
What’s next?
Reductions other than kernelization

Dániel Marx

Humboldt-Universität zu Berlin

(with help from Fedor Fomin,

Daniel Lokshtanov and Saket Saurabh)

WorKer 2010: Workshop on Kernelization

Nov 9, 2010

What’s next?Reductions other than kernelization – p.1/34

Kernelization

The story:

We want to obtain FPT results.

Kernelization is a nice and useful technique for obtaining FPT results.

Kernelization + brute force (exact algorithm) can show that a problem is
FPT.

Which problems can be solved by kernelization + brute force?

What’s next?Reductions other than kernelization – p.2/34

Kernelization

Lemma: Every FPT problem has a kernel.

Proof: Suppose there is an f (k)nc algorithm for the problem.

If f (k) ≤ n, then solve the instance in time f (k)nc ≤ nc+1, and output a

trivial yes- or no-instance.

If n < f (k), then we are done: a kernel of size f (k) is obtained.

What’s next?Reductions other than kernelization – p.3/34

Kernelization

Lemma: Every FPT problem has a kernel.

Proof: Suppose there is an f (k)nc algorithm for the problem.

If f (k) ≤ n, then solve the instance in time f (k)nc ≤ nc+1, and output a

trivial yes- or no-instance.

If n < f (k), then we are done: a kernel of size f (k) is obtained.

Every FPT result can be obtained as kernelization + brute force!

FPT = Kernelization + Exact
algorithms

What’s next?Reductions other than kernelization – p.3/34

Efficiency

k -PATH: Given graph G and integer k , does G has a path of length k?

O∗(2O(k log k)) algorithm using representative systems [Monien 1985].

O∗((2e)k) randomized algorithm by color coding [Alon-Yuster-Zwick 1995]

Color coding can be derandomized to O∗(2O(k)).

O∗(2k) randomized algebraic algorithm [Williams 2009]

O∗(1.66k) randomized algebraic algorithm [Björklund 2010]

What’s next?Reductions other than kernelization – p.4/34

Efficiency

k -PATH: Given graph G and integer k , does G has a path of length k?

O∗(2O(k log k)) algorithm using representative systems [Monien 1985].

O∗((2e)k) randomized algorithm by color coding [Alon-Yuster-Zwick 1995]

Color coding can be derandomized to O∗(2O(k)).

O∗(2k) randomized algebraic algorithm [Williams 2009]

O∗(1.66k) randomized algebraic algorithm [Björklund 2010]

Question of efficiency:

Can we obtain a O∗(2O(k)) or a O∗(2poly(k)) time algorithm for k -PATH by a
combination of kernelization and exact algorithms?

What’s next?Reductions other than kernelization – p.4/34

ETH

Exponential Time Hypothesis (ETH):
n-variable 3SAT cannot be solved in time 2o(n).

Formulated by Impagliazzo, Paturi, and Zane in 2001, since then many lower

bounds were proved based on ETH (equivalent to FPT 6= M[1] and implies
FPT 6= W[1]).

What’s next?Reductions other than kernelization – p.5/34

ETH

Exponential Time Hypothesis (ETH):
n-variable 3SAT cannot be solved in time 2o(n).

Formulated by Impagliazzo, Paturi, and Zane in 2001, since then many lower

bounds were proved based on ETH (equivalent to FPT 6= M[1] and implies
FPT 6= W[1]).

Lower bound for k -PATH:

Sparsification Lemma: Assuming ETH, m-clause 3SAT cannot be solved
in time 2o(m).

The k -PATH problem is NP-hard: an m-clause 3SAT formula can be

reduced to a k -PATH instance with k = O(m) and O(m) edges/vertice.

Assuming ETH, there is no O∗(2o(k)) time parameterized algorithm and no
O∗(2o(|E(G)|)) or O∗(2o(|V (G)|)) time exact algorithm for k -PATH.

What’s next?Reductions other than kernelization – p.5/34

Efficiency

We have seen: Assuming ETH, there is no 2o(|V (G)|) exact algorithm for

k -PATH.

Thus if we want a O∗(2O(kc)) time algorithm by kernelization + exact algorithm,
then we need a kernel with |V (G)| = O(kc).

What’s next?Reductions other than kernelization – p.6/34

Efficiency

We have seen: Assuming ETH, there is no 2o(|V (G)|) exact algorithm for

k -PATH.

Thus if we want a O∗(2O(kc)) time algorithm by kernelization + exact algorithm,
then we need a kernel with |V (G)| = O(kc).

Theorem: [Bodlaender et al. 2008] k -PATH has no poly kernel (unless the

polynomial hierarchy collapses).

Kernelization + exact algorithm cannot give a O∗(2O(kc)) time algorithm for

k -PATH!

What’s next?Reductions other than kernelization – p.6/34

Efficiency

We have seen: Assuming ETH, there is no 2o(|V (G)|) exact algorithm for

k -PATH.

Thus if we want a O∗(2O(kc)) time algorithm by kernelization + exact algorithm,
then we need a kernel with |V (G)| = O(kc).

Theorem: [Bodlaender et al. 2008] k -PATH has no poly kernel (unless the

polynomial hierarchy collapses).

Kernelization + exact algorithm cannot give a O∗(2O(kc)) time algorithm for

k -PATH!

FPT 6= Kernelization + Exact
algorithms

What’s next?Reductions other than kernelization – p.6/34

Kernelization

The extended story:

We want to obtain FPT results.

Kernelization is a nice and useful technique for obtaining FPT results.

Kernelization + brute force (exact algorithm) can show that a problem is
FPT.

Every FPT membership result can be obtained this way, but for some
problems this approach does not give the most efficient FPT algorithms.

We have lower bound techniques to show that kernelization is not the right
approach for some problems (or at least it does not tell the full story).

What’s next?Reductions other than kernelization – p.7/34

Tools vs. problems

We have a list of problems that we want to solve:

What’s next?Reductions other than kernelization – p.8/34

Tools vs. problems

We have a list of problems that we want to solve:

And we have a set of techniques:

What’s next?Reductions other than kernelization – p.8/34

Tools vs. problems

A problem can be solved by several (combination of) techniques...

+

+

What’s next?Reductions other than kernelization – p.9/34

Tools vs. problems

A problem can be solved by several (combination of) techniques...

+

+

...but not all of them are the right way of solving the problem.

What’s next?Reductions other than kernelization – p.9/34

Efficiency

An example where kernelization + brute force is efficient:

k -VERTEX COVER has a 2k-vertex kernel and can be solved in O∗(2|V (G)|)

time by brute force

O∗(4k) time algorithm.

What’s next?Reductions other than kernelization – p.10/34

Efficiency

An example where kernelization + brute force is efficient:

k -VERTEX COVER has a 2k-vertex kernel and can be solved in O∗(2|V (G)|)

time by brute force

O∗(4k) time algorithm.

An example where kernelization + exact algorithms is currently not efficient:

Current best kernel for FEEDBACK VERTEX SET has O(k2) edges/vertices
[Thomassé 2009]

Assuming ETH, there is no 2o(n) exact algorithm.

Currently O∗(ck2

) is the best possible by kernelization + exact algorithm,
but can be solved in time O∗(ck) by other techniques.

What’s next?Reductions other than kernelization – p.10/34

Branching

Bounded depth search trees is one of the most basic FPT techniques.

Example: O∗(2k) algorithm for vertex cover.

e1 = x1y1

What’s next?Reductions other than kernelization – p.11/34

Branching

Bounded depth search trees is one of the most basic FPT techniques.

Example: O∗(2k) algorithm for vertex cover.

e1 = x1y1

x1 y1

What’s next?Reductions other than kernelization – p.11/34

Branching

Bounded depth search trees is one of the most basic FPT techniques.

Example: O∗(2k) algorithm for vertex cover.

e1 = x1y1

x1 y1

e2 = x2y2

What’s next?Reductions other than kernelization – p.11/34

Branching

Bounded depth search trees is one of the most basic FPT techniques.

Example: O∗(2k) algorithm for vertex cover.

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2

What’s next?Reductions other than kernelization – p.11/34

Branching

Bounded depth search trees is one of the most basic FPT techniques.

Example: O∗(2k) algorithm for vertex cover.

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

Height of the search tree is ≤ k ⇒ number of leaves is ≤ 2k ⇒ complete search

requires 2k · poly steps. What’s next?Reductions other than kernelization – p.11/34

Branching

A typical technique: a NECESSARY SET is a set N of elements such that every

solution contains at least one element of N

⇒ branch on the elements on N.

|N| is constant ⇒ O∗(ck) algorithm.

|N| = O(k) ⇒ O∗(kk) = O∗(2O(k log k)) algorithm.

|N| = O(log n) ⇒ O∗(logk n) algorithm

What’s next?Reductions other than kernelization – p.12/34

Branching

A typical technique: a NECESSARY SET is a set N of elements such that every

solution contains at least one element of N

⇒ branch on the elements on N.

|N| is constant ⇒ O∗(ck) algorithm.

|N| = O(k) ⇒ O∗(kk) = O∗(2O(k log k)) algorithm.

|N| = O(log n) ⇒ O∗(logk n) algorithm

We will focus on O∗(ck) type branching algorithms!

Which problems can be solved (efficiently) by
branching?

What’s next?Reductions other than kernelization – p.12/34

Branching rules

Definition: A branching rule for a parameterized problem P is a

polynomial-time algorithm that given an instance (I , k) with k > 1, produces
instances (I1, k1), ... , (Ic , kc) such that

|Ij | ≤ |I | for every 1 ≤ j ≤ c ,

kj<k for every 1 ≤ j ≤ c , and

(I , k) is a yes-instance if and only if there is a 1 ≤ j ≤ c such that (Ij , kj) is

a yes-instance,

for some constant c .

Observation: Given a branching rule for P , we can solve the problem in time

O∗(ck) by a bounded search tree algorithm.

What’s next?Reductions other than kernelization – p.13/34

Example

WEIRD VERTEX COVER

Input: A graph G and an integer k

Output: “YES” if G has a vertex cover of size k and k is a power of 2

“NO” otherwise

Does WEIRD VERTEX COVER have a branching rule?

What’s next?Reductions other than kernelization – p.14/34

Example

WEIRD VERTEX COVER

Input: A graph G and an integer k

Output: “YES” if G has a vertex cover of size k and k is a power of 2

“NO” otherwise

Does WEIRD VERTEX COVER have a branching rule?

Observation: If the branching rule produces (I1, k1), ... , (Ic , kc) from (I , k),
then kj ≤ k/2 for every j (otherwise kj is not a power of 2).

⇒ The height of the search tree is ≤ log k .

⇒ The size of the search tree is polynomial in k .
⇒ No branching rule unless P = NP.

What’s next?Reductions other than kernelization – p.14/34

Example

WEIRD VERTEX COVER

Input: A graph G and an integer k

Output: “YES” if G has a vertex cover of size k and k is a power of 2

“NO” otherwise

Does WEIRD VERTEX COVER have a branching rule?

Observation: If the branching rule produces (I1, k1), ... , (Ic , kc) from (I , k),
then kj ≤ k/2 for every j (otherwise kj is not a power of 2).

⇒ The height of the search tree is ≤ log k .

⇒ The size of the search tree is polynomial in k .
⇒ No branching rule unless P = NP.

This is very wrong: this problem should be solvable by
branching.

What’s next?Reductions other than kernelization – p.14/34

Linear polynomial parameter transformation

Definition: A linear polynomial parameter transformation (LPPT) from

problem P1 to P2 is a mapping that maps instance (I1, k1) to instance (I2, k2)

such that

(I1, k1) ∈ P1 if and only if (I2, k2) ∈ P2,

k2 = O(k1), and

the transformation can be computed in polynomial time.

Definition: The class BranchFPT contains a parameterized problem P if there is

a linear polynomial parameter transformation from P to a problem that has a
branching rule.

WEIRD VERTEX COVER is LPPT-reducible to VERTEX COVER ∈ BranchFPT.

⇒ WEIRD VERTEX COVER is in BranchFPT.

What’s next?Reductions other than kernelization – p.15/34

k -PATH

k -PATH: Is there a path of length k in G .

The known O∗(2O(k)) time algorithms (color coding, divide and color, algebraic
techniques) are not branching algorithms!

Open Question #1:

Is k -PATH in BranchFPT?

What’s next?Reductions other than kernelization – p.16/34

k -PATH

k -PATH: Is there a path of length k in G .

The known O∗(2O(k)) time algorithms (color coding, divide and color, algebraic
techniques) are not branching algorithms!

Open Question #1:

Is k -PATH in BranchFPT?

Open Question #2: [Paturi]

Is there a polynomial time algo-

rithm for k -PATH with 2−O(k) suc-
cess probability?

What’s next?Reductions other than kernelization – p.16/34

k -PATH

k -PATH: Is there a path of length k in G .

The known O∗(2O(k)) time algorithms (color coding, divide and color, algebraic
techniques) are not branching algorithms!

Open Question #1:

Is k -PATH in BranchFPT?

Open Question #2: [Paturi]

Is there a polynomial time algo-

rithm for k -PATH with 2−O(k) suc-
cess probability?

Observation: A positive answer for the first question implies a positive answer

for the second!

(A branching algorithm can be turned into a randomized algorithm.)

What’s next?Reductions other than kernelization – p.16/34

Relation to linear-vertex kernels

Observation: If problem P has a linear vertex-kernel and P parameterized by

the number of vertices can be solved by branching, then P is in BranchFPT:
there is an LPPT-reduction to a problem that can be solved by branching.

What’s next?Reductions other than kernelization – p.17/34

Relation to linear-vertex kernels

Observation: If problem P has a linear vertex-kernel and P parameterized by

the number of vertices can be solved by branching, then P is in BranchFPT:
there is an LPPT-reduction to a problem that can be solved by branching.

Example:
MAX INTERNAL SPANNING TREE: Does G have a spanning tree with at least k

internal vertices?

A 3k-vertex kernel is known [Fomin-Gaspers-Saurabh-Thomassé 2009].

It is not obvious if MAX INTERNAL SPANNING TREE parameterized by the
number of vertices is in BranchFPT!

Open Question #3:

Is MAX INTERNAL SPANNING TREE in BranchFPT?

What’s next?Reductions other than kernelization – p.17/34

Nondeterministic bits

Observation: A parameterized problem P is in BranchFPT if and only if it has an

NP characterization with O(k) size certificates.

What’s next?Reductions other than kernelization – p.18/34

Nondeterministic bits

Observation: A parameterized problem P is in BranchFPT if and only if it has an

NP characterization with O(k) size certificates.

Proof:

⇒: Let the certificate be the decisions we make during branching. Can be

encoded in O(k) bits and can be verified in polynomial time.

What’s next?Reductions other than kernelization – p.18/34

Nondeterministic bits

Observation: A parameterized problem P is in BranchFPT if and only if it has an

NP characterization with O(k) size certificates.

Proof:

⇒: Let the certificate be the decisions we make during branching. Can be

encoded in O(k) bits and can be verified in polynomial time.

⇐: Let us define the variant P ′, where (x , k, w , ℓ) ∈ P ′ ⇐⇒ w can be
extended with at most ℓ more bits to a witness of (x , k).

There is an LPPT-reduction from P parameterized by k to P ′

parameterized by ℓ: (x , k) ∈ P ⇐⇒ (x , k, ∅, O(k)) ∈ P ′

P ′ parameterized by ℓ can be solved by branching: guess the next bit of
the witness and decrease ℓ.

What’s next?Reductions other than kernelization – p.18/34

Feedback Vertex Set

FEEDBACK VERTEX SET: Is there a set S of at most k vertices such that G \ S

contains no cycle?

Randomized O∗(4k) branching algorithm by [Becker, Bar-Yehuda, Geiger
2000].

First deterministic O∗(2O(k)) time algorithm in by using iterative

compression [Dehne et al. 2005] [Guo et al. 2005].

What’s next?Reductions other than kernelization – p.19/34

Feedback Vertex Set

FEEDBACK VERTEX SET: Is there a set S of at most k vertices such that G \ S

contains no cycle?

Randomized O∗(4k) branching algorithm by [Becker, Bar-Yehuda, Geiger
2000].

First deterministic O∗(2O(k)) time algorithm in by using iterative

compression [Dehne et al. 2005] [Guo et al. 2005].

FEEDBACK VERTEX SET COMPRESSION: Given G and set of vertices S0 such
that G \ S0 contains no cycle, is there a set S of at most k vertices such that

G \ S contains no cycle?

Lemma: FEEDBACK VERTEX SET COMPRESSION is FPT param. by |S0|.

Two ways of using this: (1) iterative compression or (2) polynomial time
2-approximation.

What’s next?Reductions other than kernelization – p.19/34

Feedback Vertex Set

FEEDBACK VERTEX SET COMPRESSION: Given G and set of vertices S0 such

that G \ S0 contains no cycle, is there a set S of at most k vertices such that
G \ S contains no cycle?

Lemma: FEEDBACK VERTEX SET COMPRESSION is FPT param. by |S0|.

Inspection of proof shows that the compression problem is in BranchFPT.

The 2-approximation gives an LPPT from FEEDBACK VERTEX SET to the

compression problem.

⇒ FEEDBACK VERTEX SET is in BranchFPT.

More generally: If a constant-factor approximation can be obtained in polyno-

mial time and the compression problem can be solved by branching, then the

problem is in BranchFPT.

What’s next?Reductions other than kernelization – p.19/34

Relation to counting

We can define a stronger version of branching that is capable of counting the

number of solutions: the number of solutions is the sum of the number of
solutions in the branches.

Not all branching rules are like this.

If there is a set N of elements such that every solution has to contain at
least one element of N, then we can branch on the elements on N.

⇒ Usually good for counting.

If there is a set N of elements such that at least one solution has to contain
at least one element of N, then we can branch on the elements on N.

⇒ Usually bad for counting.

What’s next?Reductions other than kernelization – p.20/34

Relation to counting

We can define a stronger version of branching that is capable of counting the

number of solutions: the number of solutions is the sum of the number of
solutions in the branches.

Theorem: [Flum-Grohe 2004] #k -PATH is #W[1]-hard.

⇒ If k-Path can be solved by branching, then it is unlikely that the branching is
good for counting.

Is it possible that hardness results for counting are the key
to negative results on branching?

What’s next?Reductions other than kernelization – p.20/34

Further open questions

Which of the following problems is in BranchFPT?

CONNECTED VERTEX COVER

STEINER TREE parameterized by number of terminals

HITTING SET parameterized by number of sets

...

What’s next?Reductions other than kernelization – p.21/34

Why not k-way branching?

We could set up definitions that allow branching into O(k) directions (yielding

O∗(kO(k)) time algorithms.

Alternate definition: A branching rule for a parameterized problem P is a
polynomial-time algorithm that given an instance (I , k) with k > 1, produces

instances (I1, k1), ... , (Ic , kc) such that

c ≤ kd ,

|Ij | ≤ |I | for every 1 ≤ j ≤ c ,

kj < k for every 1 ≤ j ≤ c , and

(I , k) is a yes-instance if and only if there is a 1 ≤ j ≤ c such that (Ij , kj) is
a yes-instance,

for some constants c and d .

k -PATH is LPPT-reducible to a problem that admits this type of branching!
What’s next?Reductions other than kernelization – p.22/34

Branching for k -PATH

A polynomial-time solvable problem:

COLORED k -PATH:
Given a graph G with vertices colored by [k] and a vector (c1, ... , ck) of

distinct colors, find a path of length k such that the i-th vertex has color ci .

A generalization solvable by k-way branching:

GENERALIZED COLORED k -PATH:

Given a family F of colorings [k2] and a vector (c1, ... , ck) with ci ∈ [k2]∪⋆,
find a solution by choosing a coloring from F and extending the vector to k

distinct colors by replacing the “wildcards” ⋆ by arbitrary colors in [k2].

Solvable by branching parameterized by k + number of wildcards

(replace one wildcard with one of the k2 colors).

What’s next?Reductions other than kernelization – p.23/34

Branching for k -PATH

GENERALIZED COLORED k -PATH:
Given a family F of colorings [k2] and a vector (c1, ... , ck) with ci ∈ [k2]∪⋆,

find a solution by choosing a coloring from F and extending the vector to k

distinct colors by replacing the “wildcards” ⋆ by arbitrary colors in [k2].

An (n, k, k2)-splitter is a family of functions [n] → [r 2] such that for every

r -element X ⊆ [n], it contains a function that is injective on X .

Theorem: [Naor, Schulman, Srinivasan 1995] There is an explicit construction

of an (n, r , r 2)-splitter family containing O(r 6 log r log n) functions.

What’s next?Reductions other than kernelization – p.23/34

Branching for k -PATH

GENERALIZED COLORED k -PATH:
Given a family F of colorings [k2] and a vector (c1, ... , ck) with ci ∈ [k2]∪⋆,

find a solution by choosing a coloring from F and extending the vector to k

distinct colors by replacing the “wildcards” ⋆ by arbitrary colors in [k2].

An (n, k, k2)-splitter is a family of functions [n] → [r 2] such that for every

r -element X ⊆ [n], it contains a function that is injective on X .

Theorem: [Naor, Schulman, Srinivasan 1995] There is an explicit construction

of an (n, r , r 2)-splitter family containing O(r 6 log r log n) functions.

Claim: k -PATH is LPPT-reducible to GENERALIZED COLORED k -PATH.

Proof: Let F be a (n, k, k2) and let the vector be (⋆, ... , ⋆). This is a yes-

instance if and only if there is a path of length k .

What’s next?Reductions other than kernelization – p.23/34

Treewidth reduction

Most problems are easy on bounded-treewidth graphs, with notable
exceptions.

General strategy for showing that a problem is FPT:

Solve the problem using standard techniques if treewidth is small.

Do something if treewidth is large (answer is trivial or some reduction is
possible).

What’s next?Reductions other than kernelization – p.24/34

A classical example

MINOR CONTAINMENT: Given graphs H and G , is H a minor of G?

Theorem: [Robertson-Seymour, Graph Minors XIII] [Kawarabayashi-Wollan
2010] MINOR CONTAINMENT is FPT parameterized by |V (H)|.

If treewidth is small, then we solve the problem using standard techniques.

Otherwise, we identify an irrelevant vertex whose deletion provably does

not change the problem.

Weak Structure Theorem: we can find either a large clique minor or a large
“flat wall.”

What’s next?Reductions other than kernelization – p.25/34

A classical example

MINOR CONTAINMENT: Given graphs H and G , is H a minor of G?

Theorem: [Robertson-Seymour, Graph Minors XIII] [Kawarabayashi-Wollan
2010] MINOR CONTAINMENT is FPT parameterized by |V (H)|.

If treewidth is small, then we solve the problem using standard techniques.

Otherwise, we identify an irrelevant vertex whose deletion provably does

not change the problem.

Weak Structure Theorem: we can find either a large clique minor or a large
“flat wall.”

Large clique minor: the problem is trivial, or a vertex of the clique minor

is irrelevant.

Large flat wall: a “middle vertex” of the wall is irrelevant.

What’s next?Reductions other than kernelization – p.25/34

Irrelevant vertex

Examples of treewidth reduction using the irrelevant vertex technique:

MINOR CONTAINMENT [Robertson-Seymour, Graph Minors XIII]
[Kawarabayashi-Wollan 2010]

CROSSING NUMBER [Grohe 2004] [Kawarabayashi-Reed 2007]

APEX NUMBER [M.-Schlotter 2007] [Kawarabayashi 2008]

CHORDAL DELETION [M. 2006]

Somehow these examples are too complicated for formal treatment.

Let’s see some simpler examples.

What’s next?Reductions other than kernelization – p.26/34

LONG CYCLE

LONG CYCLE: Is there a cycle of length at least k in G?

Treewidth reduction: In polynomial time, we can either find a cycle of length
at least k or a tree decomposition of width O(k).

LONG CYCLE on a tree decomposition of width w can be solved in time
O∗(2O(w log w)).

Using a polynomial reduction + treewidth technique we can solve LONG

CYCLE in time O∗(2O(k log k)).

But this is not optimal: LONG CYCLE can be solved in time O∗(2O(k)).

What’s next?Reductions other than kernelization – p.27/34

LONG CYCLE

Theorem: k -CYCLE can be solved in time O∗(2O(k)).

(k -CYCLE: Is there a cycle of length exactly k in G?)

Theorem: LONG CYCLE can be solved in time O∗(2O(k)).
(LONG CYCLE: Is there a cycle of length at least k in G?)

What’s next?Reductions other than kernelization – p.28/34

LONG CYCLE

Theorem: k -CYCLE can be solved in time O∗(2O(k)).

(k -CYCLE: Is there a cycle of length exactly k in G?)

Theorem: LONG CYCLE can be solved in time O∗(2O(k)).
(LONG CYCLE: Is there a cycle of length at least k in G?)

Proof:

Use the k -CYCLE algorithm to test for a cycle of length k , k + 1, ... , 2k .

If no such cycle is found, contract an arbitrary edge, and repeat.

Stop when a long cycle is found or the graph has no edge.

Correctness:

Any long cycle in the contracted graph is a long cycle of the original.

If there is a cycle of length > 2k , then there is a cycle of length ≥ k after

contracting any edge.

What’s next?Reductions other than kernelization – p.28/34

LONG CYCLE

Can we solve LONG CYCLE in time O∗(2O(k)) using treewidth reduction +

treewidth algorithm?

Can we solve LONG CYCLE in time O∗(2o(w log w)), where w is the
treewidth?

Can we reduce in polynomial time LONG CYCLE to an instance with
treewidth o(k)?

What’s next?Reductions other than kernelization – p.29/34

LONG CYCLE

Can we solve LONG CYCLE in time O∗(2O(k)) using treewidth reduction +

treewidth algorithm?

Can we solve LONG CYCLE in time O∗(2o(w log w)), where w is the
treewidth?

Can we reduce in polynomial time LONG CYCLE to an instance with
treewidth o(k)?

Variant 1: The cycle size in the new instance remains the same.

Variant 2: The cycle size in the new instance can be arbitrary large.

What’s next?Reductions other than kernelization – p.29/34

LONG CYCLE

Can we solve LONG CYCLE in time O∗(2O(k)) using treewidth reduction +

treewidth algorithm?

Can we solve LONG CYCLE in time O∗(2o(w log w)), where w is the
treewidth?

Can we reduce in polynomial time LONG CYCLE to an instance with
treewidth o(k)?

Variant 1: The cycle size in the new instance remains the same.

Variant 2: The cycle size in the new instance can be arbitrary large.

We might be able to answer questions like that.

Theorem: [Lokshtanov, M, Saurabh: “Slightly Superexponential Parameterized

Problems”] Assuming ETH, there is no O∗(2o(w log w)) time algorithm for DIS-

JOINT PATHS.

What’s next?Reductions other than kernelization – p.29/34

d -HITTING SET

d -HITTING SET: Given sets of size at most d , can we hit all of them with k

elements?

Can be solved in time O∗(dk) by branching.

Can we match this running time by treewidth reduction + treewidth algorithm?

What’s next?Reductions other than kernelization – p.30/34

d -HITTING SET

d -HITTING SET: Given sets of size at most d , can we hit all of them with k

elements?

Can be solved in time O∗(dk) by branching.

Can we match this running time by treewidth reduction + treewidth algorithm?

Can be solved in time O∗(2w) if treewidth is at most w and there is no

O∗(2o(w)) time algorithm (unless ETH fails).

Can we reduce treewidth to O(k log d) in polynomial time?

What’s next?Reductions other than kernelization – p.30/34

d -HITTING SET

d -HITTING SET: Given sets of size at most d , can we hit all of them with k

elements?

Can be solved in time O∗(dk) by branching.

Can we match this running time by treewidth reduction + treewidth algorithm?

Can be solved in time O∗(2w) if treewidth is at most w and there is no

O∗(2o(w)) time algorithm (unless ETH fails).

Can we reduce treewidth to O(k log d) in polynomial time?

There is a kernel with O(kd−1) vertices [Abu-Khzam 2010].

⇒ Treewidth can be reduced to O(kd−1) in polynomial time. Can we reduce

treewidth much better than that?

What’s next?Reductions other than kernelization – p.30/34

d -SET PACKING

d -SET PACKING: Given sets of size at most d , can we find k pairwise

independent sets?

Can be solved in time O∗(2O(kd)) (e.g., by color coding).

Can be solved in time O∗(2O(w)), where w is treewidth.

Has a kernel of size O(kd−1) vertices [Abu-Khzam 2010].

Can we match the 2O(kd) running time by reducing treewidth to O(kd) in

polynomial time? Can we get treewidth less than O(kd−1)?

What’s next?Reductions other than kernelization – p.31/34

Bidimensionality
PLANAR k -DOMINATING SET

Kernelization:

Has a linear-vertex kernel.

Kernelization + brute foce gives O∗(2O(k)) algorithm.

What’s next?Reductions other than kernelization – p.32/34

Bidimensionality
PLANAR k -DOMINATING SET

Kernelization:

Has a linear-vertex kernel.

Kernelization + brute foce gives O∗(2O(k)) algorithm.

Exact algorithm:

Treewidth of a planar graph is at most O(
√

n).

Has an 2O(
√

n) exact algorithm (and no 2o(
√

n) assuming ETH).

Kernelization + exact algorithm gives the optimal O∗(2O(
√

k)) time.

What’s next?Reductions other than kernelization – p.32/34

Bidimensionality
PLANAR k -DOMINATING SET

Kernelization:

Has a linear-vertex kernel.

Kernelization + brute foce gives O∗(2O(k)) algorithm.

Exact algorithm:

Treewidth of a planar graph is at most O(
√

n).

Has an 2O(
√

n) exact algorithm (and no 2o(
√

n) assuming ETH).

Kernelization + exact algorithm gives the optimal O∗(2O(
√

k)) time.

Treewidth reduction:

The answer is no, unless treewidth is O(
√

k) ⇒ We can reduce treewidth
to O(

√
k) in polynomial time.

Treewidth reduction + treewidth algorithm gives O∗(2O(
√

k)) running time.

What’s next?Reductions other than kernelization – p.32/34

Bidimensionality
PLANAR k -DOMINATING SET

Kernelization + brute foce: O∗(2O(k)) time.

Kernelization + exact algorithm: O∗(2O(
√

k)) time.

Treewidth reduction + treewidth algorithm: O∗(2O(
√

k))

time.

What’s next?Reductions other than kernelization – p.33/34

Summary

The meta question: Which techniques are efficient for which problems?

Kernelization is not the right technique for some problems.

Formalization of solving a problem by branching rules.

Challenging questions: which problems can be solved by branching rules?

Treewidth reduction.

What are the problems for which treewidth reduction is competitive with
other ideas?

What’s next?Reductions other than kernelization – p.34/34

	Kernelization
	Kernelization
	Efficiency
	ETH
	Efficiency
	Kernelization
	Tools vs. problems
	Tools vs. problems
	Efficiency
	Branching
	Branching
	Branching rules
	Example
	Linear polynomial parameter transformation
		extsc {k-Path}
	Relation to linear-vertex kernels
	Nondeterministic bits
	Feedback Vertex Set
	Relation to counting
	Further open questions
	Why not k-way branching?
	Branching for 	extsc {k-Path}
	Treewidth reduction
	A classical example
	Irrelevant vertex
		extsc {Long Cycle}
		extsc {Long Cycle}
		extsc {Long Cycle}
		extsc {d-Hitting Set}
		extsc {d-Set Packing}
	Bidimensionality\	extsc {Planar k-Dominating Set}
	Bidimensionality\	extsc {Planar k-Dominating Set}
	Summary

