The Square Root Phenomenon in Planar Graphs

Dániel Marx

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

Fine-Grained Complexity and Algorithms Course UC Berkeley November 12, 2015

Main message

NP-hard problems become easier on planar graphs and geometric objects, and usually exactly by a square root factor.

Planar graphs

Geometric objects

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET, HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on planar graphs,¹ so what do we mean by "easier"?

¹Notable exception: MAX CUT is in P for planar graphs.

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET, HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on planar graphs,¹ so what do we mean by "easier"?

The running time is still exponential, but significantly smaller:

$$2^{O(n)} \Rightarrow 2^{O(\sqrt{n})}$$

$$n^{O(k)} \Rightarrow n^{O(\sqrt{k})}$$

$$2^{O(k)} \cdot n^{O(1)} \Rightarrow 2^{O(\sqrt{k})} \cdot n^{O(1)}$$

¹Notable exception: MAX CUT is in P for planar graphs.

Treewidth

Subexponential algorithms using treewidth

Treewidth is a measure of "how treelike the graph is."

We need only the following basic facts:

Treewidth

- If a graph G has treewidth k, then many classical NP-hard problems can be solved in time $2^{O(k)} \cdot n^{O(1)}$ or $2^{O(k \log k)} \cdot n^{O(1)}$ on G.
- 2 A planar graph on *n* vertices has treewidth $O(\sqrt{n})$.

Party Problem	
Problem:	Invite some colleagues for a party.
Maximize:	The total fun factor of the invited people.
Constraint:	Everyone should be having fun.

PARTY PROBLEM Problem: Invite some colleagues for a party. Maximize: The total fun factor of the invited people. Constraint: Everyone should be having fun. Do not invite a colleague and his direct boss at the same time!

- Input: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

PARTY PROBLEM Problem: Invite some colleagues for a party. Maximize: The total fun factor of the invited people. Constraint: Everyone should be having fun. Do not invite a colleague and his direct boss at the same time!

- Input: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm:

We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

Subproblems:

- $T_{\mathbf{v}}$: the subtree rooted at \mathbf{v} .
- A[v]: max. weight of an independent set in T_v
- B[v]: max. weight of an independent set in T_v that does not contain v

Goal: determine A[r] for the root r.

Solving the Party Problem

Subproblems:

- T_{v} : the subtree rooted at v.
- A[v]: max. weight of an independent set in T_v
- B[v]: max. weight of an independent set in T_v that does not contain v

Recurrence:

Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations

 $B[v] = \sum_{i=1}^{k} A[v_i]$ $A[v] = \max\{B[v], w(v) + \sum_{i=1}^{k} B[v_i]\}$

The values A[v] and B[v] can be calculated in a bottom-up order (the leaves are trivial).

How could we define that a graph is "treelike"?

How could we define that a graph is "treelike"?

• Number of cycles is bounded.

good

bad

bad

bad

How could we define that a graph is "treelike"?

• Number of cycles is bounded.

How could we define that a graph is "treelike"?

bad

• Number of cycles is bounded.

bad

good

good

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

② For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

② For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Each bag is a separator.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

2 For every v, the bags containing v form a connected subtree. Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.

Treewidth

Fact: treewidth = $1 \iff$ graph is a forest

Exercise: A cycle cannot have a tree decomposition of width 1.

Finding tree decompositions

Various algorithms for finding optimal or approximate tree decompositions if treewidth is w:

- optimal decomposition in time 2^{O(w³)} · n [Bodlaender 1996].
- 4-approximate decomposition in time 2^{O(w)} · n² [Robertson and Seymour].
- 5-approximate decomposition in time 2^{O(w)} · n [Bodlaender et al. 2013].
- $O(\sqrt{\log w})$ -approximation in polynomial time [Feige, Hajiaghayi, Lee 2008].

As we are mostly interested in algorithms with running time $2^{O(w)} \cdot n^{O(1)}$, we may assume that we have a decomposition.

WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v]for each **vertex** of the graph, we compute $2^{|B_x|} \le 2^{w+1}$ values for each bag B_x .

M[x, S]:the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x .

M[x, S]:the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.

How to determine M[x, S] if all the values are known for the children of x?

Nice tree decompositions

Definition

A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- Leaf: no children, $|B_x| = 1$
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

Nice tree decompositions

Definition

A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- Leaf: no children, $|B_x| = 1$
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

Theorem

A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and O(wn) nodes in time $O(w^2n)$.

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v

$$m[x,S] = \begin{cases} m[y,S] \\ m[y,S \setminus \{v\}] + w(v) \\ -\infty \end{cases}$$

if $v \notin S$, if $v \in S$ but v has no neighbor in S, if S contains v and its neighbor.

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

• Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

 $m[x,S] = \max\{m[y,S], m[y,S \cup \{v\}]\}$

• Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

 $m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

• Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

 $m[x,S] = \max\{m[y,S], m[y,S \cup \{v\}]\}$

• Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

 $m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$

There are at most $2^{w+1} \cdot n$ subproblems m[x, S] and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved). Running time is $O(2^w \cdot w^{O(1)} \cdot n)$.

$\operatorname{3-COLORING}$ and tree decompositions

Theorem

Given a tree decomposition of width w, 3-COLORING can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

 B_{x} : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if c can be extended to a proper 3-coloring of V_x .

$\operatorname{3-COLORING}$ and tree decompositions

Theorem

Given a tree decomposition of width w, 3-COLORING can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if c can be extended to a proper 3-coloring of V_x .

How to determine E[x, c] if all the values are known for the children of x?

$\operatorname{3-COLORING}$ and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y .
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

$\operatorname{3-COLORING}$ and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y .
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

There are at most $3^{w+1} \cdot n$ subproblems E[x, c] and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved).

- \Rightarrow Running time is $O(3^w \cdot w^{O(1)} \cdot n)$.
- \Rightarrow 3-COLORING is FPT parameterized by treewidth.

Subexponential algorithm for $\operatorname{3-COLORING}$

Theorem [textbook dynamic programming]

3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

+

Theorem [Robertson and Seymour]

A planar graph on *n* vertices has treewidth $O(\sqrt{n})$.
Subexponential algorithm for $\operatorname{3-COLORING}$

Theorem [textbook dynamic programming]

3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

+

Theorem [Robertson and Seymour] A planar graph on *n* vertices has treewidth $O(\sqrt{n})$. 1 Corollary 3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs. textbook algorithm + combinatorial bound subexponential algorithm

Lower bounds

Corollary

3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

Two natural questions:

- Can we achieve this running time on general graphs?
- Can we achieve even better running time (e.g., 2^{O(³√n)}) on planar graphs?

ETH + Sparsification Lemma

There is no $2^{o(m)}$ -time algorithm for *m*-clause 3SAT.

The textbook reduction from 3SAT to 3-COLORING:

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for 3-COLORING on an *n*-vertex graph *G*.

ETH + Sparsification Lemma

There is no $2^{o(m)}$ -time algorithm for *m*-clause 3SAT.

The textbook reduction from 3SAT to 3-COLORING:

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for 3-COLORING on an *n*-vertex graph *G*.

Transfering bounds

There are polynomial-time reductions from, say, 3-COLORING to many other problems such that the reduction increases the number of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no $2^{o(n)}$ time algorithm on *n*-vertex graphs for

- INDEPENDENT SET
- CLIQUE
- Dominating Set
- VERTEX COVER
- HAMILTONIAN PATH
- Feedback Vertex Set
- . . .

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.

- The reduction from 3-COLORING to PLANAR 3-COLORING introduces *O*(1) new edges/vertices for each crossing.
- A graph with *m* edges can be drawn with $O(m^2)$ crossings.

$$\begin{array}{c|c} 3\text{SAT formula } \phi \\ n \text{ variables} \\ m \text{ clauses} \end{array} \Rightarrow \begin{array}{c} \text{Graph } G \\ O(m) \text{ vertices} \\ O(m) \text{ edges} \end{array} \Rightarrow \begin{array}{c} \text{Planar graph } G' \\ O(m^2) \text{ vertices} \\ O(m^2) \text{ edges} \end{array}$$

Corollary

Assuming ETH, there is no $2^{o(\sqrt{n})}$ algorithm for 3-COLORING on an *n*-vertex planar graph *G*.

(Essentially observed by [Cai and Juedes 2001])

Consequence: Assuming ETH, there is no $2^{o(\sqrt{n})}$ time algorithm on *n*-vertex **planar graphs** for

- INDEPENDENT SET
- Dominating Set
- VERTEX COVER
- HAMILTONIAN PATH
- Feedback Vertex Set
- . . .

Summary so far

Streamlined way of obtaining tight upper and lower bounds for planar problems.

• Upper bound:

Standard bounded-treewidth algorithm + treewidth bound on planar graphs give $2^{O(\sqrt{n})}$ time subexponential algorithms.

• Lower bound:

Textbook NP-hardness proof with quadratic blow up + ETH rule out $2^{o(\sqrt{n})}$ algorithms.

Works for Hamiltonian Cycle, Vertex Cover, Independent Set, Feedback Vertex Set, Dominating Set, Steiner Tree, ...

Parameterized problems

Main idea

Instead of expressing the running time as a function T(n) of n, we express it as a function T(n, k) of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

Parameterized problems

Main idea

Instead of expressing the running time as a function T(n) of n, we express it as a function T(n, k) of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

What can be the parameter k?

- The size k of the solution we are looking for.
- The maximum degree of the input graph.
- The treewidth of the input graph.
- The dimension of the point set in the input.
- The length of the strings in the input.

• . . .

Parameterized complexity

Problem: Input: Question:

VERTEX COVER

Graph *G*, integer *k* Is it possible to cover the edges with *k* vertices? INDEPENDENT SET Graph *G*, integer *k* Is it possible to find *k* independent vertices?

Complexity:

NP-complete

NP-complete

Parameterized complexity

Problem: Input: Question:

VERTEX COVER

Graph *G*, integer *k* Is it possible to cover the edges with *k* vertices? INDEPENDENT SET Graph *G*, integer *k* Is it possible to find *k* independent vertices?

Complexity: Brute force: NP-complete $O(n^k)$ possibilities

NP-complete $O(n^k)$ possibilities

Parameterized complexity

Problem: Input: Question:

VERTEX COVER

Graph *G*, integer *k* Is it possible to cover the edges with *k* vertices? INDEPENDENT SET Graph *G*, integer *k* Is it possible to find *k* independent vertices?

Complexity: Brute force: NP-complete I $O(n^k)$ possibilities O $O(2^k n^2)$ algorithm exists exists $\textcircled{\bullet}$

NP-complete $O(n^k)$ possibilities No $n^{o(k)}$ algorithm known $\stackrel{\textcircled{\bullet}}{\bullet}$

Algorithm for VERTEX COVER:

Algorithm for VERTEX Cover:

Algorithm for VERTEX COVER:

Algorithm for **VERTEX** COVER:

Algorithm for VERTEX COVER:

 $e_1 = u_1 v_1$

Height of the search tree $\leq k \Rightarrow$ at most 2^k leaves $\Rightarrow 2^k \cdot n^{O(1)}$ time algorithm.

Fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.

Fixed-parameter tractability

Main definition

A parameterized problem is **fixed-parameter tractable (FPT)** if there is an $f(k)n^c$ time algorithm for some constant c.

Examples of NP-hard problems that are FPT:

- Finding a vertex cover of size *k*.
- Finding a path of length *k*.
- Finding *k* disjoint triangles.
- Drawing the graph in the plane with k edge crossings.
- Finding disjoint paths that connect *k* pairs of points.

• . . .

Consequence: Assuming ETH, there is no $2^{o(\sqrt{n})}$ time algorithm on *n*-vertex **planar graphs** for

- INDEPENDENT SET
- Dominating Set
- VERTEX COVER
- HAMILTONIAN PATH
- Feedback Vertex Set

• . . .

Consequence: Assuming ETH, there is no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithm on **planar graphs** for

- **k**-Independent Set
- *k*-Dominating Set
- *k*-Vertex Cover
- **k**-Path
- *k*-Feedback Vertex Set
- ...

Consequence: Assuming ETH, there is no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithm on **planar graphs** for

- **k**-Independent Set
- *k*-Dominating Set
- *k*-Vertex Cover
- **k**-Path
- *k*-Feedback Vertex Set
- . . .

What about matching upper bounds?

Do we have $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time parameterized algorithms for planar problems?

Bidimensionality theory [Demaine, Fomin, Hajiaghayi, Thilikos 2005] gives very elegant subexponential algorithms on planar graphs for parameterized problems such as

- *k*-Path
- VERTEX COVER
- Feedback Vertex Set
- INDEPENDENT SET
- Dominating Set

We already know that (assuming ETH), there are no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithms for these problems.

Minors

Definition

Graph *H* is a minor of *G* ($H \le G$) if *H* can be obtained from *G* by deleting edges, deleting vertices, and contracting edges.

Note: length of the longest path in H is at most the length of the longest path in G.

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a $k \times k$ grid minor.

Note: for general graphs, treewidth at least k^{100} or so guarantees a $k \times k$ grid minor [Chekuri and Chuzhoy 2013]!

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a $k \times k$ grid minor.

Consequence: every *n*-vertex planar graph has treewidth $O(\sqrt{n})$.

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem)

 \Rightarrow The grid has a path of length at least k.

 \Rightarrow G has a path of length at least k.

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem) \Rightarrow The grid has a path of length at least *k*. \Rightarrow *G* has a path of length at least *k*.

We use this observation to find a path of length at least k on planar graphs:

- Set $w := 5\sqrt{k}$.
- Find an O(1)-approximate tree decomposition.
 - If treewidth is at least *w*: we answer "there is a path of length at least *k*."
 - If we get a tree decomposition of width O(w), then we can solve the problem in time
 2^{O(w log w)} ⋅ n^{O(1)} = 2^{O(√k log k)} ⋅ n^{O(1)}.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Summary of bidimensionality

Tight bounds for minor-bidimensional planar problems.

• Upper bound:

Standard bounded-treewidth algorithm + planar excluded grid theorem give $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time FPT algorithms.

• Lower bound:

Textbook NP-hardness proof with quadratic blow up + ETH rule out $2^{o(\sqrt{n})}$ time algorithms \Rightarrow no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithm.

Variant of theory works for contraction-bidimensional problems, e.g., INDEPENDENT SET, DOMINATING SET.
Hard parameterized problems

There are very natural parameterized problems that are unlikely to be fixed-parameter tractable.

Theorem [Chen et al. 2004]

Assuming ETH, there is no $f(k)n^{o(k)}$ time algorithm for CLIQUE for any computable function f.

Hard parameterized problems

There are very natural parameterized problems that are unlikely to be fixed-parameter tractable.

Theorem [Chen et al. 2004]

Assuming ETH, there is no $f(k)n^{o(k)}$ time algorithm for CLIQUE for any computable function f.

We want to obtain similar results for other natural probelms **without** going through the same proof all over again.

We need a notion of reduction to transfer this result to other problems!

Polynomial-time reductions

Polynomial-time reduction from problem *P* to problem *Q*: a function ϕ with the following properties:

- $\phi(x)$ can be computed in time $|x|^{O(1)}$,
- $\phi(x)$ is a yes-instance of Q if and only if x is a yes-instance of P.

Polynomial-time reductions

Polynomial-time reduction from problem *P* to problem *Q*: a function ϕ with the following properties:

- $\phi(x)$ can be computed in time $|x|^{O(1)}$,
- $\phi(x)$ is a yes-instance of Q if and only if x is a yes-instance of P.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a vertex cover of size n - k.

 \Rightarrow Transforming an INDEPENDENT SET instance (G, k) into a VERTEX COVER instance (G, n - k) is a correct polynomial-time reduction.

However, $\mathrm{Vertex}\ \mathrm{Cover}$ is FPT, but $\mathrm{Independent}\ \mathrm{Set}$ is not known to be FPT.

Parameterized reduction

Definition

Parameterized reduction from problem *P* to problem *Q*: a function ϕ with the following properties:

- $\phi(x)$ can be computed in time $f(k) \cdot |x|^{O(1)}$, where k is the parameter of x,
- $\phi(x)$ is a yes-instance of $Q \iff x$ is a yes-instance of P.
- If k is the parameter of x and k' is the parameter of φ(x), then k' ≤ g(k) for some function g.

Fact: If there is a parameterized reduction from problem P to problem Q and Q is FPT, then P is also FPT.

Parameterized reduction

Definition

Parameterized reduction from problem *P* to problem *Q*: a function ϕ with the following properties:

- $\phi(x)$ can be computed in time $f(k) \cdot |x|^{O(1)}$, where k is the parameter of x,
- $\phi(x)$ is a yes-instance of $Q \iff x$ is a yes-instance of P.
- If k is the parameter of x and k' is the parameter of φ(x), then k' ≤ g(k) for some function g.

Fact: If there is a parameterized reduction from problem P to problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an INDEPENDENT SET instance (G, k) into a VERTEX COVER instance (G, n - k) is not a parameterized reduction.

Example: Transforming an INDEPENDENT SET instance (G, k) into a CLIQUE instance (\overline{G}, k) is a parameterized reduction.

Multicolored Clique

A useful variant of CLIQUE:

MULTICOLORED CLIQUE: The vertices of the input graph G are colored with k colors and we have to find a clique containing one vertex from each color.

(or PARTITIONED CLIQUE)

Theorem

There is a parameterized reduction from CLIQUE to MULTICOLORED CLIQUE.

Multicolored Clique

Theorem

There is a parameterized reduction from $\ensuremath{\mathrm{CLIQUE}}$ to $\ensuremath{\mathrm{MULTICOLORED}}$ CLIQUE.

Create G' by replacing each vertex v with k vertices, one in each color class. If u and v are adjacent in the original graph, connect all copies of u with all copies of v.

k-clique in $G \iff$ multicolored *k*-clique in G'.

Multicolored Clique

Theorem

There is a parameterized reduction from $\ensuremath{\mathrm{CLIQUE}}$ to $\ensuremath{\mathrm{MULTICOLORED}}$ CLIQUE.

Create G' by replacing each vertex v with k vertices, one in each color class. If u and v are adjacent in the original graph, connect all copies of u with all copies of v.

k-clique in $G \iff$ multicolored *k*-clique in G'.

Similarly: reduction to MULTICOLORED INDEPENDENT SET.

Dominating Set

Theorem

There is a parameterized reduction from MULTICOLORED INDEPENDENT SET to DOMINATING SET.

Proof: Let *G* be a graph with color classes V_1, \ldots, V_k . We construct a graph *H* such that *G* has a multicolored *k*-clique iff *H* has a dominating set of size *k*.

The dominating set has to contain one vertex from each of the k cliques V₁, ..., V_k to dominate every x_i and y_i.

Dominating Set

Theorem

There is a parameterized reduction from MULTICOLORED INDEPENDENT SET to DOMINATING SET.

Proof: Let *G* be a graph with color classes V_1, \ldots, V_k . We construct a graph *H* such that *G* has a multicolored *k*-clique iff *H* has a dominating set of size *k*.

- The dominating set has to contain one vertex from each of the k cliques V₁, ..., V_k to dominate every x_i and y_i.
- For every edge e = uv, an additional vertex w_e ensures that these selections describe an independent set.

Variants of DOMINATING SET

- DOMINATING SET: Given a graph, find *k* vertices that dominate every vertex.
- RED-BLUE DOMINATING SET: Given a bipartite graph, find *k* vertices on the red side that dominate the blue side.
- SET COVER: Given a set system, find k sets whose union covers the universe.
- HITTING SET: Given a set system, find *k* elements that intersect every set in the system.

All of these problems are equivalent under parameterized reductions, hence at least as hard as $\rm CLIQUE.$

W[1]-hard problems

- There parameterized reductions from CLIQUE to hundreds of parameterized problems.
- If there is a parameterized reduction from CLIQUE to a parameterized problem *P*, then *P* is W[1]-hard.
- The reduction we have seen are linear in the parameter, hence it follows that there are no $f(k)n^{o(k)}$ time algorithms for the target problems.
- For planar and geometric problems, we have natural examples where we have weaker lower bounds and $f(k)n^{o(k)}$ time algorithms.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Complicated proof using a geometric separator theorem, simple proof by shifting.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Consider a family of vertical lines at distance $\lfloor \sqrt{k} \rfloor$ from each other, going through (i, 0) for some integer $0 \le i < \lfloor \sqrt{k} \rfloor$.

Claim: Exists *i* such that the lines hit $O(\sqrt{k})$ disks of the solution.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Consider a family of vertical lines at distance $\lfloor \sqrt{k} \rfloor$ from each other, going through (i, 0) for some integer $0 \le i < \lfloor \sqrt{k} \rfloor$.

Claim: Exists *i* such that the lines hit $O(\sqrt{k})$ disks of the solution.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Consider a family of vertical lines at distance $\lfloor \sqrt{k} \rfloor$ from each other, going through (i, 0) for some integer $0 \le i < \lfloor \sqrt{k} \rfloor$. **Claim:** Exists *i* such that the lines hit $O(\sqrt{k})$ disks of the solution.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Consider a family of vertical lines at distance $\lfloor \sqrt{k} \rfloor$ from each other, going through (i, 0) for some integer $0 \le i < \lfloor \sqrt{k} \rfloor$. **Algorithm:** Guess *i* and the $O(\sqrt{k})$ disks hit by the lines \Rightarrow Remove

every disk intersected by the lines or disks \Rightarrow Problem falls apart into strips of height $O(\sqrt{k})$; can be solved optimally in time $n^{O(\sqrt{k})}$.

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Matching lower bound:

Theorem

 $\ensuremath{\operatorname{INDEPENDENT}}$ Set for unit disks is

- is W[1]-hard, and
- cannot be solved in time $f(k)n^{o(\sqrt{k})}$ for any function f.

Key technique for the hardness proof: the $\ensuremath{\mathrm{GRID}}$ TILING problem.

Grid Tiling

GRID TILING

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- Find: A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Vertical neighbors agree in the 1st coordinate.
 - Horizontal neighbors agree in the 2nd coordinate.

(1,1) (3,1) (2,4)	(5,1) (1,4) (5,2)	(1,1) (2,4) (2,2)		
(2,4)	(3,1)	(2,2)		
(1,4)	(1,2)	(2,3)		
(2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)		
k = 3, D = 5				

Grid Tiling

GRID TILING

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- Find: A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Vertical neighbors agree in the 1st coordinate.
 - Horizontal neighbors agree in the 2nd coordinate.

$(1,1) \\ (3,1) \\ (2,4)$	(5,1) (1,4) (5,3)	(1,1) (2,4) (3,3)		
(2,2) (1,4)	(3,1) (1,2)	<mark>(2,2)</mark> (2,3)		
(1,3) (2,3) (3,3)	(1,1) (1,3)	<mark>(2,3)</mark> (5,3)		
k = 3, D = 5				

Grid Tiling

GRID TILING

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- Find: A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Vertical neighbors agree in the 1st coordinate.
 - Horizontal neighbors agree in the 2nd coordinate.

Simple proof:

Fact

There is a parameterized reduction from k-CLIQUE to $k \times k$ GRID TILING.

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

Each diagonal cell defines a value $v_i \dots$

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

... which appears on a "cross"

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

 v_i and v_j are adjacent for every $1 \le i < j \le k$.

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

 v_i and v_j are adjacent for every $1 \le i < j \le k$.

$\operatorname{GRID}\,\operatorname{TILING}$ and planar problems

Theorem

 $k \times k$ GRID TILING is W[1]-hard and, assuming ETH, cannot be solved in time $f(k)n^{o(k)}$ for any function f.

This lower bound is the key for proving hardness results for planar graphs.

Grid Tiling with \leq

Grid Tiling with \leq

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - 1st coordinate of $s_{i,j} \leq 1$ st coordinate of $s_{i+1,j}$.
 - 2nd coordinate of $s_{i,j} \leq 2$ nd coordinate of $s_{i,j+1}$.

(5,1) (1,2) (3,3)	<mark>(4,3)</mark> (3,2)	(2,3) (2,5)		
(2,1) (5,5) (3,5)	<mark>(4,2)</mark> (5,3)	(5,1) (3,2)		
(5,1) (2,2) (5,3)	(2,1) (4,2)	(3,1) (3,2) (3,3)		
k = 3, D = 5				

Grid Tiling with \leq

Grid Tiling with \leq

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - 1st coordinate of $s_{i,j} \leq 1$ st coordinate of $s_{i+1,j}$.
 - 2nd coordinate of $s_{i,j} \leq 2$ nd coordinate of $s_{i,j+1}$.

Variant of the previous proof:

Theorem

There is a parameterized reduction from $k \times k$ -GRID TILING to $O(k) \times O(k)$ GRID TILING WITH \leq .

Very useful starting point for geometric problems!

Theorem [Alber and Fiala 2004]

The INDEPENDENT SET problem for unit (diameter) disks can be solved in time $n^{O(\sqrt{k})}$.

Matching lower bound:

Theorem

There is a reduction from $k \times k$ GRID TILING WITH \leq to k^2 -INDEPENDENT SET for unit disks. Consequently, INDEPENDENT SET for unit disks is

- is W[1]-hard, and
- cannot be solved in time $f(k)n^{o(\sqrt{k})}$ for any function f.

Reduction to unit disks

(5,1) (1,2) (3,3)	(4,3) (3,2)	(2,3) (2,5)	• •	
(2,1) (5,5) (3,5)	<mark>(4,2)</mark> (5,3)	(5,1) (3,2)	••••	
(5,1) (2,2) (5,3)	(2,1) (4,2)	(3,1) (3,2) (3,3)	• • • • • • • • • • • • • • • •	

Every pair is represented by a unit disk in the plane.

 \leq relation between coordinates \iff disks do not intersect.

Reduction to unit disks

Every pair is represented by a unit disk in the plane.

 \leq relation between coordinates \iff disks do not intersect.

Reduction to unit disks

Every pair is represented by a unit disk in the plane.

 \leq relation between coordinates \iff disks do not intersect.

Conclusions

- A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.
- Lower bounds:
 - ETH assumption
 - Planar NP-hardness proofs have quadratic blow up.
 - Parameterized reductions for W[1]-hard problems.
 - GRID TILING
- Upper bounds:
 - Treewidth, dynamic programming on tree decompositions.
 - Planar graphs have treewidth $O(\sqrt{n})$.
 - Planar Excluded Grid Theorem.
 - Shifting strategy for geometric problems.