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Abstract Personalized PageRank expresses backlink-based page qual-
ity around user-selected pages in a similar way as PageRank expresses
quality over the entire Web. Existing personalized PageRank algorithms
can however serve on-line queries only for a restricted choice of page
selection. In this paper we achieve full personalization by a novel algo-
rithm that computes a compact database of simulated random walks;
this database can serve arbitrary personal choices of small subsets of
web pages. We prove that for a fixed error probability, the size of our
database is linear in the number of web pages. We justify our estimation
approach by asymptotic worst-case lower bounds; we show that exact
personalized PageRank values can only be obtained from a database of
quadratic size. Forthermore, we evaluate the precision of approximation
experimentally on the Stanford WebBase graph.

1 Introduction

The idea of topic sensitive or personalized ranking appears since the beginning of
the success story of Google’s PageRank [5,31] and other hyperlink-based central-
ity measures [28,4]. Topic sensitivity is either achieved by precomputing modified
measures over the entire Web [17] or by ranking the neighborhood of pages con-
taining the query word [28]. These methods however work only for restricted
cases or when the entire hyperlink structure fits into the main memory.

In this paper we address the computational issues of personalized PageRank
[17,24]. Just as all hyperlink based ranking methods, PageRank is based on the
assumption that the existence of a hyperlink v — v implies that page u votes for
the quality of v. Personalized PageRank (PPR) [31] enters user preferences by
assigning more importance to edges in the neighborhood of certain pages at the
user’s selection. Unfortunately the naive computation of PPR requires a power
iteration algorithm over the entire web graph, making the procedure infeasible
for an on-line query response service.

We introduce a novel scalable Monte Carlo algorithm for PPR that precom-
putes a compact database. As described in Section 2, the database contains
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simulated random walks, and PPR is estimated on-line with a limited number
of database accesses. Earlier algorithms [19] restricted personalization to a few
topics, a subset of popular pages or to hosts; our algorithm on the other hand
enables personalization for any small set of pages. Query time is linear in the
number of pages with non-zero personalization. Similar statement holds for the
previous approaches, too.

The price that we pay for full personalization is that our algorithm is ran-
domized and less precise; the formal analysis of the error probability is discussed
in Section 3. In Section 4 it is verified that we have to pay the price of ap-
proximation by showing that full personalization requires a database of £2(V?2)
bits over a graph with V' vertices. In Section 5 we experimentally analyze the
precision of approximation on the Stanford WebBase graph.

Though this approximation approach might fail or need longer query time
in certain cases (for example for pages with large neighborhoods), the available
personalization algorithms can be combined to resolve these issues. For example
we can precompute personalization vectors for topics (topic-sensitive PR), popu-
lar pages with large neighborhoods (use [24]), some often requested combination
of popular pages (sub-topics), and use our algorithm for those many pages not
covered so far. This combination gives adequate precision for most queries with
large flexibility for personalization.

Related results. The possibility of personalization was first mentioned in [5,31]
together with PageRank. Linearity of PPR [17] implies that if PPR is precom-
puted for some preference vectors, then PPR can be calculated on-line for any lin-
ear combination of the preference vectors by combining the precomputed PPRs.
Thus personalization was achieved for any combination of 16 basic topics in [17];
an experimental implementation is already available at [16]. The methods of [24]
precompute PPR for at most 100.000 individual pages, and then for any subset
of the individual pages personalization is available by linearity. Furthermore, the
algorithm of [25] personalizes PageRank over hosts rather than single web pages.
Instead of user preferences, [34] tunes PageRank automatically using the query
keywords.

To the best of our knowledge randomized algorithms are not very common
in the link-mining community. A remarkable exception [32] applies probabilis-
tic counting to estimate the neighborhood function of web pages. Besides link-
mining the paper [8] estimates the size of transitive closure for massive graphs
occurring in databases. For text-mining algorithms [6] estimates the resemblance
and containment of documents with a sampling technique.

Random walks were used before to compute various web statistics, mostly
focused on sampling the web (uniformly or according to static PR) [21,35,1,20],
but also for calculating page decay [2] and similarity values [15].

The lower bounds of Section 4 show that precise PPR requires significantly
larger database than Monte Carlo estimation does. Analogous results with simi-
lar communication complexity arguments were proved in [22] for the space com-
plexity of several data stream graph algorithms.



Preliminaries. In this section we briefly introduce notation, and recall defini-
tions and basic facts about PageRank. Let V denote the set of web pages, and
V = |V| the number of pages. The directed graph with vertex set V and edges
corresponding to the hyperlinks will be referred to as the web graph. Let A de-
note the adjacency matrix of the webgraph with normalized rows and ¢ € (0,1)
the teleportation constant. In addition, let r be the so called preference vector
inducing a probability distribution over V. PageRank vector p is defined as the
solution of the following equation [31]

p=(1—-c¢)-pA+c-r.

If 7 is uniform over V, then p is referred to as the global PageRank vector. For
non-uniform r the solution p will be referred to as personalized PageRank vector
denoted by PPV (7). The special case when for some page u the u'" coordinate of
ris 1 and all other coordinates are 0, the PPV will be referred to as the individual
PageRank vector of u denoted by PPV (u). Furthermore the v'! coordinate of
PPV (u) will be denoted by PPV (u,v).

Theorem 1 (Linearity, [17]). For any preference vectors r1, r2, and positive
constants a1, as with ay + as = 1 the following equality holds:

PPV(OQ r1+ag - ’l"g) =qQq - PPV(’Pl) + s - PPV(TQ).

Linearity is a fundamental tool for scalable on-line personalization, since if
PPV is available for some preference vectors, then PPV can be easily computed
for any combination of the preference vectors. Particularly, for full personaliza-
tion it suffices to compute individual PPV (u) for all u € V, and the individual
PPVs can be combined on-line for any small subset of pages. Therefore in the
rest of this paper we investigate algorithms to make all individual PP Vs available
on-line.

The last statement of the introduction will play a central role in our PPV
estimations. The theorem provides an alternate probabilistic characterization of
individual PageRank scores.*

Theorem 2 ( [24,14] ). Suppose that a number L is chosen at random with
probability Pr{L =i} = c(1—c) fori =0,1,2,... Consider a random walk start-
ing from some page u and taking L steps. Then for the v?* coordinate PPV (u,v)
of vector PPV (u)

PPV (u,v) = Pr{the random walk ends at page v }

2 Personalized PageRank algorithm

In this section we will present a new Monte-Carlo algorithm to compute approx-
imate values of personalized PageRank utilizing the above probabilistic charac-
terization of PPR.

* Notice that this characterization slightly differs from the random surfer formulation
[31] of PageRank.



Definition 1 (Fingerprint). A fingerprint of a vertex u is a random walk
starting from u; the length of the walk is of geometric distribution of parameter
¢, i.e., after every step the walk ends with probability c, and takes a further step
with probability 1 — c.

By Theorem 2 the ending vertex of a fingerprint, as a random variable, has
the distribution of the personalized PageRank vector of u. We will calculate N
independent fingerprints by simulating N independent random walks starting
from v and approximate PPV (u) with the empirical distribution of the ending
vertices of these random walks. The ending vertices of the fingerprints will con-
stitute the index database, and the output ranking will be computed at query
time from the fingerprints of positive personalization weights using the linearity
theorem.

To increase the precision of the approximation of PPV (u) we will use the
fingerprints of u’s neighbors in the calculation, as described in Section 2.3.

The challenging problem is how to scale the indexing, i.e., how to generate
N independent random walks for each vertex of the web graph. We assume that
the edge set can only be accessed as a data stream, sorted by the source page,
and we will count the database scans and total I/O size as the efficiency measure
of our algorithms. Though with the latest compression techniques [3] the entire
web graph may fit into main memory, we still have a significant computational
overhead for decompression in case of random access. Under such assumption
it is infeasible to generate the random walks one-by-one, as it would require
random access to the edge-structure.

We will consider two computational environments here: a single computer
with constant random access memory (external memory algorithm) and a dis-
tributed system with tens to thousands of medium capacity computers. Both
algorithms use similar techniques to the respective I/0 efficient algorithms com-
puting PageRank [7].

As the task is to generate N independent fingerprints, the single computer
solution can be trivially parallelized to make use of a large cluster of machines,
too. (Commercial web search engines have up to thousands of machines at their
disposal.) Also, the distributed algorithm can be emulated on a single machine,
which may be more efficient due to the different approach.

2.1 External memory indexing

We will incrementally generate the entire set of random walks simultaneously.
Assume that the first & vertices of all the random walks (of length at least k) are
already generated. At any time it is enough to store the starting and the current
vertices of the fingerprint, as we are interested in adding the ending vertex to
the index of the starting vertex. Sort these pairs by the ending vertices. Then
by simultaneously scanning through the edge set and this sorted set we can have
access to the neighborhoods of the current ending vertices, thus we can generate
the random out-neighbor (the next vertex) of each partial fingerprint. For each
partial fingerprint we also toss a biased coin to determine if it has reached its final



Algorithm 1 Indexing (external memory method)

V' is the number of vertices in the web graph, IV is the required number of finger-
prints for each vertex. For a vertex v, OutEdges[v] is the set of links on page v. The
teleportation constant of PPR is c.

for u:=1to V do
for i :=1to N do
Paths[(u — 1) - N + i].PathStart:=u
Paths[(u — 1) - N + ¢].PathEnd:=u
Fingerprint|u]:=0
while Paths # () do
sort Paths by PathEnd /*use an external memory sort*/
for j := 1 to Paths.length do /*simultaneous scan of OutEdges and Paths*/
! :=random(OutEdges[Paths[j].PathEnd].length) /*choose a random edge*/
Paths[j].PathEnd:=OutEdges|Paths[j].PathEnd]|[l] /*prolong the path*/
if random()<c then /*this fingerprint ends here*/
Fingerprint[Paths[j]. PathStart].push(Paths[j]. PathEnd)
Paths.delete(5)

length (with probability c) or has to advance to the next round (with probability
1 — ¢). This algorithm is formalized as Algorithm 1.

The number of I/O operations the external memory sorting takesis D log,; D,
where D is the database size and M is the available main memory. Thus the I/O
requirement of the sorting parts can be upper bounded by

ia —¢)*NVlogy, (1 —c)*NV) = %NVlogM(NV) —O(NV)
k=0

using the fact that after k& rounds the expected size of the Paths array is (1 —
¢)*NV (Recall that V and N denote the numbers of vertices and fingerprints,
respectively).

We need a sort on the whole index database to avoid random-access writes
to the Fingerprint arrays. Also, upon updating the PathEnd variables we do
not write the unsorted Paths array to disk, but pass it directly to the next
sorting stage. Thus the total I/0 is at most %N V'log,; NV plus the necessary
edge-scans.

Unfortunately this algorithm apparently requires as many edge-scans as the
length of the longest fingerprint path, which can be very large: Pr{the longest
fingerprint is shorter, than L} = (1 — (1 — ¢)*)¥"V. Thus instead of scanning
the edges in the final stages of the algorithm, we will change strategy when the
Paths array has become sufficiently small. Assume a partial fingerprint path has
its current vertex at v. Then upon this condition the distribution of the end of
this path is identical to the distribution of the end of any fingerprint of v. Thus
to finish the partial fingerprint we can retrieve an already finished fingerprint of



v. Although this decreases the number of available fingerprints for v, this results
in only a very slight loss of precision.®

Another approach to this problem is to truncate the paths at a given length
L and approximate the ending distribution with the static PageRank vector, as
described in Section 2.3.

2.2 Distributed index computing

In the distributed computing model we will invert the previous approach, and
instead of sorting the path ends to match the edge set we will partition the edge
set of the graph in such a way that each participating computer can hold its
part of the edges in main memory. So at any time if a partial fingerprint with
current ending vertex v requires a random out-edge of v, it can ask the respective
computer to generate one. This will require no disk access, only network transfer.

More precisely, each participating computer will have several queues holding
(PathStart, PathEnd) pairs: one (large) input queue, and for each computer one
small output queue’.

The computation starts with each computer filling their own input queue with
N copies of the initial partial fingerprints (v,v), for each vertex v belonging to
the respective computer in the vertex partition.

Then in the input queue processing loop a participating computer takes the
next input pair, generates a random out-edge from PathEnd, decides whether
the fingerprint ends there, and if it does not, then places the pair in the output
queue determined by the next vertex just generated.” If the output queue reaches
the size of a network packet’s size, then it is flushed and transferred to the input
queue of the destination computer.

The total size of all the input and output queues equals the size of the Paths
array in the previous approach after the respective number of iterations. The
total network transfer can be upper bounded by > (1 — ¢)"NV = 1NV,
if every fingerprint path needs to change computer in each step. As the web
graph tends to have many ‘local’ links, with a suitable partition of vertices®
the network transfer will be considerably less. Also note that this amount of
transfer is distributed almost uniformly between all pairs of network nodes®, so

5 Furthermore, we can be prepared for this event: the distribution of these v ver-
tices will be close to the static PageRank vector, thus we can start with generating
somewhat more fingerprints for the vertices with high PR values.

5 Preferably the size of a network packet.

" Either we have to store the partition index for those v vertices that have edges
pointing to in the current computer’s graph, or part(v) has to be computable from
v, for example by renumbering the vertices according to the partition.

& It should be enough to have each domain on a single computer, as the majority of
the links are intra-domain links [25,10].

9 Also depending on the actual partition; as a heuristics one should use a partition
that distributes the global PageRank uniformly across computers: the expected value
of the total InQueue hits of a computer is proportional to the the total PageRank
score of vertices belonging to that computer.



Algorithm 2 Indexing (distributed computing method)

The algorithm of one participating computer. Each computer is assumed to have a part
of the OutEdges|| arrays, in memory. For a vertex v, part(v) is the index of the computer
that has the out-edges of v. The queues hold pairs of vertices: (PathStart, PathEnd).
for v s.t. part(v) = current computer do
InQueue.push((v,v))
while at least one queue is not empty do /*some of the fingerprints are still being
calculated*/
p :=InQueue.get() /*If empty, flush output queues and block until a packet ar-
rives.*/
l :=random(OutEdges[p.PathEnd].length) /*choose an edge at random*/
q.PathEnd:=OutEdges|q.PathEnd]|[l] /*prolong the path*/
if random()<c then /*teleport: this fingerprint ends here*/
Fingerprint[q.PathStart].push(g.PathEnd)
else
o0 := part(g.PathEnd)
OutQueue[o].push(p)
if OutQueue[o].length > reasonable packet size then
transmit OutQueue|o] to the InQueue of computer o.
transmit the finished fingerprints to the proper computers for collecting and sorting.

the effective switching capacity of the network is challenged, not the capacity of
the individual network links.

2.3 Query

The basic query algorithm is as follows: to calculate PPV (u) we load the ending
vertices of the fingerprints for « from the index database, calculate the empirical
distribution over the vertices, multiply it with 1 — ¢, and add ¢ weight to vertex
u. This requires one database access (disk seek).

To reach a precision beyond the number of fingerprints saved in the database
we can use the recursive property of PPV [24]:

1
O(u)]

PPV(u) = ¢1,+(1 —¢) > PPV(v)

vEO(u)

where 1, denotes the measure concentrated at vertex u (i.e., the unit vector of
u), and O(u) is the set of out-neighbors of u.

This gives us the following algorithm: upon a query u we load the fingerprint
endings for u, the set of out-edges of u, and the fingerprint endings for the ver-
tices linked by u.!® From this set of fingerprints we use the above equation to
approximate PPV (u) using a higher amount of samples, thus achieving higher
precision. This is a tradeoff between query time (database accesses) and preci-
sion: with k£ database accesses we can approximate the vector from kN samples.

10 We can iterate this recursion if we want to have even more samples.



The increased precision is essential in approximating the PPV of a page
with large neighborhood, as from NV samples at most N pages will have positive
approximated PPR values. Fortunately, this set is likely to contain the pages
with highest PPR scores. Using the samples of the neighboring vertices will give
more adequate result, as it will be formally analyzed in the next section.

We could also use the expander property of the web graph: after not so many
random steps the distribution of the current vertex will be close to the static
PageRank vector. Instead of allowing very long fingerprint paths we could com-
bine the PR vector with coefficient (1 — ¢)* to the approximation and drop all
fingerprints longer than L. This would also solve the problem of the approxi-
mated individual PPV vectors having many zeroes (in those vertices that have
no fingerprints ending there). The indexing algorithms would benefit from this
truncation, too.

There is a further interesting consequence of the recursive property. If it is
known in advance that we want to personalize over a fixed (maybe large) set of
pages, we can introduce an artificial node into the graph with the respective set
of neighbors to generate fingerprints for that combination.

3 How Many Fingerprints are Needed?

In this section we will discuss the convergence of our estimates, and analyze the
required amount of fingerprints for proper precision.

It is clear by the law of large numbers that as the number of fingerprints
N — o0, the estimate PPV (u) converges to the actual personalized PageRank
vector PPV (u). To show that the rate of convergence is exponential, recall that
each fingerprint of u ends at v with probability PPV (u,v), where PPV (u,v)
denotes the v'" coordinate of PPV (u). Therefore N - P/P\V(u, v), the number of
fingerprints of v that ends at v, has binomial distribution with parameters N and
PPV (u,v). Then Chernofl’s inequality yields the following bound on the error
of over-estimating PPV (u,v) and the same bound holds for under-estimation:

Pr{PPV(u,v) > (1 + §) PPV(u,v)} = Pr{N PPV(u,v) > N(1 + §) PPV(u,v)}
< €7N~PPV(u,v)-62/4.

Actually, for applications the exact values are not necessary. We only need
that the ordering defined by the approximation match fairly closely the ordering
defined by the personalized PageRank values. In this sense we have exponential
convergence too:

Theorem 3. For any vertices u,v,w consider PPV (u) and assume that:
PPV (u,v) > PPV(u,w)

Then the probability of interchanging v and w in the approximate ranking tends
to 0 exponentially in the number of fingerprints used.



Theorem 4. For any ¢,0 > 0 there exrists an Noy such that for any N >
No number of fingerprints, for any graph and any vertices u,v,w such that
PPV (u,v) — PPV (u,w) > 0, the inequality Pr{PPV(u,v) < PPV(u,w)} < €
holds.

Proof. We prove both theorems together. Consider a fingerprint of v and let Z
be the following random variable: Z = 1, if the fingerprint ends in v, Z = —1
if the fingerprint ends in w, and Z = 0 otherwise. Then E Z = PPV(u,v) —
PPV (u,w) > 0. Estimating the PPV values from N fingerprints the event of
interchanging v and w in the rankings is equivalent to taking N independent Z;
variables and having Zfil Z; < 0. This can be upper bounded using Bernstein’s
inequality and the fact that Var(Z) = PPV (u,v) + PPV (u,w) — (PPV(u,v) —
PPV (u,w))? < PPV (u,v) + PPV (u,w):

2
N _N (E Z) ,
Pr{% Zi:l Z; < 0} <e 3Var(Z)14/3E Z
N (PPV (u,v) —PPV (u,w))?
10/3PPV (u,v)+2/3 PPV (u,w)

<e"
< ¢—0.3N(PPV(u,v)=PPV(u,w))?

From the above inequality both theorems follow. ad

The first theorem shows that even a modest amount of fingerprints are enough
to distinguish between the high, medium and low ranked pages according to the
personalized PageRank scores. However, the order of the low ranked pages will
usually not follow the PPR closely. This is not surprising, and actually a deep
problem of PageRank itself, as [30] showed that PageRank is unstable around
the low ranked pages, in the sense that with little perturbation of the graph a
very low ranked page can jump in the ranking order somewhere to the middle.

The second statement has an important theoretical consequence. When we
investigate the asymptotic growth of database size as a function of the graph
size, the number of fingerprints remains constant for fixed € and J.

4 Lower Bounds for PPR Database Size

In this section we will prove several lower bounds on the complexity of per-
sonalized PageRank. In particular, we will prove that exact computation the
necessary index database size of a fully personalized PageRank must be at least
2(V?) bits, and if personalizing only for H pages, the database size is at least
Q(H - V). In the approximate problem the lower bound for full personalization
is linear in V', which is achieved by our algorithm of Section 2.

More precisely we will consider two-phase algorithms: in the first phase the
algorithm has access to the edge set of the graph and has to compute an index
database. In the second phase the algorithm gets a query of arbitrary vertices u,
v (and w), and it has to answer based only on the index database. In this model
we will lower bound the index database size. We will consider the following types
of queries:



(1) Exact: Calculate PPV (u,v), the v'" element of the personalized PageRank
vector of w. .
(2) Approximate: Estimate PPV (u,v) with a PPV (u,v) such, that for fixed
€,6>0
Pr{|PPV(u,v) — PPV(u,v)| <6} > 1—¢

(3) Positivity: Decide whether PPV (u,v) is positive with error probability at
most €.

(4) Comparison: Decide in which order v and w are in the personalized rank of
u with error probability at most e.

(5) e-6 comparison: For a fixed € > 0, > 0 decide the comparison problem with
error probability at most e, if | PPV (u,v) — PPV(u, w)| > § holds.

Our tool towards the lower bounds will be the asymmetric communication
complexity game bit-vector probing [22]: there are two players A and B, A has
an m-bit vector x, B has an index y € {1,2,...,m}, and they have to compute
the function f(z,y) = z, i.e., the output is the y*® bit of the input vector. To
compute the proper output they have to communicate, and communication is
restricted in the direction A — B. The one-way communication complexity [29]
of this function is the required bits of transfer in the worst case for the best
protocol.

Theorem 5 ([22]). Any protocol that outputs the correct answer to the bit-
vector probing problem with probability at least HT” must transmit at least ym
bits.

Now we are ready to prove our lower bounds. In all our theorems we assume
that personalization is calculated for H vertices, and there are V vertices in
total. In the case of full personalization H = V.

Theorem 6. Any algorithm solving the positivity problem (3) must use an index
of size 2((1 —2e)HV) bits.

Proof. Set HT” = 1 — e. We give a communication protocol for the bit-vector
probing problem. Given an input bit-vector x we will create a graph, that ‘codes’
the bits of this vector. Player A will create a PPV index on this graph, and
transmit this index to B. Then Player B will use the positivity query algorithm
for some vertices (depending on the requested index y) such that the answer
to the positivity query will be the y*" bit of the input vector z. Thus if the
algorithm solves the PPV indexing and positivity query with error probability
€, then this protocol solves the bit-vector probing problem with probability HTV,
so the transferred index database’s size is at least ym.

For the H < V/2 case consider the following graph: let us,...,uy denote
the vertices for whose the personalization is calculated. Add vy, v, ..., v, more
vertices to the graph. Let the input vector’s size be m = H -n. In our graph each
vertex v; has a loop, and for each 1 <i < H and 1 < j < n the edge (u;,v;) is
in the graph iff bit (i — 1)n + j is set in the input vector.



For any index 1 < y < mlet y = (i—1)n+j; the personalized PageRank value
PPV (u;,v;) is positive iff (u;,v;) edge was in the graph indexed, thus iff bit y was
set in the input vector. If H < V/2 the theorem follows sincen =V —H = 2(V)
holds implying that m = H - n = 2(H - V) bits are ‘coded’.

Otherwise, if H > V/2 the same construction proves the statement with
setting H = V/2. O

Corollary 1. Any algorithm solving the exact PPV problem (1) must have an
index database sized (2(H - V') bits.

Theorem 7. Any algorithm solving the approzimation problem (2) needs an
index database of 2(152 H) bits on a graph with V = H + (2(3) vertices. For
smaller ¢ the index database requires 2((1 — 2¢)HV') bits.

Proof. We will modify the construction of Theorem 6 for the approximation
problem. We have to achieve that when a bit is set in the input graph, then the
queried PPV (u;, v;) value should be at least 24, so that the approximation will
decide the positivity problem, too. If the u; vertex in the input graph of our
construction has k edges connected to it, then each of those v; end-vertices will

have exactly 17¢ weight in PPV (u;). For this to be over 2§ we can have at most
n= 12_50 possible vy, ..., v, vertices. With HT” =1 — ¢ the theorem follows.
For small § the original construction suffices. a

This radical drop in the storage complexity is not surprising, as our approx-
imation algorithm achieves this bound (up to a logarithmic factor): for fixed
€,0 we can calculate the necessary number of fingerprints N, and then for each
vertex in the personalization we store exactly N fingerprints, independently of
the graph’s size.

Theorem 8. Any algorithm solving the comparison problem (4) requires an in-
dez database of 2((1 —2¢)HV) bits.

Proof. We will modify the graph of Theorem 6 so that the existence of the
specific edge can be queried using the comparison problem. To achieve this we
will introduce a third set of vertices in the graph construction wy, ..., w,, such
that w; is the complement of v;: A puts the edge (u;,w;) in the graph iff (u,, v;)
was not put into, which means bit (i — 1)n + j was not set in the input vector.

Then upon query for bit y = (i — 1)n + j, consider PPV (w;). In this vector
exactly one of v;, w; will have positive weight (depending on the input bit z,),
thus the comparison query PPV (u;,v;) > PPV (u;,w;) will yield the required
output for the bit-vector probing problem. O

Corollary 2. Any algorithm solving the ¢-0 comparison problem (5) needs an
index database of 2(152H) bits on a graph with V = H + (2(3) vertices. For
smaller § the index database needs 2((1 — 2¢)HV) bits.

Proof. Modifying the proof of Theorem 8 according to the proof of Theorem 7
yields the necessary results. a



5 Experiments

In this section we present experiments that compare our approximate PPR scores
to exact PPR scores computed by the personalized PageRank algorithm of Jeh
and Widom [24]. Our evaluation is based on the web graph of 80 million pages
crawled in 2001 by the Stanford WebBase Project [23]. We also validated the
tendencies presented on a 31 million page web graph of the .de domain created
using the Polybot crawler [37] in April 2004.

In the experiments we personalize on a single page u chosen uniformly at
random from all vertices with non-zero outdegree. The experiments were carried
out with 1000 independently chosen personalization node u, and the results were
averaged.

To compare the exact and approximate PPR scores for a given personaliza-
tion page u, we measure the difference between top score lists of exact PPV (u)
and approximate P/P\V(u) vectors. The length &k of the compared top lists is in
the range 10 to 1000.

As our primary application area is query result ranking, we chose measures
that compare the ordering returned by the approximate PPR method to the
ordering specified by the exact PPR scores. In Section 5.1 we describe these
measures that numerically evaulate the similarity of the top k lists. In Section 5.2
we present our experimental results.

5.1 Comparison of ranking algorithms

The problem of comparing the top k lists of different ranking algorithms has
been extensively studied by the web-search community for measuring the speed
of convergence in PageRank computations [26], the distortion of PageRank en-
codings [18] and the quality of rank-aggregation methods [13,11,12,9].

In our scenario the exact PPR scores provide the ground truth ranking and
the following three methods evaluate the similarity of approximate scores to the
exact scores.

Let T} denote the set of pages having the k highest personalized PageRank
values in the vector PPV (u) personalized to a single page u. We approximate
this set by TZ‘, the set of pages having the k highest approximated scores in
vector P/P\V(u) computed by our Monte Carlo algorithm.

The first two measures determine the overall quality of the approximated
top-k set T}, so they are insensitive to the ranking of the elements within 73
Relative aggregated goodness [36] measures how well the approximate top-k set
performs in finding a set of pages with high aggregated personalized PageRank.
Thus relative aggregated goodness calculates the sum of exact PPR values in
the approximate set compared to the maximum value achievable (by using the
exact top-k set T}):

ZUETZ‘ PPV (u,v)

ZUGT; PPV(u,v)

RAG(k,u) =



We also measure the precision of returning the top-k set in the classical
information retrieval terminology (note that as the sizes of the sets are fixed,
precision coincides with recall):

Ti N T
Prec(k,u) = %

The third measure, Kendall’s 7 compares the exact ranking with the approx-
imate ranking in the top-k set. Note that the tail of approximate PPR ranking
contains a large number of ties (nodes with equal approximated scores) that
may have a significant effect on rank comparison. Versions of Kendall’s 7 with
different tie breaking rules appear in the literature; we use the original definition
as e.g. in [27] that we review next. Consider the pairs of vertices v,w. A pair is
concordant, if both rankings strictly order this pair and agree on the ordering;
discordant, if both rankings strictly order but disagree on the ordering of the
pair; e-tie, if the exact ranking does not order the pair; a-tie, if the approximate
ranking does not order the pair. Denote the number of these pairs by C, D, U,
and U, respectively. The total number of possible pairs is M = @, where

n=T¢U fg| Then Kendall’s 7 is defined as

C-D

T(k,u) =
( ) \/(M - Ue)(M - Ua)

The range of Kendall’s 7 is [—1, 1], thus we linearly rescaled it onto [0, 1] to fit
the other measures on the diagrams. To restrict the computation to the top k
elements, the following procedure was used: we took the union of the exact and
approximated top-k sets T}' U T}*. For the exact ordering, all nodes that were
outside T} were considered to be tied and ranked strictly smaller than any node
in T}*. Similarly, for the approximate ordering, all nodes that were outside the
approximate top-k set I/”E were considered to be tied and ranked strictly smaller

than any node in T}.

5.2 Results

We conducted experiments on a single AMD Opteron 2.0 Ghz machine with 4 GB
of RAM under Linux OS. We used an elementary compression (much simpler
and faster than [3]) to store the Stanford WebBase graph in 1.6 GB of main
memory. The computation of 1000 approximated personalized PageRank vectors
took 1.1 seconds (for N = 1000 fingerprints truncated at length L = 12). The
exact PPR values were calculated using the algorithm by Jeh and Widom [24]
with a precision of 1078 in L; norm. The default parameters were number of
fingerprints N = 1000 with one level of recursive evaluation (see Section 2.3)
and maximal path length L = 12.

In our first experiments depicted on Figure 1, we demonstrate the exponential
convergence of Theorems 3 and 4. We calculated Kendall’s 7 restricted to pairs
that have a difference at least ¢ in their exact PPR scores. We displayed the effect
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Figure 1. Effect of the number of fingerprints on Kendall’s 7 restricted to pairs with
a PPR difference of at least § = 0.01 (left) and § = 0.001 (right).
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Figure 2. Effect of the number of fingerprints on various measures of goodness with
(left) or without (right) recursive evaluation.

of the number of fingerprints on this restricted 7 for § = 0.01 and § = 0.001.
It can be clearly seen, that a modest amount of fingerprints suffices to properly
order the pages with at least ¢ difference in their personalized PageRank values.

Figure 2 demonstrates the effects of the number of fingerprints and the re-
cursive evaluation on the approximate ranking quality (without the previous
restriction). The recursion was carried out for a single level of neighbors, which
helped to reduce the number of fingerprints (thus the storage requirements) for
the same ranking precision by an order of magnitude.

Figure 3 shows the effect of truncating the fingerprints at a maximum path
length. It can be seen, that paths over length 12 have little influence on the
approximation quality, thus the computation costs can be reduced by truncating
them.

Finally, Figure 4 indicates that as the top list size k increases, the task of
approximating the top-k set becomes more and more difficult. This is mainly
due to the fact that among lower ranked pages there is a smaller personalized
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Figure 3. Effect of the path length/truncation on various measures of goodness.
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Figure 4. Effect of the size k of top set taken on various measures of goodness.

PageRank difference, which is harder to capture using approximation methods
(especially Monte Carlo methods).

6 Conclusions

In this paper we introduced a new algorithm for calculating personalized Page-
Rank scores. Our method is a randomized approximation algorithm based on
simulated random walks on the web graph. It can provide full personalization



with a linear space index, such that the error probability converges to 0 expo-
nentially with increasing the index size. The index database can be computed
even on the scale of the entire web, thus making the algorithms feasible for
commercial web search engines.

We justified this relaxation of the personalized PageRank problem to approx-
imate versions by proving quadratic lower bounds for the full personalization
problems. For the estimated PPR problem our algorithm is space-optimal up to
a logarithmic factor.

The experiments on 80M pages showed that using no more than N = 1000
fingerprints suffices for proper precision approximation.

An important future work is to combine and evaluate the available methods
for computing personalized PageRank.
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