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Abstract. The multicoloring problem is that given a graph G and in-
teger demands z(v) for every vertex v, assign a set of x(v) colors to
vertex v, such that neighboring vertices have disjoint sets of colors. In
the preemptive sum multicoloring problem the finish time of a vertex is
defined to be the highest color assigned to it. The goal is to minimize
the sum of the finish times. The study of this problem is motivated by
applications in scheduling. Answering a question of Halldérsson et al. [4],
we show that the problem is strongly NP-hard in binary trees. As a first
step toward this result we prove that list multicoloring of binary trees is
NP-complete.

1 Introduction

Graph multicoloring problems are often used to model scheduling of dependent
jobs. Given a set of jobs, one has to assign a set of time slots to every job. The
constraints are the following: every job has a length, which is the number of time
slots it requires, and there are interfering pairs of jobs which cannot be active
in the same time slot. In the preemptive scheduling model it is assumed that the
jobs can be interrupted arbitrarily, the time slots assigned to a job do not have to
be consecutive. This scheduling problem can be translated into a multicoloring
problem on graphs as follows. The vertices of a graph correspond to the jobs and
two jobs are connected if they cannot be executed at the same time. The colors
correspond to the time slots and every vertex has a color requirement z(v), which
is the length of the job. In a multicoloring x(v) colors have to be assigned to
every vertex v such that neighboring vertices have disjoint sets of colors. Clearly,
there is one to one correspondence between the feasible preemptive schedulings
of the jobs and the feasible multicolorings of the graph.

One traditional optimization goal is to minimize the total completion time
(makespan) of the scheduling, that is, the highest color assigned to the vertices
(or, equivalently, the total number of different colors assigned). This problem is
called multicoloring or weighted coloring. Another well-studied optimization goal
is to minimize the average completion time of the jobs, which is the same as to
minimize the sum of the completion times. This problem, preemptive minimum
sum multicoloring, will be studied in this paper. It can be stated formally as
follows:
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Preemptive Sum Multicoloring (pSMC)

Input: A graph G(V, E) and a demand function z: V — N

Output: A multicoloring W: V — 2% such that |¥(v)| = x(v) for every
veV,and ¥(u) N¥(v) =0 if u and v are neighbors in G.

Goal: Let the finish time of vertex v in coloring ¥ be the highest color as-
signed to it, fy(v) = max{i € ¥(v)}. The goal is to minimize ) ., fu(v),
the sum of the coloring V.

If every demand is 1, i.e., z(v) = 1, then we obtain the chromatic sum problem
as a special case. The study of chromatic sums were started in [9,11,10]. The
complexity and approximability of the chromatic sum in certain restricted classes
of graphs were investigated in several papers [2,6,12,13].

Approximation results for arbitrary demand function z(v) on general and
k-colorable graphs were given by Bar-Noy et al. [1]. A polynomial time approx-
imation scheme for preemptive minimum sum multicoloring is known for trees
[4], for partial k-trees and planar graphs [3]. In [4] it is shown that the problem
can be solved optimally in polynomial time in trees if every demand is bounded
by a fixed constant. However, in general, the complexity of the problem in trees
(and in paths) remained an open question. The main result of the paper is to
show that the problem is NP-hard on binary trees, even if every demand is
polynomially bounded. As a first step, we also prove the NP-completeness of
another variant of multicoloring, the so-called list multicoloring.

In Section 2, we introduce some notations and present the result on list
multicoloring. Section 3 defines penalty gadgets, which are the most important
tools of the reduction in Section 4.

2 Preliminaries

We slightly extend the problem by allowing z(v) = 0. Clearly this does not
make the problem more difficult, but it will be needed for technical reasons. If
x(v) = 0, then define fy(v) = 0 in every coloring ¥. Notice that by using this
definition the trivial inequality fg(v) > z(v) holds even if z(v) = 0.

Let us introduce some notations. If V/ C V and ¥ is a coloring then let
foe (V') =3 ey fo(v). Similarly, (V') = >, (v). The sum of the optimum
coloring of (G, x) is denoted by OPT(G, x), or by OPT(G) if the function z(v)
is clear from the context. The notation [a,b] stands for the set {a,a 4+ 1,...,b}
if a < b, otherwise it is the empty set.

The size of the input to the multicoloring problem is the size of the graph,
and it does not include the size of the demand function.

Instead of the preemptive sum multicoloring problem, we start with the NP-
completeness of another multicoloring problem. The following is the obvious com-
mon generalization of list coloring and multicoloring (for a thorough overview
on list coloring and related problems, see [14]):



List Multicoloring

Input: A graph G(V, E), a demand function x: V — N, a set of colors C
and a color list L: V — 2€ for each vertex

Question: Is there a multicoloring W: V — 2¢ such that [¥(v)| = z(v),
U(v) C L(v) for every v € V, and ¥(u) N ¥(v) = O if u and v are
neighbors in G7

Clearly, this problem is NP-complete in every class of graphs where either
multicoloring or list coloring is NP-complete. List coloring is NP-complete in
bipartite graphs [5,8], but both problems can be solved in polynomial time in
trees (see [7] for a linear time list coloring algorithm in trees). On the other
hand, list multicoloring of trees is NP-complete:

Theorem 2.1. The list multicoloring problem remains NP-complete restricted
to trees.

Proof. The reduction is from the maximum independent set problem. For every
graph G(V, E) and integer k, we will construct a tree T' (in fact, a star), a demand
function, and a color list for each node, such that the tree can be colored with
the lists if and only if G has an independent set of size k. The colors correspond
to the vertices of G, the leaves of the star correspond to the edges of G. The
construction will ensure that the colors given to the central node correspond to
an independent set in G.

Let e1,ea,...,en be the edges of G and denote by u;; and u; 2 the two end
vertices of edge e;. The tree T is a star with a central node v and m leaves
V1,...,Un. The demand of v is k and the demand of every leaf is 1. The set of
colors C' corresponds to the vertex set V. The color list of the central node v is
the set C, the list of node v; is the set {u; 1, u; 2}

Assume that there is a proper list coloring of T'. It assigns & colors to v. The
corresponding set of k vertices will be independent in G: at least one end vertex
of each edge e; is not contained in this set since node v; must be colored with
either u; 1 or u; 2. On the other hand, if there is an independent set of size k in
G, then we can assign this k& colors to v and extend the coloring to the nodes v;:
either u; 1 or u; 2 is not contained in the independent set, thus it can be assigned
to v;. O

There are two main difficulties in adapting these ideas for the minimum sum
coloring problem.

— We want to prove NP-completeness in binary trees. The central node of the
star has high degree.

— There are no lists in the minimum sum coloring problem. How can we forbid
a node from using certain colors?

The first problem can be solved quite easily with a ’color copying’ trick. To
demonstrate this, we present a stronger form of Theorem 2.1:

Theorem 2.2. The list multicoloring problem remains NP-complete restricted
to binary trees.



Proof. The proof is essentially the same as in Theorem 2.1, but the degree m
central node of the star is replaced by a path v{, v, ..., v, _; of 2m — 1 nodes.
The m neighbors of v are connected to the m nodes v{,v5,..., v}, one by
one. The list of every node v; is C, the demands are x(v5;, ;) = k and x(vy;) =
|C| — k. It is easy to see that in every proper multicoloring of the tree, the nodes
v, V5, ..., Vb, 4 receive the same set of k colors. Furthermore, as in the previous
proof, this set corresponds to an independent set in G.
O
To solve the second problem, certain 'penalty gadgets’ will be constructed,
Section 3 is devoted to this task.

3 The penalty gadgets

The goal of the penalty gadgets is that by connecting such a gadget to a node
v, we can force v not to use certain colors: if node v uses a forbidden color, then
the gadget can be colored only with a ’very large’ penalty.

For offset ¢, demand size d and penalty C we define a tree T} 4.c. The root r
of this tree will be connected to some node v. When the root r of this tree uses
the set [t 4+ 1,t + d], then the tree can be colored optimally. On the other hand,
if v uses even one color from [t + 1,¢+d], then r cannot have the set [t +1,t+d]
and so fo(Ttac) > OPT(T}q,c,x) + C. When C is sufficiently large, then this
will force v to use colors not in [t + 1,¢ + d].

Proposition 3.1. For integers d,C >t > 0 there is a binary tree Ty qc and a
demand function x(v) such that

1. The root r has demand x(r) = d.

2. W(r)=[t+1,t+d] in every optimum coloring ¥.

3. IfU(r) # [t+1,t+d] for a coloring ¥, then fu (T} 4,c) > OPT(T} g.c,x)+C.
4. The demand x of every vertex is polynomially bounded by d and C'.

Furthermore, there is an algorithm which, given t,d and C, outputs the tree
Ti.a,c, the demand function x and the value OPT(Ty 4,c,x) in time polynomial
ind and C.

Proof. Let k = [log,(C + )] and C = 2. Obviously, C +t < C < 2(C + t).
The tree T} 4,c consists of a complete binary tree and some attached paths. The
complete binary tree Ty has k + 1 levels, the root 7 is on level 1 and the leaves,
l1,la,...,La, are on level k+ 1. Attach a path of k+ 3 nodes to every leaf: node
6 (1 <i< 6) is connected to path P;: a; k+2, Qi k+1,---,0i2,0i1,0;0 (nodes
¢; and a; 42 are neighbors). Figure 1 shows the construction for ¢ = 2, d = 4,
C = 6. Clearly, T} 4,c has 26—1—&—(1@*—}—3)6 nodes, which is polynomially bounded
in C.

We say that a node is of type j if it is either on the jth level of Ty or it is an
a; j for some 1 <7 < C.



The demand z(v) will depend only on the type of node v. Let
9(0) =t
9(1) =d,
g(n) = (Bd+t+C)-4"2 for n > 2.

Obviously, g(n) is monotone and it is easy to see that
g(i+1)>3g()) +C+t>g(i—1)+C+t

for all i > 1 (these inequalities will be used later).
For a node v of type i let 2(v) = ¢(¢). This implies that x(r) = g(1) = d for
the root r. The maximum value of z(v) is g(k +2) = (3d +t + C) - 4%

, which is
bounded by a polynomial of d and C.
Type Demand Set of colors assigned by ¥
1 4 [3,6]
2 20 [1,2 [7,24]
3 80 [3,6] [25,100]
4 320 [1,2 [7,24] [101, 400]
5 1280 3, 6] [25,100] [401,1600]
4 320 [1,2 [7,24] [101, 400]
3 80 3, 6] (25, 100]
2 20 [1,2 [7,24]
1 4 [3,6]
0 2 [1,2]

Fig. 1. The tree Tiq,c for t = 2, d = 4 and C = 6. The nodes on the same level
have the same type. On the right are the demands and also the colors assigned by the
optimum coloring.

We describe a proper multicoloring ¥, which will turn out to be the unique
optimum solution. The same color set is assigned to the nodes of the same type.
Start with ¥(v) = [1,t] for every node v of type 0. Then color the different types
in increasing order: assign to the nodes of type i the first g(¢) colors not used
by the type i — 1 nodes. This gives a proper coloring since the already colored
neighbors of type ¢ nodes are type ¢ — 1 nodes. Notice that the root r receives
the set [t + 1,t + d], as required. It is easy to prove that the finish time of a
node v of type i is fy(v) = g(i) + g(i — 1) = (i) + (i — 1) since there will be



exactly g(i — 1) ’skipped’ colors and the finish time of nodes of type i is greater
then the finish time of the nodes of type i — 1 because ¢g(i) > g(i — 2). The
following simple observation will be used later: if u is a type ¢ node and v is its
type @ + 1 neighbor, then in every coloring @, the equalities ®(u) = ¥(u) and
fo(v) = fo(v) = g(i + 1) + g(i) imply ®(v) = ¥(v). This follows directly from
the definition of ¥: there is just one way of choosing the first z(v) = g(i + 1)
colors not used by wu.

The following three lemmas show that ¥ is an optimum coloring, and if a
coloring @ assigns to r a set different from ¥ (r) = [t+1,t4d], then fo(Tiac) >
fo(Tta,c) +C.

Lemma 3.2. (a) fo(Ty) > fu(To) —t holds for every coloring @ of (T q.c, ).
(b) If &(r) =¥ (r), then fs(To) > fu(Th).
(c) If there is a v € Ty \ {r} such that fo(v) < fo(v), then fo(To) > fu(To)+C.

Proof. Let L={v €Ty : fo(v) < fp(v)} and let H =Ty \ L be its complement
in Ty. We note that L is an independent set. To see this, let v and u be neighbors
of type 7 and 7 + 1, respectively. The sum of their demand is () + g(i + 1), thus
at least one of them must have finish time not smaller than g¢(i) + g(i + 1).
Clearly this makes it impossible to have fgs(v) < fy(v) = g(i) + g(i — 1) and
fo(u) < fo(u) = g(i) + g(i + 1) simultaneously.

Partition the vertices of T; as follows. Define a subset S, for every node
veE H. Let v e S, for every v € H, and u € L is in S, iff v is the parent of u.
When the root r is in L then r forms a set itself, S* = {r}. It is clear that this
defines a partition, every vertex is in exactly one subset. Apart from S*, every
subset contains a node from H and zero, one or two nodes from L.

Assume that the set S, contains no node from L. Then fs(S,) > fo(Sy)
follows from the definition of H and L. Now consider a set S, which has at least
one node from L. It contains a type ¢ node v from H and one or two type i + 1
nodes (u1,ug) from L. Since v and u, (z = 1,2) are neighbors and the sum of
their demand is g(i) +g(i+1), at least one of them must have finish time at least
g(i) + g(i+1). Since u, is in L, we have fo(u,) < fo(u,) = g(i) + g(i + 1), thus
fo(v) = (i) + g(i + 1). Therefore, fo(v) = fu(v) = (gi) + g(i+ 1)) — (g(i — 1)+
g9(i)) = g(i + 1) — g(i — 1). Since fy(u,) = g(i + 1) + g(i) and z(u;) = g(i + 1),
clealy fa(u) — fu(u) > —g(i). Now

fo(So) = fu(S0) = (9(i +1) —g(i = 1)) = 29(i) = g(i +1) = 39(i) = C' + 1,

where the last inequality follows from g(i + 1) > 3g(i) + C + ¢t.

Ifrisin S*, then f5(S*) = fu(S*)+(fo(r)— fw(r)) holds. Therefore fg(Tp) >
Jo(To)+(fo(r)—fu(r)) > fu(Th)—t, since fo(r) > d. This proves statement (a),
and (b) also follows because @(r) = ¥ (r) implies fg(r)— fiw(r) = 0. Furthermore,
if fo(u) < fo(u) for some u € Ty \ {r}, then fo(Sy) > fw(S,)+ C +1t for the set
S, of the partition that contains u. This proves statement (c).

O

Lemma 3.3. fo(P;) > fw(P;) holds for every coloring ® # ¥ of Ty 4.c and for
every 1 <i<C.



Proof. Assume that fo(P;) < fu(F;), define L = {v € P; : fo(v) < fw(v)} and
H =P\ L. If f(P;) < fu(P;) and P is different from ¥, then there is a v € P;
such that fs(v) < fy(v), thus L is not empty. As in Lemma 3.2, it is easy to see
that L is an independent set. The nodes of P; are partitioned into |H| classes: if
v € H then v isin S, if u € L then w is in S, where v is the child of u. Notice
that a;o € H since fp(ai’()) = LC(CLZ"()) = g(O) < qu(@@o).

We prove that fg(S,) > fu(S,) for every S,. If S, = {v}, then it is clear
that f3(Sy) > fw(Sy) holds. Assume that S, = {u,v}, node u € L is type
j+1,and v € H (its child) is type j > 0. The finish time of node v is at least
z(u) +x(v) =g+ 1) + g(j), therefore

fo(Sy) = 2(u) + (z(w) + 2(v)) = 9(G + 1) + (9(G + 1) + 9(5))

holds. On the other hand, if j > 1, then fy(S,) = (9(j + 1) + 9(5)) + (9(j) +
g(j — 1)), thus fo(Sy) > fw(S,) follows from g(j + 1) > g(j) + g(j — 1). In the
case j = 0, we have fy (Sy) = t+(t+d) = g(j) + (9(j) + 9(j +1)) < fa(S,), since
Jo(Sy) = g(G+1)+(9(4) +9(7+1)) =d+ (t +d) (recall that ¢ < d). Since H is
not empty, there is at least one subset S, in the partition with f&(S,) > fw(Sy),
contradicting fo(P;) < fu(P;). O

Lemma 3.4. If &(r) # ¥ (r) = [t + 1,t +d], then fo(Tra,c) > fo(Trac)+ C.

Proof. Denote by P* = UZCZ1 P, = Ty.q.c \ Tp the union of the paths. If there
is a node v € Ty \ {r} with fs(v) < fg(v), then by part (¢) of Lemma 3.2
fo(To) > fu(To)+C, and by Lemma 3.3 fg(P*) > fu(P*) follows, which implies
fo(Trac) > fo(Tiac)+C, and we are ready. Therefore it can be assumed that
fo(v) > fu(v) for every node v € Ty \ {r}. Furthermore, if there is a v € Tp
with fo(v) > fu(v) + C +¢, then fo(To) > fu(To) + C, thus fo(P*) > fu(P~)
implies fo(Ty4.c) > fo(Tiac) + C. In the following, it will be assumed that
foe () < fa(v) < fo(v) + C 4+t holds for every v € Ty \ {r}.

Call a vertex v ’changed’ in @ if $(v) # ¥(v). The goal is to show that if the
root 7 is changed, then all the nodes a1 j+y2, a2 k42, .- . 1 QG 4o ATE changed. Let
v be a node of type i in Ty and let u be one of its children, a node of type 7 + 1.
If v is changed, then there is a color j € ¢(v) and j € ¥(v). We consider two
cases. If j < fg(u), then by the fact that j ¢ ¥(v) and the way ¥ was defined
J € ¥(u) follows. Therefore u is also changed since j € ¢(v) implies j & &(u). In
the second case, where j > fy(u) = g(i + 1) + g(i) we have

fo(v) >j>g(i+1)+g() = (9(i +1) —g(i — 1)) + (9(i) + g(i — 1))
=g(i+1)—g(i—1)+ fo(v) > fo(v) + C+1,

contradicting the assumption fg(v) < fy(v) + C +t.

Assume that fs(Tia,c) < fo(Tiq,c) + C. By applying the previous result
inductively, one finds that all the leaves ¢; and their children a; y4+2 (1 < i < 6)
are changed. Lemma 3.3 ensures that @ is not an optimum coloring of P;, thus
fe(Pi) = fo(P;)+1and fo(P*) = fo(P*)+C = fo(P*)+C+t. By Lemma 3.2,
fo(To) > fo(To) —t, hence fo(Ti,a,c) > fo(Tiac)+ C. O



To prove Prop. 3.1, we have to show that requirements 2 and 3 hold. If &(r) =
¥(r), then by part (b) of Lemma 3.2 and by Lemma 3.3, fo(Tq,c) > fo(Tia,0)-
If &(r) # ¥(r), then by Lemma 3.4, fo(T;a.c) > fo(Tia,c)+ C. Therefore the
coloring ¥ is an optimum coloring and the tree satisfies the requirements of the
proposition.

Clearly, the described tree T} 4, and the demand function z can be con-
structed in polynomial time. The sum of the optimum solution can be also
calculated, by adding the appropriate finish time of every node. O

4 The reduction

We will reduce the maximum independent set problem to the minimum sum
coloring problem in binary trees. In the decision version of the minimum sum
coloring problem, the input is a graph G, a demand function z(v), and an integer
K, the question is whether there exists a multicoloring ¥ with sum less than K.
The reduction is based on the proof of Theorem 2.2. The penalty gadgets T} 4.c
of Section 3 are used to imitate the effect of the color lists.

More precisely, the penalty gadget is used in two different ways: as a lower
penalty gadget and as an upper penalty gadget. The lower penalty gadget TdLC
is a tree Ty q,c. By connecting the root of such a tree to a node v, the node v
is forced to use only colors greater than d: otherwise the gadget can be colored
only with a penalty C. A tree will be called a tree of type T if it is the tree
Tdfc for some d and C.

The upper penalty gadget Tgc is a tree Ty, c,c. If this gadget is connected to
a node v, then this forces v to use only colors not greater than d. If v uses only
colors not greater than d, then its finish time is at most d, and the gadget can
be colored optimally. If v uses a color greater than d but not greater than d+ C,
then the gadget can be colored only with a penalty of C. If v uses colors greater
than d + C, then it has finish time at least d + C, which is a penalty of at least
C compared to the case when v uses only colors at most d.

Theorem 4.1. The minimum sum preemptive multicoloring problem is NP-
complete on binary trees when the value of the demand function is polynomially
bounded.

Proof. Let a graph G(V, E) and an integer k be given. Denote n = |V|, m = |E|
and let C = 8mn. Let integers u; ;1 < u; 2 denote the two end vertices of the ith
edge in G. R

We define a binary tree T', which consists of a core T and some attached sub-
trees of type T'F and TV. We start with a path of 2m — 1 nodes, a1, by, az,ba, . ..,
Gm—1, bm—1, Gm. Define z(a;) = k (1 < i < m) and z(b;)) = C+n —k
(1 <i<m—1). For every 1 <1i < m attach a path of 6 nodes to a;. Let these
nodes be Ci,17di,17 Ciﬁz,diﬁg, Ci’g,diﬁg. Let .’)S(Ci,j) = 1, .T(di’j) = C+n—1 (j = 1, 2)
and z(¢;3) = 1, x(d;;3) = w2 — u;1 — 1. Clearly, z(v) > 0 for every node v.
This completes the definition of T. Now attach trees of type TY and TV to T as
follows (see Figure 2):



— a Tg+n,20 to every node b; (1 <i<m—1),

— a TTILJ,C to the node aq,

— aTH,, ¢ toeverynode d; ; (1<i<m, j=1,2),
_a Tg,zﬂ,c to every node ¢; 1 (1 <i<m),

- a TuLi’lfLC to every node ¢; 2 (1 <i<m),

- a TuLi’l’C and a TlZ,rLC to every node d; 3 (1 <i<m).

! -

(C+n—1)
di2

diz (uiz —uin — 1)

c1,3 (1)

az (k) &——-----

Fig. 2. The tree T for m = 3. For the sake of clarity, the nodes ¢;,j,d; ; for i > 2 and
the subtrees connected to these nodes are omitted. The numbers in parentheses are the
demand of the vertices.

It is clear that the size of the resulting tree 7" is polynomial in n, the number
of vertices of G, because T has 8m — 1 nodes and we attach 7m trees to it, each
of size bounded by a polynomial in C' + n.

As required by Prop. 3.1, the algorithm that constructs the trees of type TV
and TF also outputs the minimum sum of these 7m trees, that is, the value of
OPT(T\T). Let K =0PT(T\T)+(T)+ C.

The intuition behind the construction is that in a ’well-behaved’ solution,
when the coloring of the 7% and TV trees are optimal, for every i, the three
nodes ¢; 1, ¢;2, ¢; 3 have the same color. The trees attached to these nodes ensure
that this color must be either wu; 1 or u; 2, one of the end nodes of the ith edge in
G. This color cannot appear in a;, this is the reason why the & colors assigned
to the nodes a; form an independent set, at least one end node of each edge is
not in the set.

First we prove that if there is an independent set S of size k, then T' can be
colored with sum smaller than K. Let @; € {u;1,u;2}, u; € S be an end node of



the ith edge. Assume that ¥ colors all the trees of type TY and T* optimally,
ie, fe(T\T)=OPT(T\T) and let

- ¥(a;) =5 (1 <i<m),

W) =[1,C 4]\ S (1<i<m—1),

= U(eiy) ={w} 1<i<m,j=1223),

- ¥(d;;)=[1,C+n\{w} 1<i<m, j=1,2),
— Lp(dl73) = [u“ +1,ui,2 71] (1 Szgm)

It is straightforward to verify that ¥ is a proper coloring of 7. Notice that
fw(v) < z(v) + n holds for every node v of T, thus fy(T') can be bounded by
(T)+|T|n. Therefore fy(T) = fo(T\T)+ fo(T) < OPT(T\T)+a(T)+|T|n =
OPT(T\T) + «(T) + (8m — 1)n < OPT(T \ T) + z(T) + C = K, what we had
to show.

To prove the other direction, we will show that when there is a coloring
¥ with sum fy(T) < K, then there is a set of k independent vertices in G.
Obviously fg(T) = fg(f) + fo(T — f) > x(f) + OPT(T \ IA“) If there is even
onenodev € T such that fw(v) > z(v)+C, then fw(f) > a:(f)—i—C and fg(T) >
OPT(T\T) +(T)+C = K. Thus it can be assumed that fy(v) < z(v) +C for
every v € T. Now consider a tree T, of type T or TU attached to some node
veT. If fg(T,) > OPT(T,) + C, then fy(T) > z(T) + OPT(T\T) + C = K.
Thus it can be assumed that fy(T,) < OPT(T,)+C. Therefore, by the definition
of T,, if it is a Td,C (resp. Td,C) tree, then ¥ assigns to its root the set [1,d)
(resp. [d+1,d+ C]). Obviously, it follows that the node v cannot use the colors
in this set.

By the argument in the previous paragraph, fy(a1) < z(a1)+C < n+C and
¥ (a1)N[n+1,n+C] = B, which implies that ¥(a; ) contains only colors not greater
than n. Similarly, fg(b1) < z(b1)+C < n+2C and ¥(b1)N[n+C+1,n+3C| = 0,
which implies that the n — k + C colors in ¥(b;) are not greater than n + C.
This set of colors must be disjoint from the k colors in ¥(a1), therefore we have
U(by) = [1,n+ C]\ ¥(ay). Furthermore, fg(a2) < xz(az) + C < n+ C, hence it
must use the k colors not used by by, therefore ¥(az) = ¥(ay). Continuing on
this way, we get ¥(a;) = ¥(a1) = S for all 2 < i < m and S contains k colors
not greater than n.

Assume that the set S is not independent, that is, both end vertices of some
edge of G is in this set, u; 1, u; 2 € S. From the assumption fy(T) < K follows
that c; 1 cannot use either of these colors.

We have seen that fy(c;1) < 14C and ¥(c;1)N[us2+1,u;2+C) = 0 follow
from the assumption fy(T") < K, which implies that the color of ¢; 1 is at most
u;,2 < n. Moreover, since fy(d;1) < 2C+n—1and ¥(d; 1)N[n+C+1,n+3C] = 0,
thus node d; ; must use the first C'+n — 1 colors missing from c; ;, therefore we
have ¥(d;1) = [1,C + n] \ ¥(c;,1). Similarly as in the case of the nodes a; and
b;, it follows that ¥(c; 1) = ¥(c;2) = ¥(ci;3) = {u}. Furthermore, notice that
u > 4,1, since ¢; 2 cannot use the colors below u; 1: these colors are assigned to
the root of the attached tree T -1, Similarly, u cannot be in [u; 2 +1,u; 2+C]|
since ¢; 1 cannot use these colors Flnally, observe that d; 3 must have the colors



[ui1 + 1,u;2 — 1] which forbids ¢; 3 from using a color between u; 1 and wu; 3.
Since u is a color not greater than C, thus it must be either ;1 or u; 2.

If the demands are polynomially bounded, then the problem is obviously in

NP: a proper coloring with the given sum is a polynomial size certificate, which
finishes the proof of NP-completeness.
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