
Benchmarking for Graph Transformation∗

Gergely Varró
Department of Computer Science and Information Theory

Budapest University of Technology and Economics
Magyar tudósok körútja 2.
H-1521 Budapest, Hungary

gervarro@cs.bme.hu

Andy Schürr
Real-Time Systems Lab

Data Systems Technology Institute
Technical University of Darmstadt

Merckstraße 25
D-64283 Darmstadt, Germany

andy.schuerr@es.tu-darmstadt.de

Dániel Varró
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Magyar tudósok körútja 2.
H-1521 Budapest, Hungary

varro@mit.bme.hu

Abstract

Model transformation (MT) is a key technology in the
model-driven development approach of software engineer-
ing that provides automated means to capture the evolu-
tion of models and mappings between modeling languages.
The pattern and rule-based paradigm of graph transfor-
mation is considered a very popular approach for specify-
ing such model transformations. While the expressiveness
of different MT specification techniques is frequently com-
pared on well-known transformation problems (e.g. UML-
to-XMI, or UML-to-EJB mappings), no such benchmarks
exist currently for comparing the performance of different
model transformation tools. In the paper, we propose a
systematic method for quantitative benchmarking in order
to assess the performance of graph transformation tools.
Typical features of the graph transformation paradigm and
various optimization strategies exploited in different tools
are identified and categorized. Moreover, the performance
of several popular graph transformation tools is measured
and compared on a well-known distributed mutual exclu-
sion problem.

∗This work was partially carried out during the visit of the first author
to the Technical University of Darmstadt (Germany), and it was partially
funded by the SegraVis Research Training Network.

1. Introduction

1.1. Model transformations in Model Driven Devel-
opment

Model Driven Development. Model Driven Develop-
ment (MDD) — also known as the Model Driven Architec-
ture (MDA) and Model Integrated Computing (MIC) — has
recently become a leading trend in software engineering.
The aim of MDD is to carry out a thorough system mod-
eling before implementation. Key ideas of MDD are (i) to
create models of the software on various abstraction levels
and from various viewpoints and (ii) to support automatic
code generation from these models. The main advantages
of the MDD concept are the reuse of high abstraction level
models and an increase in productivity by high degree of au-
tomation. In fact, the general idea of MDD is not restricted
to software engineering domains, but also applicable e.g. to
business modeling [14] and civil engineering [6].

A key requirement of model driven development is to
support the decision of domain experts by presenting them
these models in an easy to understand visual way using a
notation they are familiar with. Therefore the role of do-
main specific visual languages (DSVLs) is to assist system
designers in formulating precise models on a higher level of
abstraction using domain specific notations. Intensive re-
search has been carried out in both industrial and academic
fields to develop powerful methods [3,7] and tools (DiaGen
[20], Key [2], MetaEdit [19], Pounamu [31], VLCC [11]) to

Source: Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
Permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained
from the IEEE by writing to pubs-permission@ieee.org

c© IEEE 2005

support DSVLs.
Model transformation. The aim of model transforma-

tions is to carry out automated translations within and be-
tween (visual) modeling languages. The MDD approach re-
quires (i) a high-level specification language to capture such
transformations, (ii) efficient algorithms and techniques to
automate the execution of transformations, and (iii) exten-
sive tool support for the industrialization of such transfor-
mations.

As pointed out in [12], model-to-model transformation
tools/approaches can be divided into several categories de-
pending on the characteristics of their rule language. They
include 1) direct manipulation [5], 2) relational [23], 3)
graph transformation based [28] 4) structure driven [21], 5)
hybrid [4], and 6) XSLT based [22] approaches. Despite
this large variety of possible rule languages, we focus only
on graph transformation based solutions in this paper.

Graph transformation as a model transformation ap-
proach. Graph transformation [13, 25] provides a visual,
pattern and rule based manipulation of graph models. Its
history is dated back to the 1970s well before the MDD
paradigm has been evolved. Since then, graph transforma-
tion has proved its maturity in the specification of visual lan-
guages and the prototyping of visual language tools. More
precisely, the visual formalism of graph transformation is
used to manipulate models, which are usually instances of
visual modeling languages. Moreover, graph transforma-
tion is a popular technique also for capturing model trans-
formations. Its popularity in the field is indicated by the
large variety of tools (such as AGG [15], Fujaba [16], Great
[1], Groove [24], PROGRES [26], Viatra [28]).

1.2. Benchmarking in model transformation

The aim of benchmarking is to systematically measure
the performance of a system under different and precisely
defined circumstances (i.e. by using several parameter com-
binations and data sets for these measurements). Such sys-
tematic measurements help system engineers in decision
making i.e. when a choice has to be made between different
alternatives by providing a proper assessment on the system
characteristics.

While there exists a large variety of benchmarks and fa-
cilities supporting experiment design in different fields of
computer engineering such as CLASP [10] for artificial in-
telligence, TPC Benchmark C [27] for relational databases
and Manners, Waltz, ARP or Weaver [8] for rule-based ex-
pert systems, respectively, no real benchmarks exist in the
field of model transformation.

Several specification examples (mappings such as UML-
to-XMI in QVT [23], object-relational [23], UML-to-EJB
[18], UML-to-XSD [9]) exist for model transformation ap-
proaches, but their main goal is to demonstrate the expres-

siveness of the given approach. Although these examples
have arisen from important software engineering problems,
they lack a systematic method for measuring the perfor-
mance of model transformation tools. In fact, our initial re-
search in benchmarking (reported in [29]) may also fall into
this category, since the selection and arrangement of mea-
surements were organized in a rather ad-hoc way without (i)
defining and categorizing the properties of model transfor-
mation problems (from a benchmarking viewpoint) and (ii)
fine-tuning our measurements to exploit the sophisticated
optimization techniques of tools.

As a summary, the model transformation community
still lacks systematic benchmarks for measuring the perfor-
mance of different tools.

1.3. Objectives

Our aim in the current paper is to partially bridge this gap
by proposing benchmarks for graph transformation tools.
The area of graph transformation is a natural choice, since
it is supported by a large variety of tools and a rich theory,
which enables to determine some basic categories of bench-
marks. We hope that our benchmark examples and bench-
marking approach can later be adapted to the benchmarking
of general model transformation tools as well.

After a brief introduction to the basic concepts of graph
transformation (Sec. 2) we first (i) determine the most com-
mon features of graph transformation problems and tools
(Sec. 3). Based on tool-specific properties (ii) we identify
various optimization strategies that are used in several graph
transformation tools. Moreover, (iii) we design benchmarks
for different problems, each consisting of several test sets
that fall into different categories. Due to space limitations
only a single benchmark is selected for the current paper
while the rest of the benchmark examples can be found
in [30]. (iv) We execute measurements on this problem in a
systematic way (by using carefully selected parameter set-
tings and optimization strategy combinations). Finally, (v)
we compare the results and shortly analyze the effects of
optimization methods. Our conclusions are in Sec 6.

The main novelty can be characterized as the identifica-
tion and categorization of benchmark properties for graph
transformation. Furthermore, we emphasize that, up to our
knowledge, this is the first systematic and quantitative per-
formance comparison among graph transformation based
tools.

2. Graph transformation

This section overviews the foundations of modeling lan-
guage specification and simulation. In order to specify the
abstract syntax of the modeling language, the concept of
metamodeling is used and presented. On the other hand, for

simulating the behaviour of models, the paradigm of graph
transformation (for details see [13, 25]) is applied.

In order to illustrate the basic terms and concepts, a dis-
tributed mutual exclusion algorithm (with full specification
in [17]) has been selected as a running example. The same
algorithm is used as a benchmark example in later sections.

In our running example, processes try to access shared
resources. One requirement of the algorithm is that each
resource may be accessed by at most one process at a time.
This is achieved by using a token ring of processes. In the
consecutive phases of the algorithm, (i) a process may issue
a request on a resource, (ii) the resource may eventually be
held by a process, and finally (iii) a process may release
the resource. The right to access a resource is modeled by
a token. The algorithm also contains a deadlock detection
procedure, which has to track the processes that are blocked.

2.1. Metamodels and instance models

The metamodel describes the abstract syntax of a mod-
eling language. Formally, it can be represented by a type
graph. Nodes of the type graph are called classes. A class
may have attributes that define some kind of properties of
the specific class. Inheritance may be defined between
classes, which means that the inherited class has all the
properties its parent has, but it may further contain some
extra attributes. Associations define connections between
classes. Both ends of an association may have a multiplicity
constraint attached to them, which declares the number of
objects that, at run-time, may participate in an association.
The most typical multiplicity constraints are i) the at most
one (0..1), and (ii) the arbitrary (denoted by *).

The instance model (or, formally, an instance graph) de-
scribes concrete systems defined in a modeling language
and it is a well-formed instance of the metamodel. Nodes
and edges are called objects and links, respectively. Ob-
jects and links are the instances of metamodel level classes
and associations, respectively. Attributes in the metamodel
appear as slots in the instance model. Inheritance in the in-
stance model imposes that instances of the subclass can be
used in every situation, where instances of the superclass
are required.

Example. In order to present our concepts, the meta-
model of the mutual exclusion problem (depicted in Fig. 1)
can be examined. It has only two classes, which are called
Process and Resource. These classes are connected by
edges of type next, request, held by, release, token, and
blocked, which correspond to associations in turn. This
metamodel does not define any attributes. Similarly, no in-
heritance is specified in the figure.

A well-formed instance model of this domain is shown
e.g. in Fig. 2. It has four processes (p1 to p4) and four links
(n1 to n4) of type next, which organize processes into a ring.

Process

Resource

next

blocked

Mutex

held_by releasetoken

request

*

0..1

*

0..1

*

0..10..10..1

**

*

*

Figure 1. Metamodel for the mutual exclusion
problem

p1:Process p3:Process

ALAP Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

Figure 2. A sample instance model

Four resources (r1 to r4) also appear in the model. Each re-
source is held by a separate process, which can be expressed
by the four edges of type held by (h1 to h4) connecting the
resources to the corresponding processes. Furthermore, the
instance model of Fig. 2 obviously conforms to all multi-
plicity constraints of both metamodels.

2.2. Graph transformation rules

A graph transformation rule describes the evolution of
models in a visual language in a general way (i.e. on
the metalevel). Formally, a graph transformation rule r =
(LHS, RHS, NAC) contains a left-hand side graph LHS, a
right-hand side graph RHS, and negative application con-
dition graphs NAC.

The application of a rule r to a host model (instance
graph) M replaces a matching of the LHS in M by an im-
age of the RHS. This is performed in two phases

• Pattern matching:

1. find a matching of LHS in M (by graph pattern
matching),

2. check the negative application conditions NAC
(which prohibit the presence of certain objects
and links)

• Updating:

3. remove a part of the model M that can be mapped
to LHS but not to RHS yielding to the context
model,

4. glue the context model with an image of the RHS
by adding new objects and links (that can be
mapped to the RHS but not to the LHS) to obtain
the derived model M’.

A graph transformation is a sequence of rule applica-
tions from an initial model MI .

r:Resource

p:Process

r:Resource

ReleaseRule

hb:held_by

reqn:request
rel:release

rn:Resourcep:Process

(a) releaseRule

p1:Process

r:Resource

GiveRule

n:next
p2:Process

rel:release

p1:Process

r:Resource

n:next
p2:Process

t:token

(b) giveRule

p:Process

RequestRule

t:token

r:Resource

reqn:request

p:Process

t:token

r:Resource

req:request

(c) requestRule

p:Process p:Process

r:Resource

TakeRule

t:token

r:Resource

req:request hb:held_by

(d) takeRule

Figure 3. A subset of rules describing the mu-
tual exclusion algorithm

Example. The mutual exclusion algorithm [17] can
be described by 13 graph transformation rules of which a
subset is presented in Fig. 3. For instance, releaseRule
(Fig. 3(a)) states that in its LHS a process p is held by a
resource r, while in its RHS the same nodes (p and r) are
connected by an edge of type release. The releaseRule has
a negative application condition which expresses that the
process p cannot have any requests issued on any resources.

This rule can be applied on the model that has been pre-
sented in Fig. 2. Let us suppose that in the pattern matching
phase, p, hb and r of the releaseRule are mapped to p1, h1
and r1 of the model, respectively; thus the first phase has
been terminated successfully. Since the selected process p1
does not have any associated requests, the negative appli-
cation condition does not prohibit the execution of the rule.
In the updating phase edge h1 is removed from the model,

and a new edge rl1 of type release is created. If the same
rule is applied three more times (once on each remaining
pair of processes and resources), then we obtain the model
presented in Fig. 4(b).

3. Benchmark features

We propose the terminology and the most common fea-
tures of benchmarking for graph transformation systems.

The aim of benchmarking is to systematically measure
the performance of a system under different, precisely de-
fined and deterministic (reproducable) circumstances. The
criterion of determinism has a strong impact on test set defi-
nition, since theoretically, both (i) the next rule to be applied
and (ii) the matching on which the rule is applied are non-
deterministically selected. In order to avoid both kinds of
nondeterminism, (i) we define “checkpoints”, where the in-
stance model must be the same for all runs. Moreover, (ii)
only an iterative execution of one rule is allowed between
two checkpoints. Naturally, the end of the whole transfor-
mation sequence should also be a checkpoint.

3.1. Definitions of benchmarking

By a scenario we mean a broad application field where
the paradigm of graph transformation is applicable. In [30]
we mention three scenarios such as (i) model analysis, (ii)
model transformation, and (iii) simulation of visual lan-
guages with dynamic operational semantics. A scenario
typically has some informal characteristics (e.g. “the struc-
ture of the system does not significantly change during the
transformation process”)

A benchmark example is a well-known problem serving
as an incarnation of a scenario as it fulfills all the infor-
mal characteristics. For instance, the Mutex defined with
its metamodel of Fig. 1 and graph transformation rules of
Fig. 3 can be considered as a benchmark example for the
simulation of visual languages as argued in Sec. 4. In tech-
nical terms, the metamodel and the graph transformation
rules of the problem are fixed for a benchmark example, but
instance models and concrete transformation sequences are
left undefined.1

A benchmark example may consist of several test sets.
A test set is a complete, deterministic, but parametric spec-
ification. In this sense, the structure of both the instance
model and the transformation sequence is fixed up to nu-
merical parameters, which characterize, for instance, the
size of the model, the length of the transformation sequence,
etc. Moreover, we do not decide yet which optimization
strategies for different tool features (see Sec. 3.3) are turned
on/off in a test set.

1To be precise, minor variations can be allowed in the metamodel
within the same benchmark example due to practical reasons.

In a test case, characteristics of the model and the trans-
formation are still parametric, but we fix which optimization
strategies (for details see 3.3) to turn on.

Finally, a test case is called a run, when even the runtime
parameters are set. Thus, a run conforms to the require-
ments of determinism for benchmarking, since it is com-
pletely characterized by all its parameters and it is reprodu-
cable.

3.2. Paradigm features for graph transformation

A paradigm feature describes a characteristics of a prob-
lem. A feature value is a symbolic value corresponding
to a numerical interval. Thus, each test set, test case and
run is defined by representative feature values assigned to
paradigm features. In case of graph transformation we iden-
tified the following paradigm features and feature values:

• Pattern size, or in other words the number of nodes and
edges in the LHS graph, is a highly critical factor in the
runtime behaviour of the pattern matching phase. Ac-
cording to the theoretical background, the complexity
of graph pattern matching algorithms is exponential in
the size of the pattern graph. On the other hand, in
contrast to the size of patterns, RHS graph sizes do not
have strong influence on the runtime performance.

Feature values: Since a benchmark problem may
have several rules, the upper bound for the pattern sizes
of all rules will be used as the value of the feature. A
large (small) pattern consists of at least (at most) 15
nodes and edges. This size can be considered as a typ-
ical value for separating small and large categories in
software engineering problems.

• The maximum degree of nodes (fan-out) in the model is
the number of edges that are adjacent to a certain node.
This feature has a significant impact on the complex-
ity of a pattern matching algorithm which starts at a
certain node and extends the match by examining its
direct neighbourhood. To be more precise, only adja-
cent edges of the same type matter, since type checking
typically precedes the enumeration of potential contin-
uations during the pattern matching phase.

Feature values: Values for this feature are also
grouped into a small and a large category, which mean
at most and at least 100 outgoing edges, respectively.
This limit is typically exceeded, if containment rela-
tion appears on the modeling level.

• The third feature of a test set is the number of match-
ings. In some cases it is enough to calculate only the
first matching of a rule, but in other situations all the
successful matchings have to be determined. It is ob-
vious that in the latter case, this feature directly and

seriously influences the overall runtime of the pattern
matching.

Feature values: The value of the feature is again the
upper bound for the number of successful matchings
in the pattern matching phases of all rule applications.
The term small (large) is used, if at most (at least) 10
successful matchings exist.

• The length of the transformation sequence also affects
the overall execution time. The more rule applica-
tions are performed, the longer it will take. However,
this feature does no longer influence the average time
needed for a single rule execution.

Feature values: The value of this feature is the num-
ber of atomic rule executions performed. Terms short
(long) sequence are used, if the length is at most (at
least) 1000.

Given a complete test set description, values for
paradigm features can be determined as a function of run-
time parameters. For instance, the length of a transforma-
tion sequence in the ALAP test set of the Mutex benchmark
(see Sec. 4.1) is 4N , where N is a parameter corresponding
to the number of processes, thus, this paradigm feature is
parameter dependent.

3.3. Tool features

Up to this point, features were completely dependent
only on problem descriptions. Now we identify tool fea-
tures, which are categories for typical optimization sup-
ported by different tools. For the moment four tool features
are identified.

• In case of parallel rule execution, all matchings of
a rule are calculated in the pattern matching phase,
and then updates are performed as a transaction block
on the collected matchings without re-evaluating valid
matchings during the transaction. For parallel rule ex-
ecutions we assume that the individual matchings are
independent of each other.

• ’As long as possible’ (ALAP) rule application means
an iterative execution of the selected rule. A standard
graph rewriting step (with a pattern matching and an
updating phase) is performed in each iteration as long
as a matching can be found. A possible optimization
strategy is to calculate independent matchings concur-
rently, and then to call the same procedure recursively.

The termination of the iteration should be guaranteed
by the system designer. Thus, in order to avoid infinite
loops, it must be ensured that the number of matching
patterns always decreases, which is a sufficient criteria
for termination.

• Multiplicity based optimization is used, when a tool
applies a different (and usually more powerful) strat-
egy in order to find matching model elements for an
edge with 0..1 multiplicity. A typical strategy is to
traverse 0..1 edges first in the pattern matching phase,
since it yields a search tree that is narrower at the top-
most levels.

• Parameter passing provided between consecutive rule
applications means pattern matching in the subsequent
rewriting steps is accelerated by directly reusing model
elements passed as parameters without recalculating
them in the later steps.

Naturally this set of tool features cannot be complete,
since new heuristics can be discovered in the future, futher-
more, it ignores features that are specific to a single tool.

3.4. Feature matrix

Short Long ALAP

TS TS execution

LHS size

(small/large)

fan-out

(small/large)

matchings

(few/many)

(short/long)

transformation

sequence length PD PD

Paradigm

features

PD

PD

Mutex

small small small

PD small small

PD PD

Short Long ALAP

TS TS execution

parameter passing ON/OFF OFF NA

0..1 multiplicities ON/OFF OFF OFF

parallel execution OFF OFF ON/OFF

as long as possible NA OFF OFF

Tool features

Mutex

Table 1. Paradigm and tool features of the mu-
tual exclusion benchmark example

A feature matrix (see Table 1) summarizes the features
of test sets. Rows of the upper and the lower table corre-
spond to paradigm and tool features, respectively. Columns
represent test sets. Moreover, these test sets can be grouped
to form a benchmark example. A field in the table contains
the feature value that characterizes the given feature of a test
set.

As the domain of feature values differ for paradigm and
tool features, the possible values in the feature matrices are
also different. Paradigm features may have values that have
been defined in Sec. 3.2, or they may be parameter depen-
dent (PD), if their category depends on the runtime parame-
ter. Tool features can be characterized by three values. La-
bel ON (OFF) means that the corresponding optimization
strategy is applicable and it is switched on (off) in our mea-
surements. Label NA denotes that the optimization strategy
for the tool feature is not applicable.

We selected test cases according to the following princi-
ples.

1. All possible combinations of switching on and off tool
optimization strategies should be avoided, since this
method would be practically infeasible as it requires
unacceptably high effort even for a single test set.

2. In order to obtain a feasible method, each optimization
strategy is enabled only for the test set, where the effect
of optimization is the most significant.

By following the above guidelines, only 7 test cases are
required for our measurements instead of the original 32 test
cases (that correspond to all possible combinations of ONs
and OFFs). Note that measurements for the ALAP style rule
execution is omitted here, since no optimization strategies
are built into existing tools.

4. A benchmark example: Distributed mutual
exclusion algorithm

For the current paper, we selected a benchmark exam-
ple for the scenario of simulation of visual languages with
dynamic operational semantics. This scenario can be char-
acterized (i) by a nearly static graph structure, where only a
small part of the model is modified, and (ii) by short rewrit-
ing sequences that are executed many times during a sim-
ulation run. Test sets are defined as rule application se-
quences that describe different possible runtime behaviours
of the system.

The benchmark example discussed in the paper is a dis-
tributed mutual exclusion algorithm (see the full specifi-
cation in [17]). Despite the fact that this algorithm lacks
some typical characteristics of model transformation sce-
narios such as large pattern sizes, a necessarily small num-
ber of matchings and short transformation sequences, we
selected this benchmark due to its compactness: it makes
possible to discuss all the tool features and to measure the
effects of different optimization strategies in a single ex-
ample. Moreover, this mutual exclusion algorithm is well-
known and it can be easily implemented, which is also an
argument in favour of this benchmark.

As shown in the feature matrix of Table 1, three test sets
have been defined for this benchmark example. This means
that runs on all test sets have been executed for our measure-
ments in Sec. 5. However, due to space restrictions, only the
test set of ’as long as possible’ rule application is presented
in details. For all the other descriptions, see [30].

4.1. The ’as long as possible’ test set

In order to illustrate a detailed test set description, we
selected the ’as long as possible’ (ALAP) test set, since it

can demonstrate the usage of several tool features i.e. the
as long as possible and the parallel rule execution on a sin-
gle example. Despite the fact that this test set enables the
evaluation of the effects of the ’as long as possible’ style
rule application (as it is also shown by its name), we have
not examined this optimization possibility in our measure-
ments, since no existing tools support this construct with
optimized strategies.

p1:Process p3:Process

ALAP Init

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(a) Initial model with parameter N = 4

p1:Process p3:Process

ALAP Step 1

p2:Process

p4:Processr4:Resource

rl1:release

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

rl2:release

rl3:release

rl4:release

(b) Model after the 1st step

p1:Process p3:Process

ALAP Step 2

p2:Process

p4:Processr4:Resource

t1:token

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

t2:token

t3:token

t4:token

(c) Model after the 2nd step

p1:Process p3:Process

ALAP Step 3

p2:Process

p4:Processr4:Resource

t1:token

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

t2:token

t3:tokent4:token

rq1:request

rq4:request

rq3:request

rq2:request

(d) Model after the 3rd step

p1:Process p3:Process

ALAP Step 4

p2:Process

p4:Processr4:Resource

h1:held_by

n4:next

r1:Resource r2:Resource

r3:Resource

n1:next n2:next

n3:next

h2:held_by

h3:held_by

h4:held_by

(e) Model after the 4th step

Figure 4. Models in different phases of the
ALAP test set

The test set can be characterized by small LHS graphs,
and small number of fan-outs of model nodes. Further-

more, the length of transformation sequences and the num-
ber of matchings depend on the single runtime parameter
N , which denotes the number of processes in the system.
More precisely, the transformation sequence length and the
number of matchings can be expressed as 4N and N , re-
spectively.

The initial instance model consists of 2N nodes (N pro-
cesses and N resources) and 2N edges. Process nodes are
arranged into a token ring along N edges of type next. Fur-
thermore, each resource is reserved by at most one process
and each process holds at most one resource at a time. In
the model, this property is expressed by N edges of type
held by. A sample initial instance model is presented in
Fig. 4(a) for the case N = 4.

4.2. Test case with sequential rule application

The transformation sequence of the test set consists of 4
macro steps. Each macro step is an iterative execution of a
single rule.

1. During the first step, releaseRule is executed N times,
yielding a model (see Fig. 4(b)) where all the resources
are now linked to their corresponding processes via a
release edge.

2. Then the execution of giveRule follows, which is per-
formed again N times. This rule enables the next pro-
cess in the ring to reserve the resource by giving the
token to the process. The result model is depicted in
Fig. 4(c).

3. The iterative execution of requestRule initiates a pro-
cess to issue a request on the resource for which the
process already has a token. As a result of an iteration
of length N , we obtain the model of Fig. 4(d).

4. Finally, takeRule is executed N times.This rule assigns
a process to a resource if the process has already re-
served a token for the requested resource. The final in-
stance model is isomorphic to the initial model. How-
ever, in the final model, a given resource is held by
the next process in the token ring (see Fig. 4(e) vs.
Fig. 4(a)).

4.3. Test case with parallel rule execution

Since the order of rule applications inside a macro step is
irrelevant, the specific rule can be applied concurrently (in
parallel) on all processes of the system. As a consequence,
if each macro step consists of the parallel execution of the
prescribed rule, then parallel and sequential transformations
yield equivalent results.

5. Measurement results

We selected four graph transformation tools for our mea-
surements. Our primary aim in selecting tools was to
include those with essentially different pattern matching
strategies and heterogeneous execution environments.

• AGG is an interpreted graph transformation tool writ-
ten in Java, which directly follows a category theory
based implementation. Its algorithm interprets pat-
tern matching as a constraint satisfaction problem to
be solved.

• PROGRES is one of the first graph transformation
tools. It operates on an additional underlying graph
based database (GRAS). PROGRES can run in com-
piled mode as it can generate C code from the specifi-
cation. The strategy of PROGRES for pattern match-
ing performs local search.

• FUJABA also uses the local search technique for pat-
tern matching. It also belongs to compilation based
tools, but in this case JAVA code is generated.

• The database (DB) approach operates on a standard re-
lational database by issuing join based queries for pat-
tern matching, which rank this approach among the in-
terpreted graph transformation tools. It communicates
with the database via the standard JDBC interface.

We examine one by one which tool features and opti-
mization strategies of Sec. 3.3 are supported by these tools.
(i) Parameter passing is supported by all four tools taking
part in the measurements. (ii) Parallel rule application is
possible in all tools except for AGG. (iii) Fujaba and PRO-
GRES provide different methods for traversing edges with
bounded multiplicity, while no such optimization strategies
exist for AGG and the DB approach. Since (iv) none of
these tools supports ALAP rule application with optimized
procedures, investigations on measuring the effects of this
tool feature are omitted from the current paper.

In order to assess the performance of graph transforma-
tion tools, tests were performed on a 1500 MHz Pentium
machine with 768 MB RAM. A Linux kernel of version
2.6.7 served as the underlying operating system.

All the runs were executed without the GUI of tools, so
rule applications were guided by JAVA programs (except for
the measurements for PROGRES, where C programs were
used). This way, we were doing programmed graph rewrit-
ing in each case for batch transformations.

Our general guideline for the comparison of tools was
to use the standard services available in the default dis-
tribution, fine-tuned according to the suggestions of dif-
ferent tool developers. For instance, we exploited a pa-
rameter passing strategy of AGG, which is only available

Mutex Proc. Model TS

size length match update match update match update match update

(short TS) # # # msec msec msec msec msec msec msec msec

multiplicity opt. OFF 10 32 49 2.89 2.24 0.40 0.09 0.18 0.15 5.02 31.42

param. passing OFF 100 302 499 5.18 10.58 0.31 0.20 0.27 0.14 7.10 33.38

parallel exec. OFF 1000 3002 4999 - - 0.63 0.26 0.35 0.03 4.26 32.13

multiplicity opt. ON 10 32 49 0.28 0.18 0.17 0.13

param. passing OFF 100 302 499 0.14 0.09 0.19 0.15

parallel exec. OFF 1000 3002 4999 0.49 0.28 0.08 0.03

multiplicity opt. OFF 10 32 49 3.16 1.54 0.26 0.06 0.19 0.22 18.99 48.38

param. passing OFF 100 302 499 3.12 9.11 11.71 0.18 0.70 0.17 12.87 55.86

parallel exec. OFF 1000 3002 4999 - - 249.23 1.25 2.11 0.04 32.86 49.99

multiplicity opt. ON 10 32 49 0.20 0.16 0.19 0.22

param. passing OFF 100 302 499 0.10 0.08 0.63 0.12

parallel exec. OFF 1000 3002 4999 0.48 0.29 2.10 0.04

multiplicity opt. OFF 10 32 49 2.65 1.87 0.16 0.08 0.14 0.23 7.32 51.48

param. passing ON 100 302 499 2.89 13.19 0.30 0.17 0.15 0.18 11.96 48.85

parallel exec. OFF 1000 3002 4999 - - 0.49 0.40 0.03 0.03 - -

multiplicity opt. ON 10 32 49 0.31 0.15 0.14 0.22

param. passing ON 100 302 499 0.12 0.07 0.15 0.12

parallel exec. OFF 1000 3002 4999 0.47 0.23 0.03 0.03

(long TS)

(ALAP)

multiplicity opt. OFF 10 50 40 19.37 5.93 0.34 0.08 2.21 0.18 7.38 33.56

param. passing OFF 100 500 400 7.02 7.57 20.08 0.37 0.56 0.17 8.81 50.52

parallel exec. OFF 1000 5000 4000 81.34 148.91 242.95 0.85 0.60 0.10 24.12 62.06

multiplicity opt. OFF 10 50 40 0.10 0.19 2.17 0.19 1.23 0.78

param. passing OFF 100 500 400 0.16 0.08 0.19 0.17 0.54 1.65

parallel exec. ON 1000 5000 4000 0.38 0.06 0.09 0.11 0.81 0.90

0.03 20.47 29.35

OFF

OFF

OFF

0.09 4.15 34.01

1000 0.62 0.26

17.55 0.62 0.15 0.15

871.32

re
le

a
s
e
R

u
le

269.58

4 21 2500 1.86

5001 60001 1116.34

multiplicity opt.

AGG PROGRES Fujaba DB

g
iv

e
R

u
le

re
le

a
s
e
R

u
le

re
le

a
s
e

param. passing

parallel exec.

Table 2. Experimental results

in programmed mode. In case of FUJABA, the models
themselves were slightly altered to provide better perfor-
mance. We used GRAS as being the default underlying
graph-oriented database for the PROGRES tests, and in ad-
dition, the Prolog-style cuts in the specification to make the
execution deterministic. Moreover, the standard interpreter
of PROGRES was completely ignored during the measure-
ments as we prepared the compiled version of the specifica-
tion. In case of database tests, MySQL (version 4.1.7) with
the default configuration was used as the underlying rela-
tional database using the built-in query optimization strate-
gies.

Table 2 shows the execution times of three test sets (hav-
ing different characteristics and optimization strategy com-
binations) carried out on our mutual exclusion benchmark
example. The head of a row (i.e. the first two columns)
shows the name of the rule and the optimization strategy
configuration on which the average is calculated. (Note that
a rule is executed several times in a run.) The third column
(Proc) depicts the number of processes in the run, which
is, in turn, the runtime parameter N for the test case. The
fourth and fifth columns show the concrete values for the
model size and the transformation sequence length, respec-
tively. Values in match and update columns depict the aver-
age times needed for a single execution of a rule in the pat-
tern matching and updating phase, respectively. Execution
times were measured on a microsecond scale, but a millisec-
ond scale is used in Table 2 for presentation purposes. Light
grey areas denote the lack of support for a combination of
optimization strategies by a given tool.

From the measurements of Table 2, we can make the fol-
lowing observations.

• Runtime performance of a single tool in the pattern
matching phase may significantly differ depending on
the structure of LHS. This means that further paradigm
features (e.g. the number of nodes in the NAC) need to
be identified in the future to refine our measurements.

• A larger model results in a larger number of update
operations; therefore, the constant overhead (e.g. for
compiling Java byte code) is distributed over a larger
number of rule applications, which yields a decreasing
series of average values for update operations as the
model size increases.

• The update phase of AGG shows a significantly in-
creasing trend as the model size increases. In fact, in
case of large models, the update phase of AGG takes
at least as much time as the pattern matching phase
itself which is quite unexpected. The reason for that
is a compilation step from graphs to categories that is
carried out in each graph transformation step.

• The updating phase of the DB approach is significantly
longer than in case of other tools, which is a conse-
quence of the extra work that is performed to free the
table allocated for the result set.

• The effect of multiplicity based optimization is not sig-
nificant in case of Fujaba. In contrast, PROGRES
may have a heavy decrease in the execution time if
a different strategy is used for bounded multiplicities.
However, this speed-up depends on the given rule.

• The gain from parameter passing is noticable for Fu-
jaba and PROGRES, while AGG and DB approaches
cannot benefit from this tool feature. In case of AGG,
parameter passing is not officially supported, i.e. it was
programmed manually for the measurements. In the
DB case, optimizations for parameter passing are car-
ried out automatically by the query optimizer of the
database.

• The effect of parallel rule execution is noticable in case
of all tools that support this feature, but significant
speed-up is produced only by PROGRES and the DB
approach.

6. Conclusion

In the paper, we proposed a benchmarking framework
for assessing the performance of different graph transforma-
tion tools. For this purpose, we first identified and catego-
rized features of graph transformation problems and tools.
Based on tool-specific features we identified various opti-
mization strategies that are present in several graph trans-
formation tools. Moreover, we designed benchmark exam-
ples for different problems in a systematic way to enable

precise and repeatable performance measurements. After
selecting a benchmark example, we carried out measure-
ments on four different graph transformation tools by using
different parameter settings and optimization strategy com-
binations. Finally, we compared and analyzed the perfor-
mance results of our measurements.

Based on our observations, we conclude that

• our initial set of paradigm and tool features was a
good choice as they acknowledged our expectations
that these features were significant from the viewpoint
of performance measurements,

• the initial set of paradigm features is not complete as
not only the pattern size, but, for instance, the pat-
tern structure and the appearance of negative appli-
cation conditions also influence the performance of
graph transformation tools, and

• interesting trends could be observed on different as-
pects of graph transformation tools.

For developers of graph transformation tools, we recom-
mend to focus on developing more efficient techniques for
the processing of multiple matchings in situations where
the straightforward parallel matching approach no longer
works.

Our upcoming tasks in the future include (i) the exten-
sion of the measurements to other tools and benchmark ex-
amples to provide a wide range comparison to the commu-
nity, (ii) the extension of the set of paradigm features to be
able to analyze the behaviour of graph transformation tools
more thoroughly, and (iii) the adaptation of our benchmark
examples and benchmarking approach to support the bench-
marking of general model transformation tools.

7. Acknowledgements

Authors are very grateful to Marita Breuer (PROGRES
– Aachen), Gabi Taentzer (AGG – TU Berlin), Albert
Z ündorf, and Christian Schneider (Fujaba – Uni-Kassel) for
giving valuable comments and assistance in fine-tuning dif-
ferent tools. Moreover, Katalin Friedl (TU Budapest) is also
highly acknowledged for reading initial versions of the pa-
per and giving valuable feedback.

References

[1] A. Agrawal, G. Karsai, Z. Kalmar, S. Neema, F. Shi, and
A. Vizhanyo. The design of a simple language for graph
transformations. Journal in Software and System Modeling,
2005. In review.

[2] W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. H ähnle,
W. Menzel, W. Mostowski, and P. H. Schmitt. The KeY

system: Integrating object-oriented design and formal meth-
ods. In R.-D. Kutsche and H. Weber, editors, Fundamental
Approaches to Software Engineering. 5th International Con-
ference, FASE 2002 Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2002
Grenoble, France, April 2002, Proceedings, volume 2306 of
LNCS, pages 327–330. Springer, 2002.

[3] M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kre-
owski, S. Kuske, D. Plump, A. Sch ürr, and G. Taentzer.
Graph transformation for specification and programming.
Sci. Comput. Program., 34(1):1–54, 1999.

[4] J. B ézivin, G. Dup é, F. Jouault, G. Pitette, and J. E.
Rougui. First experiments with the ATL model transfor-
mation language: Transforming XSLT into XQuery. In On-
line Proc. of the OOPSLA’03 Workshop on Generative Tech-
niques in the Context of the MDA, 2003. http://www.
softmetaware.com/oopsla2003/bezivin.pdf.

[5] P. Boocock. Jamda: The Java Model Driven Architecture,
May 2003. http://sourceforge.net/projects/
jamda/.

[6] A. Borkowski, E. Grabska, and J. Szuba. On graph-based
knowledge representation in design. In A. D. Songer and
J. C. Miles, editors, Computing in Civil Engineering, pages
1–10, 2002.

[7] P. Bottoni, S.-K. Chang, M. F. Costabile, S. Levialdi, and
P. Mussio. On the specification of dynamic visual languages.
In Proc. IEEE Symposium Visual Languages’98, pages 14–
21, 1998.

[8] D. A. Brant, T. Grose, B. Lofaso, and D. P. Miranker. Ef-
fects of database size on rule system performance: Five case
studies. In Proc. of the 17th International Conference on
Very Large Data Bases (VLDB), pages 287–296, 1991.

[9] D. Carlson. Modeling XML Applications with UML: Practi-
cal e-Business Applications. Addison Wesley Professional,
2001.

[10] P. R. Cohen. Empirical Methods for Artificial Intelligence.
MIT Press, Cambridge, Massachusetts, 1995.

[11] G. Costagliola, A. D. Lucia, S. Orefice, and G. Tortor. A
parsing methodology for the implementation of visual sys-
tems. IEEE Trans. Softw. Eng., 23(12):777–799, 1997.

[12] K. Czarnecki and S. Helsen. Classification of model
transformation approaches. In Online Proc. of 2nd OOP-
SLA Workshop on Generative Techniques in the context
of Model Driven Architecture, 2003. http://www.
softmetaware.com/oopsla03/czarnecki.pdf.

[13] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, ed-
itors. Handbook on Graph Grammars and Computing by
Graph Transformation, volume 2: Applications, Languages
and Tools. World Scientific, 1999.

[14] H.-E. Eriksson and M. Penker. Business Modeling with
UML: Business Patterns at Work. John Wiley & Sons, Inc.,
February 2000.

[15] C. Ermel, M. Rudolf, and G. Taentzer. In [13], chapter The
AGG-Approach: Language and Tool Environment, pages
551–603. World Scientific, 1999.

[16] T. Fischer, J. Niere, L. Torunski, and A. Z ündorf. Story dia-
grams: A new graph rewrite language based on the Unified
Modeling Language. In G. R. G. Engels, editor, Proc. of
the 6th International Workshop on Theory and Application

of Graph Transformation (TAGT), volume 1764 of LNCS,
pages 296–309. Springer Verlag, 1998.

[17] R. Heckel. Compositional verification of reactive systems
specified by graph transformation. In E. Astesiano, editor,
Fundamental Approaches to Software Engineering: First In-
ternational Conference, FASE, volume 1382 of LNCS, pages
138–153. Springer-Verlag, 1998.

[18] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise.
Addison-Wesley, April 2003.

[19] J. Luoma, S. Kelly, and J.-P. Tolvanen. Defining domain-
specific modeling languages: Collected experiences. In Pro-
ceedings of the 4th OOPSLA Workshop on Domain-Specific
Modeling (DSM04), Vancouver, British Columbia, Canada,
October 2004.

[20] M. Minas. Concepts and realization of a diagram editor gen-
erator based on hypergraph transformation. Science of Com-
puter Programming, 44(2):157–180, 2002.

[21] OMG Document: ad/03-08-11. Interactive Objects and
Project Technology, MOF Query/Views/Transformations Re-
vised Submission, August 2003.

[22] M. Peltier, J. B ézivin, and G. Guillaume. MTRANS: A gen-
eral framework based on XSLT for model transformations.
In Proc. of the Workshop on Transformations in UML, pages
93–97, Genova, Italy, April 2001.

[23] QVT Partners. Revised submission for MOF 2.0
Query/Views/Transformations RFP, August 2003. http:
//qvtp.org/.

[24] A. Rensink. The GROOVE simulator: A tool for state space
generation. In J. Pfalz, M. Nagl, and B. B öhlen, editors,
Applications of Graph Transformations with Industrial Rel-
evance (AGTIVE), volume 3062 of Lecture Notes in Com-
puter Science, pages 479–485. Springer-Verlag, 2004.

[25] G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation, volume 1: Founda-
tions. World Scientific, 1997.

[26] A. Sch ürr, A. Winter, and A. Z ündorf. In [13], chapter PRO-
GRES: Language and Environment. World Scientific, 1999.

[27] Transaction Processing Performance Council. TPC Bench-
mark C (Standard Specification, Revision 5.3), April 2004.
http://www.tpc.org/tpcc/.

[28] D. Varr ó, G. Varr ó, and A. Pataricza. Designing the auto-
matic transformation of visual languages. Science of Com-
puter Programming, 44(2):205–227, August 2002.

[29] G. Varr ó, K. Friedl, and D. Varr ó. Graph transformation in
relational databases. In Int. Workshop on Graph-Based Tools
(GraBaTs), 2004. http://tfs.cs.tu-berlin.de/
grabats/.

[30] G. Varr ó, A. Sch ürr, and D. Varr ó. Benchmarking
for graph transformation. Technical report, Bu-
dapest University of Technology and Economics,
2005. http://www.cs.bme.hu/˜gervarro/
publication/TUB-TR-05-EE17.pdf.

[31] N. Zhu, J. C. Grundy, and J. G. Hosking. Pounamu: a meta-
tool for multi-view visual language environment construc-
tion. In Proceedings of the 2004 International Conference
on Visual Languages and Human-Centric Computing, pages
254–256, Rome, Italy, September 2004.

