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Abstract: Since graph pattern matching is an NP-complete subtask of graph transformation,
its computer-based implementations have to employ heuristics for calculating matchings in
an acceptable amount of time on real-world application domains. This paper surveys the
notions and techniques used during the automatic generation of application-specific heuris-
tics that may be integrated into an extensible, general sense pattern matching algorithm. In
this sense, the overview includes (i) the concept of search plans which are compact repre-
sentations of heuristics, (ii) their most widespread cost functions, and (iii) the corresponding
algorithms that generate low cost search plans.
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1 Introduction

Graph transformation (GT) [5,9] can be considered as a generalization of Chomsky grammars for graphs.
In this sense, it has rules for specifying the manipulation of graph based models in a visual, declarative
and formal way, which makes this approach especially useful in computer engineering, which typically
employs such models for designing systems. In the process of graph transformation, first a matching
occurrence of the left-hand side (LHS) of the GT rule is sought in the model by graph pattern matching.
Then the selected part is replaced with the right-hand side (RHS) of the rule. No fast algorithms can be
guaranteed to exist for graph transformation as it is NP-hard in general due to its pattern matching task,
which leads to the subgraph isomorphism problem, for which NP-completeness has been proven [1].

Mathematicians typically focus on NP-complete problems only until (i) algorithms for the problems
are invented and (ii) upper and lower bounds of time- and space-complexity are determined. In computer
engineering, when software applications are developed, which aim at providing a solution for an NP-
complete problem, the implementation details of the algorithms become at least as important, since users
claim to have a good solution in an acceptable amount of time. This demand obviously appreciates the
role of heuristics, which are often used to improve the runtime performance of the implemented tool by
building application domain specific knowledge in traditional algorithms.

In the current paper, our goal is to give insight into the practical issues of graph pattern matching.
More specifically, we focus on how graph-based notations and algorithms can help developing heuristics
that improve the runtime performance of pattern matching.
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After a introduction to graph transformation (Sec. 2), in Sec. 3.1 an overview is given on a general
sense, pattern matching algorithm, whose variants have been implemented in several graph transforma-
tion tools. Then in Sec. 3.2, we present a graph-based representation of the search space that is being
traversed by the pattern matching algorithm. Sec. 3.3 introduces the concept of search plans, which pro-
vide a compact way to describe the search space before its actual traversal. Furthermore, as the main
novelty of the paper, in Sec. 3.4 we survey (i) the most widely used cost functions being defined for
search plans, and (ii) algorithms that generate minimum-cost search plans, which can be used to improve
the process of pattern matching. Section 4 concludes the paper.

2 Graph transformation

I briefly introduce the basic concepts of graph transformation, which include the definition of models,
rules, and rule applications.

2.1 Basic definitions

A label (written with typewriter font in examples and figures) is a basic concept in the application domain
that expresses a binary relation among entities. The set of labels (denoted by £) is fixed in advance by
collecting them from the application domain.

Definition 1 Given a set of labels £, an edge-labelled directed graph G = (V, Eq, srcg, trga, labg)
is a 5-tuple, where Vg and Eg denote nodes and edges of the graph, respectively. Functions srcg
Eq — Vg andtrgg : Eqg — Vg map edges to their source and target node, respectively. Labelling
function labg : Egq — £ assigns labels to edges.

In the following, we use the term graph for denoting an edge-labelled directed graph.

Definition 2 A morphism ¢ from graph G to graph H (denoted by ¢, rr)) consists of a node mapping
function ¢y : Vg — Vg and an edge mapping function o : Eq — Eg, for which the following
properties hold:

e Preservation of source nodes: The source node srcg(e) of each edge e is mapped to the source
node srcy(vg(e)) of its image g (e). Formally, Ve € Eq : @y (srcg(e)) = srep(pr(e)).

e Preservation of target nodes: The target node trgc(e) of each edge e is mapped to the target node
trgu(pe(e)) of its image pg(e). Formally, Ve € Eg : gy (trgc(e)) = trgu(vr(e)).

o Preservation of labels: The label of each edge e is preserved by the edge mapping function pg.
Formally, Ve € Eg : labg(e) = labp(pr(e)).

2.2 Models and rules

Graph transformation [5,9] provides a pattern and rule based manipulation of graph-based models. Each
rule application transforms a graph by replacing a part of it by another graph.

A model is a graph that is being manipulated during graph transformation. In the paper, by following
the naming conventions of the Unified Modeling Language [11], we use terms objects and links for the
nodes and edges of the model, respectively.



Example 3 In order to illustrate the basic terms and concepts of graph transformation, a simplified
version of the distributed mutual exclusion algorithm of [7] has been selected as a running example.
A sample model in this application domain is depicted in Fig. 1(a).

’Resource‘ ’ Process ’Resource‘ ’ Process ‘

type 1type type 1type

req held_b
B

(a) A sample model (b) Graph transformation rule TakeRule

Figure 1: Basic constructs of graph transformation

The model describes a system consisting of 4 Processes (namely pl, p2, p3, p4) and 2 Resources
(rl and 12). In this application domain, explicit type edges are used for representing instantiation.
E.g., the type edge connecting pl to Process expresses that pl is a Process. Processes pl, p2, p3, and
p4 constitute a ring along the next edges. Additionally, a token edge connects each resource to a
corresponding process, which denotes the access right for a process to a given resource. Such edges
lead out of resources rl and 12 to processes pl and p3, respectively. A process can issue a request for a
resource by setting a req edge between the corresponding nodes. In the model, process pl has already
asked for resource rl, and resource 12 has been requested by processes p2 and p3.

A graph transformation (GT) rule r consists of a left-hand side graph LH S, a right-hand side
graph RH S and an injective partial morphismp : LHS — RHS.

In practical graph transformation scenarios, some nodes of the rules are fixed to objects even in the
specification by an initial (partial) morphism. In the following, we use the term constant (denoted by
white boxes in figures and by slanted fonts in texts) for (i) an object in the model, (ii) a node of an LH S
graph that has been mapped to an object by the initial morphism, or (iii) a node of an RH S graph that
has a constant origin in its corresponding LH S. All the other nodes are called variables and they are
denoted by grey boxes in figures and by sans serif fonts in texts. In this sense, a variable can be (i) a
node of an LH S that has not been mapped by the initial morphism, (ii) a node of an RH .S without an
origin in its corresponding L H S, or (iii) a node of the RH S whose origin is a variable in the LH S. As a
summary, variables can be considered as such nodes of a GT rule, to which an object is assigned during
rule application.

Example 4 GT rule TakeRule is presented in Fig. 1(b). On both sides of the rule, nodes P and R are
variables, while nodes Process and Resource are constants. The rule expresses that if process P has a
token for resource R, and it has already issued a request on the same resource (as expressed by the
reqedge), then process P may get access to resource R (as shown by the held_by edge of the RHS).

2.3 Rule application

The application of a rule replaces a matching of the LH S in the model by an image of the RHS. Rule
application consists of two well-separable phases, which are discussed in details in the following.



Pattern matching. A matching for a graph in a model is an injective total morphism from the graph
to the model. In the pattern matching phase, a matching for the LH S of a rule is being sought in the
model. In the following, the term pattern is used as a synonym for the L H.S graph of a rule.

Theoretically, pattern matching phase always starts from an empty initial partial matching. However,
in practice-oriented graph transformation scenarios, the initial partial matching typically prescribes a rule
application context by some mappings, which can be determined a priori for each rule. These are always
mappings of the constant nodes of the LH S.

Since the mappings of variables in themselves completely determine the partial matching in turn, we
omit mappings of edges and constant nodes from matching specifications in the rest of the paper. In this
sense, a matching can now be considered as a set of mappings of the form (Variable, Constant), while
pattern matching can be interpreted as a process, in which an object is assigned to each variable of the
LHS. In tabular representations of partial matchings (e.g., as later in Fig. 3), each column denotes a
mapping with a variable and a constant in the upper and the lower row, respectively.

Example 5 In our running example, a matching for the LH S of the GT rule TakeRule can be found in
the model of Fig. 1(a), when variables P and R are mapped to process pl and resource rl, respectively.
Note that we get another matching solution by mapping the variables to process p3 and to resource r2,
respectively.

Updating. At this point, a matching for the pattern has already been calculated, and it designates that
part of the model that is going to be modified in the updating phase.
The updating phase can be divided into a deletion and an insertion phase.

¢ In the deletion phase, we delete (i) all objects (together with their dangling (i.e., incident) edges),
which are assigned to nodes appearing only in the LH S, and (ii) all links, which are assigned to
edges appearing only in the LH S.

e In the insertion phase, a new object is added to the model for each node of RH S that is not
contained by LH S, and similarly, a new link is added to the model for each edge of RH S that
cannot be found in the LH S graph. Note that in the latter case source and target objects already
exist in the model.

Example 6 When the GT rule TakeRule is applied on the matching, which maps variable P to process
pl and variable R to resource rl, the updating phase consists of (i) the deletion of the t oken and req
links going between constants pl and rl, and (ii) the insertion of a held by link from rl to pl.

Since graph pattern matching leads to the subgraph isomorphism problem, which is NP-complete in
general [1], this phase has the strongest influence on the overall performance of graph transformation.
As a consequence, only the algorithmic details of pattern matching are discussed in the rest of the paper.

3 Pattern matching implementation

Practice oriented considerations of pattern matching are discussed in this section by first introducing a
general sense algorithm into which heuristics can be integrated. These heuristics are defined by search
plans, which are produced automatically by algorithms that aim at finding a search plan with minimum-
cost. This generation process is also presented in this section.



3.1 A pattern matching algorithm

As a result of intensive research, several general sense, pattern matching algorithms [3, 12] have been
developed for the last decades. In Fig. 2 we present a skeleton that demonstrates the typical structure of
these algorithms.

1: PROCEDURE match(k, m)

2: if m is a total morphism from LH S to model M then
3:  RETURNmMm

4: else

5:  Compute the set of mapping candidates P(m)

6: forall (n,0) € P(m) do

7: if check(m,n, o) then

8: Compute the morphism m’ obtained by adding (n, o) to m
9: CALL match(k + 1, m’)
10: end if
11:  end for
12:  Restore data structures
13: end if

Figure 2: A skeletal pattern matching algorithm

The pattern matching algorithm consists of a single method match () which gets the recursion level
k and a morphism m as its inputs (line 1). Procedure match () is initially invoked with the initial
partial matching, which contains those mappings that are denoted by the constant nodes of the LH S.
If morphism m represents a complete matching, then it can be returned as a solution (lines 2-3). If
morphism m is not yet total (lines 5—13), then attempts are made to extend the morphism. For this reason,
a set of mapping candidates P(m) is computed (line 5), and then each candidate (n, o), which represents
the mapping of variable n to object o, is checked by also using the mappings stored by morphism m
(lines 6-7). If a mapping candidate passes this test, then it is added to morphism m resulting in a one
larger morphism m’ (line 8), which is later used as the second input when invoking procedure match ()
recursively in line 9.

Algorithm implementations typically differ from each other in the technique of the computation
and the checking of mapping candidates in lines 5 and 7, respectively. In order to be able to analyze
the algorithm variants, we need an appropriate description of the search space being traversed by the
algorithm of Fig. 2 during pattern matching.

3.2 Search space tree

Search space tree (SST) is a tree with the following structure. The root of the tree is on the Oth level and
it is the initial partial matching (denoted by an empty table) from which pattern matching starts. A node
on the kth level of the search space tree represents a partial matching, which consists of (i) the mappings
defined by the parent node on the (k — 1)th level, and (ii) a mapping candidate being generated by line
5 at the kth level of recursion during the execution of procedure match (). Consequently, if a pattern
has [ variables, then the search space tree has at most [ 4 1 levels, and only nodes on the /th level may
denote complete matchings for the pattern.

Example 7 A sample search space tree is presented in Fig. 3. The root of the tree represents the initial
partial matching, which contains only mappings of constant nodes. Note that these mappings are not



R R P P P P
r1 r2 p4 p3 p2 p1

R P R P R P P R P R P R
r1 | p1 r2 | p2 r2 | p3 p3 | r2 p2 | r2 p1 | r1

Figure 3: A sample search space tree

depicted in the figure. On the first level, there are 6 partial matchings, each consisting of a mapping of
exactly one variable. Variable R can be mapped to resources rl and r2, while variable P can be matched
to processes pl, p2, p3, and p4. The second level also has 6 nodes of which only 3 represent different
matchings as e.g., both framed nodes map variable R to resource r2 and variable P to process p2. It
should also be emphasized that the framed matchings are not complete as they have to be filtered out in
line 7 by the checking of mapping candidates as no t oken edges go from resource r2 to process p2.

This example has clearly demonstrated that if no restrictions are posed on the mapping candidate
selection, then even a single matching with n mappings may cause search space explosion as a conse-
quence of the fact that the matching can be reached on n! paths in the SST. Thus, it is obvious that search
space can be reduced by introducing variable ordering restrictions at mapping candidate selection.

Since different variable orderings can produce search space trees with significantly different size,
the problem of finding a correct order for variables, which also minimizes the SST, constitutes a critical
part in the process of pattern matching as the size of (i.e., the number of nodes in) the search space tree
directly affects the runtime performance of a graph transformation engine.

3.3 Search plans

Graph transformation tools use clever heuristics being based on knowledge collected from the applica-
tion domain for determining and improving a variable ordering, which is usually specified in the form of
search plans. In the current paper, the search plan notation of [13] is used, but several further sophisti-
cated representations [6, 14] exist as well.

A search graph is a graph with non-negative numeric weights as labels. It is generated for each
pattern by the following algorithm. Each constant (variable) node of the pattern is mapped to a constant
(variable) node in the search graph. Each edge of the pattern is mapped to a pair of edges in the search
graph that connect the corresponding end nodes in both directions expressing bidirectional navigability.
A non-negative numeric weight is assigned to each edge of the search graph. Due to space restrictions,
considerations and techniques [6, 8, 13, 14] for weight assignment are not discussed here.

A search forest is a spanning forest of the search graph, in which each tree is rooted at a constant
node. Consequently, each variable node should be reachable on a directed path from a constant node.
Edges of a search forest are denoted by thick lines in Figs. 4(a) and 4(c).

A search plan is one possible traversal of a search forest. A traversal defines a sequence in which
edges are traversed. The position of a given edge in this sequence is marked by increasing integer
numbers written on the thick edges in Figs. 4(a) and 4(c). Based on a search plan, a total order of



variables can be specified by assigning the number on the tree edge leading to each variable as its position
in the order. This position information is depicted by a number in a light grey box located at the lower
left corner of the corresponding variable in Figs. 4(a) and 4(c).

When method match () is executed on the kth level of recursion, we may specify the corresponding
mapping candidate generation (line 5) and filtering (line 7) strategies from the search plan as follows.
As a precondition, we may suppose that mappings are available for all the variables whose position is
smaller than k according to the order defined by the search plan.

e Mapping candidate generation. If the kth edge of the search plan represents a navigation di-
rection for an edge of the pattern with label 1ab that connects node src to variable trg in this
specific direction, then a mapping (trg, obj) is added to mapping candidates P(m) for each object
obj that can be reached on a 1ab link from the object being assigned to pattern node src by partial
matching m. If the kth edge represents a reverse navigation, then mapping candidates for variable
src are generated by navigating 1ab links in an opposite direction from objects being assigned to
pattern node trg.

e Mapping candidate filtering. If the kth search plan node src is connected to an already mapped
node trg (i.e., whose position is smaller than k) by an unselected pair of edges that originate from
the same pattern edge with label 1ab, then for each such pair, the existence of a 1ab link between
the images of src and ¢rg has to be checked to maintain the consistency of matching candidates.

R R R R
r1 r2 r1 r2
R | P R | P R | P R|P R|P
r1 | p1 r2 | p2 r2 | p3 r1 | p1 r2 | p3
(a) First search plan (b) SST of the execution of (c) Second search plan (d) SST of the execution of
Fig. 4(a) Fig. 4(c)

Figure 4: Search plans and corresponding search space trees

Example 8 Two sample search plans and the corresponding search space trees of their execution are
depicted in Fig. 4. As shown by the first thick edges, search plans of Fig. 4(a) and 4(c) both prescribe to
start with the enumeration of resources, which can be accessed from the object Resource by navigating
along type links in outgoing direction. At this step, resources rl and r2 are enumerated as represented
by the first level of search space trees of Figs. 4(b) and 4(d).

The search plan of Fig. 4(a) continues with traversing req links in backward direction from the
already selected resources to produce matchings, in which variable P is also mapped to an appropriate
process from the model. In this case, 3 matchings can be generated as shown by the second level of
Fig. 4(b). These matchings are then filtered by checking whether the newly chosen process is connected
to object Process via a type link and to the already selected resource via a token link. Since no
token links exist between resource r2 and process p2, the corresponding matching is thrown away. In



contrast to Fig. 4(a), the search plan of Fig. 4(c) traverses along t oken links as its second step, which
results only in 2 matchings as shown by Fig. 4(d). Existence checks for req and type links are still
executed for the search plan of Fig. 4(c), but no matchings are filtered out. It should be noted that the
execution of the second search plan requires a smaller number of matchings to be traversed, thus it can
be considered a better search plan.

A cost is assigned to each search plan to assess the size of search space tree, which would be traversed
during the execution of the search plan. If this cost is in strong correlation with the size of the search
space tree, then the execution of the minimum-cost search plan yields the fastest algorithm variant for
pattern matching. This fact calls the attention to the importance of search plan generation algorithms
that aim at finding a minimum-cost search plan in a given search graph. Note that an overall speed-up
can only be achieved, if the acceleration of pattern matching caused by the execution of a better search
plan can compensate the extra time spent on generating the plan. This requires search plan generation
algorithms to run fast.

3.4 Search plan generation

Now we survey the most frequent measures being used for characterizing search plans, and the cor-
responding search plan generation algorithms. In order to have a uniform notation, let wy denote the
weight of the kth edge according to the order defined by the search plan. (Note that this edge is used for
calculating mapping candidates on the kth level of recursion.) Let us further suppose that the search plan
consists of [ tree edges.

Sum of weights. In the first alternative, the cost of a search plan is defined by the sum of weights
of the edges that comprise the search plan. Formally, wx(P) = 22:1 wg. The main strength of the
approach is that the Chu-Liu / Edmonds algorithm [2, 4] can quickly generate minimum-cost search
forests as the algorithm has a time complexity O(ne) [10], and search graphs have at most a few dozen
nodes and edges in a typical application scenario. On the other hand, the cost of a forest is completely
insensible to the different orderings of its tree edges, thus, sum-based cost functions provide a poor
estimate for the size of the search space tree, which means that even the minimum-cost search plan does
not necessarily lead to a fast pattern matching process.

Product of weights. The implementation of the GT tool being presented in [6] uses the product of
weights as a cost function (wr(P) = HL:l wg). By taking the logarithm of the cost, we get the sum of
the logarithms of weights, which makes this approach similar to the above-mentioned technique both in
the applied search plan generation algorithm and in its advantages and disadvantages. This cost function
gives a better estimate for the size of the search space tree, but it is still highly insensible to the different
orderings of the search forest edges.

A more complex function. [13] proposed to calculate the cost function as w(P) = 22:1 Hi;:1 W,
which is a correct estimation for the size of the search space tree, if weights of search graph edges
denote branching factors, which are collected from the actual model on which graph transformation is
performed. The main drawback of this technique is the lack of algorithms, which could find a minimum-
cost search plan according to this special cost function. As a consequence, implementations still use the
Chu-Liu / Edmonds algorithm as it is fast and gives a search plan with acceptably low cost.



4 Conclusion

In the current paper, I surveyed several implementation related issues of graph pattern matching including
(1) a general sense pattern matching algorithm description, (ii) a graph-based framework for represent-
ing the search space being traversed by this algorithm, and (iii) the concept of search plans by which
application-specific heuristics can be compactly described. As main added values of the paper, I gave an
introduction to some widely used search plan cost functions, which denote the quality of heuristics by
estimating the size of the corresponding search space, and I discussed the related algorithms that generate
minimum-cost search plans.

In the future, I plan to generalize the set of search plan operations in order to be able to handle
advanced graph transformation related constructs such as alternate, negated and recursive patterns. An-
other research direction is to develop an algorithm, which can generate minimum-cost search plans for
the complex cost function of Sec. 3.4.
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