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Abstract. This paper presents a practical attribute handling approach
for generating rule preconditions from graph constraints. The proposed
technique and the corresponding correctness proof are based on symbolic
graphs, which extend the traditional graph-based structural descriptions
by logic formulas used for attribute handling. Additionally, fully declar-
ative rule preconditions are derived from symbolic graphs, which enable
automated attribute resolution as an integral part of the overall pattern
matching process, which carries out the checking of rule preconditions at
runtime in unidirectional model transformations.
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1 Introduction

Graph transformation (GT) [1] as a declarative technique to specify rule-based
manipulation of system models has been successfully employed in many practical,
real-world application scenarios [2] including ones from the security domain [3],
where the formal nature of graph transformation plays an important role.

A recurring important and challenging task is to statically ensure that (global)
negative constraints representing forbidden structures are never allowed to occur
in any system models that are derived by applying graph transformation rules.

A well-known general solution to this challenge was described as a sophisti-
cated constructive algorithm [4], which generates negative application conditions
(NAC) [5] from the negative constraints, and attaches these new NACs to the
left-hand side (LHS) of the graph transformation rules at design time. At run-
time, these NAC-enriched left-hand sides block exactly those rule applications
that would lead to a constraint violating model.

This constructive algorithm is perfectly appropriate from a theoretical aspect
for proving the correctness of the approach when system models are graphs with-
out numeric or textual attributes, and negative constraints and graph transfor-
mation rules specify only structural restrictions and manipulations, respectively,
but in practical scenarios the handling of attributes cannot be ignored at all.
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A state-of-the-art approach [6] has been recently presented for transform-
ing arbitrary OCL invariants and rule postconditions into preconditions, which
implicitly involves the handling of attributes as well. On one hand, the cor-
responding report lacks formal arguments underpinning the correctness of the
suggested algorithm. On the other hand, the proposed transformation manip-
ulates the abstract syntax tree of OCL expressions, consequently, this solution
might be negatively affected by the same (performance) issues like any other
OCL-based techniques when checking rule preconditions at runtime. The main
point is that an OCL expression is always evaluated (i) from a single and fix
starting point defined explicitly by its context, and (ii) in an imperative manner
following exactly the traversal order specified by the user, which is not necessar-
ily suboptimal, but requires algorithmic background from the modeller.

In this paper, we present a practical and provenly correct attribute handling
approach for generating preconditions from graph constraints. The proposed
technique and the corresponding correctness proof use symbolic graphs [7], which
combine graph-based structural descriptions with logic formulas expressing at-
tribute values and restrictions. Additionally, the concept of fully declarative pat-
tern specifications [8, 9] is reused in a novel context, namely, as an intermediate
language, to which the generated symbolic graph preconditions are converted.
Finally, an attribute evaluation order is automatically derived from these declar-
ative pattern specifications together with a search plan for the graph constraints
resulting in a new, integrated pattern matching process, which performs the
checking of rule preconditions in unidirectional model transformations.

The remainder of the paper is structured as follows: Section 2 introduces ba-
sic logic, modeling and graph transformation concepts. The precondition NAC
derivation process and the corresponding correctness proof are presented in
Sec. 3, while Sec. 4 describes the automated attribute resolution technique. Re-
lated work is discussed in Sec. 5, and Sec. 6 concludes our paper.

2 Basic Concepts

2.1 Formal Concepts

Signature and Σ-algebra. A signature Σ consists of sort and attribute value
predicate symbols, and associates a sort symbol with each argument of each
attribute value predicate symbol. A Σ-algebra D defines the symbols in Σ by
assigning (i) a carrier set to each sort symbol, and (ii) a relation to each attribute
value predicate symbol. The relation is defined on the carrier sets and has to be
compatible with respect to the number and sorts of the attribute value predicate
arguments. In this paper, we use a signature and a corresponding Σ-algebra that
consists of a single sort Real that represents the real numbers R as well as the
attribute value predicates symbols eq, gr, mult and add. Symbol eq is defined
by the equality relation on R, symbol gr by gr(x, y) = {x, y ∈ R | x > y },
and symbols mult and add by mult(x, y, z) = {x, y, z ∈ R | x = y · z } and
add(x, y, z) = {x, y, z ∈ R | x = y + z }, respectively.
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First-order logic formula. Given a signature Σ and a set of variables
X, a first-order logic formula is built from the variables in X, the (attribute
value) predicate symbols in Σ, the logic operators ∧,∨,¬,⇒,⇔, the constants
>,⊥ (meaning true and false) and the quantifiers ∀ and ∃ in the usual way [10].

Assignment and evaluation of first-order logic formulas. A variable
assignment σ : X → D maps the variables x ∈ X to a value in the corresponding
carrier set of D. A first order logic formula Ψ is evaluated for a given assignment σ
in a Σ-algebra D by first replacing all variables in Ψ according to the assignment
σ and evaluating the attribute value predicates according to the algebra and the
logic operators in the usual way [10]. We write D, σ |= Ψ iff Ψ evaluates to true
for the assignment σ; and D |= Ψ , iff Ψ evaluates to true for all assignments.

E*-graphs and E*-graph morphisms. An E*-graph1 is a tuple G =
(VG, EG, V

L
G , E

L
G, sG, tG, s

L
G, t

L
G) consisting of a set of graph nodes VG, graph

edges EG, label nodes V L
G , label edges EL

G, and four functions sG, tG, s
L
G, t

L
G. The

functions sG : EG → VG and tG : EG → VG assign source and target graph nodes
to the graph edges. The functions sLG : EL

G → VG and tLG : EL
G → V L

G map the
label edges to the (source) graph nodes and (target) label nodes, respectively.

An E*-graph morphism h : G → H from E*-graph G to an E*-graph H
is a tuple of total functions 〈hV : VG → VH , hE : EG → EH , hVL : V L

G →
V L
H , hEL : EL

G → EL
H〉 such that h commutes with source and target functions,

i.e., hV ◦sG = sH ◦hE , hV ◦tG = tH ◦hE , hV ◦sLG = sLH ◦hEL , hVL ◦tLG = tLH ◦hEL .
E*-graphs together with their morphisms form the category E*-graphs.

Symbolic graphs and symbolic graph morphisms. A symbolic graph
Gψ = 〈G,ψG〉, which was introduced in [7], consists of an E*-graph part G and
a first-order logic formula ψG over the Σ-algebra D using the label nodes in V L

G

as variables and elements of the carrier sets of D as constants.
A symbolic graph morphism hψ : 〈G,ψG〉 → 〈H,ψH〉 from symbolic graph

〈G,ψG〉 to 〈H,ψH〉 is an E*-graph morphism h : G→ H such that D |= ψH ⇒
hψ(ψG), where hψ(ψG) is the first-order formula obtained when replacing each
variable x in formula ψG by hVL(x). Symbolic graphs over a Σ-algebra D together
with their morphisms form the category SymbGraphsD.

Pushouts in SymbGraphsD. (1) is a pushout iff it is
〈G0,Ψ0〉 〈G1,Ψ1〉

〈G2,Ψ2〉 〈G3,Ψ3〉
(1)

hΨ
1

hΨ
2

gΨ
2

gΨ
1

a pushout in E*-graphs andD |= Ψ3 ⇔ (g1(Ψ1)∧g2(Ψ2)).
For presentation purposes we consider symbolic graphs

Gφ to have a conjunction φ = p1(x1,1, . . . x1,n) ∧ . . . ∧
pm(xm,1, . . . , xm,k) of attribute value predicates p1, . . . , pm as logic formula.

2.2 Modeling and Transformation Concepts

In this section, metamodels, models and patterns are defined as symbolic graphs.
Metamodels and models. A metamodel is a symbolic graph MMφ =

〈MM,⊥〉, where MM is an E*-graph. The graph nodes v ∈ VMM and graph
edges e ∈ EMM define classes and associations in a domain, respectively. The
set V L

MM contains one label node for each sort in the given signature. A label
edge eL ∈ EL

MM from a class v ∈ VMM to a label node vL ∈ V L
MM expresses that

class v has an attribute eL of sort vL.
1 In contrast to E-Graphs [1], E*-Graphs do not provide labels for graph edges.
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A symbolic graph Gφ conforms to a metamodel MMφ if all graph nodes VG
and graph edges EG can be mapped to the classes and associations in the meta-
model, and the label edges EL

G and nodes V L
G can be mapped to the attributes

of corresponding sorts by a symbolic graph morphism typeφ : Gφ →MMφ.

A model Mφ of a metamodel MMφ is a symbolic graph Mφ = 〈M,φM 〉
conforming to metamodel MMφ, which has to fulfill the following properties:
(i) A model Mφ has a label node xval ∈ V L

M for each value val in the carrier
sets of D. (ii) For each label node xval, the conjunction φM includes an equality
attribute value predicate eq(xval, val) (i.e., φM =

∧
val∈D eq(xval, val)). A model

is valid2 if each graph node vM ∈ VM has exactly one label edge eLM ∈ EL
M for

each attribute eLMM ∈ EL
MM such that s(eLMM ) = typeφV (vM ), s(eLM ) = vM and

typeφEL
(eLM ) = eLMM .

Graph nodes, graph edges, label nodes and label edges in a model are called
objects, links, attribute values and attribute slots, respectively.

A typed symbolic (graph) morphism fφ : Mφ
1 →Mφ

2 from model Mφ
1 to Mφ

2 ,
both conform to metamodel MMφ, is a symbolic graph morphism that preserves
type information, i.e., typeφ1 ◦ fφ = typeφ2 .

Example. Figure 1a shows the e-commerce platform metamodel, which con-
sists of the classes Customer, Order, Article and PaymentMethod. A customer has
a set of orders (orders) and registered payment methods (paymentMethods) as-
signed. An order consists of articles and a payment method represented by the
associations articles and usedPaymentMethod, respectively. Attributes and their
corresponding sorts are represented using the UML class diagram notation. E.g.,
the class Customer has an attribute reputation of sort double. Additionally, an
order has the totalCost attribute that corresponds to the accumulated price of
all articles in the articles association. The attribute limit assigns the maximal
amount of money admissible in a single transaction to a payment method.

Patterns, negative constraints and model consistency. A pattern Pφ

is a symbolic graph Pφ = 〈P, φP 〉 that conforms to a metamodel MMφ. Addi-
tionally a pattern has no duplicate attributes, i.e., each graph node vP ∈ VP
has at most one label edge eLP ∈ EL

P for each attribute eLMM ∈ EL
MM such that

s(eLMM ) = typeφV (vP ), s(eLP ) = vP and typeφEL
(eLP ) = eLMM .

A pattern Pφ matches a model Mφ if there exists a typed symbolic morphism
mφ : 〈P, φP 〉 → 〈M,φM 〉 such that functions mV : VP → VM ,mE : EP → EM
and mEL : EL

P → EL
M are injective and D |= φM ⇒ m(φP ). The morphism mφ is

called match. All such morphisms, denoted asM′
φ, are called match morphisms.

A negative constraint NCφ is a pattern to declaratively define forbidden sub-
graphs in a model. A model Mφ is consistent with respect to a negative con-
straint NCφ = 〈NC,φNC〉, if there does not exist a match mφ : NCφ →Mφ.

Example. Figure 1b shows a global negative constraint limitOrder (NCφlo)
that prohibits a customer (C) to have an order (O) whose totalCost exceeds the

2 Note that this requirement is only necessary to align the concept of models including
attributes with the behaviour of our Eclipse Modeling Framework (EMF) based
implementation (Sec. 4). The results of Sec. 3 are not affected by this assumption.
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Customer
reputation : double

Order
totalCost : double

PaymentMethod
limit : double

Article
price : double

orders articles

paymentMethods

usedPaymentMethod

(a) Running example metamodel

C : Customer O : Order

PM :

PaymentMethod

O.totalCost
C.reputation

auxVar

mult(auxVar,C.reputation,PM.limit)∧
gr(O.totalCost,auxVar)

(b) Negative constraint limitOrder (NCφlo)

c :Customer o : Order

creditCard :

PaymentMethod

tv : Article

pc : Articleinvoice :

PaymentMethod

eq(c.reputation,0.5) ∧ eq(creditCard.limit,3000)∧
eq(invoice.limit,500) ∧ eq(tv.price,1000)∧
eq(pc.price,1800) ∧ eq(o.totalCost,1000)

(c) Consistent model Mφ
1

c :Customer o : Order

creditCard :

PaymentMethod

tv : Article

pc : Articleinvoice :

PaymentMethod

eq(c.reputation,0.5) ∧ eq(creditCard.limit,3000)∧
eq(invoice.limit,500) ∧ eq(tv.price,1000)∧
eq(pc.price,1800) ∧ eq(o.totalCost,2800)

(d) Inconsistent model Mφ
2

Fig. 1: The e-commerce scenario

product of its reputation and the limit of the used payment method PM. Figures 1c
and 1d show the models Mφ

1 and Mφ
2 , respectively, where label nodes are not

explicitly drawn. The model Mφ
1 is consistent w.r.t. constraint limitOrder. Model

Mφ
2 is inconsistent w.r.t. constraint limitOrder, since the cost (o.totalCost) of

the order are greater than the product of the payment method limit (credit-
Card.limit) and the customer reputation (c.reputation). More specifically,
we can find a match m : NClo → M2 for the graph part of the constraint NClo
in the model M2 such that D |= φM2

⇒ m(φNClo) holds for the formula φNClo
of the constraint NClo after label replacement m(φNClo).

Symbolic graph transformation. A graph transformation rule rφ = 〈L l←
K

r→ R,φ〉 consists of a left hand side (LHS) pattern 〈L, φ〉, a gluing pattern
〈K,φ〉 and a right hand side (RHS) pattern 〈R,φ〉 that share the same logic
formula φ. Morphisms lφ, rφ are typed symbolic morphisms that are (i) injective
for graph nodes and all kinds of edges, (ii) bijective for label nodes, and (iii) D |=
φ⇔ l(φ)⇔ r(φ). These morphisms are denoted by Mφ.

The LHS and RHS of graph transformation rule rφ can be augmented with
negative application conditions (NACs) nφL : Lφ → Nφ

L ∈ NACL (precondition

NAC) and nφR : Rφ → Nφ
R ∈ NACR (postcondition NAC), where nφL and nφR are

match morphisms.

A rule rφ = 〈L l← K
r→ R,φ〉 with negative precondition NACs NACL is

applicable to a model Mφ iff (i) there exists a match mφ : 〈L, φ〉 → 〈M,φM 〉
of the LHS 〈L, φ〉 in 〈M,φM 〉, and (ii) the precondition NACs in NACL are

satisfied by the current match mφ. A precondition NAC nφL : Lφ → Nφ
L ∈ NACL

is satisfied by a match mφ if there does not exist a match xφL : 〈NL, φNL〉 →
〈ML, φML

〉 of the precondition NAC in the model such that mL = xL ◦ nL.
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The application of a graph transformation rule rφ
Lφ Kφ Rφ

Mφ
L Mφ

K Mφ
R

lφ rφ

lφML
rφMR

mφ
L mφ

K mφ
R

to a model Mφ
L resulting in model Mφ

R is given by the

double pushout diagram, where mφ
L (match), mφ

K and

mφ
R (co-match) are match morphisms.

Cu : Customer

Or : Order

Ar : Article Cu : Customer

Or : Order

Ar : Article Cu : Customer

Or : Order

Ar : Article

Or.totalCost Or.totalCost‘ Or.totalCost Or.totalCost‘ Or.totalCost Or.totalCost‘

Ar.priceAr.price Ar.price

L K R

rl

add(Or.totalCost’,Or.totalCost,Ar.price)

Fig. 2: Graph transformation rule addArticle

Although it seems counterintuitive at a first glance that we require Lφ, Kφ

and Rφ to share the same conjunction and label nodes, it does not mean that
attribute values cannot be changed by a rule application, since attribute values
can be modified by redirecting label edges.

To preserve model validity by a graph transformation rule application we
introduce conditions that ensure that rules do not transform valid models into
invalid ones.

Model validity preserving graph transformation rules. A graph trans-

formation rule rφ = 〈L l← K
r→ R,φ〉 typed over metamodel MMφ is model

validity preserving if: (i) For each created object all attribute values are initial-
ized. Formally, for each created graph node v ∈ VR\rV (VK) there exists ex-
actly one label edge eL ∈ EL

R for each corresponding attribute eLMM ∈ MMφ :
sLMM (eLMM ) = typeG(v) s.t. typeL(eL) = eLMM assigning a value to the attribute,
i.e., sLR(eL) = v. (ii) For preserved objects, rules can only change attribute values
by redirecting label edges. Formally, for each label edge eL1 ∈ EL

L in the LHS pat-
tern whose source graph node is preserved by the rule application (i.e. ∃v ∈ VK
s.t. sLL(eL1 ) = lV (v)), there exists exactly one label edge eL2 ∈ EL

R of the same
type (i.e., typeL(eL1 ) = typeL(eL2 )) in the RHS pattern such that sLR(eL2 ) = rV (v).
Similarly, for each label edge in the RHS pattern with preserved source graph
node, there exists exactly one label edge with similar source and same type in
the LHS pattern. Note that for object deletion model validity is preserved by
the dangling edge condition for the double pushout approach [1].

Example. Figure 2 shows the rule addArticle that adds an article Ar to the
order Or of a customer Cu, and calculates the new total cost Or.totalCost’

of order Or by adding the price Ar.price of the added article Ar to the actual
total cost Or.totalCost of the order Or. The total cost value is updated by
redirecting the label edge from the actual value Or.totalCost to the new value
Or.totalCost’. Morphisms are implicitly specified in all the figures of the run-
ning example by matching node identifier. The result of applying the rule to user
u, order o, and article pc in the model of Figure 1c is depicted in Figure 1d.
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Consistency guaranteeing rules. A rule rφ with a set of precondition
NACs NACL is consistency guaranteeing w.r.t a negative constraint NCφ, iff for
any arbitrary model Mφ

L and all possible applications of rule rφ that result in

model Mφ
R it holds that Mφ

R is consistent w.r.t. the negative constraint NCφ.

3 Constructing Precondition NACs with Attributes

In this section, we extend the results of constructing precondition NACs from
negative constraints presented in [1] to symbolic graph transformation. The con-
struction of precondition NACs are carried out by (i) constructing a postcon-
dition NAC from the negative constraint and the RHS pattern of a GT-rule
(Sec. 3.1) and (ii) back-propagating the postcondition NAC into an equivalent
precondition NAC (Sec. 3.2). In Section 3.3 we show that the construction en-
sures consistency guarantee.

3.1 Construction of Postcondition NACs from Negative Constraints

For each non-empty subgraph of a negative constraint that is also a subgraph of
the RHS pattern of a GT-rule, a postcondition NAC is constructed by gluing the
graph parts of the negative constraint and the RHS together along the common
subgraph. The logic part is obtained as the conjunction of the formulas of the
RHS pattern and the negative constraint, where the label nodes that are glued
along the common subgraph are replaced in both formulas with a common label.

Formally, the postcondition NACs nφR : 〈R,φR〉 → 〈NR, φNR〉 ∈ NACR for the
RHS pattern 〈R,φR〉 of a rule and a negative constraint 〈NC,φNC〉 is derived

as the gluings 〈R,φR〉
nφR→ 〈NR, φNR〉

qφ← 〈NC,φNC〉 such that the pair of match

morphisms (nφR, q
φ) is jointly epimorphic and D |= φNR ⇔ (nR(φR) ∧ q(φNC)).

Cu : Customer

Or : Order

Ar : Article

Or.totalCost

Or.totalCost‘

C : Customer

PM :

PaymentMethod

C.reputation

PM.limit auxVar

Cu : Customer

Or : Order

Ar : Article

Or.totalCost

Or.totalCost‘PM :

PaymentMethod

C.reputation

PM.limit auxVar

Cu : Customer

Or : Order

Ar : Article

Or.totalCost

Or.totalCost‘PM :

PaymentMethod

C.reputation

PM.limit

O : Order

O.totalCost

auxVar

Ar.priceAr.price Ar.price

O→Or O→Or

C→Cu C→Cu

O→OrO→Or

add(Or.totalCost’,Or.totalCost,A.price)∧
mult(auxVar,C.reputation,PM.limit)∧

gr(Or.totalCost,auxVar)

add(Or.totalCost’,Or.totalCost,A.price)∧
mult(auxVar,C.reputation,PM.limit)∧

gr(Or.totalCost,auxVar)

add(Or.totalCost’, Or.totalCost,A.price)∧
mult(auxVar,C.reputation,PM.limit)∧

gr(O.totalCost,auxVar)

Fig. 3: Postcondition NACs derived for rule addArticle and neg. constr. limitOrder

Example. Figure 3 depicts all postcondition NACs derived from the rule
addArticle (Fig. 2) and the negative constraint limitOrder (Fig. 1b). Solid nodes
and edges belong to the RHS of rule addArticle. Dashed elements are from the
negative constraint limitOrder , and the common subgraph is drawn bold. The
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mapping of the RHS pattern of rule addArticle and the constraint limitOrder
are implicitly denoted by the mapping of the node identifiers. For the common
subgraph, we used the labels from the RHS of rule addArticle and denoted the
mapping from the constraint by the grey boxes. E.g., O →Or denotes that node
O of the constraint is mapped to node Or in the postcondition NAC.

3.2 Constructing Precondition NAC from Postcondition NAC

Each postcondition NAC constructed in the previous step is back-propagated to
the LHS as a precondition NAC by reverting the modifications of the graph part
specified by the symbolic GT-rule while preserving the logic formula.

Formally, for a GT-rule rφ = 〈L l← K
r→ R,φ〉 with Lφ Kφ Rφ

Nφ
L Nφ

K Nφ
R

lφ rφ

lφNL
rφNR

nφL nφK nφRa postcondition NAC nφR : 〈R,φR〉 → 〈NR, φNR〉, the

precondition NAC nφL : 〈L, φL〉 → 〈NL, φNL〉 is derived
as follows: (i) Construct nK : K → NK by the pushout
complement of the pair (r, nR) in E*-graphs. (ii) If (r, nR) has a pushout com-
plement then nL : L → NL is constructed by the pushout of l and nK in E*-
graphs. (iii) The precondition NAC is then defined by nφL : 〈L, φL〉 → 〈NL, φNL〉
where φNL is the same formula as φNR .

Note that the label nodes and the logic formula remains invariant after sym-
bolic transformation [11] (i.e., V L

NL
=V L

NK
=V L

NR
and D |= φNL⇔φNK⇔φNR).

Example. Figure 4 shows the construction of the precondition NAC from
the postcondition NAC depicted in the middle of Fig. 3. The precondition NAC
prevents the rule addArticle to add an article to an order if the new total cost
Or.totalCost’ exceeds the product of the used payment method limit PM.limit
and the reputation C.reputation of the customer. Note that label node identifier
can be chosen arbitrarily, hence label node C.reputation refers to the reputation
attribute of customer Cu.

Cu : Customer

Or : Order

Ar : Article

Or.totalCost

Or.totalCost‘PM :

PaymentMethod

C.reputation

PM.limit auxVar

Ar.price

Cu : Customer

Or : Order

Ar : Article

Or.totalCost

Or.totalCost‘PM :

PaymentMethod

C.reputation

PM.limit auxVar

Ar.price

Cu : Customer

Or : Order

Ar : Article

Or.totalCost

Or.totalCost‘PM :

PaymentMethod

C.reputation

PM.limit auxVar

Ar.price

Cu : Customer

Or : Order

Ar : Article

Or.totalCost Or.totalCost‘

Ar.price

Cu : Customer

Or : Order

Ar : Article

Or.totalCost Or.totalCost‘

Ar.price

Cu : Customer

Or : Order

Ar : Article

Or.totalCost Or.totalCost‘

Ar.price rl

nl nk nr

lNL
rNR

add(Or.totalCost’,Or.totalCost,Ar.price)

add(Or.totalCost’,Or.totalCost,Ar.price)∧
mult(auxVar,C.reputation,PM.limit)∧

gr(Or.totalCost,auxVar)

add(Or.totalCost’,Or.totalCost,Ar.price)∧
mult(auxVar,C.reputation,PM.limit)∧

gr(Or.totalCost,auxVar)

add(Or.totalCost’,Or.totalCost, Ar.price)∧
mult(auxVar,C.reputation,PM.limit)∧

gr(Or.totalCost,auxVar)

Fig. 4: Constructing a precondition NAC from a postcondition NAC
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3.3 Proving the Correctness of the Construction Technique

In order to reuse the results from [1] to show that the presented construction is
indeed sufficient and necessary to ensure consistency guarantee we have to prove
the following properties for symbolic graphs:
1. SymbGraphsD has a generalized disjoint union (binary coproducts).
2. SymbGraphsD has a generalized factorization in surjective and injective

parts for each symbolic graph morphism (weak Eφ-M′
φ factorization).

3. Match morphisms M′
φ are closed under composition and decomposition.

4. M′
φ is closed under pushouts (PO) and pullbacks (PB) alongMφ-morphisms

Note that although we used typed graphs (i.e. graphs conform to a metamodel)
in our running example and formalization we only provide proofs for untyped
symbolic graphs as the proofs can be easily extended, since symbolic graphs are
an adhesive HLR category [7] and consequently typed symbolic graphs form an
adhesive HLR category (slice construction [1]).

Property 1 (SymbGraphsD has binary coproducts.) The diagram on the
next page is a binary coproduct in SymbGraphsD if and only if it is a binary
coproduct in E*-graphs and D |= φ1+2 ⇔ (i1(φ1) ∧ i2(φ2)).

Proof. In E*-graphs the coproduct is constructed componentwise as the disjoint
union. Consequently, given symbolic graph morphisms fφ1 and fφ2 there exists
E*-graph morphisms i1, i2, and c such that the diagram below commutes.
The morphisms iφ1 and iφ2 are morphisms in Symb- 〈G1, φ1〉 〈G1+2,φ1+2〉

〈G0, φ0〉

〈G2, φ2〉
iφ1

fφ1 fφ2

iφ2

cφ
GraphsD since D |= (i1(φ1) ∧ i2(φ2)) ⇒ i1(φ1)
and D |= (i1(φ1) ∧ i2(φ2)) ⇒ i2(φ2). Also cφ :
〈G1+2, i1(φ1) ∧ i2(φ2)〉 → 〈G0, φ0〉 is a morphism
in SymbGraphsD, as, by definition, D |= φ0 ⇒
f1(φ1) and D |= φ0 ⇒ f2(φ2), f1 = c ◦ i1, and f2 = c ◦ i2, so D |= φ0 ⇒
c(i1(φ1)) ∧ c(i2(φ2)) that implies D |= φ0 ⇒ c(i1(φ1) ∧ i2(φ2)).

Property 2 (SymbGraphsD has weak Eφ-M′
φ factorization.) Given the

symbolic morphisms gφ : 〈G0, φ0〉 → 〈G2, φ2〉, eφ : 〈G0, φ0〉 → 〈G1, φ1〉, and mφ :
〈G1, φ1〉 → 〈G2, φ2〉 with m◦e = f , where e is an epimorphism (i.e., surjective on
all kinds of nodes and edges) and m of class M′ of E*-graph morphisms, which
are injective for graph nodes and all kind of edges. The symbolic morphisms eφ

and mφ are the Eφ-M′
φ factorization of gφ if e and m are an epi-M′ factorization

of g in E*-graphs and D |= φ2 ⇔ e(φ1).

Proof. The category E*-graphs has weak epi-M′ factor- 〈G1, φ1〉

〈G2, φ2〉

〈G3, φ3〉
eφ

gφ

mφ
ization [1]. Consequently, given symbolic graph morphism
gφ there exists an epimorphism e and morphism m ∈ M′

in E*-graphs such that g = m ◦ e. Obviously, morphism
eφ : 〈G1, φ1〉 → 〈G2, φ2〉 is in SymbGraphsD since, by definition, D |= φ2 ⇔
e(φ1) implies D |= φ2 ⇒ e(φ1). Morphism mφ : 〈G1, φ1〉 → 〈G2, φ2〉 is in
SymbGraphsD since D |= φ2 ⇒ g(φ1) and g = m ◦ e, so D |= φ3 ⇒ m(e(φ1)).
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Property 3 (M′
φ is closed under composition.) If (i) fφ : Aφ → Bφ and

gφ : Bφ → Cφ in M′
φ then gφ ◦ fφ is in M′

φ, and if (ii) gφ ◦ fφ and gφ are in

M′
φ then fφ is in M′

φ.

Proof. The property holds for E*-graph morphisms in M′ that are injective
for graph nodes and all kinds of edges [1]. Consequently, we have f : A →
B ∈ M′, g : B → C ∈ M′ and g ◦ f ∈ M′. (i) Morphism gφ ◦ fφ ∈ M′

φ,

since D |= φC ⇒ g(φB) and D |= φB ⇒ f(φA) implies D |= φC ⇒ g(f(φA)).
(ii) Morphism fφ ∈ M′

φ, as D |= φC ⇒ g(f(φA)) and D |= φC ⇒ g(φB) implies

D |= φB ⇒ f(φA).

Property 4 (M′
φ is closed under POs and PBs along Mφ-morphisms)

M′
φ is closed under pushouts and pullbacks along Mφ morphisms if the pushout

or pullback (1) with hφ1 ∈ Mφ, hφ2 ∈ M′
φ or gφ2 ∈ Mφ, gφ1 ∈ M′

φ, respectively,

then we also have gφ1 ∈M′
φ or hφ2 ∈M′

φ [1].

Proof. In E*-graphs pushouts and pullbacks can be 〈G0, φ0〉 〈G1, φ1〉

〈G2, φ2〉 〈G3, φ3〉
(1)

hφ1

hφ2

gφ2

gφ1

constructed componentwise [1]. Consequently the prop-
erty holds for both: (i) choosingM as the class of mor-
phisms injective for graph nodes and all kinds of edges
and bijective for label nodes, and (ii) choosingM sim-
ilar to M′ (the class of morphisms injective for graph nodes and all kinds of
edges). Since in SymbGraphsD pushouts and pullbacks exist along Mφ and
M′

φ morphisms [11], M′
φ is closed under pushouts and pullbacks along Mφ-

morphisms (and M′
φ-morphisms).

After proving these properties for symbolic graphs, we can now apply results
from [1] to show that the given construction ensures consistency guarantee.

Theorem 1 (Constructing NACs from negative constraints). Given a

symbolic graph transformation rule rφ = 〈L l← K
r→ R,φ〉 and the set of post-

condition NACs NACR constructed from the rule rφ and the negative constraint
NCφ as defined in Section 3.1. The application of rule rφ satisfies the postcon-
dition NAC iff model Mφ

R is consistent w.r.t. the negative constraint NCφ.

Proof. The proof follows from Theorem 7.13 in [1], and the properties 1–4.

Theorem 2 (Equivalence of the constructed precondition and post-

condition NACs). For each postcondition NAC nφR over symbolic GT-rule rφ,

the precondition NAC nφL constructed according to Section 3.2 is satisfied for

each application of rφ iff the postcondition NAC nφR is satisfied.

We only provide a proof for the logic component, as the detailed proof of the
construction for the category of E*-graphs can be found in [1].
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Proof. Let the diagram below show the construction of the precondition NAC
nφL : 〈L, φL〉 → 〈NL, φNL〉 from the postcondition NAC nφR : 〈R,φR〉 → 〈NR, φNR〉
for rule rφ = 〈L l← K

r→ R,φ〉 according to Section 3.2. Assuming the construc-
tion is valid for E*-graphs (using the M–M′ PO–PB decomposition property
[1]) we know that there exists an E*-graph morphism xL : NL → ML ∈ M′

iff there exists morphism xR : NR → MR ∈ M′ such that xR ◦ nR = mR and
xL ◦ nL = mL, and (1), (2), (3), (4) commute.
As the set of label nodes and the logic formula Lφ Kφ Rφ

Nφ
L Nφ

K Nφ
R

Mφ
L Mφ

K Mφ
R

(1) (2)

(3) (4)

lφ rφ

lφNL
rφNR

lφML
rφMR

nφL nφK nφR

xφL xφK xφR

mφL

mφK

mφR

remains invariant after symbolic transformation
[7] (i.e., V L

ML
= V L

MR
up to isomorphism and D |=

φML
⇔ φMR

) we may consider mL = mR, and
φML

and φMR
to be the same formula abbreviated

as φ′′. Consequently we have to show that if there
exists E*-graph morphisms xR and xL then D |=
φ′′ ⇒ xL(φNL) iff D |= φ′′ ⇒ xR(φNR). This
trivially holds, since the set of label nodes and
the logic formulas in the NACs Nφ

L and Nφ
R are also similar by construction

(Sec. 3.2). Hence, we may consider nL = nR, and φNL and φNR to be the same
formula, which implies that xL = xR.

4 Attributes in Search Plan Driven Pattern Matching

As demonstrated in Section 3, rule preconditions can be produced as symbolic
graphs, whose graph part and logic formula describe structural and attribute
restrictions, respectively. This section presents how a generated rule precondition
can be actually checked by a tool in a practical setup as a pattern matching
process. This paper extends the pattern matching approach for EMF models of
[12] by attribute handling. The new process can be summarized as follows:
Section 4.1 A (declarative) pattern specification is derived from the symbolic

graph representing the rule precondition. In this phase, the concept of declar-
ative pattern specifications originates from [8], and the idea to describe at-
tribute restrictions by predicates has been first proposed in [9], however, the
complete derivation process is a novel contribution of this paper.

Section 4.2 Operations representing atomic steps in the pattern matching pro-
cess are created from the pattern specification. In this phase, the concept
to use operations in pattern matching for structural restrictions originates
from [8, 12], while the ideas of attribute manipulating operations and their
intertwinement with structure checking operations, which results in a uniform
process for both kinds of operations, are new contributions.

Section 4.3 The operations are filtered and sorted by a search plan genera-
tion algorithm [12] to prepare a valid (and efficient) search plan, which is
then used, e.g., by a code generator to produce executable code for pattern
matching as described in [13].
Due to space restrictions, the current paper only presents the new contribu-

tions of Sec. 4.1 and 4.2 in details. The techniques of Sec. 4.3, which have been
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described in other papers, are applicable for attributes without any change, con-
sequently, this phase is only demonstrated on the running example.

4.1 Pattern Specification

Definitions in this subsection are from [8, 12]. A pattern specification is a set of
predicates over a set of variables as arguments. A variable is a placeholder for
an object or an attribute value in a model. A predicate specifies a condition on
a set of variables (which are also referred to as arguments in this context) that
must be fulfilled by the model elements assigned to the arguments.

Four kinds of predicates are used in our approach. An association predicate
refers to an association in the metamodel and prescribes the existence of a link,
which conforms to the referenced association, and connects the source and the
target object assigned to the first and second argument, respectively. An attribute
predicate, whose concept stems from [9], refers to an attribute in the metamodel
and ensures that the object assigned to the first argument has an attribute slot
with the attribute value assigned to the second argument. An attribute value
predicate places a restriction on attribute values as already discussed in Sec. 2.1.
A NAC predicate refers to a NAC and ensures that the NAC is satisfied.

Deriving a pattern specification from a pattern. A pattern specifica-
tion is derived from a given pattern by the following new algorithm:
1. For each graph and label node in the pattern, a variable is introduced.
2. For each graph edge, an association predicate referring to the type of the

graph edge is added to the pattern specification. The two arguments are the
variables for the source and target graph nodes of the processed graph edge.

3. For each label edge, an attribute predicate of corresponding type is added
to the pattern specification. The two arguments are the source graph node
and the target label node of the processed label edge, respectively.

4. Each attribute value predicate conjuncted in the logic formula of the pattern
is added to the pattern specification.

5. For each precondition NAC in the pattern, a NAC predicate is added to the
pattern specification that has an argument for each node in the pattern.

Example. The pattern specification derived from the LHS pattern of rule add-
Article (Fig. 4) consists of (i) the association predicate orders(Cu,Or) requir-
ing an orders link between customer Cu and order Or, (ii) the attribute predi-
cates totalCost(Or,Or.totalCost) and price(Ar,Ar.price) for the totalCost
and price attributes of order Or and article Ar, respectively, (iii) the attribute
value predicate add(Or.totalCost’,Or.totalCost,Ar.price) (appearing in
the logic formula of the LHS pattern), and (iv) the NAC predicate addArticle-

NAC(Cu,Or,Ar,Ar.price,Or.totalCost,Or.totalCost’).

4.2 Creating Operations

This subsection describes the process of creating operations from the predicates
of the pattern specification. The definitions and the production of operations for
association predicates are from [8, 12], while the attribute and NAC handling
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operations are novel contributions. It should be highly emphasized that the new
process does not distinguish between the handling of attribute and structural re-
strictions any more. Consequently, all these operations are intertwined to an
integrated pattern matching process.

Definitions and operations for association predicates. Let us assume
that an (arbitrary) order is fixed for the variables in the pattern specification.
An adornment represents binding information for all variables in the pattern
specification by a corresponding character sequence consisting of letters B or F,
which indicate that the variable in that position is bound or free, respectively. An
operation represents an atomic step in the pattern matching process. It consists
of a predicate, and an operation adornment. An operation adornment prescribes
which arguments must be bound when the operation is executed.

For each association predicate, two operations are created with the corre-
sponding adornments BB and BF. The operation adorned with BB verifies the
existence of a link of corresponding type between the objects bound to the ar-
guments. The operation with the BF adornment denotes a forward navigation.

Operations for attribute, attribute value and NAC predicates. For
each attribute predicate, two operations are created with the corresponding
adornments BB and BF. The operation adorned with BB checks that the (at-
tribute) value of the corresponding attribute of the first argument is equal to
the value of the second argument. The operation with adornment BF looks up
the (attribute) value of the corresponding attribute of the first argument, and
assigns this value to the second argument.

For each attribute value predicate, a set of used-defined operations is cre-
ated. E.g., a user may define four operations for the attribute value predicate
add(x1, x2, x3). The operation adorned with BBB checks whether the value of vari-
able x1 equals to the sum of the values of x2 and x3. The operation with FBB

adornment assigns the sum of the values of x2 and x3 to variable x1, while the
operations adorned with BFB and BBF calculate the difference of the first and the
other bound argument, and assign this difference to the free argument.

For each NAC predicate, an operation with only bound arguments is created
that checks whether the corresponding NAC is satisfied.

Predicate Op. Adornm. Predicate Op. Adornm.

orders(Cu,Or) BB add(Or.totalCost',Or.totalCost,Ar.price) BBB
orders(Cu,Or) BF add(Or.totalCost',Or.totalCost,Ar.price) FBB

add(Or.totalCost',Or.totalCost,Ar.price) BFB
totalcost(Or,Or.totalCost) BB add(Or.totalCost',Or.totalCost,Ar.price) BBF
totalcost(Or,Or.totalCost) BF
price(Ar,Ar.price) BB
price(Ar,Ar.price) BF addArticleNAC(Cu,Or,Ar,Ar.price,Or.totalCost,Or.totalCost') BBBBBB

Operations for NAC predicates

Operations for attribute predicates

Operations for association  predicates Operations for attribute  value predicates

Fig. 5: Created operations for the LHS pattern of the addArticle rule

Example. Fig. 5 lists the operations derived from the LHS of rule addArticle.
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4.3 Search Plan and Code Generation

The search plan and code generation techniques described in this subsection
originate from [12] and [13], respectively. When pattern matching is invoked,
variables can already be bound to restrict the search. The corresponding bind-
ing information of all variables is called initial adornment a0. By using the initial
adornment, a search plan generation algorithm [12] filters and sorts the opera-
tions to prepare a search plan, which is then processed by a code generator to
produce executable program code.

A search plan is a sequence of operations, which handles each predicate of
the pattern specification exactly once, and terminates in an adornment with only
B characters, which means that all the variables are bound in the end.

Example. Let us suppose that customer Cu, order Or and article Ar are
bound in the initial adornment, while the three attribute variables are free, and
the search plan shown as comments on the right side of Fig. 6 has been generated.
As both variables Cu and Or are initially bound, the operation ordersBB(Cu,Or)

can be applied, which does not change the adornment. The second operation
looks up the value of the totalCost attribute of the order stored in variable Or,
and assigns this value to variable Or.totalCost, which gets bound by this act.
Similarly, the third operation looks up the value of the price attribute of the
article stored in variable Ar, and assigns this value to variable Ar.price. At this
point, variables Or.totalCost and Ar.price are already bound, so their sum can be
calculated and assigned to variable Or.totalCost’ by the fourth operation. Finally,
the NAC predicate is checked by the last operation. Note that each predicate is
represented exactly once in the search plan and all variables are bound in the
end, which means that the presented operation sequence is a search plan.

 public Match addArticle_LHS(Customer Cu, Order Or, Article Ar){ 
    if(Cu.getOrders().contains(Or)){                  // orders_BB(Cu,Or) 
      double Or_totalCost=Or.getTotalCost();          // totalCost_BF(Or,Or.totalCost) 
      double Ar_price=Ar.getPrice();                  // price_BF(Ar,Ar.price) 
      double Or_totalCost_p=Or_totalCost + Ar_price;  // add_FBB(Or.totalcost',Or.totalCost,Ar.price) 
      if(!addArticleNAC(Cu,Or,Ar,                     // addArticleNAC_BBBBBB(Cu,Or,Ar, 
          Ar_price,Or_totalCost,Or_totalCost_p)){     //      Ar.price,Or.totalCost,Or.totalCost') 
        return new Match(Cu,Or,Ar,Ar_price,Or_totalCost,Or_totalCost_p);  
      }  
    } 
    return null; 
  } 

Fig. 6: Pattern matching code and the corresponding search plan

5 Related Work

The idea of constructing precondition application conditions for GT-rules from
graph constraints was originally proposed in [4]. The expressiveness of constraints
was extended in [14] that allows arbitrary nesting of constraints. In [15] the
approach was generalized to the generic notion of high-level replacement systems.
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Including attributes in the theory of graph transformation has been pro-
posed in [16], where attributed graphs are specified by assigning to the label
nodes terms of a freely generated term algebra over a set of variables. Although
this approach can generate application conditions from attributed graph con-
straints, it comes with some technical difficulties (arising from the conceptual
complexity of combining graphs with algebras) and it has limitations regarding
expressiveness compared to symbolic graphs introduced in [11]. Compared to the
original notion of symbolic graphs, which allows first order formulas expressing
arbitrary constraint satisfaction problems (CSP), we can only handle CSPs for
which we can generate valid search plans, which are basically those that have a
unique solution. However, we can solve these CSPs in linear time in the number
of predicates as every predicate is evaluated only once in a valid search plan. De-
spite this limitation, our approach remains still more expressive than attributed
graphs, as these are restricted to (conditional) equations [11]. In [6] OCL precon-
ditions for graph transformation rules are derived from graph constraints with
OCL expressions. Consequently, complex expressions including cardinality con-
straints on collections are allowed. However, different concepts like graphs for
expressing structural restrictions and OCL expression for attribute conditions
are used that might complicate an efficient evaluation of the preconditions if
different engines for the evaluation of graph conditions and OCL expressions
are used. In our proposal, restrictions on graphs and attributes can be evalu-
ated arbitrarily intertwined using a single engine. Moreover, as shown in [12]
cost values can be assigned to (all) operations guiding the search plan genera-
tion process in optimizing the order of operations. A correctness proof is also not
given in [6]. [17] suggested an approach based on Hoare-calculus for transforming
postconditions to preconditions, which involved the handling of simple attribute
conditions. However, implementation issues were not discussed in [17].

6 Conclusion

In this paper, we proposed an attribute handling approach for generating pre-
conditions from graph constraints, whose correctness has been proven using the
formalism of symbolic graphs. The presented technique generates preconditions
that are transformed to pattern specifications, which are then processed by ad-
vanced optimization algorithms [12] to automatically derive search plans, in
which the evaluation of attribute and structural restrictions can be intertwined.

One open issue is to analyze the generated NACs and to keep only the weak-
est preconditions, which could accelerate rule applications at runtime. Another
interesting topic could be to determine whether symbolic graphs provide the
right properties to construct precondition NACs from more complex constraints
(e.g., nested constraints), however, we intentionally left this analysis for future
work in favor for an implementation.
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