
GraBaTs’04 Preliminary Version

Graph Transformation in Relational Databases

Gergely Varró 1 Katalin Friedl 2

Department of Computer Science and Information Theory

Dániel Varró 3

Department of Measurement and Information Systems
Budapest University of Technology and Economics

H-1521 Budapest, Magyar tudósok körútja 2., Hungary

Abstract

We present a novel approach to implement a graph transformation engine based on stan-
dard relational database management systems (RDBMSs). The essence of the approach is
to create database views for each rules and to handle pattern matching by inner join opera-
tions while negative application conditions by left outer join operations. Furthermore, the
model manipulation prescribed by the application of a graph transformation rule is also im-
plemented using elementary data manipulation statements (such as insert, delete, update).

Key words: Tool support, Graph transformation, Pattern matching,
Relational databases

1 Introduction

Relational database management systems (RDBMSs) that serve as the storage
medium for business critical data for large companies are probably the most suc-
cessful products of software engineering. A crucial factor in this success is the
close synergy between theory and practice: SQL, the standard data definition, ma-
nipulation and query language is built upon precise mathematical foundations.

Graph transformation [4] has proved its maturity for describing model queries
and manipulations on a very high abstraction level. During the past years, intensive
research has been focusing on how graph transformation could be adapted as a
visual query and data manipulation language for databases. The following list is
merely a brief selection of some main results in the field.

1 Email: gervarro@cs.bme.hu
2 Email: friedl@cs.bme.hu
3 Email: varro@mit.bme.hu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Varró, Friedl and Varró

• Andries and Engels propose in [1] a hybrid (visual and textual) query language
based upon graph transformation.

• In [9], Jahnke and Zündorf propose the use of triple graph grammars [16] for
database re-engineering of legacy systems in their Varlet framework.

• GRAS [10] is a graph-oriented database management system developed at the
University of Aachen, which served as the underlying database for the PRO-
GRES [18] graph transformation tool. A recent version of the GRAS database
(namely GRAS/GXL [2]) aims to define an interface that provides access to
RDBMSs for graph based tools (e.g., PROGRES).

It is common in all these approaches that they investigate how graph transfor-
mation can contribute to database management systems and tasks. However, it is
also worth examining how the mature theory and practice of RDBMSs can poten-
tially contribute to the paradigm of graph transformation.

In the current paper, we follow this second direction. More precisely, we report
on the development of a graph transformation engine, which uses an open, off-the-
shelf relational database (namely, PostgreSQL [12]) as a backend, and it provides
an interface to existing tools that serve as frontends in the architecture.

The essence of the approach is to create database views for each rules and to
handle graph pattern matching by inner join operations while negative application
conditions by left outer join operations Furthermore, the model manipulation pre-
scribed by the application of a graph transformation rule is also implemented using
elementary data manipulation statements (such as INSERT, DELETE).

However, a critical question is how the performance of a graph transforma-
tion engine based upon a relational database scales up for large models or long
transformation sequences. After examining the performance of our prototype im-
plementation on various problems and comparing it to two popular transformation
engines (AGG [5] and PROGRES [18]), we claim that such an implementation is a
promising alternative.

The rest of the paper is structured as follows. Section 2 provides a brief intro-
duction to models and metamodels, graph transformation and the main concepts
of relational databases. In Sec. 3, which is the main part of the paper, we sketch
how to encode graph transformation rules into SQL queries and operations. The
experimental evaluation of our prototype graph transformation engine is provided
in Sec. 4 on different examples (including a comparison with both AGG and PRO-
GRES for various cases). Finally, our conclusions are in Section 5.

2 Graph transformation and databases

2.1 Metamodels and models

The metamodel (MM ) describes the abstract syntax of a modeling language. For-
mally, it can be represented by a type graph. Nodes of the type graph are called
classes (C). A class may have attributes (Attr) that define some kind of properties

2



Varró, Friedl and Varró

of the specific class. Inheritance may be defined between classes, which means
that the inherited class has all the properties its parent has, but it may further con-
tain some extra attributes. Finally, associations (Assoc) define binary connections
between classes (edge types between node types).

The instance model (M ) (or, formally, an instance graph) describes concrete
systems defined in a modeling language and it is a well-formed instance of the
metamodel. Nodes and edges are called objects (O) and links (L), respectively.
Objects and links are the instances of metamodel level classes and associations,
respectively. Attributes in the metamodel appear as slots (S) in the instance model.
Inheritance in the instance model imposes that instances of the subclass can be used
in every situation where instances of the superclass are required.

Example 2.1 A distributed mutual exclusion algorithm whose full specification
can be found in [8] will serve as a running example throughout the paper. Processes
try to access shared resources in this domain. One requirement from the algorithm
is to allow access to each resource by at most one process at a time. This is achieved
by using a token ring, which consists of processes connected by edges of type next.
In the consecutive phases of the algorithm, (i) a process may issue a request on a
resource, (ii) the resource may eventually be held by a process and finally a process
may release the resource. The right to access a resource is modeled by a token.
The algorithm also contains a deadlock detection procedure, which has to track the
processes that are blocked.

The metamodel (type graph) of the problem domain and two instance models
are depicted in the left and right parts of Fig. 1, respectively.

Metamodel

p1:Process p2:Process

Process

held_by releasetoken

next

blocked request

hb:held_by

Resource

r:Resource

rq:request

p1:Process p2:Process

rel:release

r:Resource

Model 1

Model 2

rq:request

Fig. 1. Metamodel and sample instance models for the problem domain

2.2 Graph transformation

Graph transformation [4] provides a pattern and rule based manipulation of graph
models. Each rule application transforms a graph by replacing a part of it by an-
other graph.

A graph transformation rule r = (LHS, RHS, NAC) contains a left–hand
side graph LHS, a right–hand side graph RHS, and negative application condition
graphs NAC (depicted by crosses). The LHS and the NAC graphs are together

3



Varró, Friedl and Varró

called the precondition PRE of the rule. Sample graph transformation rules will
be presented later in Fig. 2.

Example 2.2 The distributed mutual exclusion algorithm can be described with
13 simple graph transformation rules. (The most complex rule has 4 nodes and
3 edges.) A sample transformation rule describing how to release a resource is
presented in Fig. 2.

r:Resource

p:Process

r:Resource

ReleaseR

hb:held_by

reqn:request
rel:release

rn:Resourcep:Process

LHS RHS

Fig. 2. A sample transformation rule (ReleaseR)

This rule is applicable if there is a resource that is held by a process, which does
not have any request issued on any resources. Model 1 of Fig. 1 presents a sample
situation where this rule is applicable, since resource r is held by process p1 and p1
does not have any other relationship with resources.

In this specific case, rule application means that the selected resource is to be
released by the process, which results in an instance model (Model 2) presented in
the lower right part of Fig. 1.

The application of r to an host (instance) model (M ) replaces a matching (or
occurrence) (occ) of the LHS in M by an image of the RHS. This is performed
by (i) finding a matching of LHS in M , (ii) checking the negative application
conditions NAC (which prohibit the presence of certain objects and links) (iii)
removing a part of the model M that can be mapped to LHS but not to RHS

yielding the context model, and (iv) gluing the context model with an image of the
RHS by adding new objects and links (that can be mapped to the RHS but not to
the LHS) obtaining the derived model (M ′). A graph transformation is a sequence
of rule applications from an initial model MI .

Typically, the most critical phase of a graph transformation step is graph pattern
matching, i.e. to find a single (or all) occurrence(s) of a given LHS graph in
a host model M . Pattern matching techniques of existing graph transformation
tools can be grouped into two main categories. For further comparison of graph
transformation approaches see [17].

• Algorithms based on constraint satisfaction (such as [11] in AGG [5], VIATRA
[20]) interpret the graph elements of the pattern to be found as variables which
should be instantiated by fulfilling the constraints imposed by the elements of
the instance model. Our implementation also falls into this category.

• Algorithms based on local searches start from matching a single node and ex-
tending the matching step-by-step by neighboring nodes and edges. The graph
pattern matching algorithm of PROGRES (with sophisticated search plans [21]),
Dörr’s approach [3], and the object-oriented solution in FUJABA [13] fall in this
category.

4



Varró, Friedl and Varró

Our experiments in Sec. 4 will show that algorithms based on constraint sat-
isfaction have better performance in general, if interpreted graph transformation
engines are under observation. However, it is obvious that a compiled approach
gives better results than an interpreted engine. The comparison of constraint sat-
isfaction and local search based algorithms in case of compiled engines is to be
performed in the future.

3 Graph transformation in relational databases

We present how a graph transformation engine (following the single pushout [15]
approach with injective matchings) can be implemented using a relational database.
First, we create a appropriate database schema based on the metamodel, then the
database representation of the model is generated (Sec. 3.1). Afterwards, the pat-
tern matching phase of rule application is implemented using database queries
(Sec. 3.3–3.4), finally data manipulation is handled (in Sec. 3.5).

Due to space restrictions, we assume the reader’s familiarity with elementary
concepts of relational databases concepts. These issues are presented, e.g., in [19].

3.1 Mapping models and metamodels to database tables

Instance models representing the system under design are stored in database tables.
We used a standard mapping (for more details see [19, 14]) to generate the schema
of the database from the metamodel.

• Each class is mapped to a table with a single column. This column will store the
identifiers of objects of the specific class.

• We assign a table for each association that appears in the metamodel. This table
has three columns that contain the identifiers of links, source nodes and target
nodes, respectively. Foreign keys should additionally be defined for the last two
columns. These keys refer to identifier columns in source and target node tables,
respectively.

• If a subclass is inherited from a superclass, then table that corresponds to the
subclass should be extended by a foreign key constraint that links primary key
columns of the two tables. This means that all identifiers appearing in the sub-
class table should also appear in the superclass table as well.

Example 3.1 The database representation of the instance model Model 1 is de-
picted in the upper part of Fig. 3. The meaning of the lower part of Fig. 3 will be
discussed later.

3.2 Inner joins and left outer joins: An overview

We give a short overview on the most crucial concepts of RDBMSs that we build on
in the sequel, namely, views, inner joins and left outer joins. The formal treatment
of these concepts can be found in [19].

5



Varró, Friedl and Varró

id id id src trg id src trg id src trg

p1 r hb r p1 rq p2 r

p2

Process held_by request releaseResource

p.id hb.id r.id p.id reqn.id rn.id p.id hb.id r.id reqn.id rn.id

p1 hb r p2 rq r p1 hb r NULL NULL

ReleaseR_nac ReleaseRReleaseR_lhs

Fig. 3. Database representation

The inner join of tables R and S (denoted by R
F
1 S) is a selection from the

Cartesian product, i.e. a cross join R×S filtered by some formula F . SQL notation
of the inner join operation is SELECT * FROM R,S WHERE R.A=S.B where
A and B are those common columns in tables R and S, respectively on which inner
join is executed. The filtering formula F is the equality relation in the WHERE

condition in this case.

The left outer join of R and S (denoted by R
F

n S) (i) contains all the rows

of R
F
1 S, and (ii) additionally it contains all such rows of R, for which there

are no rows in S satisfying F . These rows are filled with NULL values for the
columns of S. A sample left outer join is SELECT * FROM R LEFT JOIN S
ON R.A=S.B.

A view V is a derived table (relation) with a separate name. It can be defined
with a full featured SELECT query.

3.3 Views for rule graphs (LHS and NAC).

We propose to calculate the matching patterns of a graph transformation rule by
using views (i.e. a SELECT query), which contain all the successful matchings of
the rule. More specifically, we introduce separate views for each LHS, NAC, and
PRE graphs (which is a combination of an LHS and several NACs) for each rule.

Example 3.2 We introduce the essence of this approach by an example listing the
view generated for the LHS and NAC graph of the ReleaseR rule (see Fig. 2).

CREATE VIEW ReleaseR_lhs AS -- an LHS view
SELECT p.id AS p, hb.id AS hb, r.id AS r -- with 3 columns
FROM Process AS p, Held_by AS hb, Resource AS r
WHERE r.id=hb.src AND p.id=hb.trg -- for held_by edge hb

CREATE VIEW ReleaseR_nac AS
SELECT p.id AS p, reqn.id AS reqn, rn.id AS rn
FROM Process AS p, Request AS reqn, Resource AS rn
WHERE p.id=reqn.src AND rn.id=reqn.trg -- for request edge reqn

We can make some observations related to the structure and content of the result
view. (i) The view contains as many columns as the number of graph objects (i.e.
nodes and edges) appearing in the corresponding rule graph (which means three

6



Varró, Friedl and Varró

columns in Example 3.2 including p.id AS p). (ii) The type of each graph object
(i.e. each column) corresponds to a specific database table (see e.g. Process AS
p). (iii) Valid rows should be source and target preserving for all edges in the rule
graph. For instance, condition r.id=hb.src AND p.id=hb.trg expresses
that the source node of hb is r and the target node of hb is p. (iv) A row should
correspond to a successful matching of the graph pattern.

The general structure of a query for a rule graph has the following syntax. 4

CREATE VIEW graph.name AS
SELECT go1.id AS go1, . . ., gon.id AS gon

FROM go1.type AS go1, . . ., gon.type AS gon

WHERE edge constraints AND injectivity constraints

Edge constraints express the adjacency of nodes and edges. For each edge,
we add a subformula n1.id=e.src AND n2.id=e.trgwhere n1 is the source
node and n2 is the target node of edge e (in the rule graph).

Injectivity constraints are defined for all pairs of LHS graph objects of the same
type (or, more precisely, that have common supertypes). For each pair go1 and go2,
we add a subformula of the form go1.id<>go2.id.

3.4 Left joins for preconditions of rules.

When the view for the PRE graph is generated, views of all its positive and neg-
ative application conditions are available. If the PRE graph does not have any
negative application conditions then the view defined for its LHS graph can be
used directly. If the PRE graph has at least one NAC graph, the corresponding
view definition has the following syntax:

CREATE VIEW rule.name AS
SELECT lhs.name.*
FROM lhs

LEFT JOIN nac1 ON lhs.c1 = nac1.c1 AND . . . AND lhs.cn = nac1.cn

. . .

LEFT JOIN nack ON lhs.c1 = nack.c1 AND . . . AND lhs.cn = nack.cn

WHERE
nac1.c1 IS NULL AND . . . AND nac1.cn IS NULL AND . . .

nack.c1 IS NULL AND . . . AND nack.cn IS NULL

Informally, each NAC is left outer joined to the LHS graph one by one. The
morphism between the LHS and a NAC graph (in other terms, the shared graph
objects) is translated into a join condition of type lhs.ci = nacj.ci (where ci

refers to the related graph object). Furthermore, for a successful matching we re-
quire that the corresponding columns of NAC(s) are filled with NULL values. This
means that there are no possible extensions of a matching of the LHS that is also
a matching of (any) NAC graph.

Example 3.3 To continue our running example, we present the view definition for

4 The disturbingly overloaded use of goi is only an SQL hack, basically goi always corresponds to
one graph object in the rule graph.

7



Varró, Friedl and Varró

the PRE graph of the ReleaseR rule.

CREATE VIEW ReleaseR AS
SELECT lhs.*
FROM ReleaseR_lhs AS lhs LEFT JOIN ReleaseR_nac AS nac
ON lhs.p=nac.p
WHERE nac.p IS NULL

The lower part of Fig. 3 shows the contents of views that have been defined for
the LHS, the NAC and the PRE part of rule ReleaseR, respectively.

Finally, all successful matchings of a rule can be enumerated as SELECT *
FROM rule.view, where a single matching is a row in the corresponding view.
Storing all the matches of a rule can be extremely useful for model transformations
where no conflicts occur within (a well-designed set of) graph transformation rules,
thus the rule can be applied in parallel to independent matches. However, for our
experiments (in Sec. 4), we did not use this possibility in order to compare the real
efficiency of use of the relational databases.

3.5 Graph manipulation in relational databases

We propose that operations in the graph manipulation phase can be implemented
by issuing several data manipulation commands (INSERT and DELETE) in a single
transaction block. The transaction block is needed to ensure that a graph transfor-
mation step is atomic, i.e., either all commands or none of them are executed to
result in a consistent model after rule application.

Deletions. If go is a graph object in LHS\RHS prescribing the deletion of the
successfully matched model element me then the removal of me is implemented
with a DELETE command: “DELETE FROM go.type WHERE go.id = me”.

As a single model element may appear in different tables (according to the in-
heritance hierarchy), a DELETE command should be executed on each supertype of
go.type. Fortunately, by using foreign key constraints of the DBMS, it is sufficient
to remove an element from root table (i.e. the table representing a common root in
the type hierarchy). Therefore, the real delete command is “DELETE FROM root

WHERE root.id = me”.
If the deletion of a node go is prescribed by a rule then all dangling edges

(i.e. all incident edges) should be removed as well. In this case operations of
the form “DELETE FROM t WHERE t.src = me.id OR t.trg = me.id”
have to be executed on any table t that corresponds to an edge type. However, this
deletion is obtained automatically by using the previous foreign key constructs.

Insertions. If go is a graph object in RHS\LHS prescribing the creation of a
model element me, then the creation of me is implemented by INSERT statements
in the following way.

• If go is a node, then we execute a sequence of INSERTs of the form “INSERT
INTO go.typei (id) VALUES (me.id)” where each type typei is pro-
cessed in a top-down way according to the inheritance hierarchy starting from

8



Varró, Friedl and Varró

the root table (to fulfill the restrictions imposed by foreign keys).
• If go is an edge, then a series of INSERTs of the form “INSERT INTO

go.typei (id,src,trg) VALUES (me.id,me.src,me.trg)” is executed
where each type typei is processed again in a top-down way according to the
inheritance hierarchy starting from the root table.

Example 3.4 We continue our sample graph transformation rule ReleaseR with
the model manipulation parts. Note that any text with a postfix .newid denotes the
identifier of the object that is added to the model. Postfixes of the form .id denote
values that originate from the pattern matching phase.

DELETE FROM Held_by WHERE id = hb.id

DELETE FROM root WHERE id = hb.id

INSERT INTO root (id) VALUES (rel.newid)
INSERT INTO Release (id,src,trg) VALUES (rel.newid,r.id,p.id)

4 Experimental results

In order to assess the performance of our graph transformation engine, tests were
performed on a 300 MHz Pentium machine with 64 MB RAM. A Linux kernel
of version 2.4.18 served PostgreSQL that we used as the underlying relational
database. No additional optimization techniques were applied in our engine, so
all optimization features were provided by PostgreSQL by default.

During the execution of tests on AGG, we switched off the GUI, so rule applica-
tions were guided by a JAVA program. In contrast, we used the standard interpreter
with the underlying GRAS database as a running environment for the PROGRES

tests and in addition, the Prolog-style cuts in the specification to make the exe-
cution deterministic. This way, we were doing programmed graph rewriting in
each case for batch transformations. Furthermore, we threw away the generated
DB views after each step to obtain a worst-case performance assessment for our
transformation engine.

Figure 4 shows the execution times of the three test sets (having different char-
acteristics) carried out on our mutual exclusion example. Values in avg columns
are average times needed for a single rule application, while sum columns denote
the execution time of the whole transformation sequence.

Short transformation sequences. Initial instance graphs in this test set only
contained two process nodes and two edges linking the process nodes in both direc-
tions. Let N denote the maximum number of processes appearing in the instance
model during a specific test. The transformation sequence in itself consisted of the
execution of 5N–1 graph transformation rules. The largest instance graph that ap-
pears during the rule application phase has N+1 nodes and 2N+1 edges. N was
chosen to 5, 100, and 1000 in our different experiments resulting in models of size
17, 302, and 3002, respectively.

Long transformation sequences. For this test set, we modified two rules
(namely, req and rel of [8]) in order to restrict their applicability in certain situ-

9



Varró, Friedl and Varró

Proc. Model TS AGG AGG Progres Progres DB DB

Mutex size length avg sum avg sum avg sum

(short TS) # # # msec msec msec msec msec msec

small 5 17 24 105 2512 125 3000 48 1150

medium 100 302 499 110 55047 1042 520000 35 17459

large 1000 3002 4999 409 timeout timeout timeout 140 700419

Proc. Model TS AGG AGG Progres Progres DB DB

Mutex* size length avg sum avg sum avg sum

(long TS) # # # msec msec msec msec msec msec

small 4 21 2500 145 362811 97 242000 34 84951

large 1000 5001 60001 1952 timeout 920 timeout 257 1544621

Proc. Model TS AGG AGG Progres Progres DB DB

Mutex' size length avg sum avg sum avg sum

(for all) # # # msec msec msec msec msec msec

10 50 40 78 3111 100 4000 18 723

30 150 120 74 8926 225 27000 33 3909

50 250 200 83 16680 345 69000 37 7332

100 500 400 128 51047 657 263000 38 15000

200 1000 800 315 251706 1294 1035000 51 40581

Fig. 4. Experimental results

ations and to get a deterministic transformation sequence. The initial model con-
sisted of 2N nodes (N processes and N resources) and 2N edges. 6N+1 rules
were collected into a basic execution unit that was executed several times in our
experiments. This basic execution unit contained all the rules that did not modify
the number of processes and resources. During the execution of a basic unit the
instance graph had exactly 2N nodes and at most 3N+1 edges.

Few matches on large models. The third test sequence consisted of 4N rule
applications that were organized into four blocks. One such block corresponded to
a specific rule that could be applied concurrently on N different processes. Each
rule application (i) disabled the execution of the same rule on the same process, (ii)
it left unchanged the enabledness of the same rule on other processes, and finally,
(iii) it enabled the execution of the following rule on the same process. This test
sequence produced models of size 5N , which were 50, 150, 250, 500, and 1000
in the concrete runs. (Rule req had to be slightly modified again to ensure the
appropriate behavior.)

Naturally, we carried out additional test cases (on different examples) to com-
pare these tools which were not presented in the current paper due to space consid-
erations. Our experiments can be summarized as follows.

• PROGRES had good performance in cases, when the number of matches was
relatively large compared to the model size. However, if only several matches
existed in a large model, then its backtracking strategy caused a heavy decrease
in the runtime performance.

• In case of large models, the update strategy of AGG consumes at least as much
time as the pattern matching phase itself which is quite unexpected since the DB
engine performed updates (to base tables) in constant time.

10



Varró, Friedl and Varró

• Our graph transformation engine based on a compilation to relational databases
fulfilled our minimum goal, namely, to significantly outperform interpreted ap-
proaches like AGG or PROGRES. However, for a real assessment, we need to
compare our DB approach to other compiled graph transformation engines such
as Fujaba [13] which is still to be done.

Although all our examples consisted of only a relatively small number of rules
(less than 20), we believe the performance of our database approach is not drasti-
cally decreased in case of typical software engineering applications (e.g. hundreds
of rather small rules) since the calculation of a view requires to join only few tables
at a time and it is independent of the number of rules.

5 Conclusion and Future Work

In the paper, we proposed a new graph transformation engine based on off-the-shelf
relational databases. After sketching the main concepts of our approach, we carried
out several test cases to evaluate our prototype implementation by comparing it to
the transformation engines of the AGG [5] and PROGRES [18] tools.

The main conclusion that can be drawn from our experiments is that relational
databases provide a promising candidate as an implementation framework for graph
transformation engines. We call attention to the fact that our promising experimen-
tal results were obtained using a worst-case assessment method i.e. by recalculating
the views of the next rule to be applied from scratch which is still highly inefficient,
especially, for model transformations with a large number of independent matches
of the same rule.

Further optimizations are required if we aim at incremental transformations in
the future. Despite the fact that incremental updating techniques are subject to
research in many fields (e.g. database view recalculation [7], expert systems [6]),
there are still only a few RDBMSs that implement incremental view updating even
with strong restrictions. PostgreSQL does not support this feature at all, which was
the main reason for recalculating the views from scratch in each step.

References

[1] Andries, M. and G. Engels, A hybrid query language for the extended entity
relationship model, Journal of Visual Languages and Computing 8 (1997).

[2] B öhlen, B., Specific graph models and their mappings to a common model, in: Proc
of the 2nd International Workshop on Applications of Graph Transformation with
Industrial Relevance (AGTIVE), LNCS 3062 (2003), pp. 45–60.

[3] D örr, H., “Efficient Graph Rewriting and Its Implementation,” LNCS 922, Springer-
Verlag, 1995.

[4] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, 2: Applications,
Languages and Tools, World Scientific, 1999.

11



Varró, Friedl and Varró

[5] Ermel, C., M. Rudolf and G. Taentzer, “In [4],” World Scientific, 1999 pp. 551–603.

[6] Forgy, C. L., RETE: A fast algorithm for the many pattern/many object match problem,
Artificial Intelligence 19 (1982), pp. 17–37.

[7] Gupta, A. and I. S. Mumick, editors, “Materialized Views: Techniques,
Implementations, and Applications,” MIT Press, 1999.

[8] Heckel, R., Compositional verification of reactive systems specified by graph
transformation, in: E. Astesiano, editor, Fundamental Approaches to Software
Engineering: First International Conference, FASE, LNCS 1382 (1998), pp. 138–153.

[9] Jahnke, J. H., W. Sch äfer, J. P. Wadsack and A. Z ündorf, Supporting iterations in
exploratory database reengineering processes, Science of Computer Programming 45
(2002), pp. 99–136.

[10] Kiesel, N., A. Sch ürr and B. Westfechtel, GRAS, a graph-oriented database system for
(software) engineering applications, in: J. Lee, Reid, editor, Proc. CASE ’93, 6th Int.
Conf. on Computer-Aided Software Engineering (1993), pp. 272–286.

[11] Larrosa, J. and G. Valiente, Constraint satisfaction algorithms for graph pattern
matching, Mathematical Structures in Computer Science 12 (2002), pp. 403–422.

[12] Momjian, B., “PostgreSQL: Introduction and Concepts,” Addison-Wesley, 2000.

[13] Nickel, U., J. Niere and A. Z ündorf, The FUJABA environment, in: The 22nd
International Conference on Software Engineering (ICSE) (2000), pp. 742–745.

[14] Ramakrishnan, R. and J. Gehrke, “Database Management Systems,” McGraw-Hill,
2002, 3rd edition.

[15] Rozenberg, G., editor, 1: Foundations, World Scientific, 1997.

[16] Sch ürr, A., Specification of graph translators with triple graph grammars, Technical
report, RWTH Aachen, Fachgruppe Informatik, Germany (1994).

[17] Sch ürr, A., “In [15],” World Scientific, 1997 pp. 479–546.

[18] Sch ürr, A., A. Winter and A. Z ündorf, “In [4],” World Scientific, 1999 .

[19] Ullman, J. D., J. Widom and H. Garcia-Molina, “Database Systems: The Complete
Book,” Prentice Hall, 2001.

[20] Varr ó, D., G. Varr ó and A. Pataricza, Designing the automatic transformation of visual
languages, Science of Computer Programming 44 (2002), pp. 205–227.

[21] Z ündorf, A., Graph pattern-matching in PROGRES, in: Proc. 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, LNCS 1073 (1996), pp.
454–468.

12


