
GT-VMT 2006

Implementing an EJB3-Specific Graph
Transformation Plugin by Using Database

Independent Queries

Gergely Varŕo 1,2

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

Abstract

The current paper presents a novel approach to implement a graph transformation engine as
an EJB3-specific plugin by using EJB QL queries for pattern matching. The essence of the
approach is to create an EJB QL query for the precondition of each graph transformation
rule. Pattern matching and updating phases of a rule application are implemented in a
public method of a stateless session bean by executing the prepared EJB QL query and by
manipulating persistent objects, respectively.

Key words: graph transformation, EJB 3.0, EJB QL queries.

1 Introduction

Nowadays, the immense role of model transformation concepts and tools is un-
questionable for the success of model-driven systems development. Model trans-
formation approaches should support cost and time efficient specification, design,
execution, validation and maintenance of manipulations within and between mod-
eling languages. As different phases of transformation design have conflicting re-
quirements, their optimal solution also necessitates different approaches.

In a recent paper [3], we proposed to separate the design of model transfor-
mations from theirexecutionby generating stand-alone plugins for the EJB 3.0
platform from platform-independent specifications of transformations given by a
combination of graph transformation and abstract state machine rules.

Based on the observations of several studies [10,3,14], it may be stated that
(i) graph pattern matching is the critical part in graph transformation, and (ii)

1 This work was partially supported by the SENSORIA European project (IST-3-016004).
2 Email: gervarro@cs.bme.hu

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Varró

very large models can only be handled by EJB3-based plugins with an underly-
ing database as pure Java solutions run out of memory. In the paper, we examine
the generation of EJB3-based graph transformation plugins.

In addition to handle very large models, EJB3-based graph transformation plu-
gins have further advantages including (i) the transparent access to system models
via a traditional Java interface by hiding the underlying relational database where
these models are physically stored, (ii) the atomic execution of graph transforma-
tion rules by using the transaction handling mechanism of the application server,
(iii) the integration of graph transformation into existing business applications via
a standard business logic interface defined by EJB3.

The current implementation of EJB3-based graph transformation plugins (also
reported in [3]) performs the computation intensive graph pattern matching on
business-level objects. This solution suffers from unnecessary memory handling
operations as all objects being traversed must be loaded into the application server
at least once, even if the pattern has only a couple of successful matchings.

Our current aim is to improve the performance of pattern matching in graph
transformation plugins by using the query support of EJB3. In this case, queries
are executed in the underlying relational database, and only those business-level
objects are loaded into the application server, which effectively participate in at
least one successful matching.

EJB3 provides two declarative languages (the Standard Query Language (SQL)
[12] and the EJB Query Language (EJB QL) [11]) for specifying queries. Since the
underlying relational databases typically use different dialects of SQL, an approach
that uses database dependent SQL queries for describing graph transformation like
the one presented in [13] would not be portable.

In order to provide a portable solution, the current paper proposes a novel ap-
proach to implement an EJB3-specific graph transformation plugin by using EJB
QL queries for pattern matching. The essence of the approach is to create an EJB
QL query for the precondition of each graph transformation rule by usingsearch
plans[17], which have been calculated by some sophisticated algorithms [17,6,16]
for theLHS andNAC patterns of the rule in a preprocessing phase. Pattern match-
ing and updating phases of a rule application are implemented in a public method
of a stateless session bean by executing the prepared query and by manipulating
persistent objects, respectively.

In contrast to [3], the main novelty of this paper isthe usage of database inde-
pendent EJB QL queries for pattern matching. Consequently, in the current paper,
we only focus on graph pattern matching techniques (as in Sec.4.2) and completely
omit the handling of the updating phase.

The main advantages of the proposed approach include (i) the ability to handle
large models in contrast to pure in-memory solutions; (ii) portability and database
independence contrary to pure SQL-based approaches; and (iii) reduced memory
consumption in the application server compared to other EJB3-based solutions.

The rest of the paper is structured as follows. Section2 provides a brief intro-
duction to models and metamodels, graph transformation and the main concepts of

2

Varró

search plans. Sec.3 gives an overview on the EJB3 platform and on the syntax of
its query language. In Sec.4, which is the main part of the paper, we sketch how to
encode preconditions of graph transformation rules into EJB QL queries. Finally,
some related work is reviewed in Sec.5, while Sec.6 concludes our paper.

2 Model manipulation by graph transformation

We first briefly introduce the main notions of metamodels and models, and then
show how these models can be manipulated by using graph transformation.

2.1 Metamodels and models

In order to present the concepts of models, metamodels and transformations, a
standard object-relational mapping (see e.g. [12]) will be used throughout this paper
as a running example, which generates a relational database schema from a UML
class diagram.

Fig. 1. An extended metamodel for the object-relational mapping

Themetamodeldescribes the abstract syntax of a modeling language, which can
be formally represented by a type graph. The metamodels of UML class diagrams
and relational database schemas (following the CWM standard [9]) are depicted in
Fig. 1. Nodes (e.g.Schema, Table) of the type graph are calledclasses. Associ-
ations like EO, CF, SFT, KRF andUF define connections between classes. Both
ends of an association may have amultiplicity constraint attached to them, which
declares the number of objects that, at run-time, may participate in an association.
We consider the most typical multiplicity constraints, which are (i) the at most
one (denoted by arrows or diamonds), and (ii) the arbitrary (denoted by line ends
without arrows and diamonds). Furthermore, we use one-to-one reference edges
(denoted by bidirectional dashed lines in instance models) connecting source and
target model nodes.Inheritancemay be defined between classes, which means that
the inherited class has all the properties its parent has, but it may specify further
associations. Note that the CWM standard derives database notions like tables,
columns, etc. from UML notions by inheritance (see Fig.1). Finally, we assume

3

Varró

without the loss of generality that multiple inheritance is not allowed and both ends
of associations are navigable.

Theinstance model(or, formally, an instance graph) describes concrete systems
defined in a modeling language and it is a well-formed instance of the metamodel.
Nodes and edges are calledobjectsand links, respectively. Objects and links are
the instances of metamodel level classes and associations, respectively. Inheritance
in the instance model imposes that instances of the subclass can be used in every
situation, where instances of the superclass are required.

Example 2.1 A well-formed instance model of this domain (going to be shown in
Fig. 2(a)) has a single packagep that contains two classes (c1 andc2) and the asso-
ciationa. Associationa connects classc1 to c2 via association endsae1 andae2,
respectively. Packagep is mapped to a corresponding schemas in the database.
Additionally, a table with a single primary key column has already been added to
schemas for each content (i.e.,c1, c2, anda) of packagep.

2.2 Graph transformation

Graph transformation [4] provides a pattern and rule based manipulation of graph
models. Each rule application transforms a graph by replacing a part of it by an-
other graph.

A graph transformation ruler = (LHS, RHS, NAC) contains a left–hand side
graph patternLHS, a right–hand side graph patternRHS, and negative application
condition graph patternNAC [7]. TheLHS and theNAC patterns are together called
the preconditionPRE.

In the paper, we use the graphical representation initially introduced in [5]
where the union of these graphs is presented. Elements to be deleted are marked
by thedel keyword, elements to be created are labelled by thenew, while elements
in theNAC graph are denoted by theneg keyword.

Theapplicationof r to aninstance modelM replaces a matching of theLHS in
M by an image of theRHS. This is performed by (i) finding a matching ofLHS
in M (by graph pattern matching), (ii) checking the negative application conditions
NAC (which prohibit the presence of certain objects and links) (iii) removing a part
of the modelM that can be mapped toLHS but not toRHS yielding the context
model, and (iv) gluing the context model with an image of theRHS by adding new
objects and links (that can be mapped to theRHS but not to theLHS) obtaining the
derived modelM′. A graph transformationis a sequence of rule applications from
an initial modelMI .

Example 2.2 A single graph transformation rule (AssocEndRule in Fig. 2(b)) is
selected as an example for the paper, which handles association ends.

The rule is applicable, if a tableTc with a primary key columnCc already
exists for the classC representing the type of the association endAE, and moreover,
there is a database tableTrel that corresponds to the associationRel whose end
is currently processed. The application of the rule creates a new column, which

4

Varró

(a) A sample instance model (b) A sample graph transformation rule

Fig. 2. A sample instance model and graph transformation rule

will refer to the already matched columnCc as a foreign key constraint. Graph
transformation rules of the entire object relational mapping are presented in [15].

2.3 Search plans

Informally, a search plan defines a sequence of pattern nodes, which can be used
at run-time during pattern matching to control the order of traversal for the objects
of the instance model. At first, a search graph is constructed by using theLHS and
NAC patterns of the rule. This step is followed by the execution of a sophisticated
algorithm (e.g. [17,16]) that generates an optimal search plan on the search graph.

A search graphis a directed graph with the following structure. (i) Each node
of the pattern is mapped to apattern node(denoted by a solid circle) in the search
graph. (ii) A center node(denoted by a hollow circle) is also added to the graph.
(iii) Iteration edgesare directed edges connecting the center node to every pattern
nodes. The selection of one such edge means an iteration over all objects having
the same type as the pattern node being located at the target end of the edge. (iv)
Each navigable direction of each pattern edge is mapped to anavigation edgein
the search graph.3 The selection of one such edge corresponds to a navigation
along the pattern edge in the given direction. If the navigation target of the pattern
edge has an at-most-one (arbitrary) multiplicity constraint, then the corresponding
navigation edge is referred to ato-one (to-many) navigation edge, and it is denoted
by an arrow with single (double) arrowhead(s).

Starting nodes(denoted by dashed boxes) mark the center node and the set
of pattern nodes that are already matched when the pattern matching starts. The
remaining (initially unmatched) pattern nodes are calledtraversed nodesas they
are processed during pattern matching, when appropriate objects are to be matched.

A search planis a traversal of such spanning trees of the search graph that are
rooted at some starting nodes. A traversal defines a sequence in which edges are

3 Note that for each pattern edge, a pair of navigation edges having their end nodes connected in
both directions is created as the pattern edge is navigable in both directions.

5

Varró

traversed. The position of a given edge in this sequence is marked by increasing
integers writtenon the thick edges of spanning trees as in the left part of Fig.3. In
the following, we suppose that a search plan is available for eachLHS andNAC.

Example 2.3 Search plans forLHS andNAC patterns of theAssocEndRule are
shown in the upper and lower left part of Fig.3, respectively. As matchings for
NAC are searched after pattern matching forLHS is completed, shared nodes (i.e.,
AE) of LHS andNAC can be considered starting nodes in the search graph ofNAC.

3 Enterprise Java Beans 3.0

The Java 2 Enterprise Edition (J2EE) platform defines a layered architecture for
scalable, distributed application development including several Java standards and
APIs. An enterprise application being developed on the J2EE platform consists of
Enterprise Java Beans (EJBs) as its most fundamental building blocks representing
business data and functionality. An enterprise application is deployed to and exe-
cuted by an application server, which provides many high-level services (such as
transactions, security, persistence, etc.) beyond the execution of applications.

The two types of EJBs used in the current paper are the following.

• Entity beansare persistent objects representing business data, which are kept
synchronized with an underlying relational database by means of an object-
relational mapping. Entity beans are uniquely identified by their primary key
and they can be in relationship with other entity beans referring to each other by
direct references (many-to-one or one-to-one relationships) or typed collections
(many-to-many or one-to-many relationships).

• Session beansimplement the business functionality of the application. They can
be considered as simple collections of business methods. As our approach does
not require any transformation related information to be stored, we use stateless
session beans.

EJB Query Language.
An application server has an entity manager unit, which provides operations

(i) for creating and removing persistent entity instances, (ii) for finding entities by
their primary key, and (iii) for querying over entities.

Queries can be specified in the declarative, object-oriented EJB Query Lan-
guage (EJB QL) [11]. Due to space limitations, only the structure of theSELECT

statement is presented in the current paper, which has the following structure.
SELECT select clause
FROMfrom clause
WHEREwhere clause

The SELECT clausedenotes the result of the query by a comma separated list
of identification variables. Anidentification variableis a variable that can refer to
a single instance of a particular entity bean class.

6

Varró

The FROM clausedesignates the domain of the wholeSELECT statement by a
comma separated list ofidentification variable declarationsof the formtype AS
new var. Thetype of an identification variablenew var can be defined explicitly
by using the name of an entity bean class, or implicitly by navigating along links
of type assoc from an already declared variableold var. In the latter case, the
target class ofassoc defines the type of identification variablenew var. Navigation
is defined by path expressionsold var.assoc andIN(old var.assoc) , if the
navigation returns a single value and a collection, respectively.

The optionalWHERE clauseis a Boolean expression, and it filters out those
results of the query that do not satisfy this expression. ABoolean expressionis the
conjunction (logicalAND) of Boolean valued factors, which may test (i) the non-
existence of results for a well-formed subquery (NOT EXISTS (subquery)), (ii)
the equality of simple factors (sf1=sf2), and the (iii) inequality of simple factors
(sf1<>sf2). A simple factorcan be a constant, or a navigation operation (denoted
by var.id) to access the identifierid of an identification variablevar.

4 Graph transformation on EJB3 platform

Now we discuss how to generate an EJB3-specific graph transformation plugin,
which follows the single pushout [10] approach with injective matchings.

4.1 Mapping metamodels and models to EJB3 entity bean classes and instances

Based on the metamodel, we generate entity bean classes by using the standard
object-relational mapping of [11], which can be summarized as follows. (i) A class
of the metamodel is mapped to an entity bean class. (ii) The inheritance relations
between classes are maintained accordingly. (iii) Each association end with an at
most one (arbitrary) multiplicity constraint is mapped to a Java attribute (collection)
and two corresponding property accessor (i.e., a getter and a setter) methods in the
entity bean class that represents the metamodel class being located at the opposite
end of the association. (iv) A Java attributeid representing the unique identifier
and its two corresponding property accessor methods are added to each entity bean
class that does not have a superclass.

Example 4.1 The skeleton of the entity bean class representing aStructuralFeature
is as follows.
@Entity
public class StructuralFeature extends Feature {

private Classifier sft;
private Collection<UniqueKey> uf = new ArrayList<UniqueKey>();
private Collection<KeyRelationship> krf = new ArrayList<KeyRelationship>();

@ManyToOne
public Classifier getSFT() { return sft; }
public void setSFT(Classifier sft) { this.sft = sft; }

@ManyToMany(mappedBy="uf")
public Collection<UniqueKey> getUF() { return uf; }
public void setUF(Collection<UniqueKey> uf) { this.uf = uf; }

7

Varró

@ManyToMany(mappedBy="krf")
public Collection<KeyRelationship> getKRF() { return krf; }
public void setKRF(Collection<KeyRelationship> krf) { this.krf = krf; }

}

As StructuralFeature is a subclass ofFeature, the identifier attributeid has not
been created. According to the metamodel of Fig.1, the StructuralFeature class
has three incident edges. Consequently, the generated code has three attributes and
six accessor methods.

Instance models representing the system under design are stored in an underly-
ing database of the application server. By using entity beans, objects of the instance
model can be created, accessed and manipulated exactly the same way as traditional
(plain old) Java objects with the single exception that these objects have to be ex-
plicitly persisted by calling thepersist() method of the entity manager.

4.2 Graph pattern matching on EJB platform

By using search plans ofLHS and embeddedNAC patterns, we construct and exe-
cute a singleSELECTEJB QL query that calculates and retrieves all the successful
matchings of the precondition of a rule.

The general form of the query is as follows:

SELECT node1, ..., nodeN

FROMtraversed nodes
WHEREtype checking constraints AND check edge constraints

AND injectivity constraints AND NAC constraints

A traversed nodeis an identification variable being declared in theFROM clause
of the EJB QL query, which represents a pattern node being processed during the
traversal of the search plan.

If a traversed node is reached by navigation in theFROM clause of an EJB QL
query, then the type of this traversed node may be an ancestor of the type prescribed
by the pattern node itself. This yields a situation where the traversed node possibly
has a larger set of matching objects than it is allowed by the type restriction set up
by the pattern node. In order to resolve this situation, an additional traversed node
is declared for representing the same pattern node and atype checking constraintis
defined to narrow the set of matching objects for this pattern node.

Traversed nodes declarations and type checking constraints are generated dur-
ing search plan traversal, which processes search plan edges in increasing order.

Processing iteration edges.If an iteration edge with a target nodetrg is being
processed, then an expressiontypetrg AS trg is added to the end of theFROM
clause wheretypetrg is the type of the pattern nodetrg.

Processing to-one navigation edges.If a to-one navigation edge of typeassoc
connecting nodesrc to trg is being processed, then expressionssrc.assoc AS
trg sup andtypetrg AS trg are appended to the end of theFROMclause, and a
subformulatrg sup.id = trg.id is also added as a type checking constraint.

8

Varró

Processing to-many navigation edges.If a to-many navigation edge of typeas-
soc connecting nodesrc to trg is being processed, then termsIN(src.assoc)
AS trg sup , andtypetrg AS trg are appended to theFROMclause, and a sub-
formulatrg sup.id = trg.id is also added as a type checking constraint.

An edge checking constraintexpresses a restriction, which is caused by a pat-
tern edge that has not been processed at all during the traversal of the search
plan. For each pair of unnumbered navigation edges connecting nodessrc and
trg in both directions, we append a subformulasrc.assoc.id= trg.id or trg
MEMBER OFsrc.assoc to theWHEREcondition by using a logicalAND oper-
ator for affixing, if src.assoc represents a to-one or a to-many navigation edge,
respectively.

Injectivity constraintsare defined for such pairs of pattern nodes where one
member has a type that conforms to a supertype of the other. For each such pair
nodei andnodej, we add a subformula of the formnodei.id <> nodej.id .

NAC constraintsexpress restrictions formulated byNAC patterns that are em-
bedded into the pattern being processed. For each embeddedNAC pattern, we add
a constraint of the formNOT EXISTS (subquery) , wheresubquery is the EJB
QL query that is going to be generated for the embeddedNAC pattern. Note that
theNOT EXISTSconstraint will be evaluated to true if and only if the subquery,
which would list the successful matchings of theNAC pattern has no rows.

Example 4.2 To continue our running example, we present theSELECTstatement
(right part of Fig.3) that is generated for the search plans of theLHS andNAC
pattern of theAssocEndRule (as depicted in the upper and lower left corner of
Fig. 3, respectively).

AE

C Rel

TC TRel

PC

CC

1

ae.sft

4

c.sft ae.cf
2

rel.cf

c.ref

5tc.ref rel.ref
3

trel.ref

tc.cf

7

cc.cf

tc.eo6

pc.eo
cc.uf

pc.uf

AE

F

ae.ref

1

f.ref

LHS

NAC

1 SELECT ae,rel,trel,c,tc,pc,cc
2 FROM AssocEnd AS ae, -- 1 (iter)
3 ae.cf AS rel_sup, Association AS rel,-- 2 (one)
4 rel.ref AS trel_sup, Table AS trel, -- 3 (one)
5 ae.sft AS c_sup, Class AS c, -- 4 (one)
6 c.ref AS tc_sup, Table AS tc, -- 5 (one)
7 IN(tc.eo) AS pc_sup, PKey AS pc, -- 6 (many)
8 IN(tc.cf) AS cc_sup, Column AS cc -- 7 (many)
9 WHERE -- type checking constraints
10 rel_sup.id=rel.id AND trel_sup.id=trel.id
11 AND c_sup.id=c.id AND tc_sup.id=tc.id
12 AND pc_sup.id=pc.id AND cc_sup.id=cc.id
13 -- edge checking constraint
14 -- (unprocessed edges between cc and pc)
15 AND cc MEMBER OF pc.uf
16 -- injectivity constraints
17 AND c.id<>rel.id AND c.id<>tc.id
18 AND c.id<>trel.id AND tc.id<>trel.id
19 -- NAC constraint
20 AND NOT EXISTS (
21 SELECT ae,f
22 FROM ae.ref AS f_sup, FKey AS f -- 1 (one)
23 WHERE f_sup.id=f.id
24)

Fig. 3. Search plans generated for theLHS and theNAC of AssocEndRule and the cor-
responding EJB QL query

9

Varró

Lines 1–12 of the query are generated during the traversal of the search plan of
LHS, when its edges are processed in increasing order as shown by the comments
at the ends of lines. (Expressions in parentheses denote the search plan edge pro-
cessing method being used.) As neither edges betweenCc andPc are processed by
the traversal, a corresponding edge checking constraint (lines 13–15) is added to the
query. Metamodel classesAssociation andTable are subclasses of classClass, so
C cannot be mapped to the same object as associationRel and tablesTc andTRel,
and moreover, matchings for tablesTc andTRel must also differ as expressed by
lines 16–18. The query for theNAC pattern (lines 19–24) is processed similarly
with the single exception thatAE now counts as a starting node as a matching for
nodeAE has already been found.

On the implementation level, we map each graph transformation rule to a public
method of the stateless session bean representing the whole graph transformation
system. One such method first executes the prepared EJB QL query, then retrieves
objects and links needed in the updating phase from the result list, and finally, it
manipulates persistent objects. The handling of the updating phase is not mentioned
in the current paper as we use the technique presented in [3].

Due to the similarity of the syntax and semantics of SQL and EJB QL queries,
the proof for the correctness of the code generation algorithm would be similar to
the one presented in [13]. The termination of the algorithm is guaranteed by the
finiteness of nodes and edges in the precondition of graph transformation rules.

5 Related Work

Search plans are a widely used technique tocontrol the order of traversal for the ob-
jects of instance modelsin algorithms that perform local search for pattern matching
meaning that a partial matching is extended step-by-step by neighbouring objects
and links. Here we shortly review the four most advanced approaches usinglocal
search with search plans.

• Fujaba [8] has a token graph based search plan definition [6], which uses a static
model for defining the costs of basic operations (i.e., tokens). The optimization
of search plans is guided by several well-established rules of thumb.

• PROGRES [17] uses a very sophisticated cost model for defining costs of basic
operations of operation graphs, which are similar to search graphs in the current
paper. The compiled version of PROGRES generates search plan by a greedy
algorithm performed on the operation graph.

• The pattern matching engine of GReAT [1] employs a breadth-first traversal
strategy starting from a set of nodes that are initially matched. GReAT also
uses simple rules of thumb like Fujaba for search plan generation.

• The compiled version of VIATRA2 [2] employs model-sensitive search plans
[16], which are calculated by greedy algorithms performed on search graphs
containing statistical data collected from typical instance models.

10

Varró

In contrast to the above-mentioned methods, our approach uses search plans on
a syntactic level for the generation of EJB QL queries. As search plans have been
optimized in a preprocessing phase, the generated queries give optimal solution for
pattern matching on a database independent level. Depending on the features and
configuration possibilities of the underlying database, the user may either enforce
the same execution order on the database level, or allow its alteration to exploit
further database-specific optimization techniques.

6 Conclusion and Future Work

In the current paper, we proposed an EJB3-based graph transformation plugin,
which uses queries specified in the declarative EJB QL language for pattern match-
ing. This approach additionally provides a promising, object-oriented and database
independent alternative of pure SQL based pattern matching solutions [13].

The essence of the technique is to formulate an EJB QL query and also to
generate explicit Java code from search plans for the precondition of each graph
transformation rule. The execution of the prepared query and the manipulation of
persistent objects implement the pattern matching and the updating phases of graph
transformation rule application on the EJB3 platform, respectively.

Our previous experiments [3,13] show that due to the same technology and the
underlying relational database, this approach (just like previous EJB3-based graph
transformation plugins) is able to handle models having more than 1 million el-
ements for a performance penalty of an order of magnitude (compared to a pure
Java solution) in case of smaller models. Based on these experiments, our ex-
pectation for the current approach is a slightly better run-time performance, and
noticeably reduced memory consumption in the application server compared to so-
lutions, which use pure SQL for specifying queries. As a natural limitation of the
approach, it is worth to emphasize the trade-off between portability and run-time
performance when database-specific query optimizations are switched on and off.
In the future, we plan to carry out experiments to confirm our expectations on both
the run-time performance and memory consumption aspects of our approach.

Acknowledgements.The author is very grateful to D́aniel Varŕo for reading
initial versions of the paper and giving valuable feedback.

References

[1] Agrawal, A., G. Karsai and F. Shi,Graph transformations on domain-specific models,
Technical Report ISIS-03-403, Institute for Software Integrated Systems, Vanderbilt
University (2003).

[2] Balogh, A. and D. Varŕo, Advanced model transformation language constructs in the
VIATRA2 framework, in: Proc. of the 21st ACM Symposium on Applied Computing
(2006), pp. 1280–1287.

11

Varró

[3] Balogh, A., G. Varŕo, D. Varŕo and A. Pataricza,Generation of platform-specific model
transformation plugins for EJB 3.0, in: Proc. of the 21st ACM Symposium on Applied
Computing, Dijon, France, 2006, pp. 1288–1295.

[4] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Handbook on
Graph Grammars and Computing by Graph Transformation, volume 2: Applications,
Languages and Tools,” World Scientific, 1999.

[5] Fischer, T., J. Niere, L. Torunski and A. Zündorf,Story diagrams: A new graph rewrite
language based on the Unified Modeling Language, in: G. R. G. Engels, editor,Proc.
of the 6th International Workshop on Theory and Application of Graph Transformation
(TAGT), LNCS1764(1998), pp. 296–309.

[6] Geiger, L., C. Schneider and C. Reckord,Template- and modelbased code generation
for MDA-tools, in: Proc. of the 3rd International Fujaba Days, 2005, pp. 57–62.

[7] Habel, A., R. Heckel and G. Taentzer,Graph grammars with negative application
conditions, Fundamenta Informaticae26 (1996), pp. 287–313.

[8] Nickel, U., J. Niere and A. Z̈undorf, The FUJABA environment, in: The 22nd
International Conference on Software Engineering (ICSE)(2000), pp. 742–745.

[9] Poole, J., D. Chang, D. Tolbert and D. Mellor, “Common Warehouse Metamodel,”
John Wiley & Sons, Inc., 2002.

[10] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1: Foundations,” World Scientific, 1997.

[11] Sun Microsystems, “JSR 220: Enterprise JavaBeans, Version 3.0,” Early draft 2 edition
(2005),http://java.sun.com/products/ejb/docs.html .

[12] Ullman, J. D., J. Widom and H. Garcia-Molina, “Database Systems: The Complete
Book,” Prentice Hall, 2001.

[13] Varró, G., K. Friedl and D. Varŕo, Implementing a graph transformation engine in
relational databases, Journal on Software and Systems Modeling (2006), in press.

[14] Varró, G., A. Scḧurr and D. Varŕo, Benchmarking for graph transformation, in: Proc.
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(2005), pp. 79–88.

[15] Varró, G., A. Scḧurr and D. Varŕo, Benchmarking for graph transformation,
Technical Report TUB-TR-05-EE17, Budapest University of Technology and
Economics (2005),http://www.cs.bme.hu/˜gervarro/publication/
TUB-TR-05-EE17.pdf .

[16] Varró, G., D. Varŕo and K. Friedl,Adaptive graph pattern matching for model
transformations using model-sensitive search plans, in: G. Karsai and G. Taentzer,
editors,Proc. of Int. Workshop on Graph and Model Transformation (GraMoT’05),
ENTCS152, Tallinn, Estonia, 2005, pp. 191–205.

[17] Zündorf, A., Graph pattern-matching in PROGRES, in: Proc. 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, LNCS1073(1996), pp.
454–468.

12

http://java.sun.com/products/ejb/docs.html
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf

	Introduction
	Model manipulation by graph transformation
	Metamodels and models
	Graph transformation
	Search plans

	Enterprise Java Beans 3.0
	Graph transformation on EJB3 platform
	Mapping metamodels and models to EJB3 entity bean classes and instances
	Graph pattern matching on EJB platform

	Related Work
	Conclusion and Future Work
	References

