
Bidirectional Model Transformation with
Precedence Triple Graph Grammars

Marius Lauder?, Anthony Anjorin?, Gergely Varró??, and Andy Schürr

Technische Universität Darmstadt, Real-Time Systems Lab,
Merckstr. 25, 64283 Darmstadt, Germany

name.surname@es.tu-darmstadt.de

Abstract. Triple Graph Grammars (TGGs) are a rule-based technique
with a formal background for specifying bidirectional model transfor-
mation. In practical scenarios, the unidirectional rules needed for the
forward and backward transformations are automatically derived from
the TGG rules in the specification, and the overall transformation pro-
cess is governed by a control algorithm. Current implementations either
have a worst case exponential runtime complexity, based on the number
of elements to be processed, or pose such strong restrictions on the class
of supported TGGs that practical real-world applications become infeasi-
ble. This paper, therefore, introduces a new class of TGGs together with
a control algorithm that drops a number of practice-relevant restrictions
on TGG rules and still has a polynomial runtime complexity.

Keywords: triple graph grammars, control algorithm of unidirectional
transformations, node precedence analysis, rule dependency analysis

1 Introduction

The paradigm of Model-Driven Engineering (MDE) has established itself as a
promising means of coping with the increasing complexity of modern software
systems and, in this context, model transformation plays a central role [3]. As in-
dustrial applications require reliability and efficiency, the need for formal frame-
works that guarantee useful properties of model transformation arises. This is
especially the case for bidirectional model transformation, where defining a pre-
cise semantics for the automatic manipulation and synchronization of models
with a corresponding efficient tool support is quite challenging [4]. Amongst
the numerous bidirectional model transformation approaches surveyed in [18],
the concept of Triple Graph Grammars (TGGs) features not only solid formal
foundations [5,12] but also various tool implementations [7,11,12].

TGGs [16] provide a declarative, rule-based means of specifying the con-
sistency of source and target models in their respective domains, and tracking

? Supported by the ’Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

?? Supported by the Postdoctoral Fellowship of the Alexander von Humboldt Founda-
tion and associated with the Center for Advanced Security Research Darmstadt.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-31491-9_22

inter-domain relationships between model elements explicitly by automatically
maintaining a correspondence model. Although TGGs describe how triples con-
sisting of source, correspondence, and target models are simultaneously derived,
most practical software engineering scenarios require that source or target mod-
els already exist and that the models in the correspondence and the opposite
domain be consistently constructed by a unidirectional forward or backward
transformation. As a consequence, TGG tools that support bidirectional model
transformation (i) rely on unidirectional forward and backward operational rules,
automatically derived from a single TGG specification, as basic transformation
steps, and (ii) use an algorithm that controls which rule is to be applied on which
part of the input graph. As a TGG rule in the specification might require con-
text elements created by another TGG rule, the control algorithm must consider
these precedences/dependencies at runtime when (a) determining the order in
which graph nodes can be processed, and (b) selecting the rule to be applied.

In this paper, we introduce a node precedence analysis to provide a global
view on the dependencies in the source graph and to guide the transformation
process. Additionally, we combine the node precedence analysis with a rule de-
pendency analysis to support the control algorithm in determining the node
processing order and selecting the next applicable rule. This approach can now
exploit global dependency information, and perform an iterative, top-down res-
olution which is more expressive (can handle a larger class of TGGs) and fits
better into future incremental scenarios. Finally, we prove that the improved
control algorithm is still correct, complete, and polynomial.

Section 2 introduces fundamental definitions using our running example while
Sect. 3 discusses existing TGG batch algorithms. Sect. 4 presents our rule de-
pendency and node precedence analysis, used by the TGG batch algorithm pre-
sented in Sect. 5. Finally, Sect. 6 gives a broader overview of related bidirectional
approaches and Sect. 7 concludes with a summary and future work.

2 Fundamentals and Running Example

In this section, all concepts required to formalize and present our contribution
are introduced and explained using our running example.

2.1 Type Graphs, Typed Graphs and Triples

We introduce the concept of a graphs, and formalize models as typed graphs.

Definition 1 (Graph and Graph Morphism). A graph G = (V,E, s, t) con-
sists of finite sets V of nodes, and E of edges, and two functions s, t : E → V
that assign each edge source and target nodes. A graph morphism h : G → G′,
with G′ = (V ′, E′, s′, t′), is a pair of functions h := (hV , hE) where hV : V → V ′,
hE : E → E′ and ∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e)).

Definition 2 (Typed Graph and Typed Graph Morphisms).

type type´

g

TG

G G´
A type graph is a graph TG = (VTG, ETG, sTG, tTG).
A typed graph (G, type) consists of a graph G together with
a graph morphism type: G→ TG.
Given typed graphs (G, type) and (G′, type′), g : G→ G′ is
a typed graph morphism iff the diagram commutes.

These concepts can be lifted in a straightforward manner to triples of connected

graphs denoted as G = GS
hS←− GC

hT−→ GT as shown by [6,12]. In the following,
we work with typed graph triples and corresponding morphisms.

Example. Our running example specifies the integration of company structures
and corresponding IT structures. The TGG schema (Fig. 1) is the type graph
triple for our running example. The source domain is described by a type graph
for company structures: A Company consists of a CEO, Employees and Admins. In
the target domain, an IT structure (IT) provides PCs and Laptops in Networks

controlled by a Router. The correspondence domain specifies valid links between
elements in the different domains.

hasPC

IT Company

Network

PC

CEO

Admin

Employee

Router

C2I

E2P

A2R

em
pl

oy
s

has

routes

owns

source domain correspondence domain target domain

c2i

a2r

e2p

i2c

r2a

p2e

worksFor

contains

Laptop
hasLaptop

E2L e2l l2e

Fig. 1. TGG Schema for the integration of a company with its IT structure

A schema conform (typed graph) triple is depicted in Fig. 2. The company ES

has a CEO named Andy for whom administrator Ingo works. Additionally, Andy
employs Tony and Marius. The corresponding IT structure ES-IT consists of a
router WP53 for the network ES-LAN with a PC PC65 and a laptop X200.

ES:Company

Andy:CEO

Ingo:Admin

Marius:Employee

e1:employs

correspondence domain

Tony:Employee

ES-LAN:Network

WP53:Router

cl1:C2I

cl2:A2R

o:owns

target domain

e2:employs

w:worksFor

h:has

X200:Laptop
PC65:PC

r:routes

cl3:E2P

cl4:E2L

ci:c2i

ar:a2r

ep:e2p pe:p2e

ra:r2a

Ic:i2c

hp:hasPC
hl:hasLaptop

el:e2l le:l2e

c:contains

ES-IT:IT

source domain

Fig. 2. A TGG schema conform triple

2.2 Triple Graph Grammars and Rules

The simultaneous evolution of typed graph triples such as our example triple
(Fig. 2) can be described by a triple graph grammar consisting of transformation
rules. This is formalized in the following definitions.

Definition 3 (Graph Triple Rewriting for Monotonic Creating Rules).

G G´

L R

PO
m m´

⊆

⊆

A monotonic creating rule r := (L,R), is a pair of typed
graph triples such that L ⊆ R. A rule r rewrites (via adding
elements) a graph triple G into a graph triple G′ via a match

m : L→ G, denoted as G
r@m
 G′, iff m′ : R→ G′ is defined

by building the pushout G′ as denoted in the diagram.

Elements in L denote the precondition of a rule and are referred to as context
elements, while elements in R \ L are referred to as created elements.

Definition 4 (Triple Graph Grammar). A triple graph grammar TGG :=
(TG,R) consists of a type graph triple TG and a finite set R of monotonic
creating rules. The generated language (G∅ denotes the empty graph triple) is

L(TGG) := {G | ∃ r1, r2, . . . , rn ∈ R : G∅
r1@m1 G1

r2@m2 ...
rn@mn Gn = G}.

Example. The rules depicted in Fig. 3 build up an integrated company and
IT structure simultaneously. Rule (a) creates the root elements of the models
(a Company with a CEO and a corresponding IT), while Rule (b) appends ad-
ditional elements (an Admin and a corresponding Router with the controlled
Network). Rules (c) and (d) extend the models with an Employee, who can
choose a PC or a Laptop. We use a concise notation by merging L and R of
a rule, depicting context elements in black without any markup, and created
elements in green with a “++” markup.

c:Company it:IT cl:C2I ci:c2i ic:i2c
++ ++ ++ ++ ++

ceo:CEO

h:has

++
++

Rule (a)

a:Admin n:Network

cl1:C2I

cl2:A2R

c:Company

ceo:CEO r:Router

h:has

w:worksFor

ci:c2i ic:i2c

ar:a2r ra:r2a

r:routes

o:owns

++ ++ ++
++

++ ++
++

++
c:contains

++

it:IT

Rule (b)

e:Employee

cl1:C2I c:Company

ceo:CEO

p:PC cl2:E2P

it:IT
h:has

em:employs

ci:c2i ic:i2c

ep:e2p pe:p2e

c:contains

hp:hasPC

++ ++ ++
++ ++

++ ++

n:Network

Rule (c)

e:Employee

cl1:C2I c:Company

ceo:CEO

l:Laptop cl2:E2L

it:IT
h:has

em:employs

ci:c2i ic:i2c

el:e2l le:l2e

c:contains

hl:hasLaptop

++ ++ ++
++ ++

++ ++

n:Network

Rule (d)

Fig. 3. Rules (a)–(d) for the integration

2.3 Derived Operational Rules

The real potential of TGGs as a bidirectional transformation language lies in the
automatic derivation of operational rules. Such operational rules can be used
to transform a given source domain model to produce a corresponding target
domain model and vice versa. Although we focus in the following sections only
on a forward transformation, all concepts and arguments are symmetric and can
be applied analogously for the case of a backward transformation.

It has been proven by [5,16] that a sequence of TGG rules, which describes a
simultaneous evolution, can be uniquely decomposed into (and conversely com-
posed from) a sequence of source rules that only evolve the source model and
forward rules that retain the source model and evolve the correspondence and
target models. These operational rules serve as the building blocks used by a
control algorithm for unidirectional forward and backward transformation.

Definition 5 (Derived Operational Rules). Given a TGG = (TG,R) and
a rule r = (L,R) ∈ R, a source rule rS = (SL, SR) and a forward rule
rF = (FL,FR) can be derived according to the following diagram:

SR =

SL = LS

RS

∅

∅

∅

∅

σ ε ε

ε

ε

ε

ε
R =

L = LS

RS

LC

RC

LT

RT

σ γ τ

σL

σR

τL

τR

⊇

⊇

FR =

FL = RS

RS

LC

RC

LT

RT

id γ τ

σ◦σL

σR

τL

τR
⊇

source rule rS forward rule rF TGG rule r

Example. From Rule (c) of our running example (Fig. 3), the operational rules
rS and rF depicted in Fig. 4 can be derived. The source rule extends the source
graph by adding an Employee to an existing CEO in a Company, while the forward
rule rF transforms an existing Employee of a CEO by creating a new E2P link
and a PC in the corresponding Network.

e:Employee

c:Company

ceo:CEO

h:has

em:employs

++
++

e:Employee

cl1:C2I c:Company

ceo:CEO

p:PC cl2:E2P

it:IT
h:has

em:employs

ci:c2i ic:i2c

ep:e2p pe:p2e

c:contains

hl:hasPC

++ ++ ++
++ ++

++ ++

n:Network

e:Employee

cl1:C2I c:Company

ceo:CEO

p:PC cl2:E2P

it:IT
h:has

em:employs

ci:c2i ic:i2c

ep:e2p pe:p2e

c:contains

hl:hasPC

++ ++
++

++ ++

n:Network

source rule rS forward rule rF TGG rule r

Fig. 4. Source and forward rules derived from Rule (c)

3 Related Work on TGG Control Algorithms

Constructing forward (and conversely backward) transformations from opera-
tional rules requires a control algorithm that is able to determine a sequence of
forward rules to be applied to a given source graph. The challenge is to specify
a control algorithm that is correct (only consistent graph triples are produced),
complete (all consistent triples, which can be derived from a source or a target
graph, can actually be produced), efficient (runtime complexity scales polyno-
mially with the number of nodes to be processed), and still expressive enough
for real-world applications. To better understand this challenge, we discuss how
existing algorithms handle the source graph of our example triple (Fig. 2).

(I) Bottom-Up, Context-Driven and Recursive: An established strat-
egy is to transform elements in a bottom-up context-driven manner, i.e., to start
with a random node and check if all context nodes (dependencies) are already
transformed before the selected initial node can be transformed. If a context
node is not yet transformed, the algorithm transforms it, by recursively check-
ing and transforming its context. Context-driven algorithms always start their
transformation process with an arbitrarily selected node, without “knowing” if
this was a good choice, i.e., if the node can be transformed immediately or if
the input model as a whole is even valid. Such algorithms are correct, but, in
general, have problems with completeness due to wrong local decisions.

(I.a) Backtracking: A simple backtracking strategy could be employed to
cope with wrong local decisions. For our example, a first iteration over all nodes
would determine that only ES together with Andy can be transformed by applying
Rule (a). In a second iteration the algorithm would determine again in a trial
and error manner that only Ingo can be transformed next with Rule (b), as
neither Tony nor Marius can be transformed using Rule (c) or (d) (a Network is
missing in the opposite domain). Finally, Tony and Marius can be transformed.
This algorithm is correct and complete as shown in [5,16] but has exponential
runtime and is, therefore, impractical for real-world applications.

It is, however, possible to guarantee polynomial runtime of the context-driven
recursion strategy by restricting the class of supported TGGs appropriately as
in case of the following approaches.

(I.b) Functional Behavior: Demanding functional behavior [7,9] guar-
antees that the algorithm can choose freely between applicable rules at every
decision point and will always get the same result without backtracking. Al-
though functional behavior might be suitable for fully automatic integrations,
our experience with industrial partners [14,15] shows that user interaction or
similar guidance (e.g., configuration files) of the integration process is required
and leads naturally to non-functional sets of rules with certain degrees of free-
dom [13,14,15]. Please note that our running example is clearly non-functional
due to Rules (c) and (d), which can be applied to the same elements on the source
side, but create different elements on the target side. Therefore, depending on the
choice of rule applications, different target graphs are possible with our running
example. Demanding functional behavior is a strong restriction that reduces the
expressiveness and suitability of TGGs for real-world applications [12,17]. Nev-

ertheless, such a strategy has polynomial runtime and its applicability can be
enforced statically via critical pair analysis [6].

(I.c) Local Completeness: Algorithms that allow a non-functional set of
rules to handle a larger set of scenarios exploit the explicit traceability to cope
with non-determinism and non-bijectivity [19], while still guaranteeing complete-
ness for a certain class of TGGs. Hence, [12] demands local completeness, i.e.,
that a local decision between rules that can transform the current node cannot
lead to a dead-end. This means that a local choice (which can be influenced by
the user or some other means) might actually result in different output graphs,
which are, however, always consistent, i.e., in the defined language of the TGG
(L(TGG)). For our running example, we could start with an arbitrary node, e.g.,
Ingo. According to Rule (b), a CEO and a Company are required as context and
Rule (a) will thus be applied to ES and Andy. After processing Ingo, Tony and
Marius can be transformed in an arbitrary order, each time making a local choice
if a PC (Rule (c)) or Laptop (Rule (d)) is to be created. Furthermore, a dangling
edge check is introduced in [12] to further enlarge the class of supported TGGs
via a look-ahead to prevent wrong local decisions that would lead to “dangling”
edges that can no longer be transformed. Note that our running example is not
local complete, as it cannot be decided whether an Admin or an Employee should
be transformed first (Rules (c) and (d) demand an element on the target side
that can only be created by Rule (b)). For this reason, the algorithm might fail
if it decides to start with one of the Employees. In this case, Rules (c) and (d)
would state that ES and Andy are required as context and have to be transformed
first. This is, however, insufficient as a Network must be present in the target
domain as well. This context-driven approach fails here as transforming ES and
Andy with Rule (a) does not guarantee that the employees Marius and Tony can
be transformed. The problem here is that context-driven algorithms only regard
the given input graph for controlling the rule application and do not consider
cross-domain context dependencies such as Network in this case.

(II) Top-Down and Iterative: In contrast to context-driven recursive
strategies, which lack a global view on the overall dependencies and seem to
be unsuitable for an incremental synchronization scenario, algorithms can oper-
ate in a top-down iterative manner exploiting a certain global view on the whole
input graph instead of arbitrarily choosing a node to be transformed.

(II.a) Correspondence-Driven: The algorithm presented by [11] requires
that all TGG rules demand and create at least one correspondence link, i.e., a
hierarchy of correspondence links must be built up during the transformation.
The correspondence model can be used to store dependencies between links in
this case and is interpreted as a directed acyclic graph, which is used to drive
and control the transformation. This algorithm is both batch and incremental
but it is unclear from [11] for which class of TGGs completeness can be ensured.

(II.b) Precedence-Driven: A precedence-driven strategy defines and uses
a partial order of nodes in the source graph according to their precedence, i.e.,
the sorting guarantees that the nodes can only be transformed in a sequence
that is compatible with the partial order.

4 Rule Dependency and Precedence Analysis for TGGs

In this section, we present a node precedence analysis that provides a partial
order required for a precedence-driven strategy, together with a rule dependency
analysis that partially solves the problem of cross-domain context dependencies
caused by context elements in the domain under construction.

4.1 Rule Dependency Analysis

To handle cross-domain context dependencies, we utilize the concept of sequential
independence as introduced by [6], to statically determine which rules depend
on other rules. The intuition is that a rule r2 depends on another rule r1, if r1
creates elements that r2 requires as context.

Definition 6 (Rule Dependency Relation lR). Given rules r1 = (L1, R1)

L1

R1

L2

R2

D
f

h g ⊇

⊇

and r2 = (L2, R2), r2 is sequentially dependent on r1
iff a graph D and morphisms f, h exist, such that there
exists no morphism g as depicted to the right, i.e., at
least one element required by r2 (an element in L2), is
created by r1 (this element is in R1 but not in L1).
The precedence relation lR ⊆ R × R is defined for a given TGG as follows:

r1 lR r2 ⇔ r2 is sequentially dependent on r1.

In practice, lR can be calculated statically by determining all possible intersec-
tions of R1 and L2. If at least one element in an intersection is not in L1 then
r2 is sequentially dependent on r1 (i.e., r1 lR r2).

Example. For the TGG rules of our running example (Fig. 3), the following
pairs of rules constitute lR: Rule (a) lR Rule (b), Rule (a) lR Rule (c),
Rule (a) lR Rule (d), Rule (b) lR Rule (c), and Rule (b) lR Rule (d).

4.2 Precedence Analysis

The following definitions present our path-based node precedence analysis which
is used to topologically sort the nodes in a source graph and thus control the
iterative transformation process:

Definition 7 (Paths and Type Paths). Let G be a typed graph with type
graph TG. A path p between two nodes n1, nk ∈ VG is an alternating sequence
of nodes and edges in VG and EG, respectively, denoted as p := n1 · eα1

1 · n2 ·
. . . · nk−1 · e

αk−1

k−1 · nk, where αi ∈ {+,−} specifies if an edge ei is traversed from
source s(ei) = ni to target t(ei) = ni+1 (+), or in a reverse direction (–). A type
path is a path between node types and edge types in VTG and ETG, respectively.
Given a path p, its type (path) is defined as typep(p) := typeV (n1) ·typeE(e1)α1 ·
typeV (n2) · typeE(e2)α2 · . . . · typeV (nk−1) · typeE(ek−1)αk−1 · typeV (nk).

For our analysis we are only interested in paths that are induced by certain
certain patterns present in the TGG rules.

Definition 8 (Relevant Node Creation Patterns). For a TGG = (TG,R)
and all rules r ∈ R, where r = (L,R) = (LS ← LC → LT , RS ← RC → RT).
The set PathsS denotes all paths in RS (note that LS ⊆ RS).
The predicates contextS : PathsS → {true, false} and
createS : PathsS → {true, false} in the source domain are defined as follows:
contextS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n

′
r ∈ RS :

n’r
++

nr pr

(nr ∈ LS) ∧ (n′r ∈ RS \ LS), i.e., a rule r in R contains
a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

createS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n
′
r ∈ RS :

n’r
++

nr pr

++ (nr ∈ RS \LS)∧(n′r ∈ RS \LS), i.e., a rule r in R contains
a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

We can now define the set of interesting type paths, relevant for our analysis.

Definition 9 (Type Path Sets). The set TPathsS denotes all type paths of
paths in PathsS (cf. Def. 8), i.e., TPathsS := {tp | ∃ p ∈ PathsS s.t. typep(p) =
tp}. Thus, we define the restricted create type path set for the source domain
as TPcreateS := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ createS(p)},
and the restricted context type path set for the source domain as
TPcontextS := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ contextS(p)}.

In the following, we formalize the concept of precedence between nodes, indicating
that one node could be used as context when transforming another node.

Definition 10 (Precedence Function PFS). Let P := {l, .=, ·�·} be the set
of precedence relation symbols. Given a TGG = (TG,R) and the restricted type
path sets for the source domain TPcreateS ,TPcontextS . The precedence function for
the source domain PFS : {TPcreateS ∪ TPcontextS } → P is computed as follows:

PFS(tp) :=
l iff tp ∈ {TPcontextS \ TPcreateS }
.
= iff tp ∈ {TPcreateS \ TPcontextS }
·�· otherwise

Example. PFS for our running example consists of the following entries:
Rule (a): PFS(Company · has+ · CEO) =

.
= and PFS(CEO · has− · Company) =

.
=

Rule (b): PFS(Company · has+ · CEO · worksFor− · Admin) = l and
PFS(CEO · worksFor− · Admin) = l

Rules (c) and (d): PFS(Company · has+ · CEO · employs− · Employee) = l and
PFS(CEO · employs− · Employee) = l

Restriction. As our precedence analysis depends on paths in rules of a given
TGG, the presented approach requires TGG rules that are (weakly) connected
in each domain. Hence, considering the source domain, the following must hold:
∀ r ∈ R,∀ n, n′ ∈ RS : ∃ p ∈ PathsS between n and n′.

Based on the precedence function PFS , relations lS and
.
=
∗
S can now be defined

and used to topologically sort a given input graph and determine the sets of
elements that can be transformed at each step in the algorithm.

Definition 11 (Source Path Set). For a given typed source graph GS, the
source path set for the source domain is defined as follows:
PS := {p | p is a path between n, n′ ∈ VGS

∧ typep(p) ∈ {TPcreateS ∪TPcontextS }}.

Definition 12 (Precedence Relation lS). Given PFS, the precedence func-
tion for a given TGG, and a typed source graph GS. The precedence relation
lS ⊆ VGS

× VGS
for the source domain is defined as follows: n lS n′ if there

exists a path p ∈ PS between nodes n and n′ such that PFS(typep(p)) = l.

Example. For our example triple (Fig. 2), the following pairs constitute lS :
(ES lS Ingo), (ES lS Tony), (ES lS Marius), (Andy lS Ingo), (Andy lS Tony),
and (Andy lS Marius).

Definition 13 (Relation
.
=S). Given PFS, the precedence function for a given

TGG, and a typed source graph GS. The symmetric relation
.
=S⊆ VGS

× VGS

for the source domain is defined as follows: n
.
=S n

′ if there exists a path p ∈ PS
between nodes n and n′ such that PFS(typep(p)) =

.
=.

Definition 14 (Equivalence Relation
.
=

∗
S). The equivalence relation

.
=
∗
S is

the transitive and reflexive closure of the symmetric relation
.
=S.

Example. For our example triple (Fig. 2), the following equivalence classes
constitute

.
=
∗
S : {Andy, ES}, {Ingo}, {Tony}, and {Marius}.

Definition 15 (Precedence Graph PGS). The precedence graph for a given
source graph GS is a graph PGS constructed as follows:
(i) The equivalence relation

.
=
∗
S is used to partition VGS

into equivalence classes
EQ1, . . .EQn which serve as the nodes of PGS, i.e., VPGS := {EQ1, . . . ,EQn}.

(ii)The edges in PGS are defined as follows:
EPGS := {e | s(e) = EQi, t(e) = EQj : ∃ ni ∈ EQi, nj ∈ EQj with nilS nj}.

Example. The corresponding PGS constructed from our example triple is de-
picted in Fig. 5(a) in Sect. 5.

5 Precedence TGG Batch Algorithm

In this section, we present our batch algorithm (cf. Algorithm 1) and explain
how the introduced rule dependency and node precedence analyses are used
to efficiently transform a given source graph. For a forward transformation (a
backward transformation works analogously), the input for the algorithm is a
graphGS , the statically derived rule dependency relation lR, and the precedence
function for the source domain PFS .
Procedure transform determines a graph triple GS ← GC → GT as output.
The first step (line (2)) of the algorithm is to build the precedence graph PGS
according to Def. 15. Note that the procedure buildPrecedenceGraph will
terminate with an error if there is a cycle in the precedence graph and it is thus

Algorithm 1 Precedence TGG Batch Algorithm

1: procedure transform(GS ,lR,PFS)
2: PGS ← buildPrecedenceGraph(GS ,PFS)
3: while (PGS contains equivalence classes) do
4: readyNodes ← all nodes in equiv. classes in PGS without incoming edges
5: readyNodes ← sort readyNodes utilizing lR

6: for (node n in readyNodes) do
7: transformedNodes ← chooseAndApplyRule(n)
8: if transformedNodes 6= ∅ then
9: PGS ← remove all nodes in transformedNodes from PGS

10: break
11: end if
12: end for
13: if transformedNodes = ∅ then
14: terminate with error . Local Completeness Criterion violated
15: end if
16: end while
17: return GS ← GC → GT

18: end procedure

impossible to sort the elements of the source graph according to their depen-
dencies. Starting on line (3), a while-loop iterates over equivalence classes in
PGS until there are none left. In the while-loop, the set readyNodes contains all
nodes that can be transformed next, i.e., whose context elements have already
been transformed (line (4)). This set is determined by taking all nodes in the
equivalence classes of PGS , which do not have incoming edges (dependencies).
On line (5), readyNodes is sorted according to the partially ordered relation lR,
i.e., the rules that can be used to transform nodes in readyNodes are determined,
sorted with lR and reflected in readyNodes. This could be achieved by assigning
an integer to each rule according to the partial order of lR and then selecting
the largest number of all rules that translate n ∈ readyNodes for n.1 Next, a
for-loop iterates over the sorted readyNodes (line (6)). On line (7) the procedure
chooseAndApplyRule is used to determine and filter the rules as presented
in [12], allowing for user input or choosing arbitrarily from the final applica-
ble rules. If a rule could be successfully chosen and applied to transform n on
line (7), a non-empty set of transformedNodes is returned that is used to update
PGS on line (9). In this case, the for-loop is terminated and the while-loop is re-
peated with the updated and thus “smaller” PGS . If transformedNodes is empty,
the for-loop is repeated for the next node in readyNodes. If transformedNodes,
however, remains empty on line (13), we know that no node in readyNodes has
been transformed and that the algorithm has hit a dead-end. This can only
happen for TGGs that violate the Local Completeness Criterion (cf. algorithm
strategy I.c in Sect. 3) and are not in the class of supported TGGs.

1 If it is not possible to sort readyNodes due to cycles in lR, this additional analysis
supplies no further information and readyNodes remains unchanged.

Example. To demonstrate the presented algorithm, we apply a forward trans-
formation for the source graph of our example triple depicted in Fig. 2. Given as
input is GS , the rule dependency relation lR (depicted as a graph in Fig. 5(b)),
and the precedence function PFS (cf. example for Def. 10). On line (2), the prece-
dence graph PGS for GS , depicted in Fig. 5(a), is built. PGS is acyclic, hence the
transformation can continue.

ES:Company Andy:CEO

Ingo:Admin Marius:Employee Tony:Employee

(a)

Rule (a)

Rule (c)
Rule (b)

Rule (d)

(b)

Fig. 5. PGS for the input graph (left) and relation lR for all rules (a)–(d) (right)

On line (4), the set readyNodes is determined, consisting in this case of the nodes
ES and Andy from a single equivalence class of PGS . On line (5), only one rule can
be used to transform both nodes and, therefore, the sorting is trivial. On line (6)
ES or Andy is chosen randomly, and in either case, the only candidate rule is
Rule (a) (Fig. 3), which can be directly applied on line (7). Again in either case,
transformedNodes contains both nodes as Rule (a) transforms ES and Andy simul-
taneously. PGS is updated on line (9) to consist of three unconnected equivalence
classes Ingo, Tony, and Marius, and the for-loop terminates. In the second iter-
ation through the while-loop, readyNodes now contains all these three elements
and will be sorted according to lR on line (5). This time, the sorting reveals that
Ingo must be transformed before Tony and Marius as Rules (c) and (d) both
require a Network as context in the target domain, which can only be created by
applying Rule (b) first, i.e., Rule (b)lRRule (c), Rule (b)lRRule (d) (Fig. 5(b)).
The for-loop in line (6), therefore, starts with Ingo. Applying Rule (b) (line (7))
puts Ingo in transformedNodes, PGS is updated on line (9) to now contain only
Tony and Marius and the for-loop is terminated with the break on line (10).
In the third iteration, readyNodes contains Tony and Marius, and no sorting is
needed as Rules (c) and (d) do not depend on each other. On line (6) Tony could
be randomly selected first and (arbitrarily or via user input) Rule (c) could
be chosen to be applied on line (7). After updating PGS again and breaking
out of the for-loop, only Marius remains untransformed. Similar to the penulti-
mate iteration, Rule (d) could be selected and applied this time. Updating PGS
on line (9) empties the precedence graph, which terminates the while-loop on
line (3). The created graph triple depicted in Fig. 2 is returned on line (17).

Formal Properties of the Precedence TGG Batch Algorithm

In the following we argue that the presented algorithm retains all formal prop-
erties stipulated in [17] and proved for the context-driven algorithm of [12].

Definition 16 (Correctness, Completeness and Efficiency).
Correctness: Given a source graph GS, the transformation algorithm either
terminates with an error or produces a graph triple GS ← GC → GT ∈ L(TGG).
Completeness: For all triples GS ← GC → GT ∈ L(TGG), the transformation
algorithm produces a consistent triple GS ← G′C → G′T ∈ L(TGG) for the input
source graph GS.
Efficiency: According to [17], a TGG batch transformation algorithm is efficient
if its runtime complexity class is O(nk), where n is the number of nodes in the
source graph to be transformed and k is the largest number of elements to be
matched by any rule r of the given TGG.

All properties are defined analogously for backward transformations.

Theorem. Algorithm 1 is correct, complete and efficient for any source-local
complete TGG [12].

Proof.
Correctness: If the algorithm returns a graph triple, i.e., does not terminate
with an error, it was able to determine a sequence of source rules r1S , r2S , . . . , rnS

that would build the given source graph GS and, thus, the corresponding se-
quence of forward rules r1F , r2F , . . . , rnF

that transform the given source graph
(Def. 5). The Decomposition and Composition Theorem of [5] guarantees that
it is possible to compose the sequence r1S , r2S , . . . , rnS

, r1F , r2F , . . . , rnF
to the

sequence of TGG rules r1, r2, . . . , rn which proves that the resulting graph triple
is consistent, i.e., GS ← GC → GT ∈ L(TGG). ut
Completeness: Showing completeness is done in two steps: First of all, we
consider the algorithm without the additional concept of rule dependencies via
the relation lR.

The remaining algorithm transforms nodes with the same concepts (e.g.,
dangling edge check) as the previous algorithm in [12], but iteratively in a fixed
sequence, for which we guarantee, by definition of the precedence graph (cf. 15),
that the context of every node is always transformed first. As the context-driven
strategy taken by the algorithm in [12] is able to transform a model by arbitrarily
choosing an element and transforming its context elements in a bottom-up man-
ner (cf. Sect. 3), the fixed sequence taken by our algorithm must be a possible
sequence that could be chosen by the algorithm in [12]. Algorithm 1 can, there-
fore, be seen as forcing the context-driven algorithm to transform elements in one
of the possible sequences, from which it can arbitrarily choose. This shows that
all completeness arguments from [12] can be transferred to the new algorithm,
i.e., Algorithm 1 is complete for the class of local complete TGGs.

In a second step, we now consider the algorithm with the additional relation
lR and, therefore, the capability of handling specifications with cross-domain

context dependencies as in our running example. We have shown in Sect. 3 that
the algorithm presented in [12] cannot cope with such specifications as they vio-
late the local-completeness criterion. We can, hence, conclude that Algorithm 1
is more expressive than the previous context-driven algorithm as it can handle
certain TGGs that are not local complete. We leave the precise categorization
of this new class of TGGs to future work. ut
Efficiency: Building the precedence graph PGS on line (2), essentially a topo-
logical sorting, is realizable in O(nl), where l is the maximum length of relevant
paths according to PFS . Note that l can be at most of size k (the largest number
of elements to be matched by any rule r of the given TGG), thus we can estimate
this with O(nk). The while-loop starting on line (3) iterates through PGS , which
will be decreased every time by at least one node from an equivalence class. The
while-loop is, thus, run in the worst-case (equivalence classes in PGS all consist-
ing of exactly one node) n times. In the while-loop, we select equivalence classes
without incoming edges in line (4). This can be achieved in O(n) by iterating
through PGS . Building the topological order on line (5) requires inspecting all
nodes in readyNodes and their appropriate rules in O(n). The for-loop starting
on line (6) iterates in the worst-case over all nodes in readyNodes where updating
PGS on line (9), requires traversing all successor nodes which is at most n − 1
(i.e., O(n)). As argued in [12], transforming a node, i.e., checking all conditions
and performing pattern matching (line (7)), is assumed to run in O(nk) (cf.
Def. 16). Summarizing, we obtain: nk + n · (n+ n+ n · (nk + n)) ∈ O(nk). ut

As TGGs are symmetric [8], all arguments can be transferred analogously to
backward transformations.

6 Related Work on Alternative Bidirectional Languages

Complementing our related work on TGG batch algorithms (cf. Sect. 3), we now
focus on alternative bidirectional languages that share and address similar chal-
lenges as TGGs but take fundamentally different strategies. As bidirectionality is
a challenge in various application domains and communities, there exists a sub-
stantial number of different approaches, formalizations and tools [18]. The lenses
framework is of particular interest when compared to TGGs, as [8] has shown
that incremental TGGs can be viewed as an implementation of a delta-based
framework for symmetric lenses. Although we have presented a batch algorithm
for TGGs, our ultimate goal is to provide a solid basis for an efficient incremen-
tal TGG implementation. As compared to existing lenses implementations for
string data or trees such as Boomerang [2], TGGs are better suited for MDE
where model transformations operate on complex graph-like structures. Similar
to TGGs, GRoundTram, a bidirectional framework based on graph transforma-
tions [10], aims to support model transformations in the context of MDE. There
are, however, a number of interesting differences: (i) While GRoundTram de-
mands a forward transformation from the user and automatically generates a
consistent backward transformation, TGGs (in this respect similar to lenses)

provide a language from which both forward and backward transformations are
automatically derived. Both approaches face a different set of non-trivial chal-
lenges. (ii) GRoundTram uses UnQL+, which is based on the graph query alge-
bra UnCAL, with a strong emphasis on compositionality, while TGGs are rule-
based algebraic graph transformations. (iii) GRoundTram maintains traceability
in an implicit manner while TGGs create explicit typed traceability links between
integrated models, which can be used to store extra information for incremental
model synchronization or manual reviews. In contrast to both Boomerang and
GRoundTram, TGGs adhere to the fundamental unification principle in MDE
(everything is a model) and as such, a bidirectional model transformation spec-
ified as a TGG is a model which is conform to a well defined TGG metamodel.
Unification has wide-reaching consequences including enabling a natural boot-
strap and higher order transformations. Finally, TGGs served as an inspiration
and basis for the standard OMG bidirectional transformation language QVT
and can be regarded as a valid implementation thereof [18].

7 Conclusion and Future Work

In this paper, an improvement of our previous TGG batch algorithm was pre-
sented. We introduced a novel node precedence analysis of TGG specifications
combined with a rule dependency analysis to further support the batch transfor-
mation control algorithm in determining the node processing order. The result is
an iterative batch transformation strategy in a top-down manner with increased
expressiveness. We have shown that this algorithm runs in polynomial runtime
and complies to the formal properties for TGG implementations according to
[17], and, therefore, is well-suited for real-world applications where efficiency is
almost as important as the reliability of the expected result.

As a next step, we shall implement the presented algorithm as an extension
of our current batch implementation in our metamodeling tool eMoflon2[1], and
start working on an efficient incremental TGG algorithm based on our rule
dependency and node precedence analyses. Finally, providing a rule checker that
decides at compile time if a given TGG can be transformed by our algorithm is
a crucial task to improve the usability of our tool.

References

1. Anjorin, A., Lauder, M., Patzina, S., Schürr, A.: eMoflon : Leveraging EMF and
Professional CASE Tools. In: Heiß, H.U., Pepper, P., Schlingloff, H., Schneider, J.
(eds.) Proc. of MEMWe ’11. LNI, vol. 192. GI (2011)

2. Bohannon, A., Foster, J., Pierce, B., Pilkiewicz, A., Schmitt, A.: Boomerang :
Resourceful Lenses for String Data. ACM SIGPLAN Notices 43(1), 407–419 (2008)

3. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

2 http://www.moflon.org

http://www.moflon.org

4. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidirec-
tional Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.) Proc.
of ICMT ’09, LNCS, vol. 5563, pp. 260–283. Springer (2009)

5. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving
Bidirectional Model Transformations. In: Dwyer, M., Lopes, A. (eds.) Proc. of
FASE ’07, LNCS, vol. 4422, pp. 72–86. Springer (2007)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. (Monographs in Theoretical Computer Science. An EATCS Se-
ries.). Springer (2006)

7. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap between Formal
Semantics and Implementation of Triple Graph Grammars. In: Lúcio, L., Vieira,
E., Weißleder, S. (eds.) Proc. of MoDeVVA ’10. pp. 19–24. IEEE (2010)

8. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correct-
ness of Model Synchronization Based on Triple Graph Grammars. In: Whittle, J.,
Clark, T., Kühne, T. (eds.) Proc. of MODELS ’11, LNCS, vol. 6981, pp. 668–682.
Springer (2011)

9. Hermann, F., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and
Complete Model Transformations Based on Triple Graph Grammars. In: Bézivin,
J., Soley, M.R., Vallecillo, A. (eds.) Proc. of MDI ’10. ICPS, vol. 482, pp. 22–31.
ACM (2010)

10. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: An Integrated
Framework for Developing Well-Behaved Bidirectional Model Transformations. In:
Alexander, P., Pasareanu, C., Hosking, J. (eds.) Proc. of ASE ’11. pp. 480–483.
IEEE (2011)

11. Kindler, E., Rubin, V., Wagner, R.: An Adaptable TGG Interpreter for In-Memory
Model Transformations. In: Schürr, A., Zündorf, A. (eds.) Proc. of Fujaba Days ’04.
pp. 35–38 (2004)

12. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Schürr, A., Lewerentz, C.,
Engels, G., Schäfer, W., Westfechtel, B. (eds.) Graph Transformations and Model
Driven Enginering, LNCS, vol. 5765, pp. 141–174. Springer (2010)

13. Königs, A.: Model Transformation with Triple Graph Grammars. In: Proc. of
MTIP ’05 (2005)

14. Lauder, M., Schlereth, M., Rose, S., Schürr, A.: Model-Driven Systems Engineer-
ing: State-of-the-Art and Research Challenges. Bulletin of the Polish Academy of
Sciences, Technical Sciences 58(3), 409–422 (2010)

15. Rose, S., Lauder, M., Schlereth, M., Schürr, A.: A Multidimensional Approach for
Concurrent Model Driven Automation Engineering. In: Osis, J., Asnina, E. (eds.)
Model-Driven Domain Analysis and Software Development, pp. 90–113. IGI (2011)

16. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Tinhofer, G. (ed.) Proc. of WG ’94. LNCS, vol. 903, pp. 151–163. Springer (1994)

17. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) Graph Transformations, LNCS, vol. 5214,
pp. 411–425. Springer (2008)

18. Stevens, P.: A Landscape of Bidirectional Model Transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) Proc. of GTTSE ’07, LNCS, vol. 5235, pp. 408–424.
Springer (2008)

19. Stevens, P.: Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. SoSym 9(1), 7–20 (2008)

	Bidirectional Model Transformation with Precedence Triple Graph Grammars
	Introduction
	Fundamentals and Running Example
	Type Graphs, Typed Graphs and Triples
	Triple Graph Grammars and Rules
	Derived Operational Rules

	Related Work on TGG Control Algorithms
	Rule Dependency and Precedence Analysis for TGGs
	Rule Dependency Analysis
	Precedence Analysis

	Precedence TGG Batch Algorithm
	Related Work on Alternative Bidirectional Languages
	Conclusion and Future Work

