Leopold.pdf.

[87] Tihamér Levendovszky, Ulrike Prange, and Hartmut Ehrig. Termination criteria for DPO trans-
formations with injective matches. In Arend Rensink, Reiko Heckel, and Barbara König, editors,
Proceedings of the Workshop on Graph Transformation for Concurrency and Verification (GT-
VC 2006), volume 175 of Electronic Notes in Theoretical Computer Science, pages 87–100,
Bonn, Germany, August 2006. Elsevier.

[88] Tomas Lillqvist. Subgraph matching in model driven engineering. Master’s thesis, Åbo Akademi
University, March 2006.

[89] Andrzej Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic time. The-
oretical Computer Science, 63:295–302, 1989.

178 BIBLIOGRAPHY

[90] Andrzej Lingas and Maciej M. Sysło. A polynomial-time algorithm for subgraph isomorphism
of two-connected series-parallel graphs. In Proc. of the 15th International Colloquium on Au-
tomata, Languages, and Programming, Lecture Notes in Computer Science, pages 394–409.
Springer Verlag, 1988.

[91] Frank Marschall and Peter Braun. Model transformations for the MDA with BOTL. Technical
report, University of Twente, 2003.

[92] David W. Matula. Subtree isomorphism in O(n5/2). Annals of Discrete Mathematics, 2:91–106,
1978.

[93] Alexander Matzner, Mark Minas, and Axel Schulte. Efficient graph matching with application to
cognitive automation. In Manfred Nagl and Andy Schürr, editors, Proc. of the 3rd International
Workshop and Symposium on Applications of Graph Transformation with Industrial Relevance,
pages 293–308, Kassel, Germany, October 2007.

[94] Claudia Meitinger and Axel Schulte. Human-centered automation for UAV guidance: Oxy-
moron of tautology? the potential of cognitive and co-operative systems. In Proc. of the 1st
Moving Autonomy Forward Conference, Grantham, United Kingdom, 2006.

[95] Bruno T. Messmer and Horst Bunke. Efficient subgraph isomorphism detection: A decomposi-
tion approach. IEEE Transactions on Knowledge and Data Engineering, 12(2):307–323, 2000.

[96] Mark Minas. Concepts and realization of a diagram editor generator based on hypergraph trans-
formation. Science of Computer Programming, 44(2):157–180, 2002.

[97] Bruce Momjian. PostgreSQL: Introduction and Concepts. Addison-Wesley, 2000.

[98] Manfred Münch. Generic Modelling with Graph Rewriting Systems. PhD thesis, RWTH Aachen,
Aachen, Germany, 2003.

[99] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In Proc. of the 22nd
International Conference on Software Engineering, pages 742–745. ACM Press, 2000.

[100] Object Management Group. Common Warehouse Metamodel (CWM) Version 1.0, February
2001. http://www.omg.org/technology/cwm/.

[101] Object Management Group. Model Driven Architecture — A Technical Perspective, September
2001. http://www.omg.org.

[102] Object Management Group. Object Constraint Language Specification (in UML 1.4), 2001.
http://www.omg.org.

[103] Object Management Group. Meta-Object Facility Version 2.0, April 2003. http://www.
omg.org/mof/.

[104] Object Management Group. Common Object Request Broker Architecture: Core Specifica-
tion, Version 3.0.3, March 2004. http://www.omg.org/technology/documents/
formal/corba_iiop.htm.

[105] Object Management Group. Meta-Object Facility (MOF) 2.0 XMI Mapping Specification Ver-
sion 2.1, September 2005. http://www.omg.org.

179

[106] Oracle Corporation. Oracle and TimesTen. http://www.oracle.com/timesten/.

[107] Oracle Corporation. Oracle Database SQL Language Reference, 11g Release 1 (11.1), Septem-
ber 2007. http://www.oracle.com/technology/documentation/database.
html.

[108] John Poole, Dan Chang, Douglas Tolbert, and David Mellor. Common Warehouse Metamodel.
John Wiley & Sons, Inc., 2002.

[109] QVT Partners. Revised submission for MOF 2.0 Query/Views/Transformations RFP, August
2003. http://qvtp.org/.

[110] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill, 3rd
edition, 2002.

[111] Ulrike Ranger and Mathias Lüstraeten. Search trees for distributed graph transformation sys-
tems. In Gabor Karsai and Gabriele Taentzer, editors, Proc. of the 2nd International Workshop
on Graph and Model Transformation, volume 4 of Electronic Communications of the EASST,
Brighton, United Kingdom, September 2006.

[112] István Ráth and Dániel Varró. Challenges for advanced domain-specific modeling frameworks.
In Proc. of the 1st ECOOP Workshop on Domain-Specific Program Development, Nantes,
France, July 2006.

[113] Arend Rensink. The GROOVE simulator: A tool for state space generation. In John L. Pfalz,
Manfred Nagl, and Boris Böhlen, editors, Applications of Graph Transformations with Indus-
trial Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer Science, pages 479–485.
Springer-Verlag, 2004.

[114] Arend Rensink. Representing first-order logic using graphs. In Francesco Parisi-Presicce and
Gregor Engels, editors, Proc. of the 2nd International Conference on Graph Transformation,
volume 3256 of Lecture Notes in Computer Science, pages 319–335, Rome, Italy, September
2004. Springer.

[115] Arend Rensink. Time and space issues in the generation of graph transition systems. In
Tom Mens, Andy Schürr, and Gabriele Taentzer, editors, Proc. of the International Work-
shop on Graph-Based Tools, volume 127 of Electronic Notes in Theoretical Computer Science,
pages 127–139, Rome, Italy, October 2004. Elsevier. http://tfs.cs.tu-berlin.de/
grabats/.

[116] Arend Rensink and Ronald Nederpel. Graph transformation semantics for a QVT language. In
Roberto Bruni and Dániel Varró, editors, Proc. of the 5th Workshop on Graph Transformation
and Visual Modeling Techniques (GT-VMT 2006), ENTCS, pages 45–56, Vienna, Austria, April
2006. Elsevier.

[117] Steven W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM Journal of
Computing, 6:730–732, 1977.

[118] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formation, volume 1: Foundations. World Scientific, 1997.

180 BIBLIOGRAPHY

[119] Michael Rudolf. Utilizing constraint satisfaction techniques for efficient graph pattern matching.
In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Proc.
of the 6th International Workshop on Theory and Application of Graph Transformations, volume
1764. Springer, 2000.

[120] Andy Schürr. Specification of graph translators with triple graph grammars. In Proc. of the
20th International Workshop on Graph-Theoretic Concepts in Computer Science, volume 903
of LNCS, pages 151–163. Springer Verlag, 1995.

[121] Andy Schürr. In [118], chapter Programmed Graph Replacement Systems, pages 479–546.
World Scientific, 1997.

[122] Andy Schürr, Andreas J. Winter, and Albert Zündorf. In [38], chapter The PROGRES Approach:
Language and Environment, pages 487–550. World Scientific, 1999.

[123] Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. Using benchmarking to advance
research: A challenge to software engineering. In Proc. of the 25th Int. Conference on Software
Engineering, pages 74–83, Portland, Oregon, USA, May 2003.

[124] SQLite. http://www.sqlite.org/.

[125] Jon Stephens and Chad Russell. Beginning MySQL Database Design and Optimization: From
Novice to Professional. Apress, October 2004.

[126] Dave D. Straube and M. Tamer Özsu. Query optimization and execution plan generation in
object-oriented data management systems. Knowledge and Data Engineering, 7(2):210–227,
1995.

[127] Sun Microsystems. Java 2 Platform Enterprise Edition 5.0. http://java.sun.com/
javaee/.

[128] Sun Microsystems. Java 2 Platform Standard Edition 5.0. http://java.sun.com/j2se/
1.5.0/.

[129] Sun Microsystems. Java Metadata Interface. http://java.sun.com/products/jmi/
reference/index.html.

[130] Sun Microsystems. JSR 220: Enterprise JavaBeans, Version 3.0, May 2006. http://java.
sun.com/products/ejb/docs.html.

[131] Maciej M. Sysło. The subgraph isomorphism problem for outerplanar graphs. Theoretical
Computer Science, 17:91–97, 1982.

[132] Adam Szalkowski. Negative Anwendungsbedingungen für das suchprogrammbasierte Backend
von GrGen. Master’s thesis, Universität Karlsruhe, October 2005.

[133] Gabriele Taentzer, Enrico Biermann, Dénes Bisztray, Bernd Bohnet, Iovka Boneva, Artur
Boronat, Leif Geiger, Rubino Geiß, Ákos Horváth, Ole Kniemeyer, Tom Mens, Benjamin Ness,
Detlef Plump, and Tamás Vajk. Generation of Sierpinski triangles: A case study for graph trans-
formation tools. In Proc. of the 3rd International Workshop on Applications of Graph Transfor-
mation with Industrial Relevance (AGTIVE ’07), Lecture Notes in Computer Science. Springer,
2008.

181

[134] Gabriele Taentzer and Arend Rensink. Ensuring structural constraints in graph-based models
with type inheritance. In Maura Cerioli, editor, Proc. 8th International Conference on Funda-
mental Approaches to Software Engineering (FASE 2005), volume 3442 of LNCS, pages 64–79.
Springer Verlag, 2005.

[135] Naveed Ahsan Tariq and Naeem Akhter. Comparison of Model Driven Architecture (MDA)
based tools. Master’s thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, June
2005.

[136] The Eclipse Foundation. Eclipse Modeling Framework. http://www.eclipse.org/
modeling/emf/.

[137] Transaction Processing Performance Council. TPC Benchmark C (Standard Specification, Revi-
sion 5.3), April 2004. http://www.tpc.org/tpcc/.

[138] Laurence Tratt. A change propagating model transformation language. Technical Report TR-
06-07, King’s College London, August 2006.

[139] U2-Partners. UML: Infrastructure v. 2.0 (Third revised proposal), January 2003. http://
www.u2-partners.org/artifacts.htm.

[140] Julian R. Ullmann. An algorithm for subgraph isomorphism. Journal of the Association for
Computing Machinery, 23(1):31–42, 1976.

[141] Gabriel Valiente and Conrado Martínez. An algorithm for graph pattern-matching. In Proc. of
the 4th South American Workshop on String Processing, volume 8 of International Informatics
Series, pages 180–197, 1997.

[142] Dániel Varró, Gergely Varró, and András Pataricza. Designing the automatic transformation of
visual languages. In Hartmut Ehrig and Gabriele Taentzer, editors, GRATRA 2000 Joint APPLI-
GRAPH and GETGRATS Workshop on Graph Transformation Systems, pages 14–21, Berlin,
Germany, March 2000.

[143] Dániel Varró, Gergely Varró, and András Pataricza. Visual graph transformation in system veri-
fication. In Elena Gramatova, Hans Manhaeve, and Adam Pawlak, editors, DDECS 2000 Design
and Diagnostics of Electronic Circuits and Systems, pages 137–141, Bratislava, Slovakia, April
2000.

[144] Dániel Varró, Gergely Varró, and András Pataricza. Designing the automatic transformation of
visual languages. Science of Computer Programming, 44(2):205–227, August 2002.

[145] Gergely Varró. Incremental graph transformation in relational databases. In Proc. of the 4th
Conference of PhD Students in Computer Science, page 124, Szeged, Hungary, July 2004.

[146] Gergely Varró. Towards incremental graph transformation in Fujaba. In Holger Giese, Andy
Schürr, and Albert Zündorf, editors, Proc. of the 2nd International Fujaba Days, pages 3–6,
Darmstadt, Germany, September 2004.

[147] Gergely Varró. Gráftranszformációs benchmarkok jellemzése. In Enikő Bitay, editor, XI. Fiatal
Műszakiak Tudományos Ülésszaka, pages 379–382, Cluj, Romania, March 2006. In Hungarian.

182 BIBLIOGRAPHY

[148] Gergely Varró. Practical issues in the implementation of graph pattern matching. In Proc. of
the 5th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pages
191–200, Sendai, Japan, April 2007.

[149] Gergely Varró. Implementing an EJB3-specific graph transformation plugin by using database
independent queries. In Roberto Bruni and Dániel Varró, editors, Proc. of the 5th Workshop
on Graph Transformation and Visual Modeling Techniques (GT-VMT 2006), volume 211 of
Electronic Notes in Theoretical Computer Science, pages 121–132, Vienna, Austria, April 2008.
Elsevier.

[150] Gergely Varró, Katalin Friedl, and Dániel Varró. Graph transformation in relational databases. In
Tom Mens, Andy Schürr, and Gabriele Taentzer, editors, Proc. of the International Workshop on
Graph-Based Tools (GraBaTs 2004), volume 127 of Electronic Notes in Theoretical Computer
Science, pages 167–180, Rome, Italy, October 2004. Elsevier.

[151] Gergely Varró, Katalin Friedl, and Dániel Varró. Implementing a graph transformation engine
in relational databases. Software and Systems Modeling, 5(3):313–341, September 2006.

[152] Gergely Varró, Ákos Horváth, and Dániel Varró. Recursive graph pattern matching with magic
sets and global search plans. In Proc. of the 3rd International Workshop and Symposium on
Applications of Graph Transformation with Industrial Relevance, 2007.

[153] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph transformation. Techni-
cal Report TUB-TR-05-EE17, Budapest University of Technology and Economics, March 2005.
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf.

[154] Gergely Varró, Andy Schürr, and Dániel Varró. Benchmarking for graph transformation. In
Proc. of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing, pages
79–88, Dallas, Texas, USA, September 2005. IEEE Computer Society Press.

[155] Gergely Varró and Dániel Varró. Graph transformation with incremental updates. In Reiko
Heckel, editor, Proc. of the 4th Workshop on Graph Transformation and Visual Modeling Tech-
niques (GT-VMT 2004), volume 109 of Electronic Notes in Theoretical Computer Science, pages
71–83, Barcelona, Spain, December 2004. Elsevier.

[156] Gergely Varró, Dániel Varró, and Katalin Friedl. Adaptive graph pattern matching for model
transformations using model-sensitive search plans. In Gabor Karsai and Gabriele Taentzer,
editors, Proc. of International Workshop on Graph and Model Transformation (GraMoT’05),
volume 152 of Electronic Notes in Theoretical Computer Science, pages 191–205, Tallinn, Es-
tonia, September 2005.

[157] Gergely Varró, Dániel Varró, and Andy Schürr. Incremental graph pattern matching: Data struc-
tures and initial experiments. In Gabor Karsai and Gabriele Taentzer, editors, Proc. of the 2nd
International Workshop on Graph and Model Transformation, volume 4 of Electronic Commu-
nications of the EASST, Brighton, United Kingdom, September 2006.

[158] Attila Vizhanyo, Aditya Agrawal, and Feng Shi. Towards generation of efficient transformations.
In Proc. of 3rd Int. Conf. on Generative Programming and Component Engineering (GPCE
2004), volume 3286 of LNCS, pages 298–316, Vancouver, Canada, October 2004. Springer-
Verlag.

183

[159] W3C. XSL Transformations (XSLT) Version 1.0, 1999. http://www.w3.org/TR/1999/
REC-xslt-19991116.

[160] Xcelerix. http://www.xcelerixtech.com/.

[161] Ke-Bing Zhang, Mehmet A. Orgun, and Kang Zhang. Visual language semantics specification in
the VisPro system. In Proc. of the Pan-Sydney Area Workshop on Visual Information Processing,
pages 121–127, Sydney, Australia, 2002. Australian Computer Society.

[162] Chunying Zhao, Jun Kong, and Kang Zhang. Design pattern evolution and verification using
graph transformation. In Proc. of the 40th Hawaii International Conference on System Sciences,
Waikoloa, Hawaii, USA, January 2007.

[163] Albert Zündorf. Graph pattern-matching in PROGRES. In Proc. 5th Int. Workshop on Graph
Grammars and their Application to Computer Science, volume 1073 of LNCS, pages 454–468.
Springer-Verlag, 1996.

[164] Albert Zündorf. Rigorous Object Oriented Software Development. Habilitation thesis, University
of Paderborn, 2001.

