
1

Incremental Graph Pattern Matching

Gergely Varr ó*and Dániel Varr ó**and Andy Schürr***
*Department of Computer Science and Information Theory

Budapest University of Technology and Economics
**Department of Measurement and Information Systems

Budapest University of Technology and Economics
***Real-Time Systems Lab

Technical University of Darmstadt

1 Introduction

Despite the large variety of existing graph transformation tools, the implementation of their graph trans-
formation engine typically follows the same principle. In this respect, first a matching occurrence of
the left-hand side (LHS) of the graph transformation rule is being found by some sophisticated graph
pattern matching algorithm based on constraint satisfaction (like [LV02] in AGG [ERT99]) or local
searches driven by search plans (PROGRES [Zün96], D̈orr’s approach [D̈or95], FUJABA [FNTZ98],
VIATRA2 [VVF05]). Then potential negative application conditions (NAC) are checked that might elim-
inate the previous occurrence. Finally, the engine performs some local modifications to add or remove
graph elements to the matching pattern, and the entire process starts all over again.
Since graph pattern matching leads to the subgraph isomorphism problem that is known to be NP-

complete in general, this step is considered to be the most crucial in the overall performance of a graph
transformation engine. However, as the information on a previous match is lost when a new transforma-
tion step is initiated, the complex and expensive graph pattern matching phase is restarted from scratch
each time.
Our previous experiments based on benchmarking for graph transformation [VSV05] and practical

experience in model-based tool integration based on triple graph grammars [KS06] have clearly demon-
strated that traditional non-incremental pattern matching can be a performance bottleneck.
Some basic incremental approaches have already been successfully applied in various graph transfor-

mation engines (see Sec. 6 for a summary) to provide partial support for typical model transformation
problems. However, PROGRES [SWZ99] only treated attributes in an incremental way, while the Rete-
based approach of [BGT91] lacked the support for negative application conditions and inheritance.
In the current paper, we propose foundational data structures, algorithms, and experiments for incre-

mental graph pattern matching where all complete matchings (and also non-extensible partial matchings)
of a rule are stored explicitly in a matching tree according to a given search plan. This matching tree is
updated incrementally triggered by the modifications of the instance graph. Negative application con-
ditions are handled uniformly by storing all matchings of the corresponding patterns. Furthermore, we
keep track if a matching of the negative condition pattern invalidates the matching of the positive pat-

2 2 TOOL INDEPENDENT MODEL AND PATTERN REPRESENTATION

tern. As the main conceptual novelty of the paper, we introduce a notification mechanism by maintaining
registries for quickly identifying those partial matchings, which are candidates for extension or removal
when an edge is inserted to or deleted from the model.
Our aim in this paper is to propose data structures and algorithms in a general way independent of

existing graph transformation tools, while the adaptations to such GT tools are subject of future plans.

Architectural Overview In Figure 1, an architectural overview is provided on the envisaged workflow
of an incremental pattern matching engine. Note that a main driver of this architecture is to allow easy
adaptation to existing GT engines.

Preprocessing.In a preprocessing phase, pat-

Figure 1: Architectural overview of incremental pat-
tern matching

terns are first extracted from graph transforma-
tion rules (based upon the LHS and NAC of
the rules). Since these patterns may be overlap-
ping, this initial set of graph patterns can be op-
timized to normalized to minimize between pat-
terns. Afterwards, search plans are derived for
the optimized pattern set, and template-based
code generation is applied to implement the
matching tree tailored to the actual GT rules.
Initialization. In the initialization phase, the

matching tree is constructed based upon a given
initial model and its metamodel. While this ini-
tialization step can be time consuming, this is
only performed once, prior to the actual trans-

formations.
Operation. In the operation phase (which is the main focus of the current paper), the incremental

pattern matching engine listens to the notifications sent by the GT engine on model modifications, and
keeps track of the changes in the matching tree. As a consequence, pattern matching queries coming
from the GT engine are executed in constant time.

2 Tool independent model and pattern representation

First we introduce a uniform and tool-independent representation for models, metamodels and graph
patterns informally, using the standard CWM variant [PCTM02] of the object-relation mapping as a
running example. This transformation was captured by a set of graph transformation rules in [VSV05].

2.1 Informal introduction

Graph transformation rules Graph transformation is a rule and pattern-based paradigm frequently
used for describing model transformation. A graph transformation rule a graph transformation rule
contains a left-hand side graphLHS, a right-hand side graphRHS, and (one or more) negative application

2.2 A graph representation for models and patterns 3

(a) ClassRule

Schema Package Class Table

s p c t

typetype type type

ref EO ref

P0

P1P2P3 123

Q0

QA

QB

AB

(b) Its tool independent representation

Figure 2: Tool-independent representation of precondition patterns of GT rules

condition graphsNAC connected toLHS.
Theapplicationof a rule to ahost (instance) modelM replaces a matching of theLHS in M by an image

of the RHS. The most critical step of graph transformation is graph pattern matching, i.e. to find such
a matching of theLHS pattern inM which is not invalidated by a matching of the negative application
condition graphNAC, which prohibits the presence of certain nodes and edges.
Example. A graph transformation ruleClassRule which transforms an (unmapped) UML classC

resided in a UML packageP into a relational database tableT in the corresponding schemaS is depicted
in Fig. 2(a) using the compact Fujaba representation [FNTZ98].

2.2 A graph representation for models and patterns

In the paper, we use a common, tool independent graph-based framework for representing instance mod-
els and graph patterns of rules in a uniform way. Both models and patterns are described by directed
labelled graphs where a node is further either a constant or a variable. A metamodel of our graph repre-
sentation is presented in Fig. 3(a).

(a) Models and patterns (b) Search plans

Figure 3: Metamodel for models, patterns and search plans

4 2 TOOL INDEPENDENT MODEL AND PATTERN REPRESENTATION

Example. Figure 5(c) presents a tool independent graph representation of aninstance model. Both the
classes of the metamodel (such asPackage, Schema, etc.) and the objects of the instance model (such as
p, s, c1, etc.) uniformly appear as constant nodes. Traditional instance-of relation between nodes is also
represented by edges using dashed (light grey) edges with labeltype . Other edge labels (likeEO, and
ref) are defined by the associations of the metamodel.
Figure 2(b) presents the tool independent representation of the precondition of the graph transformation

rule ClassRule (depicted in Fig. 2(a)). TheLHS pattern (shown byP3
1) has three variables for model-

level elements (s, p, c), three constants for metamodel-level elements (Schema, Package, Class), three
type edges, oneref edge, and oneEOedge. Similarly, the (reduced)NAC pattern (shown byQB)
consists of variablesc, t, the constantTable, 1 ref edge and 1type edge.
Note that in our graph representation,LHS andNAC patterns share nodes minimally required as inter-

faces between the two graphs. For instance, variablec is a shared node, thus it is contained by both
patterns.
Definitions. Formally, an(edge-)labelled directed graphG = (NG, EG, srcG, trgG, lG) consists of a

set of nodesNG = VG ∪ CG (whereVG are variables andCG are constants withVG ∩ CG = ∅), a set
of edgesEG, and a label morphismlG : lG : EG → En, a source morphismsrcG : EG → VG and a
target morphismtrgG : EG → VG.
A modelM is a labelled directed graph consisting of only constant nodes (i.e.,VM = ∅). Note that

inheritance can be handled in this representation by multiple outgoingtype edges from a model node to
all (type-consistent) metamodel nodes.
A patternP is a labelled directed graph. Traditionally, a negative application condition (nac) [HHT96]

is treated as a graph morphism, which maps theLHS patternP to a NAC patternN , formally, nac :
P → N . A reducedNAC patternQ is a subgraph ofNAC patternN , which is derived by keeping
exactly those edges ofN (together with their source and target nodes), where at least its source or target
node is inN \ P . Shared nodesS are such nodes of reducedNAC patternQ that are contained by both
patternsP andQ. A precondition patternPRE = (P,N, nac) consists of theLHS patternP , theNAC
patternN , and the mappingnac between them. In the paper, we only use reducedNAC patterns to ensure
that the common edges ofP andN are tested only once during pattern matching. Note that we also omit
the wordreducedin the following.

2.3 Graph pattern matching and search plans

During graph pattern matching, each variable of a graph pattern is bound to a constant node in the model
such that this binding (matching) is consistent with edge labels, and source and target nodes of the target
model. A subpattern is a subgraph of a graph pattern. A (complete) matching of subpattern is a partial
matching of the entire pattern.
A search plan for a pattern prescribes an order in which pattern variables are to be mapped during

pattern matching. At each step, the match of thekth subpattern is extended to a match of thek + 1th
subpattern by binding the next variable. A (simplified) metamodel of search plans is depicted in Fig. 3(b).
Example. For instance, a matching of the LHS pattern (seeP3 in Fig. 2(b)) in model Fig. 5(e) is:C =

1The purpose ofPis andQis will be explained later in Sec. 2.3.

5

c1, P = p, S = s. A matching of the NAC pattern (seeQ2 in Fig. 2(b)) in model Fig. 5(g) is:C = c1, T =
t.
We define a search plan for theLHS pattern by fixing orders on variables (1)c, (2) p, (3) s. A search

plan for theNAC pattern is (A)t, (B) c.
Based on these search plans, subpatterns ofLHS are shown by areas (P0, P1, P2, P3 with solid (grey)

borders in Fig. 2(b). Subpatterns ofNAC areQ0, QA, QB, drawn by dashed (red) borders. Note thatP0

andQ0 denote the empty matchings for theLHS and theNAC, respectively.
The EOedge connectingc to p is an incoming condition edge of patternP2, while the type edge

connectingp to Packagein the same pattern represents an outgoing edge, since they are edges of pattern
P2, and they lead to and out of the second variable (p) of the corresponding search plan of theLHS
pattern.
Definitions. A matchingm for a patternP in a modelM (denoted bymP) is a label preserving total

graph morphismmP : P → M , which means that (i) each variable ofP should be mapped to a constant
of M , (ii) each constant ofP should be mapped to the same constant inM , and (iii) for each edgee
of patternP with label l(e), there should exist an edgem(e) with label l(e) in modelM , such that the
matching is source and target consistent (i.e.,m(src(e)) = src(m(e)) andm(trg(e)) = trg(m(e))). A
matching for a precondition patternPRE in a modelM is a matching for itsLHS pattern, provided that
no matchings should exist for itsNAC pattern.
A search planπP for patternP is an ordering of variablesVP of patternP , in which they are to be

mapped during pattern matching. In the following, we suppose that a search plan already exists for each
pattern, and the notationvk will denote thekth variable of a patternP according to the corresponding,
fixed search planπP .
Given a search planπP for patternP , thekth subpatternPk is a subgraph ofP where nodesNk =

C ∪ Vk consist of all constants and the firstk variablesVk =
⋃

1≤i≤k { vi } of patternP , and edges
consist of all edges of patternP whose source and target nodes are both included in the selected set of
nodes.Incoming (outgoing) condition edgesof thekth subpatternPk are the edges leading into (out of)
variablevk. Without loss of generality, in the following, we consistently usen to denote the number of
variables in a (complete) patternPn. Consequently, a patternPn with n variables hasn+1 subpatterns
(i.e.,P0, . . . , Pn).
A partial matching for patternPn is a matching for subpatternPk. A maximal partial matchingis a

non-extensible partial matching, i.e. patternPk+1 cannot be matched.

3 Data Structures for Incremental Pattern Matching

In this section, we present the data structures needed for the efficient storage of partial matchings. Algo-
rithms of the incremental pattern matching engine, which operate on these data structures are discussed
later in Sec. 4.
Class diagrams depicting the different aspects of data structures being used by the incremental pattern

matching engine are shown in Fig. 4.

6 3 DATA STRUCTURES FOR INCREMENTAL PATTERN MATCHING

Matching and matching tree. A Matching (denoted by a numbered circle in Fig. 5) represents a
partial matching for a pattern. It contains a set ofBinding s. Each binding defines a mapping of a
Variable to aConstant .
For each patternPn, a matching treeis maintained, which consists of matchings being organized into

a tree structure alongparent-child edges (depicted by dashed arcs in Fig. 5). Theroot of the tree
denotes the empty matching for the corresponding pattern, i.e., when none of the variables have been
bound. Eachlevelof the tree (denoted by light grey areas in Fig. 5) contains matchings for a subpattern
of patternPn. The mapping of subpatterns to tree levels is guided by the search plan having been fixed
for the pattern. Atree nodein levelk (i.e., having distancek from the root) represents a matching of the
kth subpattern being specified by the search planπ. Eachleaf represents a maximal partial matching for
the pattern. By supposing that the patternPn hasn variables, each leaf in (the deepest possible) leveln
represents a complete matching of the pattern.
Example. Sample models of Figs. 5(c), 5(e), and 5(g) and the corresponding data structure contents

are presented in Figs. 5(d), 5(f), and 5(h), respectively. Figs. 5(d), 5(f), and 5(h) show matching trees in
their top-right corner, they depict binding arrays at the bottom, while notification arrays are presented in
their left part.
Fig. 5(d) contains two matching trees representing the partial matchings of theLHS pattern and theNAC

pattern, respectively. Matchings1 and2 denote empty matchings. Matching3 is located on the first tree
level of theLHS pattern, thus, it is a matching for subpatternP1, which contains a single binding that
maps variablec to constantc1. Matching3 is a child of matching1, as the latter can be extended by the
mapping of variablec.
In the context of Fig. 5(d), matching3 is a maximal partial matching as it cannot be further extended,

due to the lack of outgoingEOedges leading out ofc1. On the other hand, matching3, is not a maximal
partial matching in Fig. 5(f) as it can be extended e.g., by mappingsp to p ands to s to get matching5.
This means a complete matching for theLHS pattern as matching5 is located on the lowest tree levelP3.

Binding arrays. Matchings are physically stored as one-dimensional binding arrays, which are in-
dexed by the variables. An entry in a binding array stores variable–constant pairs in the corresponding
matching. When one matching is an ancestor of another one, their binding arrays can be shared in order
to reduce memory consumption as the ancestor matching contains a subset of the bindings of the descen-

(a) Matchings (b) Event processing (c) Pattern matcher

Figure 4: Data structures of the incremental pattern matching engine

7

Schema Package Class Table

s p c t

typetype type type

ref EO ref

(a) Precondition pattern forClassRule (b) Notational guide for data structures

Package SchemaClass Table

PKey

UniqueKey

Column

Attribute

Feature

p

c1

s

type type type

type

ref
ref

(c) Model 1 (d) Data structure contents forModel 1

Package SchemaClass Table

PKey

UniqueKey

Column

Attribute

Feature

p

c1

s

type type type

type

ref
ref

EO

(e) Model 2 (f) Data structure contents forModel 2

Package SchemaClass Table

PKey

UniqueKey

Column

Attribute

Feature

p

c1 t1

s

pk1

col1

type type type

type

type

type

type

type

type

type

typeref

ref

ref
ref

EO
EO

EO

CF

UF

(g) Model 3 (h) Data structure contents forModel 3

Figure 5: Sample models and the corresponding data structures

8 3 DATA STRUCTURES FOR INCREMENTAL PATTERN MATCHING

dant matching. Consequently, for each patternPn with n variables, a binding arraymatch[n] of size
n is used. In figures, binding arrays are connected to matchings by solid black lines.
Example. Since theLHS pattern has 3 variables, matchings of theLHS tree refer to binding arrays

having 3 entries as it is shown e.g., in the lower part of Fig. 5(f). Each column of the binding array of
the LHS matching tree represents a binding, which shows the constant (in the lower row) to which the
variable (in the upper row) has been mapped. Note that the array that contains mappingsc to c1, p to
p ands to s can be shared by matchings1, 3, 4, and5, as they only consist of the first 0, 1, 2, and 3
bindings of the array, respectively.

Invalidation edges. Invalidation edges represent the invalidation of partial matchings of aLHS caused
by complete matchings of aNAC. In the following, we simply use thick (red) arcs for denoting invalida-
tion.
Example. The red invalidation edge of Fig. 5(h) connecting matchings7 to 3 means that matching7 is

a complete matching for theNAC pattern, which invalidates matching3 as both map the shared variable
c to the same constantc1. As long as matching3 is invalidated (as shown by the incoming invalidation
edge), it cannot be part of a complete matching for theLHS pattern, which fact is marked by the empty
subtree rooted at matching3.

Notification arrays. Since the graph transformation engine sends notifications on model changes, no-
tification related data structures (shown in Fig. 4(b)) are also needed. The incremental pattern matching
engine has a singleINSERT and a singleDELETEnotification array consisting of notification entries.

• An entry in the insert notification arrayis a pair consisting of anInsertKey (with label , end
and attributeisSrc) and a list ofMatching s to be notified. If an edgee with label e.lab
connectinge.src to e.trg is added to the model, thenMatching s of such insert notifica-
tion array entries are notified whoseInsertKey s are of the form[e.src,e.lab,*] and
[*,e.lab,e.trg] . We use notations[end,label,*] and [*,label,end] for cases
whenend denotes the source (isSrc=true) and target (isSrc=false) end of an edge with
label label , respectively.

• An entry in the delete notification arrayis a pair consisting of aDeleteKey and a list of
Matching s to be notified. If an edgee with labele.lab connectinge.src to e.trg is re-
moved from the model, thenMatching s of such delete notification array entry is notified whose
DeleteKey is of the form[e.src,e.lab,e.trg] .

Example. Sample notification arrays are presented e.g., in the left part of Fig. 5(d). TheINSERT
notification array has 4 entries of which the first is triggered by theInsertKey [*,type,Class]
and refers to matching1. This entry means that matching1 has to be notified, when atype edge leading
to Classis inserted into the model. Similarly, the first entry in theDELETEnotification array means that
matching3 must be notified, if thetype edge connectingc1 to Classis deleted.

9

Query index structure. A query index structure(not shown in figures) is also defined for each precon-
dition pattern to speed-up the queries of complete matchings initiated by the GT tool that use the services
of the incremental pattern matching approach.

4 Operations for Incremental Pattern Matching

During the incremental operation phase, the matching tree is maintained by four main methods of class
Matching .

1. The insert() method is responsible for the possible extension of the current partial matching
for proper subpatternPk to create a new partial matching for subpatternPk+1.

2. The validate() method is responsible for the recursive extension of insert operations to all
(larger) subpatterns.

3. Thedelete() method removes the whole matching subtree rooted at the current matching for
subpatternPk.

4. The invalidate() method is responsible for the recursive deletion of all children matchings
of the current matching.

These methods are called by the pattern matching engine whenedge modification eventsarrive from
the model repository.

• Insert edge notification.If an edgee with labele.lab connecting constantse.src to e.trg is
added to the model, then theinsert() method of classMatching is invoked (i) with param-
etere.trg on every matching as defined by entryINSERT[e.src,e.lab,*] , and (ii) with
parametere.src on every matching as defined by entryINSERT[*,e.lab,e.trg] .

• Delete edge notification.If an edgee with labele.lab connecting constantse.src to e.trg
is removed from the model, thendelete() method of classMatching is invoked on every
matching being notified by entryDELETE[e.src,e.lab,e.trg] .

4.1 Incremental operations on an example

Prior to the detailed discussion of the algorithms, we first exemplify the process by using our running
example of Fig. 5. Let us suppose that a classc1 is added to packagep in the model by user interaction
initiated by the system designer. The tool-independent representation of the model is notified about that
in two steps. First a notification arrives about the insertion of atype edge connectingc1 to Class(see
Fig. 5(c)) followed by the insertion of anEOedge connectingc1 to p (see Fig. 5(e)). Modifications are
denoted by thick lines.

10 4 OPERATIONS FOR INCREMENTAL PATTERN MATCHING

Step 1. At the insertion of atype edge connectingc1 to Class, the pattern matching engine looks up
entries retrieved by insert keys[c1,type,*] and[*,type,Class] .
The latter entry triggers the possible extension of the empty matching1 by mapping variablec to

constantc1 by invoking theinsert() method on matching1 with parameterc1. As this binding is a
matching for patternP1, (i) a new matching3 is created and added to the(matching) tree as a child of
matching1, and (ii) the bindingc to c1 is recorded.
Then matching3 is added to the delete notification array with delete key[c1,type,Class] . This

means that whenever thetype edge fromc1 to Class(i.e., the edge that has been just added) is removed,
this matching should be deleted.
Effects of adding a new matching to the tree are recursively extended to find matchings for larger

subpatterns by callingvalidate . To record the fact that whenever an edge with labelEOleading out
of c1or with labeltype leading toPackageis added to the modelin the future, matching3 can be further
extended, corresponding new entries are added to the insert notification array pointing to matching3.
As also thecurrent content of the modelmay extend matching3, we initiate the possible extensions of

this matching by thepropagate method, which checks the existence of at least theEOedges leading
out of c1.2 As no such edges exist in our example, the algorithm terminates with the matching tree
presented in Fig. 5(d).

Step 2. WhenEOedge connectingc1 to p is inserted (as shown by the thick line of Fig. 5(e)), matching
3 is first extended to a new matching4 by mapping variablep to constantp and by executing a sequence
of insert() andvalidate() method calls as shown in Fig. 6.

This time, matching extension is

Figure 6: Sequence diagram showing edge insertion into the
LHS pattern

propagated to another new matching5
by assignings to s by invoking the
insert method on matching4 with
parameters, as the current model al-
ready containedref andtype edges
connectingp to s ands to Schema, re-
spectively.
In addition, both new matchings are

appropriately registered in both the in-
sert and delete notification arrays, and
the binding array is updated accord-
ingly. The corresponding matching
tree is shown in Fig. 5(f).
At this point, matching5 represents

a complete matching for theLHS pat-
tern, so the GT ruleClassRule can be
applied.

2Note that the insert key generation and the possible further extension of matching3 are guided by the condition edges of
the one larger subpatternP2.

4.2 Insert method 11

Step 3. The result of applying the GT ruleClassRule on matching5 can be observed in Fig. 5(g) after
the insertion of some 13 edges, processed one by one by the pattern matching engine.
Let us suppose that the newref edge betweenc1 and t1 is processed first, which is followed by

the insertion of oftype edge connectingt1 to Table. The first edge causes no modifications in data
structures as no appropriate insert keys appear in the insert notification array.
At the second edge insertion, matching2 is notified by invoking itsinsert method with parametert1,

which creates matchings6 and7. As the latter is a complete matching of theNAC patternQB, matching
3 must be invalidated by deleting all its descendant matchings in the tree. When all the 13 edges are
added, the data structure will reflect the situation in Fig. 5(h).

4.2 Insert method

The insert method (shown by Alg. 1) is responsible for the possible extension of the current partial
matching for proper subpatternPk to compute a new partial matching for subpatternPk+1. If the current
matching represents a complete matching for patternPn, then the method immediately terminates as
matchings of patternPn can never be further extended.

Algorithm 1 The insert() method of classMatching

public void insert(Constant c) {
// If the current matching is NOT a complete matching
if (this .spNode.nextNode != null) {

// If all condition edges of the next SP node can be matched
if (checkExistenceOfEdges(c)) {

// Create a new matching
Matching newM = new Matching();
// Copy current matchings to the new matching
newM.copyMatchings(this , c);
// New delete entries for matchings of condition edges
newM.addDeleteEntries();
if (newM.invalidatedBy.isEmpty()) {

// Extend the new matching if not invalidated by NAC
newM.validate();

} } } }

• The insert method is invoked with a constantc , which is supposed to be the mapping of the
next variablevk+1 belonging to search plan in a newpotential matching, which also contains all
mappings defined by the current matching for all variables of subpatternPk.

• We first check the mappings of the edges for the potential matching. Since the current matching
already specifies a graph morphism, we know that all edges of subpatternPk have been correctly
mapped, thus, only mappings of incoming and outgoing condition edges of subpatternPk+1 de-
fined by the potential matching are required to be checked by thecheckExistenceOfEdges
method.

12 4 OPERATIONS FOR INCREMENTAL PATTERN MATCHING

• If all edge mappings are correct (and thecheckExistenceOfEdges returns true), the potential
matching can be considered as a new matching for subpatternPk+1. As such, a new matching is
created. Then by invokingcopyMatchings on the new matching (i) mappings of the current
matching are cloned, (ii) variablevk+1 is bound toc , and (iii) the new matching is inserted into
the matching tree as a child of the current matching.

• The new matching is added to the delete notification array at all locations defined by the mappings
of incoming and outgoing condition edges of subpatternPk+1.

• If the new matching is being invalidated by any complete matchings of anyNAC patternsQm, then
the insert method terminates.

• Otherwise, thevalidate() method is invoked on the new matching trying to recursively extend
this matching.

4.3 Validate method

The validate method (shown in Alg. 2) is responsible for the recursive extension of insert operations. It is
invoked either (i) when a new matching has been inserted into the matching tree and its further extensions
have to be checked (see Alg. 1), or (ii) when extensions of the current matching possibly become valid
due to the removal of a complete matching of an embeddedNAC pattern (by theinvalidate()
method).

Algorithm 2 Thevalidate() method of classMatching

public void validate() {
if (this .spNode.nextNode == null) {

if (this .spNode.pattern.negOf == null) {
// If this is a COMPLETEmatching of a LHS pattern
// Add to a set of valid matchings of the pattern
this .spNode.pattern.matchings.add(this);

} else {
// If this is a COMPLETEmatching of a NAC pattern
for (Matching m: findInvalidatedMatchings())

m.invalidate();
}

} else {
// If this is NOT a complete matching
// Add insert entries
addInsertEntries();
// Propagate it to find a matching of the next variable
propagateInsert();

}
}

• If this is a complete matching for aLHS patternPn, then the current matching is inserted into the
query index structurethis.spNode.pattern.matchings to be accessed by the GT tool.

4.4 Delete and invalidate methods 13

• If this is a complete matching for aNAC patternQm, then all partial matchingsmof the LHS
pattern that map the shared variable to the same constant as the current matching (which is returned
by findInvalidatedMatchings) have to be invalidated.

• For each incoming condition edgee of the one largersubpatternPk+1 with label e.lab con-
necting nodee.src to next variable, the current matching is added to the insert notifica-
tion array at location[m[e.src],e.lab,*] by theaddInsertEntries method invoked.
Similarly, for each outgoing condition edgee, the same method adds the current matching to
INSERT[*,e.lab,m[e.trg]] .

• Insertion is attempted to be propagated to a matching for subpatternPk+1. In this sense, an arbi-
trary (incoming or outgoing) condition edgee is selected from subpatternPk+1. If an outgoing (in-
coming) condition edge has been chosen, then we lookup all label-preserved model edgesmEdge
leading out of (to) the matched target (source) nodem[e.trg] (m[e.src]) of condition edgee,
and try to extend the current matching by mapping the next variablethis.spNode.nextNode
to the source (target) node of all chosen model edgesmEdge, which is represented by the invoca-
tion of theinsert method with constantmEdge.src .

4.4 Delete and invalidate methods

Delete and invalidate methods implement the inverse operation of insert and validate methods, respec-
tively.
Thedelete() method removes the whole subtree rooted at the current matching by (i) removing all

matchings of the subtree from the notification arrays and the query index structure, and (ii) erasing all
“dangling” invalidation links.
The invalidate() method deletes the whole subtreeexcludingthe current matching, thus, it starts

recursive deletion at its children. Another difference is that in case of validate method, the current
matching is only removed from the insert notification array, and it remains in the delete notification
array.
If the current matching is a complete matching of anLHS then the invalidate method removes the

matching from the query index structure. If it is a complete matching of aNAC pattern, then it (re-
)validates all matchings invalidated previously by the current matching. On the implementation level,
delete and invalidate methods mutually invoke each other, while descending in the tree for recursive
matching removal. The Java code for thedelete() and invalidate() methods (as well as all
auxiliary methods) are listed in Appendix A.

5 Experimental evaluation

In order to assess the performance of our incremental approach, we performed measurements on the
object-relational mapping benchmark example [VFV06]. As a reference for the measurements, we se-
lected Fujaba [FNTZ98] as it is among the fastest non-incremental GT tools.

14 5 EXPERIMENTAL EVALUATION

By using the terminology of [VSV05], graph transformation rules, the initial model and the transfor-
mation sequence have to be fixed up to numerical parameters in order to fully specify a test set.

Figure 7: Initial model of the test case for theN = 3 case

The structure of the initial model is presented in Fig. 7 for theN = 3 case. The model has a singlePack-
age that containsN classes, which is the only numerical parameter of the test set. AnAssociation and
2 AssociationEnds are added to the model for each pair ofClasses, thus initially, we haveN(N − 1)/2
Associations andN(N − 1) AssociationEnds. Associations are also contained by the singlePackage as
expressed by the corresponding links of typeEO. EachAssociationEnd is connected to a corresponding
Association andClass by aCF andSFT link, respectively.
The object-relational mapping can be specified by 4 graph transformation rules, which describe how to

generate the relational database equivalents ofPackages, Associations, Classes, andAssociationEnds,
respectively. (Due to space restrictions, the exact benchmark specification is omitted from the paper. The
reader is referred to [VFV06].) The transformation sequence consists of the application of these rules on
each UML entity in the order specified above.
Measurements were performed on a 1500 MHz Pentium machine with 768 MB RAM. A Linux kernel

of version 2.6.7 served as an underlying operating system. The time results are shown in Table 1.

Class Model TS
size length match update match update

msec msec msec msec
10 1342 146 0.201 0.479 0.026 5.439

30 12422 1336 0.287 0.052 0.023 56.116

50 34702 3726 0.171 0.012 0.021 221.955

100 139402 14951 0.278 0.011 0.042 2067.462

10 1342 146 0.937 0.148 0.019 1.665

30 12422 1336 2.488 0.101 0.032 4.510

50 34702 3726 3.371 0.032 0.022 6.849

100 139402 14951 11.959 0.030 0.039 26.684

10 1342 146 0.875 0.107 0.043 0.592

30 12422 1336 3.896 0.045 0.016 1.108

50 34702 3726 5.975 0.025 0.023 1.948

100 139402 14951 24.057 0.028 0.068 9.353

IncrementalFujaba

as
so
cR
ul
e

cl
as
sR
ul
e

as
so
cE
nd
R
ul
e

Table 1: Experimental results

15

The head of a row shows the name of the rule on which the average is calculated. (Note that a rule
is executed several times in a run.) The second column (Class) depicts the number of classes in the
run, which is, in turn, the runtime parameterN for the test case. The third and fourth columns show
the concrete values for the model size (meaning the number of model nodes and edges) and the trans-
formation sequence length, respectively. Heads of the remaining columns unambiguously identify the
approach having been used. Values inmatch andupdate columns depict the average times needed for a
single execution of a rule in the pattern matching and updating phase, respectively. Execution times were
measured on a microsecond scale, but a millisecond scale is used in Table 1 for presentation purposes.
Our experiments can be summarized as follows.

• In accordance with our assumptions, the incremental engine executes pattern matching in constant
time even in case of large models, while the traditional engine shows significant increase when the
LHS of the pattern is large as in case ofassocEndRule.

• Incremental techniques by their nature suffer time increase in the updating phase due to (i) the
bookkeeping overhead caused by the additional data structures, and (ii) the fact that even the in-
sertion of a single edge may generate (or delete) a significant amount of matchings. Its detrimental
performance effects are reported in the updating phase ofclassRule, when also the matchings of
the other rules have to be refreshed. On the other hand, the traditional engine executes the update
phase in constant time as it can be expected.

• By taking into account both phases in the analysis, it may be stated that the incremental strategy
provides a competitive alternative for traditional engines as the total execution times of the incre-
mental approach are of the same order of magnitude in case of the frequently applied rules (i.e.,
assocRule andassocEndRule).

• The benefits of the incremental approach are the most remarkable (i) when rules have complex
LHS graphs as the pattern matching of Fujaba gets slow in this case and (ii) when the dependency
between rules is weak as this leads to a fast updating phase in incremental engines.

As a consequence, we may draw that the incremental approach is a primary candidate for graph trans-
formation tools where (i) complex transformation rules are used and (ii) where all matchings of a rule
have to be accessed rapidly, which is a typical case for analysis/verification tools.

6 Related Work

Incremental updating techniques have been widely used in different fields of computer science. Now we
give a brief overview on incremental techniques that could be used for graph transformation.
Rete networks.[BGT91] proposed an incremental graph pattern matching technique based on the idea

of Rete networks [For82], which stems from rule-based expert systems. In their approach, a network
of nodes is built at compile time from theLHS graph to support incremental operation. Each node
performs simple tests on the entities (i.e., nodes, edges, partial matchings) arriving to its input(s). If the
test succeeds, the node groups entities into compound ones, which are then put into its output. On the

16 6 RELATED WORK

top level of the network, there are nodes with a single input that let such objects and links of a given
type to pass that have just been inserted to or removed from the model. On intermediate levels, network
nodes with two inputs appear, each representing a subpattern of theLHS graph. These nodes try to build
matchings for the subpattern from the smaller matchings located at the inputs of the node. On the lowest
level, the network has terminal nodes, which do not have outputs. They represent the entireLHS pattern.
Entities reaching the terminals represent complete matchings for theLHS.
The technique of [BGT91] shows the closest correspondance to our approach, as matching levels can

be considered as nodes in the Rete network. However, it is not a one-to-one mapping as one matching
level in our approach corresponds to several Rete nodes. As a consequence, Rete-based solutions have
more bookkeeping overhead as they store information at the inputs of nodes in local memories and they
use more nodes.
Two significant consequences can be drawn from this similarity. (i) All techniques (e.g., the handling

of common parts of differentLHS patterns at the same network node [MB00]) that have already been
invented for Rete-based solutions are also applicable to our approach. (ii) The idea of notification arrays
can speed-up traditional Rete-based approaches used in a graph transformation context as these arrays
help identifying those partial matchings that may participate in the extension of the matching. Thus, it is
subject to our future investigations.
PROGRES. The PROGRES [SWZ99] graph transformation tool supports an incremental technique

called attribute updates [Hud87]. At compile-time, an evaluation order of pattern variables is fixed by
a dependency graph. At run-time, a bit vector having a width that is equal to the number of pattern
variables, is maintained for each model node expressing if a variable can be mapped to a given node.
When model nodes are deleted, some validity bits are set to false according to the dependency graph

denoting the termination of possible partial matchings. In this sense, PROGRES (just like our approach)
performs immediate invalidation of partial matchings. On the other hand, validation of partial matchings
are only computed on request (i.e., when a matching for the LHS is requested), which is a disadvantage
of the incremental attribute updating algorithm.
As an advantage, PROGRES has a low-level bookkeeping overhead (i.e., some extra bits for model

nodes), the index structures maintained for partial matchings (i.e., a set of bit vectors) are also smaller.
View updates. In relational databases, materialized views, which explicitly store their content on the

disk, can be updated by incremental techniques. Counting and DRed algorithms [GMS93] first calculate
the delta (i.e., the modifications) for the view by using the initial contents of the view and base tables and
the deltas of base tables. Then the calculated deltas are performed on the view.
In contrast to our approach, view updating algorithms are more flexible as they use a run-time evaluation

order for delta calculation, and they can provide both lazy and eager style updates being specified when
a view is created.

[VFV06] proposed an approach for representing graph pattern matching in relational databases in
form of views. Although some initial research (reported in [VV04]) has been done for incremental
pattern matching in relational databases, this solution suffers from the inadequate support of incremental
algorithms by the underlying databases and the strong restrictions being posed on the structures of the
select query that defines the view.

17

7 Conclusion

In the current paper, we proposed data structures and algorithms for incremental graph pattern matching
where all matchings (and non-extensible partial matchings) of a rule are stored explicitly in a matching
tree. This matching tree is updated incrementally triggered by the modifications of the instance graph.
Negative application conditions are handled uniformly by storing all matchings of the corresponding
patterns. As the main added value of the paper, we introduced a notification mechanism by maintaining
additional registries for quickly identifying those partial matchings, which are candidates for extension
or removal, and thus, which have to be notified when an edge is inserted to or deleted from the model.
Limitations. We have also identified certain limitations of the presented algorithms. First of all, the

efficiency of the incremental pattern matching engine highly depends on the selection of search plans as
even a single edge insertion (or deletion), which affect matchings located at upper levels of the tree (i.e.,
near to its root) may trigger computation intensive operations. As a consequence, further investigations
on creating good search plans for the incremental pattern matching engine have to be carried out.
Our current solution provides a suboptimal solution, when patterns contain a large number of loop

edges. This is related to the fact that our approach currently stores only the matchings of the nodes but
not the edges (i.e., edges do not have identifiers), which assumption can be relaxed in the future.
At first glance, it can be strange that NACs are handled independently of the LHS (i.e., all matchings

of the NAC are calculated). The goal of our approach is to support the reusability of patterns when the
same pattern can be used once in the LHS and once as a NAC, or the same NAC is a negative condition
for multiple LHSs (as in VIATRA2 [BV06]).
Future work. In the order of importance, the following tasks would appear on our todo list for the

future: (i) investigation on the applicability of Rete-networks in our incremental approach, (ii) generation
of search plans that are optimized for incremental pattern matching, (iii) the optimal handling of bulk
inserts, which may significantly accelerate the initialization phase, (iv) the implementation of the pattern
merger and optimizer module to be able to share matchings across matching trees, and (v) the incremental
handling of path expressions.

References

[BGT91] Horst Bunke, Thomas Glauser, and T.-H. Tran. An efficient implementation of graph gram-
mar based on the RETE-matching algorithm. InProc. Graph Grammars and Their Applica-
tion to Computer Science and Biology, volume 532 ofLNCS, pages 174–189, 1991.

[BV06] András Balogh and D́aniel Varŕo. Advanced model transformation language constructs in
the VIATRA2 framework. InProc. of the 21st ACM Symposium on Applied Computing,
pages 1280–1287, Dijon, France, April 2006. ACM Press.

[Dör95] Heiko Dörr. Efficient Graph Rewriting and Its Implementation, volume 922 ofLNCS.
Springer-Verlag, 1995.

18 REFERENCES

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.
Handbook on Graph Grammars and Computing by Graph Transformation, volume 2: Ap-
plications, Languages and Tools. World Scientific, 1999.

[ERT99] Claudia Ermel, Michel Rudolf, and Gabriele Taentzer.In [EEKR99], chapter The AGG-
Approach: Language and Tool Environment, pages 551–603. World Scientific, 1999.

[FNTZ98] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story diagrams: A new
graph rewrite language based on the Unified Modeling Language. In Gregor Engels and
G. Rozenberg, editors,Proc. of the 6th International Workshop on Theory and Application
of Graph Transformation, volume 1764 ofLNCS, pages 296–309. Springer Verlag, 1998.

[For82] Charles L. Forgy. RETE: A fast algorithm for the many pattern/many object match problem.
Artificial Intelligence, 19:17–37, 1982.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views incre-
mentally. InACM SIGMOD Proceedings, pages 157–166, Washington, D.C., USA, 1993.

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with negative ap-
plication conditions.Fundamenta Informaticae, 26(3/4):287–313, 1996.

[Hud87] Scott E. Hudson. Incremental attribute evaluation: an algorithm for lazy evaluation in graphs.
Technical Report 87-20, University of Arizona, 1987.

[KS06] Alexander K̈onigs and Andy Scḧurr. MDI - a rule based multi-document and tool integration
approach.Journal of Software and Systems Modelling, 2006. To appear.

[LV02] Javier Larrosa and Gabriel Valiente. Constraint satisfaction algorithms for graph pattern
matching.Mathematical Structures in Computer Science, 12(4):403–422, 2002.

[MB00] Bruno T. Messmer and Horst Bunke. Efficient subgraph isomorphism detection: A decom-
position approach.IEEE Transactions on Knowledge and Data Engineering, 12(2):307–323,
2000.

[PCTM02] John Poole, Dan Chang, Douglas Tolbert, and David Mellor.Common Warehouse Meta-
model. John Wiley & Sons, Inc., 2002.

[SWZ99] Andy Scḧurr, Andreas J. Winter, and Albert Zündorf. In [EEKR99], chapter The PROGRES
Approach: Language and Environment, pages 487–550. World Scientific, 1999.

[VFV06] Gergely Varŕo, Katalin Friedl, and D́aniel Varŕo. Implementing a graph transformation en-
gine in relational databases.Journal on Software and Systems Modeling, 2006. in press.

[VSV05] Gergely Varŕo, Andy Scḧurr, and D́aniel Varŕo. Benchmarking for graph transformation. In
Proc. of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 79–88, Dallas, Texas, USA, September 2005. IEEE Computer Society Press.

REFERENCES 19

[VV04] Gergely Varŕo and D́aniel Varŕo. Graph transformation with incremental updates. In Reiko
Heckel, editor,Proc. of the 4th Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2004), volume 109 ofENTCS, pages 71–83, Barcelona, Spain, De-
cember 2004. Elsevier.

[VVF05] Gergely Varŕo, Dániel Varŕo, and Katalin Friedl. Adaptive graph pattern matching for model
transformations using model-sensitive search plans. In Gabor Karsai and Gabriele Taentzer,
editors,Proc. of Int. Workshop on Graph and Model Transformation (GraMoT’05), volume
152 ofENTCS, pages 191–205, Tallinn, Estonia, September 2005.

[Zün96] Albert Zündorf. Graph pattern-matching in PROGRES. InProc. 5th Int. Workshop on Graph
Grammars and their Application to Computer Science, volume 1073 ofLNCS, pages 454–
468. Springer-Verlag, 1996.

20 A ADDITIONAL ALGORITHMS

A Additional Algorithms

public void delete() {
// Remove current matching from parent matching
this .parent.children.remove(this);
this .parent = null ;
removeDeleteEntries();
for (Matching m: this .invalidatedBy) {

m.invalidates.remove(this);
}
this .invalidatedBy.clear();
invalidate();

}

public void invalidate() {
if (this .spNode.nextNode == null) {

if (this .spNode.pattern.negOf == null) {
// If this is a COMPLETEmatching of a LHS pattern
// Remove this from valid matchings of the pattern
this .spNode.pattern.matchings.remove(this);

} else {
// If this is a COMPLETEmatching of a NAC pattern
for (Matching m: this .invalidates)

m.validate();
}

} else {
// If this is NOT a complete matching
// Remove insert entries
removeInsertEntries();
propagateDelete();

}
}

public void copyMatchings(Matching currM, Constant c) {
this .spNode = currM.spNode.nextNode;
// If the current matching has no submatchings
if (currM.children.isEmpty()) {

// The new match is set to the current match
this .match = currM.match;

}
else {

// The new match is clone from the current match
this .match = (HashMap<Variable,Constant>)

currM.match.clone();
}
this .match.put(this .spNode.currVar, c);
// Set new matching as child of the current matching
this .parent = currM;
currM.children.add(this);

}

21

public void propagateInsert() {
// Assert that there are unmatched nodes in the search plan
assert this .spNode.nextNode != null ;
// Select the next node in the search plan
SearchPlanNode spNext = this .spNode.nextNode;
// Select an arbitrary (incoming or outgoing) condition edge
// of the current variable of the SP node
Edge e = spNext.condEdges.iterator().next();
// If the pattern edge is an outgoing condition edge
if (e.src == spNext.currVar) {

// We lookup the matched target node
Constant mTrg = match.get(e.trg);
// For each incoming edge leading to the matched trg node
for (Edge mEdge: mTrg.in) {

// which is label - preserving
if (mEdge. label == e. label) {

// Extend the matching by mapping the current variable
// to the source node
insert((Constant) mEdge.src);

}
}

}
// If the pattern edge is an incoming condition edge
else if (e.trg == spNext.currVar) {

// We lookup the matched source node
Constant mSrc = match.get(e.src);
// For each outgoing edge leaving the matched src node
for (Edge mEdge: mSrc.out) {

// which is label - preserving
if (mEdge. label == e. label) {

// Extend the matching for the current variable
insert((Constant) mEdge.trg);

}
}

}
}

public void manipulateInsertEntries(int op) {
// Assert that there are unmatched nodes in the search plan
assert this .spNode.nextNode != null ;
// For each condition edge at the NEXT level
// connected to an already matched node at the CURRENTlevel
SearchPlanNode spNext = this .spNode.nextNode;
for (Edge e: spNext.condEdges) {

InsertKey key = null ;
if (e.src == spNext.currVar) {

// We lookup the matched target node
Constant mTrg = match.get(e.trg);
// A new insert key is created : [*, e. lab , m[e. trg]]
key = new InsertKey(mTrg, e. label , InsertKey.TRG);

}
else if (e.trg == spNext.currVar) {

22 A ADDITIONAL ALGORITHMS

// We lookup the matched source node
Constant mSrc = match.get(e.src);
// A new insert key is created : [m[e. src], e. lab , *]
key = new InsertKey(mSrc, e. label , InsertKey.SRC);

}
if (op == ADD_ENTRY)

// A new insert entry is created with key
PatternMatcher.insertEntries.get(key).add(this);

else if (op == REMOVE_ENTRY)
// An existing insert entry with key is removed
PatternMatcher.insertEntries.get(key).remove(this);

}
}

public boolean checkExistenceOfEdges(Constant c) {
// Assert that there are unmatched nodes in the search plan
assert this .spNode.nextNode != null ;
// Select the next node in the search plan
SearchPlanNode spNext = this .spNode.nextNode;
// For all (incoming or outgoing) condition edge of
// current variable of the SP node
for (Edge e: spNext.condEdges) {

// If the pattern edge is an outgoing condition edge
if (e.src == spNext.currVar) {

// We lookup the matched target node
Constant mTrg = match.get(e.trg);
// For each incoming edge leading to the matched trg node
for (Edge mEdge: mTrg.in) {

// which is label - preserving
if (!(mEdge. label == e. label && mEdge.src == c)) {

return false ;
}

}
}
// If the pattern edge is an incoming condition edge
else if (e.trg == spNext.currVar) {

// We lookup the matched source node
Constant mSrc = match.get(e.src);
// For each outgoing edge leaving the matched src node
for (Edge mEdge: mSrc.out) {

// which is label - preserving
if (!(mEdge. label == e. label && mEdge.trg == c)) {

return false ;
}

}
} }

return true ;
}

