
The Square Root Phenomenon in Planar Graphs

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Fine-Grained Complexity and Algorithms Course
UC Berkeley

November 12, 2015

1

Main message

NP-hard problems become easier on planar graphs
and geometric objects, and usually exactly by a
square root factor.

Planar graphs Geometric objects

2

Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
3

Better exponential algorithms

Most NP-hard problems (e.g., 3-Coloring, Independent Set,
Hamiltonian Cycle, Steiner Tree, etc.) remain NP-hard on
planar graphs,1 so what do we mean by “easier”?

The running time is still exponential, but significantly smaller:

2O(n) ⇒ 2O(
√
n)

nO(k) ⇒ nO(
√
k)

2O(k) · nO(1) ⇒ 2O(
√
k) · nO(1)

1Notable exception: Max Cut is in P for planar graphs.
3

Treewidth

4

Subexponential algorithms using treewidth

Treewidth is a measure of “how treelike the graph is.”

We need only the following basic facts:

Treewidth
1 If a graph G has treewidth k , then many classical NP-hard

problems can be solved in time 2O(k) · nO(1) or
2O(k log k) · nO(1) on G .

2 A planar graph on n vertices has treewidth O(
√
n).

5

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

6

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

6

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

6

The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.

6

Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r] for the root r .

7

Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v] =
∑k

i=1 A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1 B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order
(the leaves are trivial).

7

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

8

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad

2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good

8

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad

3 Bounded-size parts connected in a tree-like way.

bad bad good good

8

Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
8

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

9

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

b, e, f

b, c, f

a, b, c

c, d , f

d , f , g

g , h

9

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

9

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , ha, b, c

b, c, f

c, d , f

d , f , g

b, e, f

9

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

Each bag is a separator.

9

Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

9

Treewidth

Fact: treewidth = 1 ⇐⇒ graph is a forest

aa

b

d

c

f ge

h

aa

b

d

c

f ge

h

a,b a,c

b,d b,e c,g

e,h

⇒
c,f

Exercise: A cycle cannot have a tree decomposition of width 1.

10

Finding tree decompositions

Various algorithms for finding optimal or approximate tree
decompositions if treewidth is w :

optimal decomposition in time 2O(w3) · n
[Bodlaender 1996].
4-approximate decomposition in time 2O(w) · n2

[Robertson and Seymour].
5-approximate decomposition in time 2O(w) · n
[Bodlaender et al. 2013].
O(

√
logw)-approximation in polynomial time

[Feige, Hajiaghayi, Lee 2008].
As we are mostly interested in algorithms with running time
2O(w) · nO(1), we may assume that we have a decomposition.

11

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for
the children of x?

12

Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S] if all the values are known for
the children of x? 12

Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

13

Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Theorem
A tree decomposition of width w and n nodes can be turned into a
nice tree decomposition of width w and O(wn) nodes in time
O(w2n).

13

Weighted Max Independent Set
and nice tree decompositions

Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

m[x ,S] =

m[y ,S] if v 6∈ S ,

m[y ,S \ {v}] + w(v) if v ∈ S but v has no
neighbor in S ,

−∞ if S contains v and its neighbor.

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

14

Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S] = max{m[y ,S],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S] = m[y1,S] +m[y2, S]− w(S)

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

14

Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S] = max{m[y ,S],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S] = m[y1,S] +m[y2, S]− w(S)

There are at most 2w+1 · n subproblems m[x ,S] and each
subproblem can be solved in wO(1) time

(assuming the children are already solved).
⇓

Running time is O(2w · wO(1) · n).

14

3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

How to determine E [x , c] if all the values are known for
the children of x?

15

3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
.

How to determine E [x , c] if all the values are known for
the children of x?

15

3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Forget JoinIntroduceLeaf
u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

16

3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subprob-
lem can be solved in wO(1) time (assuming the children are already
solved).

⇒ Running time is O(3w · wO(1) · n).

⇒ 3-Coloring is FPT parameterized by treewidth.

16

Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm

17

Subexponential algorithm for 3-Coloring

Theorem [textbook dynamic programming]

3-Coloring can be solved in time 2O(w) · nO(1) on graphs of
treewidth w .

+

Theorem [Robertson and Seymour]

A planar graph on n vertices has treewidth O(
√
n).

⇓

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

textbook algorithm + combinatorial bound
⇓

subexponential algorithm
17

Lower bounds

Corollary

3-Coloring can be solved in time 2O(
√
n) on planar graphs.

Two natural questions:
Can we achieve this running time on general graphs?
Can we achieve even better running time (e.g., 2O(3√n)) on
planar graphs?

18

Lower bounds based on ETH

ETH + Sparsification Lemma

There is no 2o(m)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n +m) vertices
O(n +m) edges

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .

19

Lower bounds based on ETH

ETH + Sparsification Lemma

There is no 2o(m)-time algorithm for m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .

19

Transfering bounds
There are polynomial-time reductions from, say, 3-Coloring to
many other problems such that the reduction increases the number
of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no 2o(n) time algorithm on
n-vertex graphs for

Independent Set

Clique

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

20

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadget.
If two edges cross, replace them with a crossover gadget. 21

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadget.
If two edges cross, replace them with a crossover gadget. 21

Lower bounds based on ETH
What about 3-Coloring on planar graphs?

The textbook reduction from 3-Coloring to Planar
3-Coloring uses a “crossover gadget” with 4 external connectors:

In every 3-coloring of the gadget, opposite external connectors
have the same color.
Every coloring of the external connectors where the opposite
vertices have the same color can be extended to the whole
gadget.
If two edges cross, replace them with a crossover gadget. 21

Lower bounds based on ETH

The reduction from 3-Coloring to Planar 3-Coloring
introduces O(1) new edges/vertices for each crossing.
A graph with m edges can be drawn with O(m2) crossings.

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(m) vertices
O(m) edges

⇒
Planar graph G ′

O(m2) vertices
O(m2) edges

Corollary

Assuming ETH, there is no 2o(
√
n) algorithm for 3-Coloring on

an n-vertex planar graph G .

(Essentially observed by [Cai and Juedes 2001])

22

Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
n) time algorithm

on n-vertex planar graphs for
Independent Set

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

23

Summary so far

Streamlined way of obtaining tight upper and lower bounds for
planar problems.

Upper bound:
Standard bounded-treewidth algorithm + treewidth bound on
planar graphs give 2O(

√
n) time subexponential algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) algorithms.

Works for Hamiltonian Cycle, Vertex Cover,
Independent Set, Feedback Vertex Set, Dominating
Set, Steiner Tree, . . .

24

Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The treewidth of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
. . .

25

Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.
What can be the parameter k?

The size k of the solution we are looking for.
The maximum degree of the input graph.
The treewidth of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
. . .

25

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known

26

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known

26

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known

26

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

27

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

27

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

27

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2

27

Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.

27

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

28

Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .

28

Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
n) time algorithm

on n-vertex planar graphs for
Independent Set

Dominating Set

Vertex Cover

Hamiltonian Path

Feedback Vertex Set

. . .

What about matching upper bounds?

Do we have 2O(
√
k) · nO(1) time parameterized algorithms for planar

problems?

29

Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
k) · nO(1) time algo-

rithm on planar graphs for
k-Independent Set

k-Dominating Set

k-Vertex Cover

k-Path

k-Feedback Vertex Set

. . .

What about matching upper bounds?

Do we have 2O(
√
k) · nO(1) time parameterized algorithms for planar

problems?

29

Lower bounds for planar problems
Consequence: Assuming ETH, there is no 2o(

√
k) · nO(1) time algo-

rithm on planar graphs for
k-Independent Set

k-Dominating Set

k-Vertex Cover

k-Path

k-Feedback Vertex Set

. . .

What about matching upper bounds?

Do we have 2O(
√
k) · nO(1) time parameterized algorithms for planar

problems?

29

Bidimensionality

Bidimensionality theory [Demaine, Fomin, Hajiaghayi, Thilikos 2005]
gives very elegant subexponential algorithms on planar graphs for
parameterized problems such as

k-Path

Vertex Cover

Feedback Vertex Set

Independent Set

Dominating Set

We already know that (assuming ETH), there are no 2o(
√
k) · nO(1)

time algorithms for these problems.

30

Minors

Definition
Graph H is a minor of G (H ≤ G) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: length of the longest path in H is at most the length of the
longest path in G .

31

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Note: for general graphs, treewidth at least k100 or so guarantees a
k × k grid minor [Chekuri and Chuzhoy 2013]!

32

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.

Consequence: every n-vertex planar graph has treewidth O(
√
n).

32

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

33

Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we answer
“there is a path of length at least k .”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
2O(w logw) ·nO(1) = 2O(

√
k log k) ·nO(1).

33

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

34

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

34

Bidimensionality
Definition
A graph invariant x(G) is minor-bidimensional if

x(G ′) ≤ x(G) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.

34

Summary of bidimensionality

Tight bounds for minor-bidimensional planar problems.

Upper bound:
Standard bounded-treewidth algorithm + planar excluded grid
theorem give 2O(

√
k) · nO(1) time FPT algorithms.

Lower bound:
Textbook NP-hardness proof with quadratic blow up + ETH
rule out 2o(

√
n) time algorithms ⇒ no 2o(

√
k) · nO(1) time

algorithm.

Variant of theory works for contraction-bidimensional problems,
e.g., Independent Set, Dominating Set.

35

Hard parameterized problems

There are very natural parameterized problems that are unlikely to
be fixed-parameter tractable.

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k)no(k) time algorithm for Clique
for any computable function f .

We want to obtain similar results for other natural probelms
without going through the same proof all over again.

We need a notion of reduction to transfer this result to other
problems!

36

Hard parameterized problems

There are very natural parameterized problems that are unlikely to
be fixed-parameter tractable.

Theorem [Chen et al. 2004]

Assuming ETH, there is no f (k)no(k) time algorithm for Clique
for any computable function f .

We want to obtain similar results for other natural probelms
without going through the same proof all over again.

We need a notion of reduction to transfer this result to other
problems!

36

Polynomial-time reductions
Polynomial-time reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time |x |O(1),
φ(x) is a yes-instance of Q if and only if x is a yes-instance of
P .

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n − k .

⇒ Transforming an Independent Set instance (G , k) into a
Vertex Cover instance (G , n − k) is a correct polynomial-time
reduction.

However, Vertex Cover is FPT, but Independent Set is not
known to be FPT.

37

Polynomial-time reductions
Polynomial-time reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time |x |O(1),
φ(x) is a yes-instance of Q if and only if x is a yes-instance of
P .

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n − k .

⇒ Transforming an Independent Set instance (G , k) into a
Vertex Cover instance (G , n − k) is a correct polynomial-time
reduction.

However, Vertex Cover is FPT, but Independent Set is not
known to be FPT.

37

Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
φ(x) is a yes-instance of Q ⇐⇒ x is a yes-instance of P .
If k is the parameter of x and k ′ is the parameter of φ(x),
then k ′ ≤ g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n − k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction.

38

Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function φ with the following properties:

φ(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
φ(x) is a yes-instance of Q ⇐⇒ x is a yes-instance of P .
If k is the parameter of x and k ′ is the parameter of φ(x),
then k ′ ≤ g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n − k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction. 38

Multicolored Clique
A useful variant of Clique:

Multicolored Clique: The vertices of the input graph G are
colored with k colors and we have to find a clique containing one
vertex from each color.

(or Partitioned Clique)

V1 V2 . . . Vk

Theorem
There is a parameterized reduction from Clique to
Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set.

39

Multicolored Clique

Theorem
There is a parameterized reduction from Clique to
Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set.

39

Multicolored Clique

Theorem
There is a parameterized reduction from Clique to
Multicolored Clique.

Create G ′ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G ′

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G ⇐⇒ multicolored k-clique in G ′.

Similarly: reduction to Multicolored Independent Set. 39

Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u

v
V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .

For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set.

40

Dominating Set

Theorem
There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u

v

we

V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .
For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set. 40

Variants of Dominating Set

Dominating Set: Given a graph, find k vertices that
dominate every vertex.
Red-Blue Dominating Set: Given a bipartite graph, find
k vertices on the red side that dominate the blue side.
Set Cover: Given a set system, find k sets whose union
covers the universe.
Hitting Set: Given a set system, find k elements that
intersect every set in the system.

All of these problems are equivalent under parameterized
reductions, hence at least as hard as Clique.

41

W[1]-hard problems

There parameterized reductions from Clique to hundreds of
parameterized problems.
If there is a parameterized reduction from Clique to a
parameterized problem P , then P is W[1]-hard.
The reduction we have seen are linear in the parameter, hence
it follows that there are no f (k)no(k) time algorithms for the
target problems.
For planar and geometric problems, we have natural examples
where we have weaker lower bounds and f (k)no(k) time
algorithms.

42

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Complicated proof using a geometric separator theorem, simple proof
by shifting.

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.

43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.

43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.

43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.

43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.

43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.

43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Consider a family of vertical lines at distance b
√
kc from each

other, going through (i , 0) for some integer 0 ≤ i < b
√
kc.

Algorithm: Guess i and the O(
√
k) disks hit by the lines⇒ Remove

every disk intersected by the lines or disks⇒ Problem falls apart into
strips of height O(

√
k); can be solved optimally in time nO(

√
k). 43

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Matching lower bound:

Theorem
Independent Set for unit disks is

is W[1]-hard, and

cannot be solved in time f (k)no(
√
k) for any function f .

Key technique for the hardness proof: the Grid Tiling problem.

44

Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
45

Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

(1,1)
(3,1)
(2,4)

(5,1)
(1,4)
(5,3)

(1,1)
(2,4)
(3,3)

(2,2)
(1,4)

(3,1)
(1,2)

(2,2)
(2,3)

(1,3)
(2,3)
(3,3)

(1,1)
(1,3)

(2,3)
(5,3)

k = 3, D = 5
45

Grid Tiling

Grid Tiling
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

Vertical neighbors agree in the 1st coordinate.
Horizontal neighbors agree in the 2nd coordinate.

Simple proof:

Fact
There is a parameterized reduction from k-Clique to k × k Grid
Tiling.

45

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , vi)

Each diagonal cell defines a value vi . . .
46

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .)

(., vi) (vi , vi) (., vi) (., vi) (., vi)

(vi , .)

(vi .,)

(vi , .)

. . . which appears on a “cross”
46

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .)

(., vi) (vi , vi) (., vi) (., vi) (., vi)

(vi , .)

(vi , .) (vj , vj)

(vi , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
46

Grid Tiling is W[1]-hard

Reduction from k-Clique

Definition of the sets:

For i = j : (x , y) ∈ Si ,j ⇐⇒ x = y

For i 6= j : (x , y) ∈ Si ,j ⇐⇒ x and y are adjacent.

(vi , .) (vj , .)

(., vi) (vi , vi) (., vi) (vj , vi) (., vi)

(vi , .) (vj , .)

(., vj) (vi , vj) (., vj) (vj , vj) (., vj)

(vi , .) (vj , .)

vi and vj are adjacent for every 1 ≤ i < j ≤ k .
46

Grid Tiling and planar problems

Theorem
k × k Grid Tiling is W[1]-hard and, assuming ETH, cannot be
solved in time f (k)no(k) for any function f .

This lower bound is the key for proving hardness results for planar
graphs.

47

Grid Tiling with ≤

Grid Tiling with ≤
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

k = 3, D = 5
48

Grid Tiling with ≤

Grid Tiling with ≤
Input: A k × k matrix and a set of pairs Si ,j ⊆ [D] × [D] for

each cell.
Find: A pair si ,j ∈ Si ,j for each cell such that

1st coordinate of si ,j ≤ 1st coordinate of si+1,j .
2nd coordinate of si ,j ≤ 2nd coordinate of si ,j+1.

Variant of the previous proof:

Theorem
There is a parameterized reduction from k × k-Grid Tiling to
O(k)× O(k) Grid Tiling with ≤.

Very useful starting point for geometric problems!

48

Independent Set for unit disks

Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Matching lower bound:

Theorem
There is a reduction from k × k Grid Tiling with ≤ to
k2-Independent Set for unit disks. Consequently,
Independent Set for unit disks is

is W[1]-hard, and

cannot be solved in time f (k)no(
√
k) for any function f .

49

Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.

50

Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.

50

Reduction to unit disks

(5,1)
(1,2)
(3,3)

(4,3)
(3,2)

(2,3)
(2,5)

(2,1)
(5,5)
(3,5)

(4,2)
(5,3)

(5,1)
(3,2)

(5,1)
(2,2)
(5,3)

(2,1)
(4,2)

(3,1)
(3,2)
(3,3)

Every pair is represented by a unit disk in the plane.
≤ relation between coordinates ⇐⇒ disks do not intersect.

50

Conclusions

A robust understanding of why certain problems can be solved
in time 2O(

√
n) etc. on planar graphs and why the square root

is best possible.
Lower bounds:

ETH assumption
Planar NP-hardness proofs have quadratic blow up.
Parameterized reductions for W[1]-hard problems.
Grid Tiling

Upper bounds:
Treewidth, dynamic programming on tree decompositions.
Planar graphs have treewidth O(

√
n).

Planar Excluded Grid Theorem.
Shifting strategy for geometric problems.

51

