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Abstract7

The design process of complex systems requires a precise checking of the functional and
dependability attributes of the target design. The growing complexity of systems necessitates the9
use of formal methods, as the exhaustiveness of checks performed by the traditional simulation
and testing is insu.cient.11

For this reason, the mathematical models of various formal veri0cation tools are automati-
cally derived from UML-diagrams of the model by mathematical transformations guaranteeing13
a complete consistency between the target design and the models of veri0cation and validation
tools.15

In the current paper, a general framework for an automated model transformation system
is presented. The method starts from a uniform visual description and a formal proof concept17
of the particular transformations by integrating the powerful computational paradigm of graph
transformation, planner algorithms of arti0cial intelligence, and various concepts of computer19
engineering. c© 2002 Published by Elsevier Science B.V.
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1. Introduction23

For most computer controlled systems, especially dependable, real-time systems for
critical applications, an e<ective design process requires an early conceptual and25
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architectural validation prior to the implementation in order to avoid costly re-design1
cycles. All relevant system characteristics have to be checked during this system veri-
1cation phase in order to have a guaranteed design quality. These parameters identify3
critical bottlenecks to which the system is highly sensitive.

The increasing need for e<ective design has necessitated the development of stan-5
dardized and well-speci0ed design methods and languages, which allow system, devel-
opers to work on a common platform of design tools. The Uni1ed Modelling Language7
(UML) is a visual speci0cation language for pure software systems, as well as for em-
bedded real-time systems (systems reactively interacting with their environment). The9
UML represents a collection of best engineering practises that have proven successful
in the modelling of large and complex systems. Recently, UML has been regarded as11
the standard object-oriented modelling language.

1.1. Formal methods in system design13

Formal methods are mathematics-based techniques o<ering a rigorous and e<ective
way to model, design and analyze computer systems. They have been a topic of research15
(in projects like IOSIP [8], SafeRail [4], SpeciMen [6] or HIDE [2]) for many years
with valuable academic results. However, their industrial utilization is still limited to17
specialized development sites, despite their vital necessity originating in the complexity
of IT products and the increasing requirements for dependability and Quality of Service19
(QoS).

The use of formal veri0cation tools (like e.g. PVS [13]) in IT system design is21
hindered by a gap between practice-oriented CASE tools and sophisticated mathematical
tools. On the one hand, system engineers usually show no proper mathematical skills23
required for applying formal veri0cation techniques in the software design process.
On the other hand, even if a formal analysis is carried out, the consistency of the25
manually created mathematical model and the original system is not assured. Moreover,
the interpretation of analysis results, thus the re-projection of the mathematical analysis27
results to the designated system is problematical. From the engineering point of view,
the notion of dependability is a composite one necessitating the analysis of multiple29
mathematical properties by using di<erent veri0cation tools.

The aim of our ongoing research is to provide a provenly correct and complete,31
automated transformation between UML-based system models and formal mathe-
matical veri0cation tools for an e<ective software design.33

1.2. Mathematical model transformation

The step generating the description of the target design on the input language35
of mathematical tools from the UML model of the system is called mathematical
model transformation. The inverse direction of model transformation (referred as back-37
annotation) is of a similar practical importance as well when some problems (e.g. a
deadlock) are detected during the mathematical analysis. After an automated39
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back-annotation these problems can be observed in the same UML system model al-1
lowing the designer to 0x conceptual bugs within his well-known UML environment.

The practical application of transformation based design and veri0cation necessitates3
the analysis of the UML model from di<erent aspects. This way a transformation envi-
ronment has to support the implementation of several transformations towards di<erent5
mathematical tools.

Several semi-formal transformation algorithms have already been designed and im-7
plemented for di<erent purposes (e.g. formal veri0cation of functional properties and
quantitative analysis of dependability attributes [3]). Unfortunately, this conventional9
way (i.e. experiences in the experimental implementation process) of model transfor-
mation raised several problems.

11
• The lack of unique and formal descriptions of the transformation algorithms resulted

in hand-written and rather ad hoc implementations (inconvenient for implementing13
complex transformations).

• Any formal proof of correctness and completeness of these transformation scripts is15
almost impossible, hence their uncertain quality remains a bottleneck of the entire
transformation based veri0cation approach.17

• Each model had to be veri0ed individually although the transformation algorithms
have similar underlying algorithmic skeletons.19

As a conclusion, a general and automated transformation method was missing, which
would generate the target models from a well-formed, high-level speci0cation.21

1.3. Research objectives

Our proposal for the previous problems is a general mathematical model transfor-23
mation system supporting the automated generation of transformation code of a proven
quality for an arbitrary number of transformations. Such an automated model transfor-25
mation system has to ful0l at least the following requirements [20]:

• Requirement 1: The easy-to-understand description of source and target models27
(based on metamodels) in order to support a variety of transformations;

• Requirement 2: A visual but mathematically precise description of transformation29
rules clearly indicating the correspondence between the elements of the UML visual
programming paradigm and the target mathematical notation;31

• Requirement 3: An e.cient back-annotation of mathematical analysis results (aiming
to visualize the results of the analysis in a UML notation);33

• Requirement 4: An engine for proving semantic correctness and completeness of
transformations;35

• Requirement 5: An automatic model generation from the visual transformation rules.

Transformations correctly proved necessitate a precise underlying mathematical struc-37
ture for both source models (like UML) and target models (such as Kripke structures,
Petri Nets, computational tree logic, etc.). Additionally, model transformation and back-39
annotation also have to be ruled strictly and precisely (Requirements 1–3).
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Fig. 1. An overview of VIATRA.

The quality of model transformation (Requirements 4 and 5) should be ensured by an1
automated proof method for correctness and completeness, which step will be followed
by an automated program generation phase. The program derived takes a speci0c UML3
model as input and generates the language of a particular veri0cation tool as the output.
As a result, the quality bottlenecks originating in the former heuristic implementation5
(manual coding) could be eliminated.

1.4. VIATRA: a visual automated model transformation system7

Our model transformation approach (which is an integration of di<erent disciplines
of arti0cial intelligence, and computer engineering) is based on formal mathematical9
background and provides a general transformation description language and methodol-
ogy for a large scale of transformations.11

The process of model transformation is characterized by a model analysis round-trip
(illustrated by the sequence of rounded grey boxes in Fig. 1).13

(1) Model description. A model transformation for practical applications necessitates
on one hand a uniform and precise description of source and target models to15
improve the quality of such transformations. But, on the other hand, it should
follow the main standards of the industry in order to be integrated to software17
design methodologies.

For this reason, the Meta Object Facility (MOF) metamodelling techniques19
are used in VIATRA. MOF metamodels provide graphical means to de0ne
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metaobjects for similarly behaving instances in various domains by combining the1
expressive power of UML Class diagrams (concerning the structure) with the Ob-
ject Constraint Language (OCL) for describing semantic issues. MOF metamodels3
are used as a basis for describing UML models (following the standard metamodel
of UML) as well as mathematical structures (by creating non-standard metamodels5
for them).

A typical UML model contains more details than required for a speci0c mathe-7
matical analysis (for instance, documentation or use case diagrams are frequently
of little importance). Thus, in the sequel, a UML model will only contain the9
relevant pieces of information with respect to a speci0c analysis, and this re-
duced model can be obtained from the original user-created system model by some11
0ltering mechanism.

In VIATRA, 0ltering is expressed by metamodels. Exactly those constructs are13
regarded as relevant (thus transformable) that is are included in the metamodel of
the source language (hence if speci0c constructs are irrelevant for one purpose,15
they are simply omitted from the metamodel).

(2) Uniform representation of models. The front-end and back-end of transformations17
(UML as the source model and a formal veri0cation tool as the target model) is
de0ned by a uniform, standardized description language of system modelling, that19
is, XMI (XML Metadata Interchange). XMI is a special metamodel dependent
collection of XML constructs providing an XML representation for arbitrary (MOF21
based) models.

XMI seems to be a natural choice as a large number of UML tool vendors23
provide a facility to export their models into XMI, moreover, several academic
communities (e.g. the graph transformation community [19]) have started discus-25
sion to settle on a general XML based interchange format for their tools.

(3) Model transformation rules. The visual speci0cation of model transformations is27
supported by graph transformation [1,15,8], which combines the advantages of
graphs and rules into an e.cient computational paradigm.29

A graph transformation rule is a special pair of pattern graphs where the in-
stance de0ned by the left-hand side is substituted with the instance de0ned by the31
right hand side when applying such a rule (similarly to the well-known grammar
rules of Chomsky in computational linguistics).33

Model transformation rules (in the form of graph transformation rules) are speci-
0ed by using a visual notation of UML. However, for obtaining a tool-independent35
transformation speci0cation, the transformation rules will also be exported in an
XML based format, conforming to the evolving standard of graph transformation37
systems [19].

(4) Correctness and completeness. Automated transformations necessitate an auto-39
mated proof method aiming to verify that the generated target models are se-
mantically correct (correctness problem). Moreover, each construct allowed in the41
source model should be handled by a corresponding rule (completeness
problem).43

Instead of verifying the semantic correctness of individual target models we put
the stress on the correctness and completeness of transformation rules, i.e. starting45
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from a source model that ful0ls some semantic criteria, the derivation steps should1
always keep these properties invariant for the target design.

(5) Automated program generation. Even if the description of the transformation is3
theoretically correct and complete, additionally, the source and target models are
also mathematically precise, the implementation of these transformations has a5
high risk on the overall quality of a transformation system. As a possible solution,
automatic transformation algorithm generation is carried out for implementing7
visual transformation rules and control structures.

(6) The transformation engine. As being a logic programming language based on9
powerful uni0cation methods, Prolog seems to be a suitable language for a pro-
totype implementation of the transformation engine. Thus, the XMI based models11
and rule descriptions are translated into a Prolog graph notation serving as the input
data and the program to be executed, respectively. After a successful prototyping13
phase, Prolog could be substituted with a more powerful but lower abstraction
level language (like C++ or Java).15

(7) Model transformation. Model transformation is performed by executing the au-
tomatically generated Prolog program supplied with the Prolog description of the17
source model. According to our experiments (see Section 4 for benchmark appli-
cations), the time required for the transformation is just a few percentage of the19
total time spent on the formal analysis exploring the entire state space.

(8) Back-annotation of analysis results. The results of the mathematical model trans-21
formation are planned to be automatically back-annotated to the UML based sys-
tem model. Thus, the system analysts are reported from conceptual bugs in their23
well-known UML notation. Unfortunately, the current version of UML does not
directly support the representation of analysis traces. For instance, the sequence of25
0red statechart transitions that leads to a deadlock (according to the veri0cation
tool) completely lacks a 0ne-grained UML representation.27

As model transformations are frequently projections in a mathematical sense,
thus, they cannot be inverted in general. Moreover, several formal analysis meth-29
ods often perform another model transformation (e.g. a deadlock detection algo-
rithm may take the description of a transition system as input and may generate31
a sequence of 0red transitions as output). For this reason, back-annotation is not
equivalent with an inverse model transformation, as it only requires the identi0-33
cation of related source and target objects.

1.5. Related results35

In Section 1.3, we set up several requirements that has to be simultaneously ful0lled
by a general purpose model transformation system. Currently, a brief overview of37
previous results (typically achieved in projects with di<erent objectives and orientation)
is provided concerning these individual 0elds.

39
• Model description: Model transformations necessitate a formal speci0cation of mod-

els in arbitrary domains with a special emphasis on de0ning a precise semantics41
for UML. PROGRES [17] provides a general framework for graph models and their
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transformations with typed graphs conforming to graph schemata. In FUJABA, UML1
models are formally speci0ed by combining UML and graph transformation [10],
while an algebraic presentation of models is used for de0ning the semantics of UML3
in [11].

As a convenient handling of multiple metamodels (e.g. establishing correspon-5
dence between source and target languages) are not addressed by these approaches,
reference graphs (and metamodels) are introduced in VIATRA.7

• General rule representation: Model transformation rules require a visual, easy-to-
understand and platform independent notation. The idea of using UML as a speci0-9
cation language of graph transformation rules (by collaboration and activity diagrams)
0rst appeared in [12]. Alternately, a general description of rules can be obtained on11
an XML level [19]. In VIATRA, rules are speci0ed in a (slightly di<erent) UML
notation, and intended to be exported conforming to the evolving GTXL standard.13

• Correctness and completeness: Traditional graph transformation approaches (e.g.
double pushout [5], single pushout [9]) elegantly deal with the soundness of a single15
transformation step (proving that the resulting object is a graph). However, in model
transformation systems, the notion of correctness and completeness is related to an17
arbitrary sequence of transformation rules.

• Automatic program generation: Using graph transformation as a programming lan-19
guage forms the basic idea of PROGRES ([17]), which generates C code for the
implementation of graph transformation rules. VIATRA generates executable Prolog21
code from high level UML based rule speci0cations as further veri0cation steps will
be based on these Prolog term representations.23

• Model transformation approaches: MTRANS [14] provides an XSLT based
framework for transforming MOF compliant models. Transformation scripts are spec-25
i0ed in a purely textual language. Individual model transformations were designed in
RIVIERA [16], where UML models are transformed to the Maude language in order27
to carry out formal analysis and veri0cation. VIATRA is a general model transfor-
mation system for automating the creation of di>erent models for formal veri0cation.29

• Back-annotation, inverse transformation: The triple graph grammar (TGG) approach
[18] provides a general bi-directional transformation mechanism for graph languages.31
TGG uses correspondence graphs coupling the source and target objects. However,
in order to obtain bi-directionality, there is a loss in e.ciency by having costly33
graph pattern matching for both directions. Model transformation rules in VIATRA
are uni-directional (i.e. traditional graph transformation rules), thus back-annotation35
can be more e.cient by using simple reference relations instead of graph pattern
matching.37

2. Model description

2.1. Running example39

In order to simultaneously demonstrate the technicalities of model transformation and
the typical questions from the engineering background, we selected a small fragment41
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Fig. 2. The source language: UML object diagram.
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(a) The IM metamodel (b) The target IM model

Fig. 3. The target language: IM hypergraph.

of a complex transformation as the basis of our running example. The complete trans-1
formation (discussed in details in [3]) generates stochastic Petri Nets from static UML
models enriched with special dependability attributes (e.g. failure rate of components).3
Each static relation between high-level objects is regarded as a potential error propa-
gation path. This Petri Net based analysis aims at the identi0cation of dependability5
bottlenecks in an early phase of design.

The entire transformation is divided into two major steps. At 0rst, a Intermediate7
Model (in the form of a simple hypergraph) is derived in order to extract important
dependability attributes from UML models. Afterwards, the Petri Net model can be9
transformed straight from this intermediate hypergraph representation (without the use
of original UML models).11

In our running example, the transformation of fault tolerant structures will be
performed from static UML models (depicted in Fig. 2) to this intermediate graph13
representation called Intermediate Model (IM in Fig. 3).

The simpli0ed metamodel of UML (describing stereotyped objects and links15
between them with abstract classes printed in italics) is depicted in Fig. 2(a). The
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metamodel is enriched with two dependability parameters: the fault occurrence rate FO1
in objects and fault propagation probability PP of links (as potential propagation
paths).3

The sample source UML model (in a visual UML notation in Fig. 2(b)) repre-
sents a fault-tolerant structure which consists of three objects, a redundancy manager5
(redundancy manager) and two variants (pressHW1 and pressHW2) identi0ed by the
corresponding stereotypes (red man and variant) and the links between them. The7
redundancy manager is responsible for switching from one variant to the other when
an error is detected.9

The target IM metamodel in Fig. 3(a) speci0es a hypergraph consisting of (i) nodes
of type FTS representing the fault tolerant structure as a whole, (ii) nodes of type11
Component standing for system components, (iii) and edges of type CEdge indicating
the “composed of” relation.13

In the sample target IM hypergraph model in Fig. 3(b), (i) a single graph node
of type Component is assigned to each variant object (var1, var2), (ii) two distinct15
nodes (fts1 and rm1 of types FTS and Component, respectively) are assigned to
each redundancy manager, (iii) the fts node is in a ‘composed of’ relation with the17
remaining three nodes as indicated by the edges of type CEdge.

2.2. Graph models19

In this section, basic concepts of graph transformation systems (such as graphs,
graph transformation rules, transformation units, etc.) are applied to the special needs21
of model transformation built upon MOF metamodels in order to provide a precise
(but still practice oriented) mathematical background. For the basic de0nitions (such23
as directed, typed and attributed graphs), the reader is referred to [1].

De�nition 1. A model graph G is a directed, typed and attributed graph with the25
following structure (expressed e.g. by a corresponding schema graph).

• A graph node is associated with a unique identi1er Id, and a type label Tn.27
• An edge has an own Id, a reference to a source IdS and a target IdT identi1er, and
a type label Te.29

• Both nodes and edges may be related to attributes (represented e.g. as special
graph nodes) with an Id identi1er (referring to the graph element the attribute is31
related to), a type label Ta and a data value V.

Model graphs may also contain n-ary relations between nodes (denoted as relations33
or hyperedges), but these relations are represented by a special class of model graph
nodes connected to “original” graph nodes by special (reserved) types of edges. Model35
graph relations are closely related (in their use and functionality) to PROGRES path
expressions with multiple source and=or target nodes.

37
From MOF models to model graphs: Model graphs are derived automatically from

MOF based models. Each node and edge must have type labels corresponding to an39
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Fig. 4. Model graphs from MOF based models.

MOF construct. The most fundamental rules of this derivation are the following:1

• Instances of an MOF Class (A) are mapped into model graph nodes with identically
named types.3

• Associations in MOF based models are typically non-directed links between instances.
However, model graphs are directed graphs, each (navigable) AssociationEnd of a5
MOF Association (E) between two MOF Classes (from A to B) is projected into a
separate model graph edge. A further type restriction states that all the graph edges7
of type E have to connect a graph node of type A to a node of type B.

• MOF attributes are directly mapped into model graph attributes.9

With this respect, the model graph of Fig. 4. is an equivalent of the IM model of
Fig. 3(b) (attributes are printed in italics).11
Reference graphs: As the main goal of model transformation is to derive a target

model from a given source model, source and target objects must be linked to each13
other in some way to form a single graph. For this reason, the following de0nition
introduces the concepts of a reference graph. The structure of a reference graph is also15
constrained by a corresponding metamodel, which contains (i) references of existing
source and target metamodel nodes; (ii) novel (so-called) reference nodes that provide17
a typed coupling of source and target objects, and (iii) reference edges connecting all
these nodes.19

De�nition 2. A reference graph Gref = (Gs;Gt, NODESref; EDGESref) contains a source
and a target model graph (Gs and Gt, respectively), and an additional set of reference21
nodes NODESref and edges EDGESref, where

• a reference node is a model graph node (thus associated with a unique identi1er23
Id, and a type label Tn) of the reference metamodel.

• a reference edge is a model graph edge (of the reference metamodel) that may25
lead from a reference node to either a source, a target or a reference element of a
speci1c type.27
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As several models (such as statecharts, subnets in high-level Petri nets) are structured1
into a hierarchy, the previous de0nition of reference graphs can be extended by allowing
reference nodes to relate (sub)graphs to (sub)graphs (in addition to single nodes). As3
a result, a more Texible reference structure is obtained, however, the reference graph
is no longer a simple graph but a hierarchical graph.5

2.3. Transformation rules

De�nition 3. A graph transformation rule r= (L;R;App) contains a left-hand side7
(LHS) graph L, a right-hand side (RHS) graph R, and application conditions App.

The application of r to a host graph (graph instance) G replaces an occurrence of9
the LHS L in G by the RHS R. In general, this is performed by

(1) 0nding an occurrence of L in G (also denoted as graph pattern matching),11
(2) checking the application conditions App (such as negative application conditions

which prohibit the application of the rule in the presence of certain nodes and13
edges),

(3) removing a part of the graph G determined by the occurrence of L yielding the15
context graph D,

(4) gluing R and the context graph D and obtaining the derived graph H.17

The adaption of graph transformation rules to model transformations prescribe
special requirements for the structure of these rules. As the target model is constructed19
from scratch, model transformation rules are frequently non-deleting, which ensures the
pleasant property of being able to handle all the LHS matches parallelly.21

On the other hand, when the deletion of certain graph objects is prescribed by a
rule, we must ensure that distinct parallel matches do not conTict with each other. In23
our model transformation approach, parallelly executable rules cannot remove any part
of the graph to avoid such problems.25

Following the classi0cation of di<erent graph transformation approaches that can be
found in [15], a model transformation rule is de0ned as follows:27

De�nition 4. A model transformation rule rmt is a special graph transformation rule,
where

29
• both graphs L and R are reference graphs;
• an occurrence of L in Gref is required to be an isomorphic image of L;31
• all the dangling edges are deleted automatically;
• non-deleting rules are matched (and executed) parallelly as default.33

A sample model transformation rule is depicted in Fig. 5. Please note that in order
to improve the clarity of the illustrations, only a graphical representation of rules is35
indicated and the underlying model graph structure is omitted. Negative application
conditions are denoted by objects embedded in a region painted gray.37
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Fig. 5. A sample model transformation rule.
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Left - Source Left - Ref Left - Target

Neg src

Fig. 6. Model transformation rule “ftsR”.

The LHS of this rule requires a UML object with the stereotype variant to be1
present on the source side without a reference edge to a reference node of type refVar
(indicated by the negative condition), while there are no restrictions for the target3
design. According to the RHS, a new IM node of type component and a new reference
node of type refVar is inserted and connected to the UML object by corresponding5
reference edges (of type src and targ). In addition to structural modi0cations, the
value of an object’s attribute FO is also projected into the target design.7

As possible industrial applications of model transformation surely consist of very
large and complex models containing hundreds of rules, model transformation rules9
must be extended by a sophisticated structuring mechanisms that allow to compose
them in a modular way. In the graph transformation community, the concepts of trans-11
formation units were introduced for this purpose (e.g. [1]), which units are adapted
for structuring model transformations in VIATRA.13

2.4. A sample transformation

Our sample model transformation is carried out by three transformation rules ap-15
plied in the speci0c order: ftsR, variantR and linkR. The process of our sample
transformation is the following (characterized by the parallel application of rules in17
correspondence with the default semantics).

(1) Transform all the redundancy managers in the UML model into two connected19
IM nodes (ftsR; Fig. 6).
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Fig. 7. Model transformation rule “variantR”.
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Fig. 8. Model transformation unit “linkR”.
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<component>
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(a) Step 1 (b) Step 2 (c) Step 3

Fig. 9. Tracing the transformation step by step.

(2) Create a new IM node for each UML object with stereotype “variant” (variantR;1
Fig. 7).

(3) Link (by applying linkR in Fig. 8) each IM equivalent of variant objects with3
the corresponding equivalent of a node of type fts (i.e. fault tolerant structure).
By equivalent we mean related reference nodes and edges between the elements.5

The construction of the target IM model is illustrated in Fig. 9. Nodes that have
been created most recently are colored grey while new edges have dashed lines.7
Step 1: An fts node and an component node are created by applying the transfor-

mation rule ftsR.9
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Step 2: The component nodes are constructed by applying transformation rule1
variantR for the two occurrences of a source variant object.
Step 3: The fts nodes are connected to the component nodes (as a result of applying3

linkR) by adding a new IM edge. Each pair of these nodes are linked only once, which
is ensured by the negative context condition on the LHS.5

As a conclusion, we illustrated that model transformation can be speci0ed by means
of graph transformation rules. In the following, we concentrate on the proven quality7
of transformations (namely, correctness and completeness).

3. Correctness and completeness of transformations9

The validity of some system requirement formulated in a temporal logics represen-
tation is typically veri0ed by applying model checking or theorem proving techniques.11
The proofs constructed by theorem provers are general in the sense that they hold in
any models of the speci0cation. Model checkers, on the contrary, operate on given13
model instances (i.e. 0nite representations of a general underlying theory). In this sec-
tion, the concepts of correctness and completeness for model transformation systems15
(called syntactic well-formedness in the sequel) will be de0ned analogously on two
levels.

17
• Model dependent approach: In this 0rst case, the well-formedness of individual trans-

formation instances (i.e. the transformation of a speci0c source model) are checked.19
• Metamodel=grammar dependent approach: In this case, we are aiming to prove that

the transformation is correct for any instance of the source metamodel (i.e. any21
sentence of the source grammar).

Before being able to discuss the correctness of model transformations, one has to23
decide what a correct model and a correct transformation is.

• A 0rst idea may be to prove the semantic equivalence of source and target models.25
Unfortunately, many model transformations are projections (i.e. some constructs of
the source model are not transformed) thus semantic equivalence cannot be proven.27

• In the future, we are planning to set up special invariant criteria that a transformation
must preserve, which criteria would be checked by of model checking or theorem29
proving techniques.

• However, in the current paper, correctness is de0ned by means of visual languages31
and graph grammars in analogy with traditional computational linguistics (thus on a
syntactic level).33
◦ Model dependent (simple) correctness is de0ned by means of parsing the visual

sentences generated by a model transformation by using the graph grammar of the35
target language.

◦ Metamodel dependent (total) correctness is stronger than the previous as it aims37
to prove that each model generated by a model transformation system is a sen-
tence of the target language. As the structure of model transformation rules mainly39
resembles to the structure of the source model, this problem is not at all trivial.
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In the sequel, we suppose that a graph grammar exists for each metamodel (e.g.1
a graph grammar of UML or IM) which controls the construction of well-formed
visual sentences. As the process of editing such models is not considered, we may3
also suppose that no rules of these graph grammars prescribe the deletion of some
elements. Naturally, the structure of model transformation rules is not restricted in this5
sense.

3.1. Model correctness7

Thus, in the current paper, a model is considered to be correct whenever it can
be derived from the start graph (regarded as an axiom) by graph transformation rules9
(regarded as deduction rules).

De�nition 5 (Graph grammar). Let G = (S;RG) be a production system with the11
axiom S (start graph) and deduction rules RG (graph transformation rules). This
system is called a graph grammar (considering that all graph nodes are terminal13
nodes).

De�nition 6 (Derivable). Let G = (S;RG) be a graph grammar. We call a graph M15
(called model or sentence later) derivable from G (denoted as G � M) i> M can be
obtained from the start graph S by a 1nite sequence of graph transformation steps17
using deduction rules RM.

De�nition 7 (Visual language). Let G be a graph grammar. The visual language (of19
the graph grammar), denoted as LG, contains all the graphs that are derivable
from G.21

LG = {M |G � M};
where M is graph called (visual) sentence.23

3.2. Transformation correctness

After discussing the correctness of models, correctness of model transformation will25
be introduced, built upon well-formed source models as axioms.

De�nition 8 (Model transformation). Let T = (MA;RT) be a graph grammar with27
the start graph MA, called source model (a sentence of the source visual language),
and model transformation rules RT. T is denoted as model transformation.29

De�nition 9 (Model transformation system). A model transformation system is a
tuple MTS = (A;RT;B), where A and B are graph grammars de1ning the source31
and target language, respectively, and RT is a set of model transformation
rules.33
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Fig. 10. Concepts of correctness.

Corollary 10. Let MTS = (A;RT;B) be a model transformation system. ∀MA :A1
� MA; T = (MA;RT) is a model transformation.

Several models may be derived by a model transformation system from di<erent3
source models. However, such a system is of little importance if these derived models
are incorrect sentences of the target graph grammar. To express the di<erence, models5
that are derived by a model transformation system will be denoted as model candidates.
This concept of correctness is illustrated in Fig. 10.7

De�nition 11 (Derivable as target). Let T = (MA;RT) be a model transformation.
A graph MB (called model candidate) is derivable as target from T (denoted as9
T �t MB or {MA;RT} �t MB) i>

∃MC : (T � MC) ∧ (MA ∪MB = MC \ Q);11

where Q is the set of all reference nodes and edges in MC.

Model transformation rules build a common supergraph MC containing the orig-13
inal source model MA and the novel target model candidate MB, which are con-
nected by reference nodes and edges Q. The target model candidate can be obtained15
from this supergraph if the original source model and the reference objects are
removed.17

In the following, the most important notions of model transformation systems
(namely, correctness and completeness) are de0ned.

19
• Informally, a model transformation is correct, if the derived target candidate is a

sentence of the target language (model dependent).21
• A model transformation system is correct, whenever correctness holds for each

source model (metamodel dependent).23

De�nition 12 (Correctness: model transformation). Let T= (MA;RT) be a model
transformation and B be a graph grammar de1ning the target language. T is correct25
(with respect to B) i>

T �t MB ⇒ B � MB:27

Such a correctness will also be denoted as simple correctness.
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<<STEREO>>

OBJ

STEREO = {red man, variant}

S

<<red_man>>

RM

<<variant>>

VAR

<<red_man>>

RM

<<variant>>

VAR

(a) Adding an object (addObject) (b) Adding a UML link (addLink) 

Fig. 11. Graph grammar of the source UML models.

De�nition 13 (Correctness: model transformation system). Let MTS = (A;RT;B)1
be a model transformation system. MTS is correct i>

∀MA : A � MA ∧ {MA;RT} �t MB ⇒ B � MB:3

Such a system is also called total correct.

Completeness is also de0ned on two levels: 0nding an appropriate source model for5
a given target sentence and for each target model.

De�nition 14 (Completeness: model transformation). Let B be a graph grammar, and7
MB be a model of this grammar. A model transformation T is complete (with respect
to MB) i>9

B � MB ⇒ T �t MB:

This process (0nding one or more source models for a given target sentence) is also11
called back-annotation or simple completeness.

De�nition 15 (Completeness: model transformation system). Let MTS = (A;RT;13
B) be a model transformation system. MTS is complete i>

∀MB∃MA : B � MB ⇒ {MA;RT} �t MB ∧A � MA:15

3.3. Examples on correctness and completeness

In the sequel, theoretical foundations are illustrated on our running example of the17
UML-IM model transformation.

At 0rst, a model transformation system is created by source and target languages19
de0ned by graph grammar rules. Such a small grammar for handling the running ex-
ample may be the following (shown in Figs. 11 and 12, where S is a placeholder21
for any empty LHS). Negative application conditions follow the traditional notation23
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<TYPE>

OBJ

TYPE = {fts,component}

S
VAR

<component>

<fts>

FTS

C

<fts>

FTS

VAR

<component>

(a) Adding a node (addNode) (b) Adding an IM edge (addEdge) 

Fig. 12. Graph grammar of the target IM models.

(crossed edges) while typing constraints are interpreted as application conditions for1
the transformation rule.

• Let MTS be a model transformation system with source grammar A of Fig. 11,3
target grammar B of Fig. 12, and model transformation rules RT are the ones in
Figs. 6–8.5

• Let T be a model transformation with source model MA of Fig. 2(b) and model
transformation rules RT.7

• Let MB of Fig. 3(b) be a target model candidate.

Proposition 16. T is correct (with respect to B).9

Proof. It is su.cient to show a sequence of derivations that is able to construct MB

from graph grammar B. In other words, we have to show that the sentence MB can11
be parsed by using the inverse rules of grammar B.

Let us consider the following sequence (in the given order within the same group),13
where addNode(A,B) means to add the node B of type A, while addEdge(C.D) adds
an edge between nodes C, and D:

15
(1) addNode(fts,im1), addNode(component,im2), addEdge(im1,im2),
(2) addNode(component,var1), addNode(component,var2),17
(3) addEdge(im1,var1), addEdge(im1,var2).

One can easily notice that the derivation process is similar to the one of Fig. 9. As19
a result, the same graph is constructed in each case.

Corollary 17. T is complete (with respect to MB).21

Proposition 18. MTS is correct.

Proof. In this proof, each application of a model transformation rule will be related23
to a sequence of target grammar rules. Thus, when a model transformation rule is
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Model transformation rules Target grammar rules

ftsR addNode(fts,FTS),

addNode(component,RM2),

addEdge(FTS,RM2)

variantR addNode(component,VAR)

linkR addEdge(FTS,VAR)

Fig. 13. Rule coupling for proving correctness.

applied, we try to apply the corresponding sequence of grammar rules. If the tar-1
get model candidate and the parallelly generated target model is isomorphic after
each model transformation step then the model transformation must be correct as3
well.

In other words, starting from the target graph on the LHS of a model transformation5
rule, the target graph on the RHS of the similar rule has to be created by the graph
grammar rules of the target language (empty target side is related to the S start7
symbol).

Let us consider the following coupling of rules (depicted in Fig. 13).9
As a result, the modi0cations performed by model transformation rules on the target

model candidate are simulated by graph grammar rules of the target language, thus11
MTS is correct.

Proposition 19. MTS is not complete (unfortunately).13

Proof. For a counterexample, let us consider a target model M′
B with an individual

node of type fts. Let us suppose that there exists a source model M′
A which can be15

transformed to M′
B.

Such a source model must contain a redundancy manager object as it is the only17
object that is projected into an fts node. When performing the transformation of the
redundancy manager, an additional node and edge will appear in the target model19
candidate.

As the graph grammar of the target language does not contain any rules that would21
be able to remove graph nodes and edges, the original target model must be a subgraph
of the resulting model candidate.23

Please note that if another set of model transformation rules were used (splitting
ftsR into three rules: one is generating the fts node and the second one derives the25
component node, 0nally, the third one creates the link between those two), complete-
ness could have been proven.27

All the proofs presented here (especially the proofs of correctness) may serve as
skeletons for further proofs in connection with model transformation systems. However,29
the problem of an automated veri0cation still remains. In the following, the sketch of
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such an automated proof method for syntactic correctness is presented, based upon1
planner algorithms of arti0cial intelligence.

3.4. Proving correctness by planner algorithms3

Planner algorithms [21] are complex, hierarchical problem solving procedures subdi-
viding the original problem into smaller parts before trying to solve them according to5
the “divide and conquer” principle. Finally, these partial solutions are merged together
yielding the solution of the original problem.7

De�nition 20. A planner PA : (I;E;O) �→P, is a structure where I is the 1rst-order
logics formulae of the initial state, E is the 1rst-order logics formulae of the goal9
state, while O is the set of permitted operations. The output is plan P, which is a
sequence of operations providing a trajectory from the initial to the goal state.11

De�nition 21. A planner operation O = (C;A), where C stands for the precondi-
tions (1rst-order logics formulae), and A for actions. Preconditions must hold before13
performing the speci1c operation. Actions may add or remove certain basic logics for-
mulae (called facts) to the state space.15

In the following, a planner will be constructed to prove correctness of model trans-
formations.

17
• Basic facts are built up from model graphs (supposing the close world assumption,

i.e. when all the true facts have to be listed explicitly).19
◦ From a model graph node of type type with an identi0er id the predicate type
(id) is generated.21

◦ From a model graph edge of type type with its own id, source src and target
trg identi0ers, the predicate type(id,src,trg) is generated.23

◦ From a model graph attribute attached to the node identi0ed by id with a name
name, and having value value, the predicate name(id,value) is generated.25

• Graph grammar rules (of the source and target language) are encoded into planner
operations according to the following mapping:27
◦ The LHS of a rule together with application conditions are encoded into a planner

precondition.29
— LHS objects are encoded into positive predicates in the Prolog style, i.e. with

(unbound) variables for ids.31
— Negative application conditions are (universally quanti0ed) negative statements.
— Further general conditions concerning uniqueness (and context) are added to33

the precondition of each operation. As our graph grammars do not contain
deleting rules, postconditions are implicitly de0ned by the LHS objects and35
the additions prescribed by the RHS. This way, general postconditions such
as the dangling edge condition need not be considered.37

◦ the changes de0ned by the RHS of the rule are mapped into planner actions
de0ning element additions (serving as new postconditions).39
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De�nition 22. Let A= (S;RA) and B= (S;RB) to form the model transformation1
system MTS= (A;RT;B). The proof planner PAT of correctness is sequence of
PAi sub-planners (one assigned for each model transformation rule Ri ∈RT) which3
are de1ned as follows:

• the initial state of PAi is de1ned by the left target side graph of the model trans-5
formation rule,

• a subgoal of PAi is de1ned by the right target side graph of the model transfor-7
mation rule.

• the operations are de1ned by the graph grammar rules RB of the target9
language.

Proposition 23. If a plan can be constructed for each Ri then the model transforma-11
tion system MTS is correct.

Proof (Sketch). Speaking in graph transformation terms, we are aiming to prove that13
(i) whenever a model transformation (MT) rule is applied (to one speci0c match),
(ii) and its e<ects can be simulated in general by applying a speci0c sequence of the15
target graph grammar (GG) rule on the target part of MT rule graphs, (iii) this speci0c
sequence is applicable for the speci0c (isomorphic) match in the host graph thus de-17
riving the parsing steps of the host graph from parsing just the MT rule graph. (Please
note the di<erences of rule and host graphs; graph grammar and model transformation19
rules).

According to our construction, performing a planner operation is identical to applying21
the related GG rule (without deletions). According to the assumption, there exist a
sequence of GG rules that derives the right target graph (and not the image of it)23
from the left target graph of the MT rule. Such a sequence must not create additional
graph objects (as side e<ects) due to the lack of deleting rules and the closed world25
assumption for the subgoal.

When an MT rule is applied, an isomorphic image of the initial and goal states are27
required to be present in the host graph. Thus, applying the same sequence of GG
rules to that speci0c matching image, it will derive the image of the goal state (and29
nothing else).

Constructing a proof planner for correctness was only a demonstration. Similar plan-31
ners can be built for completeness as well by slight modi0cations.

4. Conclusion33

In the current paper, our initial results towards a complex model transformation
method was presented intended to perform mathematical model transformations in order35
to integrate UML-based system models and mathematical models of formal veri0cation
tools. Due to the large complexity of IT systems, model transformations are supported37
by an integrated environment composed of various 0elds of computer science (planner
algorithms, graph transformation) and software engineering (UML, MOF).39
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For obtaining a higher quality of transformations, the syntactic correctness and com-1
pleteness of each transformation are proved, additionally, an executable Prolog code
is derived automatically from high-level model transformation rules. As a result of3
an automated transformation and back-annotation of analysis results, a variety of for-
mal veri0cation tools will become available for system designers, without the thorough5
knowledge of underlying mathematics.

The following benchmark transformations have already been designed and imple-7
mented according to the model transformation concepts of VIATRA:

• Transforming the static aspects of UML models enriched with dependability para-9
meters into stochastic Petri Nets for dependability analysis in an early phase of
system design;11

• Transforming UML Statecharts into Extended Hierarchical Automaton that provide
a formal operational semantics for these UML diagrams;13

• Automatic Prolog program generation for visual control structures.

In our future plans, the reconsideration of the proof method and the implementa-15
tion of further model transformation are aimed at 0rst. Semantic criteria that must be
invariant to a model transformation may also be proved by using theorem provers and17
model checkers instead of planner algorithms.
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