
Towards Incremental Graph Transformation in Fujaba

[Position paper]

Gergely Varró
Department of Computer Science and Information Theory

Budapest University of Technology and Economics
Magyar tudósok körútja 2.

H-1521 Budapest, Hungary

gervarro@cs.bme.hu

ABSTRACT
I discuss a technique for on-the-fly model transformations based
on incremental updates. The essence of the technique is to keep
track of all possible matchings of graph transformation rules, and
update these matchings incrementally to exploit the fact that rules
typically perform only local modifications to models. The proposal
is planned to be implemented as a plug-in for the Fujaba graph
transformation framework.

Keywords
graph transformation, graph pattern matching, incremental updates,
Fujaba

1. INTRODUCTION
Model Driven Architecture.Recently, the Model Driven Archi-

tecture (MDA) of the Object Management Group (OMG) has be-
come an interesting trend in software engineering. The mainidea
of the MDA framework is the use of models during the entire sys-
tem design cycle. A major factor in the success of MDA is the
development of industrial-strength models and various modeling
languages. Several metamodeling approaches [2, 6, 19] havebeen
developed to provide solid foundations for language engineering
to allow system engineers to design a language for their own do-
main. As being the standard and visual object-oriented modeling
language, UML obviously plays a key role in language design.

Transformation engineering in MDA. [20]However, the role of
model transformations between modeling languages within MDA
is as critical as the role of modeling languages themselves.As
model transformations required by the MDA framework are sup-
posed to be mainly developed by software engineers, preciseyet
intuitive notations are required for model transformationlanguages.
QVT [16], an initiative of the OMG, aims at developing a standard
for capturing Queries, Views and Transformations in MDA.

Incremental model transformations.During the design phase of
the software engineering process, the system model may be mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ified several times, e.g., when correcting bugs, performingrefine-
ment steps, etc. When only a small portion of the model is mod-
ified, it is enough in general to re-execute a model transformation
only on the part of the model that has actually been changed. This
approach is called anincremental (or on-the-fly) model transforma-
tion.

The most typical example in a UML context is the incremental
update of various views. A UML diagram shows one aspect of the
system under design. If the system engineer modifies only onedia-
gram, then modification may result in an inconsistent model.In or-
der to maintain consistency, the design process should be supported
by incremental model transformation, which updates all UMLdi-
agrams in a consistent way whenever any diagram changed. A re-
lated topic is discussed in [12], where consistency of logical and
conceptual schemata of databases is maintained incrementally us-
ing traditional graph transformation techniques.

Incremental model transformations would also be advantageous
for visual modeling languages. For instance, in [3], the authors
discuss how the concrete syntax of a language can be generated
from the abstract syntax by batch model transformations. How-
ever, incremental transformations would make this technique el-
igible to visual language editors, which require to automatically
update the concrete syntax of the model according to the model-
view-controller paradigm.

Fujaba as a model transformation tool.Fujaba, which is an
Open Source UML CASE tool provides a rule-based visual pro-
gramming language for manipulating the object structure based on
the paradigm of graph transformation [18].

Traditionally, Fujaba has supported the specification of (and code
generation from) the dynamic behavior of the system in the form
of UML activity diagrams. Activity diagrams define the control
flow of the methods and as such, they consist of activities (nodes)
and transitions (edges). The role of transitions is to definetemporal
dependencies (i.e., execution order) between activities.

A graph transformation rule describes the behavior of a specific
activity. A simplified version of UML collaboration diagrams (re-
ferred as story patterns) is used for specifying graph transformation
rules. Activity diagrams that contain story patterns as activities are
calledstory diagrams[8]. However, while Fujaba is considered to
be one of the fastest graph transformation engines, there isstill lack
of support for incremental transformations.

Fujaba has been redesigned, and currently, it has a plug-in ar-
chitecture. This new architecture still supports the basiccode gen-
eration feature, but it additionally allows developers to easily add
different functionalities while retaining full control over their con-
tributions. As a consequence of this flexibility, several application

areas exist such as re-engineering [14], embedded real-time system
design [1], education [15], etc.

Objectives. In the paper, I discuss the concepts of on-the-fly
model transformation based onincremental updates. The essence
of the technique is to keep track of all possible matchings ofgraph
transformation rules, and update these matchings incrementally to
exploit the fact that rules typically perform only local modifications
to models. I plan to implement such an incremental graph transfor-
mation engine using Rete-algorithms [9]. The engine is planned to
be integrated into the Fujaba graph transformation framework as a
plug-in.

2. MODEL TRANSFORMATION
Visual modeling languages are frequently described by a com-

bination of metamodeling and graph transformation techniques [6,
19].

2.1 Metamodeling
Themetamodeldescribes the abstract syntax of a modeling lan-

guage. Formally, it can be represented by a type graph. Nodesof
the type graph are calledclasses. A class may haveattributesthat
define some kind of properties of the specific class.Inheritance
may be defined between classes, which means that the inherited
class has all the properties its parent has, but it may further con-
tain some extra attributes. Finally,associationsdefine connections
between classes.

In the MOF terminology [17], a metamodel is defined visually in
a UML class diagram notation. In practical terms, the class diagram
that has been designed in Fujaba by system engineers will form the
metamodel in this case.

The instance model(or, formally, an instance graph) describes
concrete systems defined in a modeling language and it is a well-
formed instance of the metamodel. Nodes and edges are calledob-
jectsandlinks, respectively. Objects and links are the instances of
metamodel level classes and associations, respectively. Attributes
in the metamodel appear asslotsin the instance model. Inheritance
in the instance model imposes that instances of the subclasscan be
used in every situation, where instances of the superclass are re-
quired. In case of Fujaba, the generated concrete system will form
the instance model.

Example. A distributed mutual exclusion algorithm whose full
specification can be found in [11] will serve as a running example
throughout the paper.Processestry to access sharedresourcesin
this domain. One requirement from the algorithm is to allow access
to each resource by at most one process at a time. This is fulfilled
by using a token ring, which consists of processes connectedby
edges of typenext. In the consecutive phases of the algorithm, a
process may issue arequeston a resource, the resource may even-
tually beheld bya process and finally a process mayreleasethe
resource. The right to access a resource is modeled by atoken. The
algorithm also contains a deadlock detection procedure, which has
to track the processes that areblocked.

The metamodel (type graph) of the problem domain and a sam-
ple instance model are depicted in the left and right parts ofFig. 1,
respectively. The instance model presents a situation withtwo pro-
cesses that are linked to each other by edges of typenext.

2.2 Graph transformation
Graph transformation [5, 18] provides a pattern and rule based

manipulation of graph-based models. Each rule applicationtrans-
forms a graph by replacing a part of it by another graph.

A graph transformation ruler = (LHS, RHS, NAC) contains a
left–hand side graphLHS, a right–hand side graphRHS, and nega-

Metamodel

p1:Process p2:Process

Process

held_by releasetoken

next

blocked request

Model

n1:next

n2:next
Resource

Figure 1: A sample metamodel and instance model

tive application condition graphsNAC.
The applicationof r to anhost (instance) modelM replaces a

matching of theLHS in M by an image of theRHS. This is per-
formed by (i) finding a matching ofLHS in M (by graph pattern
matching), (ii) checking the negative application conditionsNAC

(which prohibit the presence of certain objects and links) (iii) re-
moving a part of the modelM that can be mapped toLHS but not to
RHS yielding the context model, and (iv) gluing the context model
with an image of theRHS by adding new objects and links (that can
be mapped to theRHS but not to theLHS) obtaining thederived
modelM′. The latter two steps form the so-called updating phase.
A graph transformationis a sequence of rule applications from an
initial modelMI .

Example. A sample rule of the distributed mutual exclusion al-
gorithm (depicted in Fig. 2) simply inserts a new process between
neighboring processesp1 andp2.

p1:Process

NewR

n1:next

p2:Process

p1:Process

p:Process

p2:Process

n:next

n2:next

Figure 2: A sample transformation rule (newR)

2.3 Graph pattern matching
Typically, the most critical phase of a graph transformation step

concerning the overall performance is graph pattern matching, i.e.
to find a single (or all) occurrence(s) of a givenLHS graph in a
host model.

Current graph transformation engines use different sophisticated
strategies in the graph pattern matching phase. These strategies can
be grouped into two main categories.

• Algorithms based onconstraint satisfaction(such as [13] in
AGG [7], VIATRA [21]) interpret the graph elements of the
pattern to be found as variables which should be instantiated
by fulfilling the constraints imposed by the elements of the
instance model.

• Algorithms based onlocal searchesstart from matching a
single node and extending the matching to the neighboring
nodes and edges. The graph pattern matching algorithm of
PROGRES (with search plans [23]), Dörr’s approach [4], and
the object-oriented solution in FUJABA [8] fall in this cate-
gory.

However, it is common in all these engines that they can be char-
acterized as having a complex pattern matching phase followed by
a simple modification phase and these phases are executed itera-
tively.

The main problem is that the information on previous match is
lost, when a new rule application is started. As a consequence, the
complex pattern matching phase has to be executed from scratch
again and again. However, because of the local nature of modifi-
cations, it may be expected that the majority of matchings remain
valid in consecutive steps. The same matchings are calculated sev-
eral times, which seems to be a waste of resources in case of e.g.,
long transformation sequences.

3. INCREMENTAL UPDATES
In order to avoid recalculation of matchings, we proposed a tech-

nique based onincremental updates[22], for implementing effi-
cient graph transformation engines designed especially for incre-
mental (on-the-fly) model transformations. The basic idea in a
graph transformation context is to store information on previous
match and to keep track of modifications.

Several other solutions already exist for reducing the overhead
of finding matches for LHS of rules as implemented in PROGRES
[23]: (i) applying a graph transformation to all matches in the graph
as one graph rewriting step (pseudo-parallel graph transformation),
(ii) using incrementally computed derived attributes and relation-
ships in LHS, and (iii) using rule parameters in graph transfor-
mations to pass computed knowledge about possible LHS matches
from one rule to the next one.

After many years of research, different techniques based onthe
incremental updating idea have evolved and by now they are widely
accepted and successfully used in several types of applications (e.g.,
relational databases, expert systems).

• In the area of relational databases, views may be updated in-
crementally. A database view is a query on a database that
computes a relation whose value is not stored explicitly in
the database, but it appears to the users of the database as if
it were. However, in a group of methods, which is called by
view materialization approach, the view is explicitly main-
tained as a stored relation [10]. Every time a base relation
changes, the views that depend on it may need to be re-
computed.

• In the area of rule-based expert systems, the Rete-algorithm
(for more details see [9]) uses the idea of incremental pat-
tern matching for facts. First a data-flow network is con-
structed based on the condition (if) parts of rules, which
is basically a directed acyclic graph of a special structure.
Initially, this network is fed by basic facts through its input
channels. Compound facts are constituted of more elemen-
tary facts, thus they are the inputs of internal nodes in the
network. If a fact reaches a terminal node, then the rule re-
lated to this specific node becomes applicable and assign-
ments modifying the set of basic facts may be executed (ac-
cording to thethenpart). Since every node keeps a record
of its input facts, only modifications of these facts have to be
tracked at each step.

Despite these results, (quite surprisingly) no graph transforma-
tion tools exist that provide support for incremental transforma-
tions. In [22], we carried out some initial experiments, which used
an off-the-shelf relational database to measure the performance of
the incremental updating method compared to the traditional (from

scratch) approach. However, it turned out the most relational data-
bases do not support incremental view updates. Therefore, it seems
to be necessary to develop a new incremental graph transformation
engine from scratch.

In the current paper, I propose to build a graph transformation en-
gine that uses the Rete-algorithm for implementing the incremental
updating technique.

Now I sketch the basic structure of such an engine. A graph
transformation rule can be viewed as a rule that has a condition
(if) and an action (then) part. The condition part corresponds to the
LHS of the graph transformation rule, while the action part consists
of all the actions (delete, update, insert) that have to be executed in
the updating phase. According to this mapping, we can build a
data-flow network for each rule using the LHS. Nodes and edgesof
the LHS are mapped to input nodes, while the whole LHS will cor-
respond to a terminal node. The data-flow network may also have
some internal nodes, which are basically subgraphs of the LHS.
After this network building phase we will have as many data-flow
(Rete) networks as many rules we originally have. Then thesenet-
works are merged by the Rete-algorithm in order to decrease the
number of nodes.

Note that the nodes and edges of the metamodel and the actual
instance model will appear as input nodes and basic facts assigned
to the corresponding input nodes, respectively. Basic facts flow
through the network and constitute more and more compound facts
as they progress. When a compound fact reaches a terminal node,
then the corresponding graph transformation rule becomes applica-
ble, and the updating phase can be executed. This phase actually
modifies the active set of basic facts assigned to input nodes.

In an ideal case, such an incremental graph transformation en-
gine should be available as a plug-in for many graph transformation
tools (thus being independent of them). However, since the inter-
faces of graph transformation tools are not (yet) standardized I plan
to integrate the incremental engine as a transformation plug-in of
Fujaba. This would provide analternate graph transformation en-
ginetailored especially to incremental model transformations(pos-
sibly defined by triple graph grammar rules). However, no modifi-
cations are required to the base system of Fujaba.

Example. In order to sketch the idea of incremental updates, let
us consider that rulenewR (depicted in Fig. 2) is trying to be ap-
plied to the instance model of Fig. 1. The pattern matching phase
selects two valid subgraphs of the instance model, on which the
rule is applicable. The transformation engine then executes the up-
dating phase resulting in a model that contains 3 processes that are
stringed on a chain consisting of 3 edges of typenext.

Up to this point, both traditional and incremental approaches do
the same. But when the pattern matching phase of the following
rule application is executed, the traditional approach recalculates
valid matchings from scratch, while the incremental methodonly
has to delete invalid matchings and generate new ones. The first
method should examine all thenextedges appearing in the instance
model, which may contain an arbitrary number ofnextedges. How-
ever, in case of the incremental technique, it is enough to examine
only suchnext edges that are actually removed or created in the
previous step. The number of such edges are always three in this
example regardless of the size of the instance model.

Naturally, in case of dozens (hundreds) of transformation rules,
a single application of a rule might need to recalculate the match-
ing of several rules therefore, there is certainly a trade-off between
a cheap pattern matching phase and a more complex update phase.
I also intend to carry out experiments to assess this trade-off be-
tween traditional (batch or programmed) and incremental transfor-
mations.

4. CONCLUSIONS
In this paper, I discussed the necessity of incremental model

transformations in the context of the Model Driven Architecture
(transformation-based derivation of concrete syntax fromabstract
syntax in visual modeling languages, consistent and on-the-fly up-
date of UML diagrams, etc.). I discussed the concepts of incremen-
tal model transformations based on the paradigm of graph transfor-
mation. I plan to implement such an engine using Rete-algorithms
and integrate it into Fujaba as a plug-in. Furthermore, I would like
to investigate the applicability of the incremental approach to vari-
ous model transformation techniques (including triple graph gram-
mars).

5. ACKNOWLEDGMENT
I am very much grateful to Dániel Varró and Andy Schürr for

giving valuable comments and hints on incremental updates strate-
gies and/or the paper itself.

6. REFERENCES
[1] S. Burmester and H. Giese. The Fujaba real-time statechart

plugin. InProc. of the Fujaba Days 2003, Kassel, Germany,
October 2003.

[2] T. Clark, A. Evans, and S. Kent. The Metamodelling
Language Calculus: Foundation semantics for UML. In
H. Hussmann, editor,Proc. Fundamental Approaches to
Software Engineering, FASE 2001 Genova, Italy, volume
2029 ofLNCS, pages 17–31. Springer, 2001.

[3] P. Domokos and D. Varró. An open visualization framework
for metamodel-based modeling languages. InProc. GraBaTs
2002, International Workshop on Graph-Based Tools,
volume 72 ofENTCS, pages 78–87, Barcelona, Spain,
October 7–8 2002. Elsevier.

[4] H. Dörr. Efficient Graph Rewriting and Its Implementation,
volume 922 ofLNCS. Springer-Verlag, 1995.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors.Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. 2: Applications, Languages and
Tools. World Scientific, 1999.

[6] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer.
Dynamic meta modeling: A graphical approach to the
operational semantics of behavioral diagrams in UML. In
A. Evans, S. Kent, and B. Selic, editors,UML 2000 - The
Unified Modeling Language. Advancing the Standard,
volume 1939 ofLNCS, pages 323–337. Springer, 2000.

[7] C. Ermel, M. Rudolf, and G. Taentzer.In [5] , chapter The
AGG-Approach: Language and Tool Environment, pages
551–603. World Scientific, 1999.

[8] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story
diagrams: A new graph rewrite language based on the
Unified Modeling Language. In G. R. G. Engels, editor,
Proc. of the 6th International Workshop on Theory and
Application of Graph Transformation (TAGT), volume 1764
of LNCS. Springer Verlag, 1998.

[9] C. L. Forgy. RETE: A fast algorithm for the many
pattern/many object match problem.Artificial Intelligence,
1982.

[10] A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques and applications.IEEE
Quarterly Bulletin on Data Engineering; Special Issue on
Materialized Views and Data Warehousing, 1995.

[11] R. Heckel. Compositional verification of reactive systems
specified by graph transformation. In E. Astesiano, editor,

Fundamental Approaches to Software Engineering: First
International Conference, FASE’98, volume 1382 ofLNCS,
pages 138–153. Springer-Verlag, 1998.

[12] J. H. Jahnke, W. Schäfer, J. P. Wadsack, and A. Zündorf.
Supporting iterations in exploratory database reengineering
processes.Science of Computer Programming,
45(2-3):99–136, 2002.

[13] J. Larrosa and G. Valiente. Constraint satisfaction algorithms
for graph pattern matching.Mathematical Structures in
Computer Science, 12(4):403–422, 2002.

[14] J. Niere. Using learning toward automatic reengineering. In
Proc. of the 2nd International Workshop on Living with
Inconsistency, 2001.

[15] J. Niere and C. Schulte. Thinking in object structures:
Teaching modelling in secondary schools. InProceedings of
the ECOOP Workshop on Pedagogies and Tools for Learning
Object-Oriented Concepts, 2002.

[16] Object Management Group.QVT: Request for Proposal for
Queries, Views and Transformations.

[17] Object Management Group.Meta Object Facility Version
2.0, April 2003.

[18] G. Rozenberg, editor.Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. 1: Foundations.
World Scientific, 1997.

[19] D. Varró and A. Pataricza. VPM: A visual, precise and
multilevel metamodeling framework for describing
mathematical domains and UML.Journal of Software and
Systems Modeling, 2(3):187–210, October 2003.

[20] D. Varró and A. Pataricza. Generic and meta-transformations
for model transformation engineering. InProc. UML 2004:
7th International Conference on the Unified Modeling
Language, 2004. In press.

[21] D. Varró, G. Varró, and A. Pataricza. Designing the
automatic transformation of visual languages.Science of
Computer Programming, 44(2):205–227, August 2002.

[22] G. Varró and D. Varró. Graph transformation with
incremental updates. InProc. 4th Int. Workshop on Graph
Transformation and Visual Modeling Techniques, 2004.

[23] A. Zündorf. Graph pattern-matching in PROGRES. InProc.
5th Int. Workshop on Graph Grammars and their Application
to Computer Science, volume 1073 ofLNCS, pages 454–468.
Springer-Verlag, 1996.

