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1 Introduction

Despite the large variety of existing graph transformation tools, the implementation of their graph trans-
formation engine typically follows the same principle. In this respect, first a matching occurrence of
the left-hand side (LHS) of the graph transformation rule is being found by some sophisticated graph
pattern matching algorithm based on constraint satisfaction (like [LV02] in AGG [ERT99]) or local
searches driven by search plans (PROGRE®@6], Dorr's approach [Br95], FUJABA [FNTZ98],
VIATRAZ2 [VVF05]). Then potential negative application conditions (NAC) are checked that might elim-
inate the previous occurrence. Finally, the engine performs some local modifications to add or remove
graph elements to the matching pattern, and the entire process starts all over again.

Since graph pattern matching leads to the subgraph isomorphism problem that is known to be NP-
complete in general, this step is considered to be the most crucial in the overall performance of a graph
transformation engine. However, as the information on a previous match is lost when a new transforma-
tion step is initiated, the complex and expensive graph pattern matching phase is restarted from scratch
each time.

Our previous experiments based on benchmarking for graph transformation [VSV05] and practical
experience in model-based tool integration based on triple graph grammars [KS06] have clearly demon-
strated that traditional non-incremental pattern matching can be a performance bottleneck.

Some basic incremental approaches have already been successfully applied in various graph transfor-
mation engines (see Sec. 6 for a summary) to provide partial support for typical model transformation
problems. However, PROGRES [SWZ99] only treated attributes in an incremental way, while the Rete-
based approach of [BGT91] lacked the support for negative application conditions and inheritance.

In the current paper, we propose foundational data structures, algorithms, and experiments for incre-
mental graph pattern matching where all complete matchings (and also non-extensible partial matchings)
of a rule are stored explicitly in a matching tree according to a given search plan. This matching tree is
updated incrementally triggered by the modifications of the instance graph. Negative application con-
ditions are handled uniformly by storing all matchings of the corresponding patterns. Furthermore, we
keep track if a matching of the negative condition pattern invalidates the matching of the positive pat-



2 2 TOOL INDEPENDENT MODEL AND PATTERN REPRESENTATION

tern. As the main conceptual novelty of the paper, we introduce a notification mechanism by maintaining
registries for quickly identifying those partial matchings, which are candidates for extension or removal
when an edge is inserted to or deleted from the model.

Our aim in this paper is to propose data structures and algorithms in a general way independent of
existing graph transformation tools, while the adaptations to such GT tools are subject of future plans.

Architectural Overview In Figure 1, an architectural overview is provided on the envisaged workflow
of an incremental pattern matching engine. Note that a main driver of this architecture is to allow easy
adaptation to eX|st|ng GT englnes
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Operation. In the operation phase (which is the main focus of the current paper), the incremental
pattern matching engine listens to the notifications sent by the GT engine on model modifications, and
keeps track of the changes in the matching tree. As a consequence, pattern matching queries coming
from the GT engine are executed in constant time.

2 Tool independent model and pattern representation

First we introduce a uniform and tool-independent representation for models, metamodels and graph
patterns informally, using the standard CWM variant [PCTMO02] of the object-relation mapping as a
running example. This transformation was captured by a set of graph transformation rules in [VSV05].

2.1 Informal introduction

Graph transformation rules Graph transformation is a rule and pattern-based paradigm frequently
used for describing model transformation. A graph transformation rule a graph transformation rule
contains a left-hand side grapHS, a right-hand side grapkHS, and (one or more) negative application
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Figure 2: Tool-independent representation of precondition patterns of GT rules

condition graph&NAC connected taHS.

Theapplicationof a rule to ahost (instance) mod@ replaces a matching of thedS in M by an image
of the RHS. The most critical step of graph transformation is graph pattern matching, i.e. to find such
a matching of tha.HS pattern inM which is not invalidated by a matching of the negative application
condition grapiNAC, which prohibits the presence of certain nodes and edges.

Example. A graph transformation rul€lassRule which transforms an (unmapped) UML cla8s
resided in a UML package into a relational database taldlén the corresponding schergds depicted
in Fig. 2(a) using the compact Fujaba representation [FNTZ98].

2.2 A graph representation for models and patterns

In the paper, we use a common, tool independent graph-based framework for representing instance mod-
els and graph patterns of rules in a uniform way. Both models and patterns are described by directed
labelled graphs where a node is further either a constant or a variable. A metamodel of our graph repre-
sentation is presented in Fig. 3(a).
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Figure 3: Metamodel for models, patterns and search plans
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Example. Figure 5(c) presents a tool independent graph representationimgtance modelBoth the
classes of the metamodel (suchRaskage Schemaetc.) and the objects of the instance model (such as
p, s, c1, etc.) uniformly appear as constant nodes. Traditional instance-of relation between nodes is also
represented by edges using dashed (light grey) edges withtigdgel. Other edge labels (likeQ and
ref ) are defined by the associations of the metamodel.

Figure 2(b) presents the tool independent representation of the precondition of the graph transformation
rule ClassRule (depicted in Fig. 2(a)). TheHS pattern (shown by??) has three variables for model-
level elementsy, p, ¢), three constants for metamodel-level eleme8thémaPackage Clasg, three
type edges, oneef edge, and on&Oedge. Similarly, the (reducedAC pattern (shown by g)
consists of variables, t, the constantable 1ref edge and iype edge.

Note that in our graph representatiaiiS andNAC patterns share nodes minimally required as inter-
faces between the two graphs. For instance, variatdea shared node, thus it is contained by both
patterns.

Definitions. Formally, an(edge-)labelled directed grapi = (N¢, Eq, srca, trga, lg) consists of a
set of nodesVg = Vi U C (WhereVg; are variables and; are constants witl'g N C = 0), a set
of edgesEg, and a label morphistiy; : I : Eqg — &,, a source morphismrceg : Eq — Vg and a
target morphisnirgs : Fq — V.

A model )M is a labelled directed graph consisting of only constant nodes {ire.= 0). Note that
inheritance can be handled in this representation by multiple outgyrgedges from a model node to
all (type-consistent) metamodel nodes.

A patternP is a labelled directed graph. Traditionally, a negative application condities) (HHT96]
is treated as a graph morphism, which mapsitHe patternP to aNAC pattern N, formally, nac :

P — N. A reducedNAC pattern( is a subgraph oNAC pattern/V, which is derived by keeping
exactly those edges & (together with their source and target nodes), where at least its source or target
node is inN \ P. Shared nodes$ are such nodes of reducBiAC pattern( that are contained by both
patternsP and(@. A precondition patterrPRE = (P, N, nac) consists of the.HS patternP, theNAC
pattern/V, and the mappingac between them. In the paper, we only use reduegd patterns to ensure

that the common edges #fand NV are tested only once during pattern matching. Note that we also omit
the wordreducedin the following.

2.3 Graph pattern matching and search plans

During graph pattern matching, each variable of a graph pattern is bound to a constant node in the model
such that this binding (matching) is consistent with edge labels, and source and target nodes of the target
model. A subpattern is a subgraph of a graph pattern. A (complete) matching of subpattern is a partial
matching of the entire pattern.

A search plan for a pattern prescribes an order in which pattern variables are to be mapped during
pattern matching. At each step, the match of tkie subpattern is extended to a match of khe 1th
subpattern by binding the next variable. A (simplified) metamodel of search plans is depicted in Fig. 3(b).

Example. For instance, a matching of the LHS pattern (#gen Fig. 2(b)) in model Fig. 5(e) isC =

The purpose oF;s andQ;s will be explained later in Sec. 2.3.



cl, P =p, S =s. A matching of the NAC pattern (s&g, in Fig. 2(b)) in model Fig. 5(g) isC =c1, T =
t.

We define a search plan for thelS pattern by fixing orders on variables (d)(2) p, (3) s. A search
plan for theNAC pattern is (A)t, (B) c.

Based on these search plans, subpatternsi6fare shown by areas’, P, P>, P; with solid (grey)
borders in Fig. 2(b). SubpatternsiAC areQq, Q 4, @ g, drawn by dashed (red) borders. Note tRat
andQ@g denote the empty matchings for theS and theNAC, respectively.

The EOedge connecting to p is an incoming condition edge of pattefy, while thetype edge
connectingp to Packagedn the same pattern represents an outgoing edge, since they are edges of pattern
P,, and they lead to and out of the second variapledf the corresponding search plan of thieS
pattern.

Definitions. A matchingm for a patternP in a model)M (denoted bym!) is a label preserving total
graph morphismn : P — M, which means that (i) each variable Bfshould be mapped to a constant
of M, (ii) each constant of should be mapped to the same constantfinand (iii) for each edge
of patternP with labell(e), there should exist an edge(e) with labell(e) in model M, such that the
matching is source and target consistent (h€(.src(e)) = src(m(e)) andm(trg(e)) = trg(m(e))). A
matching for a precondition pattefPRE in a model)M is a matching for it HS pattern, provided that
no matchings should exist for it$AC pattern.

A search planrp for pattern P is an ordering of variable®p of patternP, in which they are to be
mapped during pattern matching. In the following, we suppose that a search plan already exists for each
pattern, and the notatior, will denote thekth variable of a patter® according to the corresponding,
fixed search plamnp.

Given a search planp for patternP, the kth subpatternP; is a subgraph of” where nodesv, =
C U V;, consist of all constants and the fifstvariablesV), = (J,,<, { vi } of patternP, and edges
consist of all edges of pattef@ whose source and target nodes are both included in the selected set of
nodes.Incoming (outgoing) condition edge$ the kth subpatterrP, are the edges leading into (out of)
variablev,. Without loss of generality, in the following, we consistently wse denote the number of
variables in a (complete) pattefd),. Consequently, a patter}, with n variables has+1 subpatterns
(i.e., Py, ..., Py).

A partial matching for patternP, is a matching for subpatterfi,. A maximal partial matchinds a
non-extensible partial matching, i.e. pattétp,; cannot be matched.

3 Data Structures for Incremental Pattern Matching

In this section, we present the data structures needed for the efficient storage of partial matchings. Algo-
rithms of the incremental pattern matching engine, which operate on these data structures are discussed
later in Sec. 4.

Class diagrams depicting the different aspects of data structures being used by the incremental pattern
matching engine are shown in Fig. 4.
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Matching and matching tree. A Matching (denoted by a numbered circle in Fig. 5) represents a
partial matching for a pattern. It contains a setBafiding s. Each binding defines a mapping of a
Variable to aConstant

For each patter®,,, a matching treds maintained, which consists of matchings being organized into
a tree structure alongarent-child edges (depicted by dashed arcs in Fig. 5). idut of the tree
denotes the empty matching for the corresponding pattern, i.e., when none of the variables have been
bound. Eachevelof the tree (denoted by light grey areas in Fig. 5) contains matchings for a subpattern
of patternP,,. The mapping of subpatterns to tree levels is guided by the search plan having been fixed
for the pattern. Aree noden levelk (i.e., having distancé from the root) represents a matching of the
kth subpattern being specified by the search plaBachleaf represents a maximal partial matching for
the pattern. By supposing that the patténhasn variables, each leaf in (the deepest possible) level
represents a complete matching of the pattern.

Example. Sample models of Figs. 5(c), 5(e), and 5(g) and the corresponding data structure contents
are presented in Figs. 5(d), 5(f), and 5(h), respectively. Figs. 5(d), 5(f), and 5(h) show matching trees in
their top-right corner, they depict binding arrays at the bottom, while notification arrays are presented in
their left part.

Fig. 5(d) contains two matching trees representing the partial matchingsloi heattern and thslIAC
pattern, respectively. Matchingsand2 denote empty matchings. Matchigds located on the first tree
level of theLHS pattern, thus, it is a matching for subpatté?n which contains a single binding that
maps variable to constantl Matching3 is a child of matching, as the latter can be extended by the
mapping of variable.

In the context of Fig. 5(d), matchingis a maximal partial matching as it cannot be further extended,
due to the lack of outgoingOedges leading out afl. On the other hand, matchidgis not a maximal
partial matching in Fig. 5(f) as it can be extended e.g., by mapgingp ands to sto get matching.

This means a complete matching for th¢S pattern as matchingis located on the lowest tree levil.

Binding arrays. Matchings are physically stored as one-dimensional binding arrays, which are in-
dexed by the variables. An entry in a binding array stores variable—constant pairs in the corresponding
matching. When one matching is an ancestor of another one, their binding arrays can be shared in order
to reduce memory consumption as the ancestor matching contains a subset of the bindings of the descen-
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dant matching. Consequently, for each pattBgrwith n variables, a binding arraypatch[n] of size
n is used. In figures, binding arrays are connected to matchings by solid black lines.

Example. Since theLHS pattern has 3 variables, matchings of th¢S tree refer to binding arrays
having 3 entries as it is shown e.g., in the lower part of Fig. 5(f). Each column of the binding array of
the LHS matching tree represents a binding, which shows the constant (in the lower row) to which the
variable (in the upper row) has been mapped. Note that the array that contains mapjirdsp to
p ands to s can be shared by matchings3, 4, and5, as they only consist of the first 0, 1, 2, and 3
bindings of the array, respectively.

Invalidation edges. Invalidation edges represent the invalidation of partial matchings.efsacaused
by complete matchings of AC. In the following, we simply use thick (red) arcs for denoting invalida-
tion.

Example. The red invalidation edge of Fig. 5(h) connecting matchings3 means that matchingis
a complete matching for theAC pattern, which invalidates matchidgas both map the shared variable
c to the same constanil. As long as matching is invalidated (as shown by the incoming invalidation
edge), it cannot be part of a complete matching forltH8 pattern, which fact is marked by the empty
subtree rooted at matchirdg

Notification arrays. Since the graph transformation engine sends notifications on model changes, no-
tification related data structures (shown in Fig. 4(b)) are also needed. The incremental pattern matching
engine has a singidNSERT and a singldOELETEnotification array consisting of notification entries.

e An entry in the insert notification arraig a pair consisting of almsertkey  (with label , end
and attributeisSrc ) and a list ofMatching s to be notified. If an edge with label e.lab
connectinge.src to e.trg is added to the model, thdvlatching s of such insert notifica-
tion array entries are notified whosesertKey s are of the fornfe.src,e.lab,*] and
[*,e.lab,e.trg] . We use notationgend,label,*] and [*,label,end] for cases
whenend denotes the sourcésGrc=true ) and targeti€Src=false ) end of an edge with
labellabel , respectively.

e An entry in the delete notification arrais a pair consisting of @eleteKey and a list of
Matching s to be notified. If an edge with labele.lab connectinge.src toe.trg isre-
moved from the model, thedatching s of such delete naotification array entry is notified whose
DeleteKey is of the form[e.src,e.lab,e.trg]

Example. Sample notification arrays are presented e.g., in the left part of Fig. 5(d).INSBERT
notification array has 4 entries of which the first is triggered byltisertkey [*,type,Class]
and refers to matchingy This entry means that matchindhas to be notified, whentgpe edge leading
to Classis inserted into the model. Similarly, the first entry in DELETEnotification array means that
matching3 must be notified, if théype edge connectinglto Classis deleted.



Query index structure. A query index structurénot shown in figures) is also defined for each precon-
dition pattern to speed-up the queries of complete matchings initiated by the GT tool that use the services
of the incremental pattern matching approach.

4 Operations for Incremental Pattern Matching

During the incremental operation phase, the matching tree is maintained by four main methods of class
Matching

1. Theinsert() method is responsible for the possible extension of the current partial matching
for proper subpatter#’;, to create a new partial matching for subpatt&n ;.

2. The validate() method is responsible for the recursive extension of insert operations to all
(larger) subpatterns.

3. Thedelete() method removes the whole matching subtree rooted at the current matching for
subpatternp.

4. Theinvalidate() method is responsible for the recursive deletion of all children matchings
of the current matching.

These methods are called by the pattern matching engine adigs modification evengsrive from
the model repository.

¢ Insert edge notificationf an edgee with labele.lab connecting constantssrc toe.trg is
added to the model, then tivesert() method of clasdatching is invoked (i) with param-
etere.trg on every matching as defined by entNSERT[e.src,e.lab,*] , and (ii) with
parametee.src  on every matching as defined by entNSERT[*,e.lab,e.trg]

e Delete edge notificatiorlf an edgee with labele.lab connecting constantssrc  to e.trg
is removed from the model, thedelete() = method of clasdatching is invoked on every
matching being notified by entiyELETE[e.src,e.lab,e.trg]

4.1 Incremental operations on an example

Prior to the detailed discussion of the algorithms, we first exemplify the process by using our running
example of Fig. 5. Let us suppose that a clebs added to packagein the model by user interaction
initiated by the system designer. The tool-independent representation of the model is notified about that
in two steps. First a natification arrives about the insertion typpg edge connectingl to Class(see

Fig. 5(c)) followed by the insertion of aBOedge connectinglto p (see Fig. 5(e)). Modifications are
denoted by thick lines.
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Step 1. At the insertion of aype edge connectingl to Class the pattern matching engine looks up
entries retrieved by insert keysl, type,*] and[*,type,Class]

The latter entry triggers the possible extension of the empty matchimg mapping variablec to
constantl by invoking theinsert() method on matching with parametecl. As this binding is a
matching for pattermPy, (i) a new matching is created and added to the(matching) tree as a child of
matchingl, and (ii) the binding: to c1is recorded.

Then matching is added to the delete notification array with delete fadytype,Class] . This
means that whenever thge edge fronclto Class(i.e., the edge that has been just added) is removed,
this matching should be deleted.

Effects of adding a new matching to the tree are recursively extended to find matchings for larger
subpatterns by callingalidate . To record the fact that whenever an edge with |d&@leading out
of clor with labeltype leading toPackages added to the moddt the future matching3 can be further
extended, corresponding new entries are added to the insert notification array pointing to ngatching

As also thecurrent content of the modatay extend matching, we initiate the possible extensions of
this matching by the@ropagate method, which checks the existence of at leasBBedges leading
out of cL.? As no such edges exist in our example, the algorithm terminates with the matching tree
presented in Fig. 5(d).

Step 2. WhenEOedge connectinglto pis inserted (as shown by the thick line of Fig. 5(e)), matching
3 is first extended to a new matchiady mapping variabl@ to constanp and by executing a sequence
of insert() andvalidate() method calls as shown in Fig. 6.
This time, matching extension is

sd New complets matching of LHS | propagated to another new matchihg
by assignings to s by invoking the
insert  method on matching with
parameters, as the current model al-
ready containedef andtype edges

3-P1:Matching 4-PZ:Makching 5-P3:Matching

N | | _
g inser | | connectingp to s ands to Schemare-

L1t validateld | spectively.
. Mlm | In addi_tion, both new matchings gre
r.:g.;"rtill '£|?||1 Izdb-gnle -t appropriately registered in both the in-
EQ From "c1" ta "p" Liddiy 'datL sert and delete notification arrays, and

the binding array is updated accord-
Complets rat ingly: The gorrgsponding matching
(repr. by P3) tree is shown in Fig. 5(f).
| | At this point, matchings represents
a complete matching for thieHS pat-
Figure 6: Sequence diagram showing edge insertion into t@en, so the GT rul€lassRule can be
LHS pattern applied.

Complete matching

2Note that the insert key generation and the possible further extension of maBchiegguided by the condition edges of
the one larger subpatte.



4.2 Insert method 11

Step 3. The result of applying the GT rulelassRule on matchings can be observed in Fig. 5(qg) after
the insertion of some 13 edges, processed one by one by the pattern matching engine.
Let us suppose that the newf edge betweerl andtl is processed first, which is followed by
the insertion of ottype edge connectingl to Table The first edge causes no modifications in data
structures as no appropriate insert keys appear in the insert notification array.
At the second edge insertion, matching notified by invoking itdnsert  method with parametet,
which creates matchingsand?7. As the latter is a complete matching of thaC pattern@ g, matching
3 must be invalidated by deleting all its descendant matchings in the tree. When all the 13 edges are
added, the data structure will reflect the situation in Fig. 5(h).

4.2 Insert method

The insert method (shown by Alg. 1) is responsible for the possible extension of the current partial
matching for proper subpattef?), to compute a new partial matching for subpatt&n; . If the current
matching represents a complete matching for pattéynthen the method immediately terminates as
matchings of patteri®,, can never be further extended.

Algorithm 1 Theinsert() method of clas$/atching

public void insert(Constant c) {
/[ If the current matching is NOT a complete matching
if (this .spNode.nextNode != null ) {

/[ If all condition edges of the next SP node can be matched
if (checkExistenceOfEdges(c)) {
/I Create a new matching
Matching newM = new Matching();
/I Copy current matchings to the new matching
newM.copyMatchings( this , c);
/I New delete entries for matchings of condition edges
newM.addDeleteEntries();
if (newM.invalidatedBy.isEmpty()) {
/I Extend the new matching if not invalidated by NAC
newM.validate();

P}

e The insert method is invoked with a constantwhich is supposed to be the mapping of the
next variablevy, ; belonging to search plan in a ngwtential matchingwhich also contains all
mappings defined by the current matching for all variables of subpafern

e We first check the mappings of the edges for the potential matching. Since the current matching
already specifies a graph morphism, we know that all edges of subp&jtdrave been correctly
mapped, thus, only mappings of incoming and outgoing condition edges of subpatigrae-
fined by the potential matching are required to be checked bghbekExistenceOfEdges
method.
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4 OPERATIONS FOR INCREMENTAL PATTERN MATCHING

If all edge mappings are correct (and tiieeckExistenceOfEdges returns true), the potential
matching can be considered as a new matching for subpa®ern As such, a new matching is
created. Then by invokingopyMatchings on the new matching (i) mappings of the current
matching are cloned, (ii) variable,,; is bound toc, and (iii) the new matching is inserted into
the matching tree as a child of the current matching.

The new matching is added to the delete notification array at all locations defined by the mappings
of incoming and outgoing condition edges of subpatten; .

If the new matching is being invalidated by any complete matchings oNa@ypatterns?,,,, then
the insert method terminates.

Otherwise, theralidate() method is invoked on the new matching trying to recursively extend
this matching.

Validate method

The validate method (shown in Alg. 2) is responsible for the recursive extension of insert operations. Itis
invoked either (i) when a new matching has been inserted into the matching tree and its further extensions
have to be checked (see Alg. 1), or (ii) when extensions of the current matching possibly become valid
due to the removal of a complete matching of an embedd&d pattern (by theinvalidate()

method).

Algorithm 2 Thevalidate() method of clas$/atching

public
if
if

void validate() {
(this .spNode.nextNode == null ) {
(this .spNode.pattern.negOf == null ) {
/I If this is a COMPLETEmatching of a LHS pattern
/' Add to a set of valid matchings of the pattern

this .spNode.pattern.matchings.add( this );
} else {
Il If this is a COMPLETEmatching of a NAC pattern
for (Matching m: findInvalidatedMatchings())
m.invalidate();
}
} else {

I
I

If this is NOTa complete matching
Add insert  entries

addInsertEntries();

I

Propagate it to find a matching of the next variable

propagatelnsert();

If this is a complete matching forleHS patternpP,, then the current matching is inserted into the
guery index structurthis.spNode.pattern.matchings to be accessed by the GT tool.
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e If this is a complete matching for MAC pattern@),,, then all partial matchingsof the LHS
pattern that map the shared variable to the same constant as the current matching (which is returned
by findInvalidatedMatchings ) have to be invalidated.

e For each incoming condition edgeof the one largersubpatternP;,; with labele.lab con-
necting nodee.src to next variable, the current matching is added to the insert notifica-
tion array at locatiofml[e.src],e.lab,*] by theaddInsertEntries method invoked.
Similarly, for each outgoing condition edge the same method adds the current matching to
INSERT[*,e.lab,m[e.trg]]

¢ Insertion is attempted to be propagated to a matching for subpdesn In this sense, an arbi-
trary (incoming or outgoing) condition edgds selected from subpattefry, ;. If an outgoing (in-
coming) condition edge has been chosen, then we lookup all label-preserved modeh&diges
leading out of (to) the matched target (source) nofetrg]  (m[e.src] ) of condition edges,
and try to extend the current matching by mapping the next varibldespNode.nextNode
to the source (target) node of all chosen model edgedge which is represented by the invoca-
tion of theinsert  method with constanhEdge.src .

4.4 Delete and invalidate methods

Delete and invalidate methods implement the inverse operation of insert and validate methods, respec-
tively.

Thedelete() = method removes the whole subtree rooted at the current matching by (i) removing all
matchings of the subtree from the notification arrays and the query index structure, and (ii) erasing all
“dangling” invalidation links.

Theinvalidate() method deletes the whole subtmecludingthe current matching, thus, it starts
recursive deletion at its children. Another difference is that in case of validate method, the current
matching is only removed from the insert notification array, and it remains in the delete notification
array.

If the current matching is a complete matching of la#S then the invalidate method removes the
matching from the query index structure. If it is a complete matching NA& pattern, then it (re-
)validates all matchings invalidated previously by the current matching. On the implementation level,
delete and invalidate methods mutually invoke each other, while descending in the tree for recursive
matching removal. The Java code for thelete()  andinvalidate() methods (as well as all
auxiliary methods) are listed in Appendix A.

5 Experimental evaluation
In order to assess the performance of our incremental approach, we performed measurements on the

object-relational mapping benchmark example [VFV06]. As a reference for the measurements, we se-
lected Fujaba [FNTZ98] as it is among the fastest non-incremental GT tools.
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By using the terminology of [VSV05], graph transformation rules, the initial model and the transfor-
mation sequence have to be fixed up to numerical parameters in order to fully specify a test set.

e1:AssocEnd c1:Class ed:AssocEnd
‘CF ‘EO CF

0 [ orPackage | 0

SFT SFT|
‘r.z:cmsla{ e5:AssocEnd [ *+la23:Assoc | e6:AssocEnd |E|c3:0hss‘

Figure 7: Initial model of the test case for the= 3 case

The structure of the initial model is presented in Fig. 7 forihe- 3 case. The model has a sin@lack-
age that containgV classes, which is the only numerical parameter of the test sefAsAetiation and
2 AssociationEnds are added to the model for each paiiGiisses, thus initially, we haveV(N — 1) /2
Associations and N (N — 1) AssociationEnds. Associations are also contained by the singtackage as
expressed by the corresponding links of tygie EachAssociationEnd is connected to a corresponding
Association andClass by aCF andSFT link, respectively.

The object-relational mapping can be specified by 4 graph transformation rules, which describe how to
generate the relational database equivalentackages, Associations, Classes, andAssociationEnds,
respectively. (Due to space restrictions, the exact benchmark specification is omitted from the paper. The
reader is referred to [VFVO06].) The transformation sequence consists of the application of these rules on
each UML entity in the order specified above.

Measurements were performed on a 1500 MHz Pentium machine with 768 MB RAM. A Linux kernel
of version 2.6.7 served as an underlying operating system. The time results are shown in Table 1.

Class| Model TS Fujaba Incremental
size length| match update match update
# # # msec msec msec msec
° 10] 1342 146 0.201 0.479 0.026 5.439
Z 30] 12422 1336 0.287 0.052 0.023 56.116]
é 50] 34702 3726 0.171 0.012 0.021 221.955
° 100] 139402 14951 0.278 0.011 0.042 2067.462
° 10 1342 146 0.937 0.148 0.019 1.665
'Iz 30] 12422 1336 2.488 0.101 0.032 4.510]
é 50] 34702 3726 3.371 0.032 0.022 6.849
® 100] 139402 14951 11.959 0.030 0.039 26.684
% 10] 1342 146 0.875 0.107 0.043 0.592
% 30] 12422 1336 3.896 0.045 0.016 1.108
ug 50] 34702 3726 5.975 0.025 0.023 1.948
§ 100] 139402 14951 24.057 0.028 0.068 9.353

Table 1: Experimental results
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The head of a row shows the name of the rule on which the average is calculated. (Note that a rule
is executed several times in a run.) The second colubisg) depicts the number of classes in the
run, which is, in turn, the runtime paramet®’rfor the test case. The third and fourth columns show
the concrete values for the model size (meaning the number of model nodes and edges) and the trans-
formation sequence length, respectively. Heads of the remaining columns unambiguously identify the
approach having been used. Valuesistch andupdate columns depict the average times needed for a
single execution of a rule in the pattern matching and updating phase, respectively. Execution times were
measured on a microsecond scale, but a millisecond scale is used in Table 1 for presentation purposes.
Our experiments can be summarized as follows.

e In accordance with our assumptions, the incremental engine executes pattern matching in constant
time even in case of large models, while the traditional engine shows significant increase when the
LHS of the pattern is large as in caseaskocEndRule.

¢ Incremental techniques by their nature suffer time increase in the updating phase due to (i) the
bookkeeping overhead caused by the additional data structures, and (ii) the fact that even the in-
sertion of a single edge may generate (or delete) a significant amount of matchings. Its detrimental
performance effects are reported in the updating phastagfRule, when also the matchings of
the other rules have to be refreshed. On the other hand, the traditional engine executes the update
phase in constant time as it can be expected.

e By taking into account both phases in the analysis, it may be stated that the incremental strategy
provides a competitive alternative for traditional engines as the total execution times of the incre-
mental approach are of the same order of magnitude in case of the frequently applied rules (i.e.,
assocRule andassocEndRule).

e The benefits of the incremental approach are the most remarkable (i) when rules have complex
LHS graphs as the pattern matching of Fujaba gets slow in this case and (ii) when the dependency
between rules is weak as this leads to a fast updating phase in incremental engines.

As a consequence, we may draw that the incremental approach is a primary candidate for graph trans-
formation tools where (i) complex transformation rules are used and (ii) where all matchings of a rule
have to be accessed rapidly, which is a typical case for analysis/verification tools.

6 Related Work

Incremental updating techniques have been widely used in different fields of computer science. Now we
give a brief overview on incremental techniques that could be used for graph transformation.

Rete networks.[BGT91] proposed an incremental graph pattern matching technique based on the idea
of Rete networks [For82], which stems from rule-based expert systems. In their approach, a network
of nodes is built at compile time from thedS graph to support incremental operation. Each node
performs simple tests on the entities (i.e., nodes, edges, partial matchings) arriving to its input(s). If the
test succeeds, the node groups entities into compound ones, which are then put into its output. On the
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top level of the network, there are nodes with a single input that let such objects and links of a given
type to pass that have just been inserted to or removed from the model. On intermediate levels, network
nodes with two inputs appear, each representing a subpatternigfighgraph. These nodes try to build
matchings for the subpattern from the smaller matchings located at the inputs of the node. On the lowest
level, the network has terminal nodes, which do not have outputs. They represent thetehiatern.

Entities reaching the terminals represent complete matchings faH®e

The technique of [BGT91] shows the closest correspondance to our approach, as matching levels can
be considered as nodes in the Rete network. However, it is not a one-to-one mapping as one matching
level in our approach corresponds to several Rete nodes. As a consequence, Rete-based solutions have
more bookkeeping overhead as they store information at the inputs of nodes in local memories and they
use more nodes.

Two significant consequences can be drawn from this similarity. (i) All techniques (e.g., the handling
of common parts of differentHS patterns at the same network node [MBO0Q]) that have already been
invented for Rete-based solutions are also applicable to our approach. (ii) The idea of notification arrays
can speed-up traditional Rete-based approaches used in a graph transformation context as these arrays
help identifying those partial matchings that may participate in the extension of the matching. Thus, itis
subject to our future investigations.

PROGRES. The PROGRES [SWZ99] graph transformation tool supports an incremental technique
called attribute updates [Hud87]. At compile-time, an evaluation order of pattern variables is fixed by
a dependency graph. At run-time, a bit vector having a width that is equal to the number of pattern
variables, is maintained for each model node expressing if a variable can be mapped to a given node.

When model nodes are deleted, some validity bits are set to false according to the dependency graph
denoting the termination of possible partial matchings. In this sense, PROGRES (just like our approach)
performs immediate invalidation of partial matchings. On the other hand, validation of partial matchings
are only computed on request (i.e., when a matching for the LHS is requested), which is a disadvantage
of the incremental attribute updating algorithm.

As an advantage, PROGRES has a low-level bookkeeping overhead (i.e., some extra bits for model
nodes), the index structures maintained for partial matchings (i.e., a set of bit vectors) are also smaller.

View updates. In relational databases, materialized views, which explicitly store their content on the
disk, can be updated by incremental techniques. Counting and DRed algorithms [GMS93] first calculate
the delta (i.e., the modifications) for the view by using the initial contents of the view and base tables and
the deltas of base tables. Then the calculated deltas are performed on the view.

In contrast to our approach, view updating algorithms are more flexible as they use a run-time evaluation
order for delta calculation, and they can provide both lazy and eager style updates being specified when
aview is created.

[VFVO06] proposed an approach for representing graph pattern matching in relational databases in
form of views. Although some initial research (reported in [VV04]) has been done for incremental
pattern matching in relational databases, this solution suffers from the inadequate support of incremental
algorithms by the underlying databases and the strong restrictions being posed on the structures of the
select query that defines the view.
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7 Conclusion

In the current paper, we proposed data structures and algorithms for incremental graph pattern matching
where all matchings (and non-extensible partial matchings) of a rule are stored explicitly in a matching
tree. This matching tree is updated incrementally triggered by the modifications of the instance graph.
Negative application conditions are handled uniformly by storing all matchings of the corresponding
patterns. As the main added value of the paper, we introduced a notification mechanism by maintaining
additional registries for quickly identifying those partial matchings, which are candidates for extension
or removal, and thus, which have to be notified when an edge is inserted to or deleted from the model.

Limitations. We have also identified certain limitations of the presented algorithms. First of all, the
efficiency of the incremental pattern matching engine highly depends on the selection of search plans as
even a single edge insertion (or deletion), which affect matchings located at upper levels of the tree (i.e.,
near to its root) may trigger computation intensive operations. As a consequence, further investigations
on creating good search plans for the incremental pattern matching engine have to be carried out.

Our current solution provides a suboptimal solution, when patterns contain a large humber of loop
edges. This is related to the fact that our approach currently stores only the matchings of the nodes but
not the edges (i.e., edges do not have identifiers), which assumption can be relaxed in the future.

At first glance, it can be strange that NACs are handled independently of the LHS (i.e., all matchings
of the NAC are calculated). The goal of our approach is to support the reusability of patterns when the
same pattern can be used once in the LHS and once as a NAC, or the same NAC is a negative condition
for multiple LHSs (as in VIATRAZ2 [BV06]).

Future work. In the order of importance, the following tasks would appear on our todo list for the
future: (i) investigation on the applicability of Rete-networks in our incremental approach, (ii) generation
of search plans that are optimized for incremental pattern matching, (iii) the optimal handling of bulk
inserts, which may significantly accelerate the initialization phase, (iv) the implementation of the pattern
merger and optimizer module to be able to share matchings across matching trees, and (v) the incremental
handling of path expressions.
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A Additional Algorithms

public void delete() {
/I Remove current matching from parent matching
this .parent.children.remove( this );
this .parent = null ;
removeDeleteEntries();
for (Matching m: this .invalidatedBy) {
m.invalidates.remove( this );
}
this .invalidatedBy.clear();
invalidate();
}
public void invalidate() {
if (this .spNode.nextNode == null ) {
if (this .spNode.pattern.negOf == null ) {
/I If this is a COMPLETEmatching of a LHS pattern
/I Remove this from valid matchings of the pattern
this .spNode.pattern.matchings.remove( this );
} else {
/I If this is a COMPLETEmatching of a NAC pattern
for (Matching m: this .invalidates)
m.validate();
}
} else {
/I If this is NOT a complete matching
/I Remove insert  entries
removelnsertEntries();
propagateDelete();
}
}
public void copyMatchings(Matching currM, Constant c) {
this .spNode = currM.spNode.nextNode;
/[ If the current matching has no submatchings
if  (currM.children.isEmpty()) {
/I The new match is set to the current match
this .match = currM.match;
}
else {
/[ The new match is clone from the current match
this .match = (HashMap<Variable,Constant>)
currM.match.clone();
}
this .match.put( this .spNode.currVar, c);
/I Set new matching as child of the current matching
this .parent = currM;
currM.children.add( this );

A ADDITIONAL ALGORITHMS



public void propagatelnsert() {
/I Assert that there are unmatched nodes in the search plan
assert this .spNode.nextNode != null ;
/I Select the next node in the search plan
SearchPlanNode spNext = this .spNode.nextNode;
/I Select an arbitrary (incoming or outgoing ) condition edge
/[ of the current variable of the SP node
Edge e = spNext.condEdges.iterator().next();
/[ If the pattern edge is an outgoing condition edge
if (e.src == spNext.currVar) {
/I We lookup the matched target node
Constant mTrg = match.get(e.trg);
/I For each incoming edge leading to the matched trg node
for (Edge mEdge: mTrg.in) {
/I which is label - preserving
if (mEdge. label == e. label ) {
/I Extend the matching by mapping the current variable
/I to the source node
insert((Constant) mEdge.src);
}
}
}

/[ If the pattern edge is an incoming condition edge
else if (e.trg == spNext.currVar) {
/I We lookup the matched source node
Constant mSrc = match.get(e.src);
/[ For each outgoing edge leaving the matched src node
for (Edge mEdge: mSrc.out) {
/I which is label - preserving
if (mEdge. label == e. label ) {
/I Extend the matching for the current variable
insert((Constant) mEdge.trg);
}
}
}
}

public void manipulatelnsertEntries( int op) {
/I Assert that there are unmatched nodes in the search plan
assert this .spNode.nextNode != null ;
/I For each condition edge at the NEXT level
/I connected to an already matched node at the CURRENTIevel
SearchPlanNode spNext = this .spNode.nextNode;
for (Edge e: spNext.condEdges) {
Insertkey key = null ;
if (e.src == spNext.currVar) {
/I We lookup the matched target node
Constant mTrg = match.get(e.trg);
/I A new insert key is created : [*&, e.lab, nfe.trg ]]
key = new InsertKey(mTrg, e. label , Insertkey.TRG);
}

else if (e.trg == spNext.currVar) {
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/I We lookup the matched source node
Constant mSrc = match.get(e.src);
/I A new insert key is created : [nfe.src], e.lab, ¥
key = new InsertKey(mSrc, e. label , Insertkey.SRC);
}
if (op == ADD_ENTRY)
/I A new insert entry is created with key

PatternMatcher.insertEntries.get(key).add( this );
else if (op == REMOVE_ENTRY)

/I An existing insert entry with key is removed

PatternMatcher.insertEntries.get(key).remove( this );

}
}

public boolean checkExistenceOfEdges(Constant c) {
/I Assert that there are unmatched nodes in the search plan

assert this .spNode.nextNode != null ;
/I Select the next node in the search plan
SearchPlanNode spNext = this .spNode.nextNode;

/[ For all (incoming or outgoing ) condition edge of
/I current  variable of the SP node
for (Edge e: spNext.condEdges) {
/[ If the pattern edge is an outgoing condition edge
if (e.src == spNext.currVar) {
/I We lookup the matched target node
Constant mTrg = match.get(e.trg);
/I For each incoming edge leading to the matched trg node
for (Edge mEdge: mTrg.in) {
/Il which is label - preserving
if (/(mEdge. label == e.label && mEdge.src == c)) {
return false ;

}
}
}
/I If the pattern edge is an incoming condition edge
else if  (e.trg == spNext.currVar) {

/I We lookup the matched source node
Constant mSrc = match.get(e.src);
/I For each outgoing edge leaving the matched src node
for (Edge mEdge: mSrc.out) {
/Il which is label - preserving
if (/(mEdge. label == e.label && mEdge.trg == c)) {
return false ;
}

}
H}

return true ;



