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Abstract: Apart from the textual information, the World Wide is a set of empty
web pages with hyperlinks between them, and this structure is referred to as the web
graph. We summarize the graph algorithms designed for the web graph to support
browsing the Internet or to explore the structure of the web. The solutions are usually
based on some spectral heuristics derivated from some intuitions. These intuitions
assume the existence of some underlying model, which controls the evolution of the
hyperlinks of the web.
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1 Introduction

The World Wide Web (WWW) is one of the phenomenona appeared in the last decades greatly
effecting our everyday life. If someone has a problem to solve or a piece of information to access,
with high probability thousands of web pages are related to this problem. The bottleneck is
not the existence of information, but processing such an enormous database and finding the
most relevant pages. Hyperlinks support the navigation, which are incorporated within the
information.

On a more abstract level the web is a directed graph G(V, E) referred to as the web graph.
Each web page corresponds to a node v € V, and (u,v) € E if there exists a hyperlink from
the page of u to that of v. The web graph is interesting to investigate both from theoretical
and practical point of view. Some experiments reveal the most important graph parameters,
such as the diameter, the average degree, degree distribution and the size of the largest strongly
connected component of the web graph [20, 13, 6]. Furthermore, there is a large effort on the
research area, which tries to explain the result of the experiments by simplified models yielding
to the already measured properties [22, 2, 29, 19]. This may give a new direction of random
graph theory in the future, since the classical Erdés—Rényi random graph model [15] differs from
the web in many aspects. For instance the degree distribution of the web graph follows a power-
law, i.e., the probability of a page with outdegree k is proportional to k~* with a = 2 [6]. On
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the contrary, if a random graph has n nodes and each pair of nodes is connected with probability
p, then the degree distribution is binomial close to Poissonian for large n.

From the practical point of view, the structure of the web can act as input for web algorithms.
Typical applications aid human users to navigate, which is the most challenging task of using
the web. The most well-known examples of web algorithms are implemented in search engines,
such as Google or Yahoo. Web algorithms may use textual information written in the web
pages: keywords, titles, and most frequently used expressions can be analyzed by softwares
without any kind of human interaction. The web graph is also a rich source of information for
web algorithms, although it contains only the following information type: one page recommends
the other to wvisit. The textual information has a large variance depending on the author’s
language, style and programming skill. The linkage information, however, is more homogenous
and independent of the language. Furthermore, the number of links on a page is significantly
smaller than that of words.

In practical applications we need to pay attention to the difficulties of implementing web
algorithms. First of all, the input of a web algorithm can never be complete neither accurate,
since the web graph is available through downloading the pages by crawlers. These softwares
visit and download the contents of the web pages. The URLs to visit by a crawler can be
controlled by a programmer, but the main source of URLSs is collected by the crawler itself.
Thus, a crawler performs a walk on the web graph and the input of a web algorithm is the
structure obtained from the walk of the crawler. This structure can only be a perturbed version
of some part of the always changing web graph. Controlling the walk of a crawler is far from
being trivial, see [10, 11]. The second problem of realization comes from the incredibly large size
of data to deal with. The downloaded fraction of the web can be much larger than the capacity
of the main memory of a computer, so the structure can only be stored in the external memory,
which restricts the possible algorithmic solutions. Another aspect which needs consideration is
the required response time, which is determined by the application. If the web algorithm aids
a user in browsing the web, then it has no time to process the whole structure on-line. Some
applications, however, preprocess the structure off-line and use the output of preprocession
on-line.

In this survey we focus on web algorithms which use the web graph or a subgraph of it as
an input, and extract some meaningful information. This article is divided into three sections
discussing different applications. The first is about extracting the most densely connected com-
munities of the web. The second application ranks some set of web pages according to the users
interest. Finally, we summarize the problem of defining a similarity measure on pages, which
can be evaluated effectively. Besides the heuristic solutions we take considerations about the
underlying intuition, which makes us believe that the output is meaningful. Such an intuition
is always related to some heuristic explanation of the evolution of the hyperlinks.

2 Tracing web communities

Intuitively a web community is a set of pages sharing a common interest on some topic, and
the members frequently visit the most relevant pages about the topic. An example is depicted
on Fig. 1. In the following section we will have a closer investigation on the structure of these
communities yielding to an algorithm to enumerate them following the results of Kumar et
al. [21].
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Figure 1: The web community is formed by pages related to soccer. The nodes on the right are
good authority pages, while the others are fans.

Naturally, we can distinguish between two types of members of a community. A fan is a
reader member not contributing any interesting information for others. Such a page is composed
mainly for the user himself with some navigational tools according to his interest. The content
of an authority, however, excites the other members of the community. Consequently, the fans
are likely to link to authorities yielding to the following hypothesis.

Hypothesis 1 A web community contains a large number of links directed from the set of fans
to the authorities, thus forming a dense directed bipartite subgraph.

One may view on this subgraph as an instance of a random bipartite graph, with m edges
placed between the set F' of fans and A of authorities randomly. Note that all the edges are
directed towards A. It is a well-known fact from random graph theory that with high probability
there exist A’ C A and F' C F such that there is a complete bipartite graph between A’ and
F'. (The sizes of F' and A’ are functions of m, |F| and |A|.)

Hypothesis 2 Fach web community contains a complete bipartite graph with all the edges di-
rected from one class to the other.

Such a subgraph is referred to as a core, which acts as a mark of the community. For instance
the community depicted on Fig. 1 contains a core with |A’| = |F’| = 3. Kumar et al. aim at
finding empirical evidence of the above intuitive implications by implementing an algorithm,
which traces the cores of the web. It is named trawling (by mixing the words crawling and
tracing), and it enumerates a maximal set of pairwise disjoint cores from the web graph for fixed
small constants ¢ = |A’| and j = |F’| (in the range 3-10). As the input was almost the whole web
graph, they coped with external memory implementation reducible to sorting and small batches
of tasks. They conducted experiments on a database, which was crawled one year before the
experiment. Some of the enumerated cores had grown largely during the one year period. So
the trawling algorithm may indicate the presence of still small but developing communities as
well.

3 Ranking the pages

In this section we describe the most successful and wide-spread application of algorithms based
on the linkage information. Suppose we are looking up web pages containing a query string for



example “sushi restaurant”. The phrase is submitted to a query search engine of a downloaded
database containing a significant fraction of the web. We refer to the survey [4] on the anatomy
of query search engines and the maintenance of collections of web pages. The search engine
returns the query set, i.e., the set of pages in which the query string occurs. The size of such a
set is likely to reach tens of thousands, and it can be even higher by magnitudes if the phrase
is very common. Then, the computer enumerates the elements of the query set for the user.
A typical user, however, does not check more than the first few elements, so the rest of the
set remains unexplored. How can a machine distinguish between sushi restaurants, and decide
which one should appear on the top of the list? In this section we focus on ranking algorithms
which assign non-negative real values to the pages, such that the higher the rank of a page is,
the more relevant information is available on the page. These values determine the order in
which the elements of the query set will be enumerated on the screen.

3.1 Page Rank algorithm

We introduce the results of Brin and Page [9] in the following section. They propose ranking
algorithms, to assign a value for each page of the web off-line in advance. Thus, the same rank
will be used for a given page in any query set.

Recall that the existence of a link (p1,p2) implies that page p; recommends po to visit. So
the more pages link to a node the more popular the corresponding node is. A simple idea is
that the indegree of a node can be chosen as its rank. This solution, however, has the drawback
of treating the opinions of pages in an equal manner. If www.yahoo.com links to a page p for
example, then it should be present with higher weight in the rank of p.

Let G(V, E) denote an arbitrary strongly connected directed graph, and for a node v € V'
the set of nodes linking to v is denoted by d (v) and those linked from v by d*(v).

Definition 3 The simple Page Ranks s, > 0, v € V are the solution of the following linear

system of equations with Y .y s, =1
1
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Figure 2: Let U denote the set of nodes of the chain. As there is only one page of V' \ U linking
to any member of U, the total rank of nodes of U should be small. While, a random walk can
be trapped in U as the probability of leaving U from its left most node without returning is
Z\U%' Thus, the simple Page Rank of the left most node can be very high.

Notice that the solution is the stationary distribution of an arbitrary random walk on G
[3]. The simple Page Rank still has a strong deficiency, if we apply it to the largest strongly
connected component of the web graph. The problem is summarized through an example on
Fig. 2. The following definition eliminates the difficulty:
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Definition 4 (Brin, Page, 1998) The Page Rank r, > 0 of a node v € V is defined as the
probability of v in the stationary distribution of the following random walk on the nodes of G. If
the walk is currently on a node w € V, then it jumps to aan arbitrary node of V. with probability
ﬁ, and to a node of d¥(w) with probability ‘d}rﬁ, where 0 < € < 1 is a fixed constant.

Equivalently the ., values solve the following linear system with Y, i 7y =1

Tw €
b= (1— — :
ry = ( e)WEdZ_(v) oy T veV.

Let A denote the adjacency matrix of G, and P the stochastic matrix obtained from A by
normalizing its rows. Furthermore J denotes the matrix with the same size as A containing
only 1 entries. Then the Page Rank vector r € R!V! is the principal left singular vector of
(1 —€)P + €J, and it can be approximated by the power iteration method [16].

This procedure is successfully applied in practice to the largest strongly connected component
of the web graph, as it is the heart of the search engine Google [28]. The value of € = 0.1 —0.2 is
used and the number of iterations is approximately 50 — 100. Each iteration takes O(|E|) time,
so it is proportional to the number of hyperlinks of the whole web. Such an amount of data can
only be stored in the external memory, so the above computation takes hours for the whole web.

3.2 Hub-authority algorithm

The algorithm discussed in this section ranks the set of pages sharing a query string ¢ on-line.
So the input is a subgraph G,(V,, E,;) of the web graph induced by the nodes corresponding
to the elements of the query set. Since the algorithm was published by Kleinberg [18], many
variants appeared (see the survey [8].)

First, we intuitively explain how the structure of G, evolved. Each page contains some
navigational information and some textual information about the topic described by the query
phrase. The one containing valuable navigational information is a good hub, the one containing
the more relevant textual information is a good authority in G,. We suppose the latent existence
of two non-negative constants h, hub and a, authority scores assigned to each node v € V
describing its value as a hub and as an authority. Let a and h denote the vectors of dimensions
|Vq4| containing the hub and authority scores.

Hypothesis 5 The probability that an edge (v, w) is present in Gy is a monotone function of
hy and ay,, so the edges tend to link from good hubs towards good authorities.

Note that this hypothesis generalizes Hypothesis 1 by treating Gy as a web-community. It
explains the existence of all the edges of G4, not only the edges between fans (nodes with small
ay, values) and authorities (nodes with large a,, values.) If the intuitions are statistically true,
then a is an excellent ranking on the elements of |V;|. On the other hand the nodes with high hub
scores may also interest a user. For instance the www.sushi.infogate.de/linx.htm within the
query set of “sushi” is a good hub, as it links to several authority pages about “sushi”. Therefore
it is worth enumerating both good hubs and authorities once the scores are available.
Kleinberg’s algorithm computes hub and authority scores on the basis that the whole edge
structure of G, is statistically a trace of h and a. The following iterative algorithm captures
the mutual reinforcement relationship between hub and authority scores. The |V,| dimensional

vectors a and A contains the approximated hub and authority scores aq(,i) and hq(,i) for all



v € Vg 1 =0,1,2,... Furthermore, d~(v) C V; and d*(v) C V, denotes the subsets of nodes
linking to v and linked by v respectively.

Definition 6 (Kleinberg, 1998) Let B 7é 0 denote an arbitrary non-negative vector of RVal.
The approximated hub and authority scores are defined by the following iterative equations for

all v € Vg, where ||-|| denotes the 2-norm of a vector.
i+1
2 Z he) ol = EZH;
wed (v) [Ea I
(i+1) _ (i+1) R+ — y
W= 2 B = e
wedt(v) g

By introducing the notation A, for the adjacency matrix of Gy, it can be easily derived
that a1 (and A(F)is obtained from AqA?;g(i) (and A{Aqﬁ(i)) by normalization. Therefore
the above algorithm is equivalent to the power iteration method [16]. Let A; and Ao denote
the largest and second largest eigenvalues of AqTAq. Furthermore u and v denote the principal
eigenvectors of AqA?; and A?;Aq with ||u]| = ||v|| = 1. By the convergence properties of the
power iteration method we obtain the following theorem.

Theorem 7 If Ay > A9, then the vectors of approzimated hub and authority scores converge to
the principal eigenvectors u and v:

hma()—u lim h()
1—00 1—00
In case of large subgraphs of the web graph the condition of this theorem is likely to hold.
We mention that in practical applications the set V; is not equal to the set of pages cantaining
a string q. Instead, a base set of pages are used as V,, which is a slightly perturbed version
computed from the query set. For the details we refer to [18].

3.3 Stability of ranking algorithms

Both Page Rank and Kleinberg’s algorithm were introduced in 1998, and the winner of the
competition of the last five years is Page Rank implemented in Google. The difficulty of formal
comparison comes from the nature of the problem: there is no objective function to measure
the output of a ranking algorithm. Surprisingly Ng, Zheng and Jordan [25] found a formal way
of analyzation and pointed out a significant difference between the two ranking algorithms. We
summarize their results in the following section.

Suppose that we have a ranking algorithm $, which outputs the ranking z = R(G) on a graph
G. Then G’ is obtained from G by a perturbation, i.e., the link content is changed slightly. The
algorithm R is stable, if ' = R(G') and z are similar in the sense that the ||z’ — z|| value is
small with some vector norm. The stability is required, since the web graph is treated as an
instance of some random process, so any of the above hypothesises holds only statistically. Thus
the output of an unstable algorithm would largely depend on the random noise.

The following perturbation result holds for any symmetric matrix S with Ay > Ay largest and
second largest eigenvalues and normalized principal eigenvector u. The eigengap of S is denoted
by 6 = A — A2, and || X || refers to the Frobenius-norm of the matrix X.



Theorem 8 There exists a perturbed symmetric matriz S with normalized principal etgenvector
o such that

IS = 8||r < 26 lu — all = V2.

While omitting the details, we mention that the above statement can be derivated from the
orthogonal diagonalization of S [25]. In case of Kleinberg’s algorithm S = Aqu, where A, is
the adjacency matrix of the graph induced by a set of pages sharing some query phrase ¢, and
it may have various structures depending on q. We depict one example on Fig. 3, when a small
perturbation causes large variance in the hub and authority scores. Indeed the pages sharing
a word in common may form more than one community, especially if the query string is some
polysemantic word. For instance the phrase “windows gates” occurs either in architectural sites
or in political issues about Microsoft. The structure of GG, will be similar to the one depicted
on the left of Fig. 3, as it will contain two disjoint communities. Then the matrix AqAZ will
have two blocks in the diagonal. The eigenvalues corresponding to the blocks may be similar
yielding to a small eigengap 4. To sum it up, the Hub-Authority ranking is unstable for some

query strings.
058 021 079 000 0.00 033 026 060 060 033
[ ] [ ] ?. [ ] [ ] [ ] [ ] ?. '. [ ]
0.63 063 046 000 0.00 039 039 061 039 0.39
Figure 3: The hub (authority) scores are depicted next to the lower (upper) nodes. The scores

are significantly different for the left and right graphs, though they differ only in the dashed
edge.

Recall that Page Rank algorithm can be computed on the largest strongly connected com-
ponent of the web graph. Now G(V, E) denotes an arbitrary strongly connected directed graph.
The Page Rank on G with 0 < € < 1 is denoted by r,, v € V and the vector with these values
isr.

Theorem 9 (Ng et al., 2001) Suppose that the perturbed graph G(V,E) is obtained from G
by adding or deleting arbitrary number of edges starting from any of the nodes vi,vo, ..., vk,
such that G remains strongly connected. Then the following inequality holds for the Page Rank
7 computed on G with the same e:

lr = 7[l <
The above perturbation theorem meets the requirements of the WWW application. As todays’
crawlers are not fast enough in downloading, the database may contain earlier versions of some
web pages. Therefore the links starting from the nodes corresponding to the old web pages
may have been changed. If the sum of the rank of these pages is small enough, the computed
Page Rank is not biased much according the theorem. Another consequence is that a set of
low-ranked users cannot force the Page Rank algorithm to raise their ranks by manipulating
their own links.



The details of the proof the theorem can be found in [25], but we give the intuition behind.
The probability 7, can be defined in a slightly different way. Suppose that we choose a node
u € V uniformly random, then perform a random walk starting from u with length & > 0, where
k is an exponentially distributed random variable with parameter e. The Page Rank r, is equal
to the probability of arriving at node v by this walk. Therefore, if we change the outgoing links
of nodes which are unlikely to visit, then the resulting distribution 7 does not deviate much.

4 Finding similar pages

The last application we discuss in detail was not designed as a graph algorithm, but it can be
easily adopted for the web graph. Soon after Kleinberg’s iterative procedure was published,
many researchers realized it is a special case of Latent Semantic Indexing (LSI) discussed in this
section. For a more detailed survey containing the theoretical results about LSI see [27].

Suppose we are given a set of textual documents and we aim at defining a similarity measure,
which can be evaluated for any pairs of documents effectively. The word-document matriz A
with dimension m X n is assigned to the problem, where m is the number of words occurring
in any of the documents and n is the number of documents. The entry A, ; is equal to the
number of occurrences of the it" word in the j* document. (In practical applications A;jis
some monotone function of the number of occurrences.) According to the underlying concept,
the similarity can be read from co-occurring words. Let as; and a; denote the columns of A
corresponding to documents s and ¢, then the similarity is defined by

T
Qg at

lasll2latll’

which is equivalent to the cosine of the angle of the vectors a; and a;, so it is referred to as the
cosine measure. The drawback of such a similarity is that for long documents the evaluation
may be time-consuming and the polysemantic words can deviate the result.

The key idea of LSI [12] is to transform the columns of A to a low-dimensional semantic
space in which the similarity of pages is more related to spatial closeness than in the original m-
dimensional term space. LSI proposes the orthogonal projection of the vectors into the subspace
spanned by the first k left singular vectors of A yielding to the matrix Ax. The constant k is
the dimension of the semantic space and it is set in the range of 100 — 200. Recall the linear
algebra fact that Ay minimizes the error || A’y — A|| with respect to rank(A’) < k [16]. Then the
columns of A can be replaced by k& dimensional vectors, which enables more efficient evaluation
of the cosine measure.

Some early experimental results show that LSI copes with the problem of polysemantic
words, and filters such co-occurrences effectively by applying the cosine measure on the columns
of Ay. Papadimitriou et al. [26] analyzed LSI formally for special types of matrices, and their
results was generalized by Azar et al. [5] by proving the LSI theorem. They assume that the
similarity of a set of documents can be represented in a low-dimensional semantic space & and
the word-document matrix A arises from the low-dimensional representational by a random
perturbation. The LSI theorem essentially states that the similarity of documents in & can be
approximated by the cosine measure applied on the columns of A rather than the original A,
if the perturbation was small in compared with the singular gap o — og+1-

Back to the web algorithms one may replace the matrix A above by the transposed adjacency



matrix of a subgraph of the web graph induced by a set of web pages. Then LSI will define a
similarity function based on the linkage information [?].

Finally, we mention that hub-authority ranking is special case of LSI. By applying the LSI
projection with 7 = 1 to A4, we obtain the matrix A,; with rank one. From Theorem 77
and the properties of singular value decomposition, it is easy to derive that A, = i 2ha® for
the hub and authority vectors h and a. To employ this fact Ng et al. [24] were able to modify
hub authority algorithm by computing the hub and authority scores as a function of the first
k singular vectors, where k& > 1. Such a ranking can overcome the instability of Kleinberg’s
algorithm stated in 8. theorem as a consequence of LSI theorem. Another direction of current
research is to combine the textual information and the linkage information for ranking algorithms
by concatenating the adjacency and word-document matrices corresponding to a set of pages

[1].

5 Conclusions

So far we have discussed the most well known applications of web algorithms for enumerating
the web communities, ranking the pages and defining similarity function. Each algorithm was
based on some explanation of the evolution of the web graph. The Page Rank algorithm simply
assumes that a short random walk will find popular pages. For web communities, hub-authority
algorithm and LSI the intuition was very similar. It is still an open question if there exists
some non-linear model, with effectively computable parameters, which may be used in ranking
or clustering. Another open problem comes from the application point of view. The trawling
algorithm and some other clustering heuristics are able to find closely related groups of pages.
However, the result can only be used, if the millions of clusters are in a hierarchical order. How
can we employ the link structure of the web to automatically build a hierarchical order on the
clusters?
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