Towards Incremental Graph Transformation in Fujaba

[Position paper]

Gergely Varrd
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Magyar tudodsok koritja 2.
H-1521 Budapest, Hungary

gervarro@cs.bme.hu

ABSTRACT

I discuss a technique for on-the-fly model transformatioased

on incremental updatesThe essence of the technique is to keep
track of all possible matchings of graph transformatioresuland
update these matchings incrementally to exploit the faat thies
typically perform only local modifications to models. Theposal

is planned to be implemented as a plug-in for the Fujaba grap
transformation framework.

Keywords

graph transformation, graph pattern matching, incremerpidates,
Fujaba

1. INTRODUCTION

Model Driven ArchitectureRecently, the Model Driven Archi-
tecture (MDA) of the Object Management Group (OMG) has be-
come an interesting trend in software engineering. The ritia
of the MDA framework is the use of models during the entire-sys
tem design cycle. A major factor in the success of MDA is the
development of industrial-strength models and various eting
languages. Several metamodeling approaches [2, 6, 19]deere
developed to provide solid foundations for language ereging
to allow system engineers to design a language for their covn d
main. As being the standard and visual object-oriented iivagle
language, UML obviously plays a key role in language design.

Transformation engineering in MDA. [20flowever, the role of
model transformations between modeling languages withiDAM
is as critical as the role of modeling languages themselvss.
model transformations required by the MDA framework are-sup
posed to be mainly developed by software engineers, prgeise
intuitive notations are required for model transformatimmguages.
QVT [16], an initiative of the OMG, aims at developing a staral
for capturing Queries, Views and Transformations in MDA.

Incremental model transformationBuring the design phase of
the software engineering process, the system model may be mo

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquiees prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ified several times, e.g., when correcting bugs, performefe-
ment steps, etc. When only a small portion of the model is mod-
ified, it is enough in general to re-execute a model transétion
only on the part of the model that has actually been changkid. T
approach is called ancremental (or on-the-fly) model transforma-
tion.

h The most typical example in a UML context is the incremental

update of various views. A UML diagram shows one aspect of the
system under design. If the system engineer modifies onlyliane
gram, then modification may result in an inconsistent molahebr-

der to maintain consistency, the design process shoulddposgied

by incremental model transformation, which updates all UtiL
agrams in a consistent way whenever any diagram changed: A re
lated topic is discussed in [12], where consistency of lalgand
conceptual schemata of databases is maintained increlfgarga

ing traditional graph transformation techniques.

Incremental model transformations would also be advaoizge
for visual modeling languages. For instance, in [3], theharg
discuss how the concrete syntax of a language can be gemherate
from the abstract syntax by batch model transformationsw-Ho
ever, incremental transformations would make this teamigl-
igible to visual language editors, which require to autdoaly
update the concrete syntax of the model according to the inode
view-controller paradigm.

Fujaba as a model transformation toolFujaba, which is an
Open Source UML CASE tool provides a rule-based visual pro-
gramming language for manipulating the object structuseedaon
the paradigm of graph transformation [18].

Traditionally, Fujaba has supported the specification o @de
generation from) the dynamic behavior of the system in thienfo
of UML activity diagrams. Activity diagrams define the caoitr
flow of the methods and as such, they consist of activitied€ap
and transitions (edges). The role of transitions is to deéngporal
dependencies (i.e., execution order) between activities.

A graph transformation rule describes the behavior of aifipec
activity. A simplified version of UML collaboration diagras(re-
ferred as story patterns) is used for specifying graph foansation
rules. Activity diagrams that contain story patterns asvéis are
calledstory diagramg8]. However, while Fujaba is considered to
be one of the fastest graph transformation engines, theti#l is.ck
of support for incremental transformations.

Fujaba has been redesigned, and currently, it has a plug-in a
chitecture. This new architecture still supports the basite gen-
eration feature, but it additionally allows developers &sigy add
different functionalities while retaining full control ev their con-
tributions. As a consequence of this flexibility, severgblagation

areas exist such as re-engineering [14], embedded realstystem
design [1], education [15], etc.

Objectives. In the paper, | discuss the concepts of on-the-fly
model transformation based @amcremental updatesThe essence
of the technique is to keep track of all possible matchinggraph
transformation rules, and update these matchings increiheto
exploit the fact that rules typically perform only local nifications
to models. | plan to implement such an incremental graplsfoen
mation engine using Rete-algorithms [9]. The engine isnxato
be integrated into the Fujaba graph transformation franmkwas a
plug-in.

2. MODEL TRANSFORMATION

Visual modeling languages are frequently described by a-com
bination of metamodeling and graph transformation teahesd6,
19].

2.1 Metamodeling

The metamodetlescribes the abstract syntax of a modeling lan-
guage. Formally, it can be represented by a type graph. Naides
the type graph are calledasses A class may havattributesthat
define some kind of properties of the specific claszheritance
may be defined between classes, which means that the irtherite
class has all the properties its parent has, but it may fuxbe-
tain some extra attributes. Finalfssociationglefine connections
between classes.

In the MOF terminology [17], a metamodel is defined visuatly i
a UML class diagram notation. In practical terms, the claagrdm
that has been designed in Fujaba by system engineers il tfoe
metamodel in this case.

The instance mode{or, formally, an instance graph) describes
concrete systems defined in a modeling language and it isla wel
formed instance of the metamodel. Nodes and edges are caled
jectsandlinks, respectively. Objects and links are the instances of
metamodel level classes and associations, respectivéisibutes
in the metamodel appear siotsin the instance model. Inheritance
in the instance model imposes that instances of the subzdadse
used in every situation, where instances of the superciasgea
quired. In case of Fujaba, the generated concrete systdrfomi
the instance model.

Example. A distributed mutual exclusion algorithm whose full
specification can be found in [11] will serve as a running egkem
throughout the paperProcessedry to access share@sourcesn
this domain. One requirement from the algorithm is to all@vess
to each resource by at most one process at a time. This isedilfil
by using a token ring, which consists of processes conndxnyed
edges of typsmext In the consecutive phases of the algorithm, a
process may issueraqueston a resource, the resource may even-
tually be held bya process and finally a process najeasethe
resource. The right to access a resource is modeleddikea The
algorithm also contains a deadlock detection proceduré&wies
to track the processes that dlecked

The metamodel (type graph) of the problem domain and a sam-
ple instance model are depicted in the left and right parSigf1,
respectively. The instance model presents a situationtwibpro-
cesses that are linked to each other by edges ofrigge

2.2 Graph transformation

Graph transformation [5, 18] provides a pattern and ruleebas
manipulation of graph-based models. Each rule applicdtims-
forms a graph by replacing a part of it by another graph.

A graph transformation rule = (LHS, RHS, NAC) contains a
left—hand side graphHS, a right—hand side grapRHS, and nega-

Process

y n1:next

n2:next
blocked

Figurel: A sample metamodel and instance model

4

held_by| | token |release

Resource

request

tive application condition graphsAC.

The application of r to anhost (instance) modeé¥l replaces a
matching of theLHS in M by an image of th&kHS. This is per-
formed by (i) finding a matching dfHS in M (by graph pattern
matching), (ii) checking the negative application coratis NAC
(which prohibit the presence of certain objects and linkig) re-
moving a part of the modé¥l that can be mapped tdHS but not to
RHS yielding the context model, and (iv) gluing the context mode
with an image of th&HS by adding new objects and links (that can
be mapped to th&HS but not to theLHS) obtaining thederived
modelM’. The latter two steps form the so-called updating phase.
A graph transformations a sequence of rule applications from an
initial model M.

Example. A sample rule of the distributed mutual exclusion al-
gorithm (depicted in Fig. 2) simply inserts a new processvieen
neighboring processed andp?2.

p1:Process

n:next

p:Process

A4

p2:Process

NevF

Figure2: A sampletransformation rule (newR)

2.3 Graph pattern matching

Typically, the most critical phase of a graph transformatitep
concerning the overall performance is graph pattern matghie.
to find a single (or all) occurrence(s) of a givér{ S graph in a
host model.

Current graph transformation engines use different sdichied
strategies in the graph pattern matching phase. Thesegitratcan
be grouped into two main categories.

e Algorithms based oronstraint satisfactiorfsuch as [13] in
AGG [7], VIATRA [21]) interpret the graph elements of the
pattern to be found as variables which should be instatiate
by fulfilling the constraints imposed by the elements of the
instance model.

Algorithms based onocal searchesstart from matching a
single node and extending the matching to the neighboring
nodes and edges. The graph pattern matching algorithm of
PROGRES (with search plans [23]), Dorr's approach [4], and
the object-oriented solution in FUJABA [8] fall in this cate

gory.

However, itis common in all these engines that they can be cha
acterized as having a complex pattern matching phase fetldyy
a simple modification phase and these phases are executad ite
tively.

The main problem is that the information on previous match is
lost, when a new rule application is started. As a conseqehe
complex pattern matching phase has to be executed fronthkcrat
again and again. However, because of the local nature offimodi
cations, it may be expected that the majority of matchingsaia
valid in consecutive steps. The same matchings are cadclsay-
eral times, which seems to be a waste of resources in casg.of e.
long transformation sequences.

3. INCREMENTAL UPDATES

In order to avoid recalculation of matchings, we proposestht
nigue based oincremental updatef2?], for implementing effi-
cient graph transformation engines designed especiatlynfe-
mental (on-the-fly) model transformations. The basic idea i
graph transformation context is to store information onvjmas
match and to keep track of modifications.

Several other solutions already exist for reducing the lowad
of finding matches for LHS of rules as implemented in PROGRES
[23]: (i) applying a graph transformation to all matchestia graph
as one graph rewriting step (pseudo-parallel graph tramsftion),

(i) using incrementally computed derived attributes aathtion-
ships in LHS, and (iii) using rule parameters in graph transf
mations to pass computed knowledge about possible LHS emtch
from one rule to the next one.

After many years of research, different techniques basetthen
incremental updating idea have evolved and by now they atelwi
accepted and successfully used in several types of appliege.g.,
relational databases, expert systems).

e In the area of relational databases, views may be updated in-

crementally. A database view is a query on a database that

computes a relation whose value is not stored explicitly in
the database, but it appears to the users of the database as
it were. However, in a group of methods, which is called by
view materialization approach, the view is explicitly main
tained as a stored relation [10]. Every time a base relation
changes, the views that depend on it may need to be re-
computed.

In the area of rule-based expert systems, the Rete-algorith
(for more details see [9]) uses the idea of incremental pat-
tern matching for facts. First a data-flow network is con-
structed based on the conditioif)(parts of rules, which

is basically a directed acyclic graph of a special structure
Initially, this network is fed by basic facts through its irtp
channels. Compound facts are constituted of more elemen-
tary facts, thus they are the inputs of internal nodes in the
network. If a fact reaches a terminal node, then the rule re-
lated to this specific node becomes applicable and assign-
ments modifying the set of basic facts may be executed (ac-
cording to thethenpart). Since every node keeps a record
of its input facts, only modifications of these facts havedo b
tracked at each step.

Despite these results, (quite surprisingly) no graph faansa-
tion tools exist that provide support for incremental tfansa-
tions. In [22], we carried out some initial experiments, gfhused
an off-the-shelf relational database to measure the paénce of
the incremental updating method compared to the traditidrean

scratch) approach. However, it turned out the most relatidata-
bases do not support incremental view updates. Therefaeeins
to be necessary to develop a new incremental graph tranafimm
engine from scratch.

In the current paper, | propose to build a graph transforomatin-
gine that uses the Rete-algorithm for implementing thedimental
updating technique.

Now | sketch the basic structure of such an engine. A graph
transformation rule can be viewed as a rule that has a conditi
(if) and an actiontber) part. The condition part corresponds to the
LHS of the graph transformation rule, while the action pargists
of all the actions (delete, update, insert) that have to eewed in
the updating phase. According to this mapping, we can build a
data-flow network for each rule using the LHS. Nodes and edfjes
the LHS are mapped to input nodes, while the whole LHS wilt cor
respond to a terminal node. The data-flow network may alse hav
some internal nodes, which are basically subgraphs of th8.LH
After this network building phase we will have as many datavfl
(Rete) networks as many rules we originally have. Then these
works are merged by the Rete-algorithm in order to decrease t
number of nodes.

Note that the nodes and edges of the metamodel and the actual
instance model will appear as input nodes and basic fadgness
to the corresponding input nodes, respectively. Basicsféotv
through the network and constitute more and more compouatd fa
as they progress. When a compound fact reaches a terminal nod
then the corresponding graph transformation rule becorpléca-
ble, and the updating phase can be executed. This phasd\actua
modifies the active set of basic facts assigned to input nodes

In an ideal case, such an incremental graph transformatien e
gine should be available as a plug-in for many graph transdition
tools (thus being independent of them). However, sincertes-i
faces of graph transformation tools are not (yet) standadli plan
to integrate the incremental engine as a transformatiog-lLof
Fujaba. This would provide aalternate graph transformation en-
ginetailored especially to incremental model transformatipos-

sibly defined by triple graph grammar rules). However, no ifiod
'tations are required to the base system of Fujaba.

Example. In order to sketch the idea of incremental updates, let
us consider that ruleewR (depicted in Fig. 2) is trying to be ap-
plied to the instance model of Fig. 1. The pattern matchingsph
selects two valid subgraphs of the instance model, on whieh t
rule is applicable. The transformation engine then execiite up-
dating phase resulting in a model that contains 3 procebastaie
stringed on a chain consisting of 3 edges of typat

Up to this point, both traditional and incremental apprascto
the same. But when the pattern matching phase of the folpwin
rule application is executed, the traditional approactal@dates
valid matchings from scratch, while the incremental metbaty
has to delete invalid matchings and generate new ones. THte fir
method should examine all tinextedges appearing in the instance
model, which may contain an arbitrary numbenektedges. How-
ever, in case of the incremental technique, it is enough aonéxe
only suchnextedges that are actually removed or created in the
previous step. The number of such edges are always threésin th
example regardless of the size of the instance model.

Naturally, in case of dozens (hundreds) of transformatides,

a single application of a rule might need to recalculate tla¢chy

ing of several rules therefore, there is certainly a traffésetween

a cheap pattern matching phase and a more complex updag phas
| also intend to carry out experiments to assess this tréfdeee
tween traditional (batch or programmed) and incremengaigfor-
mations.

4. CONCLUSIONS

In this paper, | discussed the necessity of incremental imode
transformations in the context of the Model Driven Architee
(transformation-based derivation of concrete syntax fedmstract
syntax in visual modeling languages, consistent and o+ilghep-
date of UML diagrams, etc.). | discussed the concepts oémen-
tal model transformations based on the paradigm of grapisfoa-
mation. | plan to implement such an engine using Rete-alyos
and integrate it into Fujaba as a plug-in. Furthermore, |ldidike
to investigate the applicability of the incremental appioto vari-
ous model transformation techniques (including triplepgrgram-
mars).

5. ACKNOWLEDGMENT

I am very much grateful to Daniel Varrdo and Andy Schurr for
giving valuable comments and hints on incremental updatates
gies and/or the paper itself.

6. REFERENCES

[1] S. Burmester and H. Giese. The Fujaba real-time statecha
plugin. InProc. of the Fujaba Days 2003, Kassel, Germany
October 2003.

T. Clark, A. Evans, and S. Kent. The Metamodelling
Language Calculus: Foundation semantics for UML. In

H. Hussmann, editoRroc. Fundamental Approaches to
Software Engineering, FASE 2001 Genova, ltatyjume

2029 ofLNCS pages 17-31. Springer, 2001.

P. Domokos and D. Varrd. An open visualization framekvor
for metamodel-based modeling languagesPtoc. GraBaTs
2002, International Workshop on Graph-Based Tools
volume 72 ofENTCS pages 78-87, Barcelona, Spain,
October 7-8 2002. Elsevier.

H. Dorr. Efficient Graph Rewriting and Its Implementatjon
volume 922 ofLNCS Springer-Verlag, 1995.

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors.Handbook of Graph Grammars and Computing by
Graph Transformation. Vol. 2: Applications, Languages and
Tools World Scientific, 1999.

G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer.
Dynamic meta modeling: A graphical approach to the
operational semantics of behavioral diagrams in UML.
A. Evans, S. Kent, and B. Selic, editok$ML 2000 - The
Unified Modeling Language. Advancing the Standard
volume 1939 oLNCS pages 323-337. Springer, 2000.
C. Ermel, M. Rudolf, and G. Taentzén [5], chapter The
AGG-Approach: Language and Tool Environment, pages
551-603. World Scientific, 1999.

T. Fischer, J. Niere, L. Torunski, and A. Zundorf. Story
diagrams: A new graph rewrite language based on the
Unified Modeling Language. In G. R. G. Engels, editor,
Proc. of the 6th International Workshop on Theory and
Application of Graph Transformation (TAGNolume 1764
of LNCS Springer Verlag, 1998.

C. L. Forgy. RETE: A fast algorithm for the many
pattern/many object match proble#utificial Intelligence
1982.

A. Gupta and I. S. Mumick. Maintenance of materialized
views: Problems, techniques and applicatidB&EE
Quarterly Bulletin on Data Engineering; Special Issue on
Materialized Views and Data Warehousjri95.

R. Heckel. Compositional verification of reactive sysis
specified by graph transformation. In E. Astesiano, editor,

(2]

(3]

[4]
[5]

(6]

n

[7]

(8]

[9]

[10]

[11]

Fundamental Approaches to Software Engineering: First

International Conference, FASE’'98olume 1382 o NCS

pages 138-153. Springer-Verlag, 1998.

J. H. Jahnke, W. Schafer, J. P. Wadsack, and A. Zundorf

Supporting iterations in exploratory database reenginger

processesScience of Computer Programming

45(2-3):99-136, 2002.

J. Larrosa and G. Valiente. Constraint satisfactiggoathms

for graph pattern matchind/athematical Structures in

Computer Scienced 2(4):403-422, 2002.

J. Niere. Using learning toward automatic reenginmggrin

Proc. of the 2nd International Workshop on Living with

Inconsistency2001.

J. Niere and C. Schulte. Thinking in object structures:

Teaching modelling in secondary schoolsPlimceedings of

the ECOOP Workshop on Pedagogies and Tools for Learning

Object-Oriented Concept2002.

[16] Object Management Grou@VT: Request for Proposal for
Queries, Views and Transformations

[17] Object Management Groupleta Object Facility Version
2.0, April 2003.

[18] G. Rozenberg, editoHandbook of Graph Grammars and

Computing by Graph Transformation. Vol. 1: Foundations

World Scientific, 1997.

D. Varr6 and A. Pataricza. VPM: A visual, precise and

multilevel metamodeling framework for describing

mathematical domains and UMIournal of Software and

Systems Modelin@(3):187-210, October 2003.

D. Varro and A. Pataricza. Generic and meta-transéimoms

for model transformation engineering. iroc. UML 2004:

7th International Conference on the Unified Modeling

Language 2004. In press.

D. Varro, G. Varr6, and A. Pataricza. Designing the

automatic transformation of visual languag8sience of

Computer Programmingd4(2):205-227, August 2002.

[22] G. Varrb and D. Varrd. Graph transformation with
incremental updates. IAroc. 4th Int. Workshop on Graph
Transformation and Visual Modeling Techniqu2e04.

[23] A. Zundorf. Graph pattern-matching in PROGRESPhoc.
5th Int. Workshop on Graph Grammars and their Application
to Computer Scien¢&olume 1073 o£NCS pages 454-468.
Springer-Verlag, 1996.

[12]

[13]

[14]

[15]

[19]

[20]

[21]

