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IMMERSIONS IN HIGHLY EDGE CONNECTED GRAPHS*

DANIEL MARX! AND PAUL WOLLAN?

Abstract. We consider the problem of how much edge connectivity is necessary to force a graph
G to contain a fixed graph H as an immersion. We show that if the maximum degree in H is A, then
all the examples of A-edge connected graphs which do not contain H as a weak immersion must have
a treelike decomposition called a tree-cut decomposition of bounded width. If we consider strong
immersions, then it is easy to see that there are arbitrarily highly edge connected graphs which do
not contain a fixed clique K as a strong immersion. We give a structure theorem which roughly
characterizes those highly edge connected graphs which do not contain K; as a strong immersion.
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1. Introduction. We consider graphs with parallel edges but no loops. In this
article, we will examine the immersion relation between graphs.

DEFINITION 1.1. A graph G admits an immersion of a graph H if there exists a
function m with domain V(H) U E(H) mapping to the set of connected subgraphs of
G which satisfies the following:

a. for all v € V(H), ©(v) is a vertex of G, and if u € V(H), u # v, then
m(u) # 7 (v);
b. for every edge f € E(H) with endpoints x andy, w(f) is a path with endpoints
equal to m(x) and w(y);
c. for edges f,f' € E(H), [ # f', n(f) and w(f") have no edge in common.
The vertices {m(x) : x € V(H)} are the branch vertices of the immersion. We will
also say that G immerses H or, alternatively, that G contains H as an immersion.
The edge-disjoint paths w(f) for f € E(H) are the composite paths of the immersion.

One can distinguish between strong and weak immersions. The definition given
above is that of a weak immersion; in a strong immersion, one additionally requires
that no branch vertex be contained as an internal vertex of a composite path. We
will consider both forms of immersions in this article. In the interest of brevity, we
will typically refer to weak immersions as simply “immersions,” and explicitly specify
strong immersions whenever we are focusing on strong immersions.

There is an easy structure theorem for graphs excluding a fixed H as an immersion
[15], [4]. If we fix the graph H and let A be the maximum degree of a vertex in H, then
one obvious obstruction to a graph G containing H as an immersion is if every vertex
of G has degree less than A. The structure theorem shows that this is approximately
the only obstruction. The structure theorem says that for all ¢ > 1, any graph which
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Fic. 1. The graph P3 4.

does not have an immersion of K; can be decomposed into a treelike structure of
pieces with at most ¢ vertices each of degree at least t2.

The value t? cannot be significantly improved. Consider the graph Py, to be the
graph obtained from taking a path on n vertices and adding k — 1 additional parallel
edges to each edge. See Figure 1. The graphs Pj , are natural examples of graphs
which are highly edge connected and exclude a given immersion or strong immersion.
Observe that the graph P2 /41, is roughly t? /4-edge connected, but does not contain
K, as an immersion.

The structure theorem for weak immersions gives rise to a variant of tree decom-
positions based on edge cuts instead of vertex cuts, called tree-cut decompositions.
The minimum width of a tree-cut decomposition is the tree-cut width of a graph. We
give the exact definition of these notions in the following section. The example above
of a highly edge connected graph with no K; immersion has tree-cut width bounded
by a function of ¢. Thus, one might hope that all the highly edge connected graphs
which do not admit K; as an immersion similarly have bounded tree-cut width. This
is the main result of this article.

THEOREM 1.2. There exists a function g satisfying the following. Letk > 4,n > 1
be positive integers. Then for all graphs H with mazimum degree k on n vertices and
for all k-edge connected graphs G, either G admits an immersion of H, or G has
tree-cut width at most g(k,n).

The k = 4 case of Theorem 1.2 was proven by Chudnovsky et al. [2]; our proof
builds on this result to show the statement for general k > 4.

The theorem is not true for k = 3. This is because if G and H are 3-regular graphs,
then G contains H as an immersion if and only if G contains H as a topological minor.
Thus, if H is any 3-regular graph which cannot be embedded in the plane, then any
3-regular planar graph G cannot contain H as an immersion and such graphs can
have arbitrarily large tree width.

Recent work has proven several special cases of Theorem 1.2 while generalizing
the statement to strong immersions. Giannopolous, Kaminski, and Thilikos [8] have
shown that for k > 4, every k-edge connected graph embedded in a surface of bounded
genus either contains a fixed H of maximum degree k as a strong immersion, or has
tree width bounded by a function of H and the genus of the surface. Dvorak and
Klimosova showed [7] that the k = 4 case of Theorem 1.2 holds for strong immersions
as well when the graph G is assumed to be simple. It is unclear whether Theorem 1.2
might also be true in general for strong immersions in simple graphs.

Theorem 1.2 can also be contrasted with recent work of Norine and Thomas on
clique minors in large k-connected graphs. They have announced a proof that for
every k > 5, every sufficiently large k-connected graph G either contains Kj as a
minor or there exists a set X C V(G) with |X| = k — 5 such that G — X is planar.
Here we see similarly that every k-edge connected graph which does not admit an
immersion of Ky falls into a relatively simple class of graphs (although the proofs
here are dramatically easier than the proof of Norine and Thomas’ result). Note that
Theorem 1.2 cannot be improved further to simply bound the size of the graph G.
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Again consider that the graph Py, is k-edge connected and can be chosen to have
arbitrarily many vertices, but will not admit an immersion of K.

If we instead consider the strong immersion relation, then it has recently been
shown by DeVos et al. [3] that in simple graphs with no parallel edges, any graph
with minimum degree 200t contains a strong immersion of K;. This bound is clearly
best possible, up to improvements in the constant 200. However, if we consider
graphs which do possibly have parallel edges, then there exist arbitrarily highly edge
connected graphs which do not contain a fixed strong immersion. For example, for all
fixed t, the graphs Py, ,, are k-edge connected and do not contain a strong immersion
of K3 for all k£ and n since paths linking a pair of vertices in P, must pass through
all the vertices in-between. In the second main result of this article, we will see that
such long paths of parallel edges are essentially the only obstructions to highly edge
connected graphs containing a fixed clique as a strong immersion. We leave the exact
statement until section 7. The proof proceeds by starting from the edge bound in [3]
and analyzing how parallel edges can be contained in the graph.

We quickly outline how the article will proceed. In section 2, we give the defi-
nitions of tree-cut decompositions and the tree-cut width of a graph as well as state
the structure theorem for immersions. In section 3, we introduce several important
graph minors tools which we will use going forward, including a necessary result of
Robertson and Seymour on tangles, and look at a packing result for subgraphs called
spiders. In section 4, we give an exact characterization when a given graph and tangle
contain a spider. In section 5, we see that any k-edge connected graph which does not
contain an immersion of a given H of max degree k must essentially have bounded
degree. In section 6, we introduce another tool of Robertson and Seymour on finding
disjoint paths given the presence of a clique minor, and proceed to give the proof of
Theorem 1.2. Finally, in section 7, we turn our attention to strong immersions and
state and prove the structure theorem for highly edge connected graphs which do not
have a strong immersion of K; for a fixed value t.

We conclude with some notation. Let G be a graph and v € V(G). The degree
deg(v) is the number of edges incident with v and A(G) is the maximum degree of a
vertex in G. The neighborhood of v is the set of vertices adjacent to v and is denoted
N (v). Note that deg(v) > |N(v)|; however, given the possibility of parallel edges, it is
not necessarily true that equality holds. A graph is simple if it has no parallel edges.
Let X C V(G). The set of edges with exactly one endpoint in X is denoted §(X).
We will use §(v) for 6({v}). The set of vertices of V(G) \ X with a neighbor in X is
denoted N¢(X), or simply N(X) when there can be no confusion. We refer to the
graph induced on X by G[X]. We use G—X to refer to the graph induced on V(G)\ X.
For a subset F' C E(G) of edges, we use G — F' to refer to the graph (V(G), E(G)\ F).
For subgraphs G and G2 of G, the subgraph G; U G5 has vertex set V(G1) UV (G3)
and edge set E(G1)UE(G2). We will use G—z as shorthand notation for G—{z} when
x is a single element of either V(G) or E(G). Finally, we will often want to reduce G to
a smaller graph by identifying a subset of vertices to a single vertex. Let X C V(G),
define G’ be the graph obtained by deleting every edge with both endpoints in X and
identifying the vertex set X to a single vertex. We will say that G’ is obtained from G
by consolidating X. Contraction is the special case of this operation when X induces
a connected graph. Note that consolidating (contracting) a vertex set X can create
parallel edges if there is a vertex v € X with more than one edge into X.

2. Tree-cut decompositions. In this section, we give the necessary definitions
of tree-cut decompositions as well as state the structure theorem for graphs excluding
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a fixed clique immersion. A near-partition of a set X is a family of subsets X1, ..., Xy,
possibly empty, such that Ulf X,=Xand X;NX;=0foralll <i<j<k.

DEFINITION 2.1. A tree-cut decomposition of a graph G is a pair (T, X) such
that T is a tree and X = {X; CV(G) : t € V(T)} is a near-partition of the vertices
of G indexed by the vertices of T'. For each edge e = uwv in T, T — uv has exactly
two components, namely, T, and T, containing v and u, respectively. The adhesion
of the decomposition is

2.1 0 X
( ) uvrgg%(T) ¢ U K
teV(Ty)

when T has at least one edge, and 0 otherwise. The sets {X; : t € V(T)} are called
the bags of the decomposition.

In the definition, we allow bags to be empty.

Let G be a graph and (T, X') a tree-cut decomposition of G. Let ¢t € V(T') be a
vertex of T. The torso of G at t is the graph H defined as follows. If |[V(T)| = 1,
then the torso of G at t is simply itself. If |[V(T)| > 2, let the components of T — ¢ be
Ty,...,T; for some positive integer [. Let Z; = UweV(Ti) X, for 1 <i<|[. Then H is
made from G by consolidating each set Z; to a single vertex z;. The vertices X; are
called the core vertices of the torso. The vertices z; are called the peripheral vertices
of the torso.

We can now state the structure theorem for excluded immersions. A graph has
(a,b)-bounded degree if there are at most a vertices with degree at least b.

THEOREM 2.2 (see [15]). Let G be a graph andt > 1 a positive integer. If G does
not admit Ky as a weak immersion, then there exists a tree-cut decomposition (T, X')
of G of adhesion less than t> such that each torso has (t,t?)-bounded degree.

Tree decompositions and their corresponding tree widths were introduced by Halin
[9] and independently by Robertson and Seymour [11]. The parameters have proven
immensely useful in structural graph theory. Several of the results going forth will
use the parameter tree width. However, as we will not use any specific properties of
tree decompositions in this article, we omit the technical definitions here. See [5] for
further background on tree-width.

Given tree-cut decompositions, it is natural to ask what is an appropriate defini-
tion for the width of such a decomposition. While some care must be taken to deal
with 1- and 2-edge cuts, in 3-edge connected graphs, the width is the maximum of
the adhesion and the size of the torsos. See [15] for more details. As we will only be
considering tree-cut decompositions of graphs which are at least 3-edge connected, we
use a simplified definition here for the width of a tree-cut decomposition.

DEFINITION 2.3. Let G be a 3-edge connected graph and (T, X) a tree-cut decom-
position of G. For each vertex t € V(T), let X; be the bag at the vertex t. Let H;
be the torso of G at t. Let a be the adhesion of the decomposition. The width of the
decomposition s

(2.2) max{a} U{|V(H,)|: t € V(T)}.

The tree-cut width of the graph G, also written tcw(Q), is the minimum width of a
tree-cut decomposition.

Note that the tree-cut width of a graph G is not the same as the tree width of the
line graph of G. For example, under the full definition for tree-cut width taking into
account 1- and 2-edge connected graphs, it holds that all trees have tree-cut width
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one. Trivially, there exist trees with vertices of arbitrarily large degree; therefore
their line graphs contain arbitrarily large clique subgraphs. We conclude that the line
graphs of trees can have arbitrarily large tree width.

Tree-cut decompositions share many of the natural properties of tree decomposi-
tions. See [15] for further details. One fact which we will use in the sections to come
is the following result.

LEMMA 2.4 (see [15]). Let w,d > 1 be positive integers and let G be a graph with
A(G) < d and tree-width at most w. Then there exists a tree-cut decomposition of
adhesion at most (2w + 2)d such that every torso has at most (d+ 1)(w + 1) vertices.
Specifically, the tree-cut width of G is at most (2w + 2)d.

Thus, if a graph has bounded tree-width and bounded degree, then it has bounded
tree-cut width. However, the converse is not true. Again, trees have tree-cut width
one but clearly can have arbitrarily large degree. Also, if we consider the graph
consisting of two vertices with ¢ parallel edges connecting them, then the graph is ¢-
edge connected but has tree-cut width two. However, as a consequence of our proof of
Theorem 1.2, we will see that if we eliminate these two possibilities, then the converse
of Lemma 2.4 does hold. This is proven in section 5.

3. Tangles, minors, and spiders. In this section, we introduce many of the
graph minors tools which we will use, including tangles, and see how they show a
packing result for subgraphs called spiders. Let G be a graph, & > 1 a positive
integer, and X C V(G). An X-spider of order k consists of k pairwise edge-disjoint
paths Pp, ..., P, and a vertex v € V(G) \ X such that each P; has one endpoint equal
to v, the other endpoint in X, and no internal vertex in X. The vertex v is called the
body of the spider.

Finding and packing spiders can be thought of as a first step of finding immersions:
a spider of order k£ can possibly serve as the image of a vertex of degree k and the
incident edges. Therefore, it will be useful to know that spiders have the Erdés—Pésa
property: either there is a large edge-disjoint collection or there is a bounded-size set
of edges hitting all spiders.

THEOREM 3.1. There exists a function f(t,k) satisfying the following. Let G be
a graph, X C V(G), and k,t > 1 a positive integer. FEither G has t pairwise edge-
disjoint X -spiders each of order k, or there exists a set Z of at most f(t,k) edges
intersecting every X -spider of order k in G.

Note that the edge-disjoint spiders in Theorem 3.1 may share body vertices. The-
orem 3.1 is implicit in [14] using the language of tangles. We give the proof below
after presenting the necessary background on separations and tangles.

A separation in a graph G is an ordered pair of subgraphs (A, B) which are pair-
wise edge disjoint such that AUB = G. The order of the separation is |V (A) NV (B)].
The separation is trivial if A is a subgraph of B or vis versa, B a subgraph of A. Note
that separations are usually defined to be unordered pairs. However, since we will only
consider separations in the context of tangles where the separations are necessarily
ordered, it will be convenient for us to always assume that separations are ordered.

Tangles play an important part of the theory of minors and allow one to disregard
“small” pieces of the graph which are separated off by “small” cutsets. If G is a graph
and © a positive integer, a tangle in G of order © is a set T of separations of G, each
of order < ©, such that

i. for every separation (A, B) of G of order < O, one of (4, B) or (B, A) is in
T7
ii. if (Al,Bl), (AQ,BQ), (A3,B3) € T then Ay U Ay U As 75 G, and
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iii. if (A, B) € T, then V(A) # V(Q).

See [13] for a more in-depth introduction to tangles.

A graph G contains a graph H as a minor if H can be obtained from a subgraph
of G by repeatedly contracting edges. If H is a simple graph, then a model of an
H-minor in G is a set of subsets of V(G) {X, C V(G) : v € V(H)} such that

i. for all u,v € V(G), u #v, X, N X, =0,
ii. G[X,] is connected for all v € V(H), and
iii. for all wv € E(H), there exists an edge of G with one end in X,, and one end
in X,.

The sets X, are called the branch sets of the model. Clique minors give rise in a
natural way to large tangles in a graph. Let G be a graph, let ¢t and k be positive
integers such that t > %k, and let {X; : 1 <4 <t} be the branch sets of a model of
K, in G. For every separation (A, B) of order less than k, exactly one of V(A)\ V(B)
or V(B) \ V(A) contains a branch set X; for some i. Let T be the set of separations
(A, B) of order less than k such that V(B) \ V(A) contains a branch set X; for some
i. Then T forms a tangle of order k. We refer to the tangle 7 as the tangle induced
by the model of K; of order k. Note that the requirement ¢ > %k (and not simply
t > k) is necessary to ensure that property ii in the definition of a tangle holds.

We will need the following theorem of Robertson and Seymour (see [14, Proposi-
tion 7.2]). Given a tangle 7 in a graph G of order ©, a set X C V(G) is free with
respect to T if there does not exist (A, B) € T of order strictly less than |X| such
that X C V(A).

THEOREM 3.2 (see [14]). Let T be a tangle in a graph G, and let W C V(G)
be free relative to T with [W| < w. Let h > 1 be an integer, and let T have order
> (w+h)" +h. Then there exists W' C V(G) with W C W' and [W'| < (w+h)h+?
such that for every (C,D) € T of order < |W|+ h with W C V(C), there exists
(A",B") € T with W CV(ANB),[V(ANB)\W| <h, CCA, and E(B") C
E(D).

We will use a slightly reformulated statement which follows immediately from
Theorem 3.2. Given a tangle 7 in a graph G and a set Z C V(G) such that |Z] is
less than the order of T, the tangle T — Z is defined as the set of separations (A’, B')
of G — Z such that there exists a separation (A4, B) € T such that Z C V(AN B),
A—7Z =A",and B— Z = B’ hold. Robertson and Seymour proved that T — Z is
indeed a tangle [13].

THEOREM 3.3. Let G be a graph and T a tangle in G of order t. Let k and w
be positive integers with t > (k +w)k*1 + k. Let {X; CV(G) :j € J} be a family of
subsets of V(G) indexed by some set J with |X;| =k for all j € J. Then there exists
a set J' C J satisfying the following:

1. forallj,j' € J, X;NX;i =0, and

2. X =Ujep Xj is free.
Moreover, if | X| < w, then there exists a set Z with X C Z and |Z| < (w + k)*+!
satisfying the following:

3. forallj € J, either X;NZ # 0 or X, is not free in T — Z.

Proof. Pick J' C J such that J' satisfies 1 and 2. Moreover, pick J' to maximize
| X[ for X = U;cp X;. If [X| <w, we apply Theorem 3.2 to W = X with h = k and
the value w. Let W’ be the set given by Theorem 3.2. Let j € J and consider X.
Assume X; N W’ = (). By the choice of J’ to maximize | X|, X; U X is not free in 7.
Thus, there exists a separation (C, D) € T with X; UX C C and of order < |X|+ k.
The separation (A’, B") guaranteed by Theorem 3.2 ensures that the set X is not
free in 7 — W', as desired. O
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Note that the set J’ in Theorem 3.3 may be empty, but in this case it must hold
that every X; is not free in 7.

The proof of Theorem 3.1 follows easily by invoking Theorem 3.3 on the line graph
of G.

Proof of Theorem 3.1. First consider the following observation. If ey, eq, ..., e
are distinct edges sharing a common endpoint v, then they form a Kj subgraph, call
it K, in the line graph of G. If there exist k vertex disjoint paths P, ..., Py from K
to 6(X) in the line graph of G, then in the original graph G, those paths will contain
an X-spider of order k with body equal to v. There is a subtlety here, in that the
X-spider may not contain the edges eq,..., e, since some P; may contain two edges
incident to the vertex v.

To find the pairwise disjoint spiders or the bounded hitting set, first consolidate
the vertex set X to a single vertex x. In the line graph, the set of edges d(z) forms
a large clique subgraph which induces a large order tangle. We let the subsets X
be all possible subsets of k edges with a common endpoint in V(G) \ X and apply
Theorem 3.3 to these sets X in the line graph. Either we find ¢ of them whose union
is free in the line graph, corresponding to t pairwise edge-disjoint spiders in G, or
alternatively, we get the bounded size hitting set as desired. O

4. Excluding a spider. In this section, we give an exact characterization of
when a given graph has an X-spider for a fixed subset X of vertices. However, in
the applications to come, we will need a stronger version of this theorem and so we
generalize the statement in terms of tangles.

In order to use the results of the previous section, which are based on tangles
and vertex separations, we will need to pass back and forth between the graph G
where we are looking for a spider and the line graph of G. This leads us to make the
following definition. Let G be a graph and U C V(G). We denote by N(U) the set of
vertices of V(G) \ U with at least one neighbor in U. The set U defines an edge cut
in G, namely, §(U). This edge cut in G corresponds to a separation in the line graph.
We define the separation (A4, B) of the line graph as follows. Let L be the line graph
L(G). Let A= L[E(G[U])Uéc(U)]. Let B=LIE(G—-U)Uéc(U)] — E(L[dc(U))).
We refer to (A, B) as the canonical separation in L(G) for U. Note that the order of
the canonical separation is [0¢(U)|.

We will need two easy claims on properties of tangles. The first follows from
property ii in the definition of a tangle and the second follows from the first, again
along with property ii in the definition of a tangle.

OBSERVATION 4.1. Let G be a graph and T a tangle in G. Let (A,B) € T
and let S = V(A) N V(B). Let (A, B) be the separation with A = AU G[S] and
B =B — E(G|S]). Then (A,B) € T. Let (A',B’) be a separation with V(AN B)| >
V(A" B")| such that V(A") C V(A). Then (A',B") € T.

Define a k-star in a graph G to be a set F' of k edges for which there exists a
vertex u such that every edge in F' has u as an endpoint. The vertex wu is called the
center of the star. We now characterize when a graph has a k-star which is free with
respect to the given tangle in the line graph.

LEMMA 4.2. Let G be a graph, and let L(G) be the line graph of G. Let t, k be
positive integers with k < t. Let T be a tangle in L(G) of order t. Let U C V(G).
There does not exist a k-star F' with center w € U which is free in T if and only if
there exists a positive integer | and subsets Uy, ..., U; C V(G) such that

L UNU;=0for1<i<j<landU C | U,
2. [6q(Us)| <k forall1 <i <1, and



510 DANIEL MARX AND PAUL WOLLAN

3. if (A;, B;) is the canonical separation in L(G) for U;, then (A;, B;) € T for
all 1 <i<lI.

Proof. To see necessity, assume we have such sets Uy, ..., U satisfying 1-3. For
any k-star F' with center u € U, there exists an index ¢ such that v € U;. But then
the canonical separation (A;, B;) for U; satisfies F' C V(4;) and is of order at most
k — 1. Thus, F is not free.

We now show sufficiency. Assume the statement is false, and pick a counterexam-
ple G, T, U. Let L(G) be the line graph of G. Assume there does not exist a k-star
F which is free with respect to 7 in L(G). Let {F; : i € I} be the set of all possible
distinct k-stars in G with center vertex in U indexed by a set I. Let u; be the center
vertex of F; for i € I.

In general, separations in the line graph L(G) do not immediately correspond to
edge cuts in G: one must take into account trivial separations and separations which
are not minimal.

CLAM 4.3. Let F be a k-star in G with center w € U. Let (A,B) € T be a
separation of order strictly less than k in L(G) such that F C E(A) and E(ANB) C
E(A). Assume further that (A, B) is selected from all such sets to have minimum
order. Then there exists a set W C V(G) with v € W such that (A, B) is the
canonical separation for W.

Proof. Observe that V(A)\ V(B) is not empty, as [V (A4)| > k, and V(B)\V(A) #
() by the properties of a tangle. Thus, L(G)—V (AN B) is disconnected, which implies
that G —V(ANB) is also disconnected. Each component of G —V (AN B) intersects at
most one of V(A)\V(B) and V(B)\V(A). Let H be the components of G—V(ANB)
containing edges of V(A4) \ V(B); thus V(A) \ V(B) = E(H). Let W = V(H). Note
that the center w of F' is contained in W. We claim that (A, B) is the canonical
separation of W. To see this, it suffices to show that every edge of V(AN B) has one
end in W and one end in V(G) \ W. This follows from our choice of (4, B) to be a
separation of minimal order in 7 with F' C V(A), proving the claim. O

We fix a set {W; CV(G) :j € J} of subsets of V(G) such that if (A4;, B;) is the
canonical separation for W; for j € J, then

a. (Aj,B;) €T forall jeJ,
b. for all 7 € I, there exists j € J such that u; € W;, and
c. subject to a and b, 3. ; [W;] is minimized.

Note that such a set {W; C V(G) : j € J} exists by Claim 4.3 and the fact that
for every k-star I’ with center in U, we can find a separation (A, B) € 7 of L(G) with
F C V(A) of order strictly less than k.

We claim that the sets {W; : i € J} are pairwise disjoint. Assume that there
exist j,j/ S J, ] 7& j/, such that Wj N Wj/ 7& @ If Wj - Wj/, then E(AJ) - E(Aj/),
and therefore {W; : i € J — j} satisfy a and b, contrary to our choice of {W; :i € J}.
Thus, we may assume that both W; \ W;, and W), \ W; are nonempty. It is a basic
property of edge cuts in graphs that

(4.1) (W)l + [6(W;)| > [6(W; \ Wy)| + [6(W; \ Wi

Thus, without loss of generality, we may assume that [6(W; \ Wj )| < k. Then if
(A’, B') is the canonical separation of W; \ Wj:, by Observation 4.1, we have that
(A",B") € T. Thus, {W; :i € J,i# j}U{W; \ Wj } satisfies a and b, contrary to our
choice to minimize ), ; [W;|.

The sets {W; : i € J} are pairwise disjoint. It is possible that they do not satisfy
Uics Wi D U; however, in this case, it must be true that for every v € U\ J,;c; Wi,
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we have that |§(v)| < k by our choice {W; : i € J} to contain the center of every
k-star with center in U. Thus, {W; :i € J}U{{v}:v € U\ {W,; : i € J}} satisfies
the statement of the lemma. This completes the proof. a

From Lemma 4.2, it is easy to characterize when a given graph has an X-spider
of order k.

LEMMA 4.4. Let G be a graph, X CV(G), and k > 1 a positive integer. Assume
|6(X)| > 3k. Then G contains an X -spider of order k if and only if there does not
exist a partition U1, ..., Up of V(G)\ X such that for all 1 <i <m, |§(U;)| < k.

Proof. Necessity is immediate. In order to see sufficiency, assume G does not
contain an X-spider of order k. Let G’ be obtained from G by consolidating the
vertex set X into a single vertex x. Clearly, there exists an X-spider in G of order k
if and only if there exists an x-spider of order k in G’. The set of edges dg/(x) forms
a clique subgraph H of L(G’) of order at least 2k. Let T be the tangle of order k
induced by this model of a clique minor in G'.

We apply Lemma 4.2 to G’ with the set U = V(G’)—x and the tangle 7. Assume,
to reach a contradiction, that there exists a k-star F' which is free with respect to
T and has center v € U. In L(G") there does not exist a separation of order < k
separating F' from V' (H). Thus, there exist k pairwise vertex disjoint paths from F to
V(H) = d¢(x) in L(G’), and consequently, there would exist an {z}-spider of order
k in G’, a contradiction.

Thus, by Lemma 4.2, there exist sets Uy, ...,U; in V(G') satisfying 1-3. Observe
that no U; contains an edge incident to z by the definition of the tangle 7, and
consequently, no U; contains the vertex . We conclude that Uy, ..., U; is a partition
of V(G')—z = V(G)\ X. The lemma now follows from the observation that dg/ (U;) =
dc(U;) forall 1 < ¢ <. O

Note that the proof of Lemma 4.2 can be replicated to show Lemma 4.4 eliminat-
ing the assumption that |6(X)| > 2k.

5. Bounded degree. In this section, we show that if a k-edge connected graph
contains a vertex with sufficiently large neighborhood, then we can immerse any graph
of maximum degree k. One consequence of this is to characterize when the converse
of Lemma 2.4 holds. Dvorak and Klimosova [7] have recently found a proof of this
statement with better bounds and which lends itself to finding strong immersions as
opposed to weak immersions. We include our proof here, as it illustrates some of the
ideas which we will use in the proof of Theorem 1.2.

We first define the graph S;,, to be the graph with m + 1 vertices x1,..., 2,y
and [ parallel edges from x; to y for all 1 < i < m. See Figure 2. The graphs S,
have the useful property that they contain any fixed graph H as a strong immersion
for appropriate chosen values [ and m. Specifically, let H be a graph of maximum

T3

T T2

Fig. 2. The graph S33.
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degree at most £ on n vertices for positive integers £ and n. Then the graph Sk,
contains H as a strong immersion. To see this, consider the following. Given the
graph H, subdivide each edge of H, and identify all the new vertices of degree two to
a single vertex. The resulting graph is a subgraph of Sy ,, for n = |[V(G)| and k equal
to the maximum degree of H. Reversing this process shows how to arrive at H by
identifying pairwise edge disjoint paths linking the branch vertices.

LEMMA 5.1. Letk > 1 be a positive integer, let G be a k-edge connected graph, and
let H be a graph of max degree k on n vertices. Let f be the function in Theorem 3.1.
If G has no H-immersion, then for all v € V(G)

(5.1) IN(v)| < (2k)f <k,k2 (Z: 1)) tn.

Proof. Assume G does not admit an immersion of H. Thus, G has no immersion
of K,, as well. By the structure theorem (Theorem 2.2), there exists a tree-cut de-
composition (T, X) of G having adhesion less than n? such that for every t € V(T),
the torso H; of G at the vertex ¢ has (n,n?)-bounded degree. Assume, to reach a
contradiction, that G has a vertex z which satisfies |N(2)| > (2k)f(k, k> (Zj)) +n,
and fix ¢ to be the vertex of T such that z € X;. Let H; be the torso of G at t, and
let Z be the set of vertices of H; of degree at least n?. Note z € Z.

We apply Theorem 3.1 to either find many disjoint Z-spiders in G of order k or a
bounded size-hitting set. Assume, as a case, that there exist m pairwise edge-disjoint
Z-spiders S1,...,S,, for m = k? (Zj) = %k(:)(kn) Note that these spiders may
share body vertices, but we argue that there is a large subset of them with pairwise
distinct body vertices. Every vertex v € V(G)\ Z either has deg(v) < n? or v ¢ X;.
Consider a vertex v ¢ X;. There exists a subset U C V(G) \ Z with v € U such that
|66(U)| < n? (as the adhesion of (T, X) is less than n?) and, consequently, there are
at most n?/k distinct indices i such that S; has the vertex v as a center. If instead
we consider v € X; \ Z, degg(v) < n?, and again there are at most n?/k distinct
indices ¢ such that S; has v as a body by the bound on the degree of v. We conclude
that there exists a subset  C {1,...,m} of size at least k(})(kn) that corresponds
to spiders with pairwise distinct bodies. That is, if v; is the body of S; for ¢ € I, then
foralli,j € I, i # j, vi # v;.

We may assume that each Z-spider of order k in our collection contains at most
k vertices of Z and each path in a spider contains exactly one vertex of Z. There
are at most k(Z) different subsets of Z of size at most k. Thus, there exists a subset
Z' C Z of size at most k and a subset I’ C I with |I’| > kn such that for every i € I’,
7' =V (S;)NZ. Pick n distinct indices in I’ and let x4, ..., x, be the corresponding
body vertices. Let 2z’ be an arbitrary vertex of Z’. We construct an immersion of
Sk, by finding k paths from each xz; to 2’ such that these kn paths are pairwise edge
disjoint. We start with the k edge-disjoint paths of the spider at x;. If one of these
paths terminates at a vertex 2z’ € Z’ different from z’, then we extend the path by
picking a spider S;, i € I’, not yet used, using one of the paths of S; to go from z”
to the body of S5;, and then using one of the paths of S; going from the body of S;
to z’. (By definition of the set I, spider S; does have paths terminating in 2’ and
in z”.) Taking into account that the spider at x; has a path going directly to z’, we
have to repeat this rerouting argument at most (k— 1)n times. Thus |I'| > kn implies
that we can pick a different spider S; each time. We conclude that G' contains Sy, ,, as
an immersion, and consequently contains H as an immersion, a contradiction. This
concludes the case when there are many pairwise edge-disjoint spiders.
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Thus, we may assume from Theorem 3.1 that there exists a set F' C FE(G) of size
at most f(k, k? (Zj)) such that G — F' does not contain a Z-spider of order k. By
Lemma 4.4, there exists a partition Y1, ...,Y, of V(G—F)—Z = V(G) — Z such that
|0c—r(Y:)| < k for some positive integer p.

In the graph G — F, the vertex z has

[Ne-p()] = e o) = 171 > 2= 1f (k#2(3 7))+

Thus, z has at least (2k — 1)f(k,k?(}_})) distinct neighbors in V(G) \ Z in the
graph G — F. As z has at most k£ — 1 neighbors in each set Y;, we conclude that
p > 2f(k, k2 (Z:})) > 2|F|. However, every set Y; must contain an endpoint of some
edge in F by the edge connectivity of G. This final contradiction completes the
proof. |

Recall that Lemma 2.4 shows that any graph with both bounded tree width and
bounded degree also has bounded tree-cut width. As we observed in section 2, the
converse is not true. However, if we eliminate parallel edges and assume a minimal
amount of edge connectivity, the converse does hold. The proof uses the grid theorem
of Robertson and Seymour. As we will not need these concepts further in the article,
we direct the reader to [5] for additional details.

THEOREM 5.2. Let G be a 3-edge connected simple graph. For all k > 1, there
exists a value D = D(k) such that every graph with tree-cut width at most k has
mazximum degree at most D and tree width at most D.

Proof. Let G be a graph of tree-cut width at most & for some fixed k£ > 1. Thus,
G does not admit an immersion of a large wall [15]. As a consequence, the tree width
of G must also be bounded, as sufficiently large tree width will ensure the existence
of a large wall subdivision which forms a large wall immersion.

Similarly, by Lemma 5.1, we we know that |N(v)| is bounded for all v € V(G).
Given that the graph is simple, it follows that the maximum degree of G is bounded
as well. d

6. Proof of Theorem 1.2. In order to prove Theorem 1.2, we will make use of
several auxiliary results. The first has been shown by Chudnovsky et al. [2].

THEOREM 6.1 (see [2]). Let G be a 4-edge connected graph. Then for all t there
exists a W such that either G has tree width at most W or the line graph of G contains
a Ki-minor.

The second result we will use is due to Robertson and Seymour [12].

THEOREM 6.2 (see [12]). Let T = {s1,...,8k,t1,...,tx} be a set of 2k distinct
vertices in a graph G. Let X1,..., X3 form a model of a K3, minor. Assume there
does not exist a separation (A, B) of order < 2k and an index i such that T C A and
X; € B\ A. Then there exist k pairwise vertex disjoint paths Py, ..., Py such that the
endpoints of P; are s; and t;.

The proof of Theorem 1.2 uses the fact that Lemma 5.1 essentially bounds the
degree of a potential counterexample. However, Lemma 5.1 only bounds the size
of the neighborhood of each vertex; to bound the degree, we need to eliminate the
possibility of large numbers of parallel edges between pairs of vertices. This is a
somewhat annoying technicality. Thus, we effectively split the proof of Theorem 1.2
into two parts. The first, stated below as Theorem 6.3 restricts us to the case when
there are a bounded number of parallel edges between any pair of vertices. Then in
order to prove Theorem 1.2, we only need to bound the number of such parallel edges.
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THEOREM 6.3. There exists a function g’ satisfying the following. Let k > 4,n >
1,D > 1 be positive integers. Let H be a graph with maximum degree k on n vertices.
Let G be a k-edge connected graph such that deg(v) < D for all v € V(G). Then
either G admits an immersion of H, or G has tree-cut width at most g'(k,n, D).

Proof. Let G be k-edge connected but not admit an immersion of H. Let |V (H)| =
n. Let L(G) be the line graph of G. Fix

(= g(4k +1)(2Dn)* 1,

By Theorem 6.1, there exists a value W such that either G has tree width at most W
or the line graph of G contains K, as a minor. We set ¢'(k,n, D) = 2W + 2)D. If
the tree cut with of G is greater than ¢’(k,n, D), then Lemma 2.4 implies that G has
tree width greater than W, and consequently we may assume in the following that
L(G) contains K, as a minor. Fix a model K of K, as a minor in L(G). The model
K defines a tangle T of order 4k(2Dn)k*! + & in L(G).

Let {X; : i € I} be the set of k-stars in G. We apply Theorem 3.3 to the tangle
T and the sets {X; : ¢ € I}. Let I’ C I be the subset satisfying 1 and 2 in the
statement. Let X = (J,c;, X;. Assume, as a case, that |X| > Dn. As every vertex
of G has degree at most D, and the stars X; for ¢ € I’ are pairwise disjoint, there
exists a subset I"” C I', |I"| > kn, such that for every 4,5 € I”, X, and X, have
distinct center vertices. Assign each X; for i € I to a distinct vertex of H. Let
X" = Uer» Xi, and let m = |E(H)|. There is a natural way to label elements of
X’ by s1,t1,892,t2,...,5m, L, such that if there exist pairwise vertex disjoint paths
Py, ..., P, (in L(G)) such that the ends of P; are s; and ¢;, then in the original graph
G admits an immersion of H. Given that X’ = (J,c;, is free with respect to the
tangle 7, by Theorem 6.2, there exist the desired disjoint paths Py, ..., P,,, and we
conclude that G contains H as an immersion.

Thus, we may assume |X| < Dn and, consequently, there exists a set Z C E(G)
with |Z| < (2Dn)F*! satisfying 3 in the statement of Theorem 3.3. There exists
a model K’ of a Ky,3ppys+1 minor in L(G — Z) obtained by simply discarding any
branch set of K containing an element of Z. Then K’ induces a tangle 7’ in L(G — Z)
of order 2k(2Dn)¥*1. Note that the set of k-stars of G — Z is exactly the set
{X; i€ Tand X;NZ = (}. Thus, by property 3. and the definitions of 7 and
T’, we see that there does not exist a k-star in G — Z which is free with respect to
T

We conclude by Lemma 4.2 that there exists a partition Uy, ...,Us of V(G — Z)
that satisfies 1-3 in the statement of Lemma 4.2 for some positive integer s. Note that
at most k — 1 distinct branch sets of K’ intersect the edge set Eq_z(U;) Uda—z(U;)
for all 1 < ¢ < s by property 3. Thus, given the order of the clique minor S’, we
conclude that s > 2(2Dn)k+1. However, for all 1 < i < s, there exists at least one
edge of Z in 0¢(U;) by the overall connectivity of the graph. By our bound on s, we
see |Z| > (2Dn)**1 a contradiction. This completes the proof of the theorem. O

We will need several quick observations in order to eliminate the degree bound in
the statement of Theorem 6.3.

OBSERVATION 6.4. Let G and H be graphs such that G does not admit a (strong)
immersion of H. Assume there exists u,v € V(G) with at least |E(H)| parallel edges
from u to v in G. Let G' be the graph obtained from G by consolidating the vertexr set
{u,v}. Then G’ does not admit a (strong) immersion of H.

To see that Observation 6.4 holds, let x be the vertex of G’ corresponding to
{u,v}. Then if G’ had an immersion of H, at most |E(H)| distinct composite paths
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would use an edge of dg/(x). Given the large number of edges in G linking v and v,
we can easily extend such an immersion in G’ to an immersion in G. Note that if the
immersion in G’ is strong, the immersion we construct in the original graph G will be
strong as well.

OBSERVATION 6.5. Let G and H be graphs. Let |V(H)| = n and |E(H)| = m.
Assume G is connected and has at least n vertices. Assume as well that, for every
pair of vertices u,v € V(G), if u and v are adjacent then there are at least m parallel
edges in G with ends w and v. Then G contains H as an immersion.

Observation 6.5 can be seen by induction on |E(H)|. If |E(H)| = 0, there is
nothing to prove. Otherwise, fix an injection from V(H) to V(G) and pick an edge
wv in H. Pick a path in G linking the vertices of G corresponding to u and v, delete
the edges from G, and apply induction.

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume G does not admit an immersion of H. Let
|V (H)| = n. Consider the auxiliary graph G’ defined on the vertex set V(G) such that
two vertices u and v of G’ are adjacent if there exist at least kn parallel edges in G
from u to v. Let the components of G’ have vertex sets Vi, Vs, . .., Vi for some positive
integer s. By Observation 6.5, each component of G’ has at most n — 1 vertices.

Let G7 be the graph obtained from G by consolidating the vertex sets V; for
1 < < s. By Observation 6.4, the graph G; does not admit an immersion of H. Let
the vertices of G1 be v1,...,vs, where each v; corresponds to the consolidated set V;
of vertices for 1 < ¢ < s. Moreover, between every pair of vertices vy, vo, there are
at most kn> parallel edges given that each of v; and vy correspond to at most n — 1
vertices of G.

By Lemma 5.1, it now follows that there exists a value D depending only on k
and n such that A(G1) < D. Thus, by Theorem 6.3, we conclude that the tree-cut
width of Gy is at most ¢’'(k,n, D). Let (T, X1) be a tree-cut decomposition of G of
minimum width. Let Xy = {X} : ¢t € V(G)}. Forall t € V(T), let X; = U,,,,cx1 Vi
and let X = {X; : t € V(T)}. We conclude that (T, X) is a tree-cut decomposition of
width at most g(k,n) = ng’(k,n, D). This completes the proof of the theorem. O

7. Highly connected graphs with no strong immersion of K;. DeVos
et al. [3] have shown that every simple graph with large minimum degree has a strong
immersion of a fixed clique.

THEOREM 7.1 (see [3]). Every simple graph with minimum degree at least 200t
contains a strong immersion of K.

Trivially, this implies that every simple graph which is 200¢-edge connected con-
tains a strong immersion of K;. However, if we remove the requirement that the graph
be simple, the statement no longer holds. In fact, the graphs P; , form examples of
graphs which can be arbitrarily highly edge connected and do not contain a strong
immersion of Kj.

In this section, we will see that long paths of parallel edges essentially form
the only highly edge connected graphs which do not strongly immerse large cliques.
Before proceeding with the theorem, we will need several easy results. First, we show
that even though Py, does not contain a strong immersion of even Ky, if there is a
single vertex that is adjacent to many vertices of Py, ,,, then a strong immersion of K},
appears.

LEMMA 7.2. Let xq, ..., x, be vertices in a graph G such that there are at least
k edges between x; and x;11 for every 1 <i <n—1. Lety be a vertex having at least
k? neighbors in {x1,...,2,}. Then G contains a strong immersion of K.
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Proof. A strong immersion of Sy, in G can be easily found, where y is the image
of the central vertex of Sj ; and the images of the other k vertices are on the path.
As S 1 contains K}, as a strong immersion, the claim follows. a

We will need a result on graphs which do not contain Ki, as a minor. There
has been considerable work on finding extremal functions on the number of edges or
number of vertices of degree at least 3 necessary to force such a minor. See [6, 10, 1].
The next lemma follows as an easy corollary to a result of Zickfeld [16, Theorem 4.7].
We include a self-contained proof for completeness. Recall that if G is a graph and
X CV(G), N(X) denotes the set of vertices in V(G) \ X with a neighbor in X.

LEMMA 7.3. Let G be a connected simple graph and let £ > 2 be an integer. Then
either G contains a K1 ¢ minor or there exists a set X C V(G) such that | X| < 4¢ and
the following hold. There are at most 20 components of G — X and every component
of G — X is a path P. Moreover, for every component P of G — X, N(X)NV(P) is
a subset of the endpoints of P.

Proof. Assume G does not contain a K; ¢ minor. Pick a spanning tree 7" of G
to maximize the number of leaves. The tree T is a subdivision of a tree 7" which has
no vertex of degree two. Note that 7' is a minor of G, and thus T has at most £ — 1
leaves. Since every vertex of T' which is not a leaf has degree at least three, we see
that |V (T)| < 2¢, and at least half of the edges of T' are incident to a leaf of T'.

Let Y be the set of vertices of degree at least three in 7', and let X = Y U
Nr(Y). We claim X has at most 4¢ vertices. For every edge e € F(T'), there exists
a corresponding path P, in T" whose ends have degree not equal to two (in T') such
that every internal vertex of P, has degree exactly two in 7. Each such path P,
can contain at most two vertices of Np(Y'), and if it contains two such vertices, then
it must be the case that both endpoints of P. are in Y. Thus, given the bounds on
|E(T)| and the fact that at least half the edges of T' are incident to leaves, we conclude
that |[N7(Y)| < 3¢. The bound on |X| now follows.

Assume, to reach a contradiction, that there exists an edge e such that P, — X
has an internal vertex v of degree at least three in G. Let f be an edge of E(G)\ E(T)
incident to v. If f has both endpoints contained in P., it is easy to see that there
exists an edge e’ of P, such that (I'U{f})— e’ has strictly more leaves. Alternatively,
f has an endpoint not contained in P.. Then there exists a subpath P’ of P, with
one end equal to v and the other end contained in Y such that for every edge e’ of
P, (TU{f})— € is a tree. Moreover, since v is an internal vertex of P. — X, we see
that P’ must have length at least three. It follows that the edge e’ can be chosen so
that (T'U{f}) — ¢’ has strictly more leaves than T, a contradiction. We conclude that
there are at most 2¢ components of G — X, and each component is a path for which
every internal vertex of the path has degree in G equal to two, as desired. O

LEMMA 7.4. Let G and H be graphs. Let J be a subgraph of G which is 2|E(H)|-
edge connected. Let G' be the graph obtained from G by contracting V(J) to a single
vertex. If G’ contains a strong immersion of H, then G contains a strong immersion
of H.

Proof. Let vy be the vertex of V(G’') \ V(G) corresponding to the contracted
set V(J). Fix a strong immersion of H in G’ given by the map 7. Let G be the
graph obtained from G’ by deleting the edges incident to v; which are not used in the
immersion, i.e., we delete the set of edges X = d¢(v) \U e pmry E(m(f)). The graph
G obviously still admits H as a strong immersion. Moreover, by the edge-connectivity
of J, we observe that there exists a vertex of V(J) with edge-disjoint paths in G to
Sc(vy) in G as |6g(vs)| < 2|E(H)|. We conclude that G is contained as a strong
immersion in G, completing the proof of the lemma. a
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We now state the kind of decomposition we will encounter in the structure theorem
for strong immersions.
DEFINITION 7.5. Let G be a graph on n wertices. A linear order of G is simply

a labeling of the wvertices vi,vs,...,v,. Fix a linear order vi,vs,...,v, of G. For
2 <i<n-—1, let T; be the set of edges with one end in {vi,...,v;_1} and the other
end in {viy1,...,v,}. The hop width of the order vi,...,v, is maxo<i<n—1|T3|.

The hop width of G is the minimum hop width taken over all possible linear orders
of G.

Our definition of hop width is very similar to the definition of cut width, but note
that here edges incident to v; are not members of 7;. Thus, the path Py has hop
width 0 but cut width k. As we have already observed, such paths with many parallel
edges are a natural class of graphs which exclude strong immersions of bounded sized
cliques. This is the essential motivation for the definition of hop width. In fact, one
can see that if a highly edge connected graph has a linear order with bounded hop
width, then there should be many parallel edges between v; and v; 1 for every i, that
is, the graph is close to being a path with many parallel edges.

We now state the structure theorem for highly edge connected graphs excluding
a clique strong immersion. It shows that such graph can be built from a bounded
number of parts having bounded hop width; in a sense, this shows that paths with
parallel edges are the canonical obstacles for clique strong immersions in highly edge
connected graphs.

THEOREM 7.6. For allt > 1, and let G be a 400t°-edge connected graph with no
strong Ky immersion. Then there exists a set A C V(G) and Z C E(G) such that

1. |A] <42, |Z| <6t1°, and
2. (G —Z)— A has at most 2t* distinct components.
Moreover, for every component J of (G — Z)— A with n vertices, J has a linear order
V1, ..,V satisfying the following:
3. the only vertices of J with a neighbor in A (in G — Z) are v1 and v, and
4. the linear order vi, ..., v, has hop width at most 2t% in J.

Proof. The statement follows trivially for ¢ < 2. Fix ¢t > 3. We define an auxiliary
graph R as follows. Let V(R) = V(G), and two vertices x and y are adjacent in R if
and only if there exist at least 2t? parallel edges of G with ends = and y. We define
a clump to be a pair (J, X) such that J is an induced subgraph of G and X C V(J)
with X # () satisfying the following:

a. If [V(J)| # 1, then J is 2¢%-edge connected;

b. every component of R is either contained in V(J) or disjoint from V (.J);

c. if V(J)\ X # 0, then for every = € X, there exist at least 2¢? distinct edges

with one end equal to z and other end in V(J) \ X;

d. if [V(J)\ X| > 2, then J — X is 2t%-edge connected and | X| > 2;

e. if V(J)\ X =0, then |V(J)| = |X| = 1.
Moreover, if we let compgr(J) be the number of components of R contained in V' (.J),
then we have

£ if [V(J)| > 3, then | X| > comppr(J) + 1.

We first observe that for every component R’ of R, there exists a clump (J, X)
such that V(J) = V(R'). The cases differ slightly, depending on |V (R’)|, however, in
each case we will fix J = G[V(R')]. If |V(R')| = 1, then J along with X = V(R')
satisfies the definition. Similarly, if |[V(R')| = 2, then let X be an arbitrarily chosen
vertex of V(J) and (J, X) satisfies the definition of a clump. Finally, if R’ has at
least three vertices, we consider a spanning tree of R’ and let X be two leaves of the
spanning tree. Then (J, X) again satisfies the definition.
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Pick clumps (J;, X;) for 1 < i < k for some positive k such that V(.J;) NV (J;) =0
and V(G) = Ulf V(J;). Moreover, pick such clumps to minimize k. By the previous
paragraph, it is always possible to find such a collection of clumps.

We first observe that there does not exist an index 4 such that | X;| > ¢. Otherwise,
property ¢ implies that after contracting V(J) — X to a single vertex, the contracted
graph contains a strong immersion of S;; (defined in section 5) and then property
d and Lemma 7.4 imply that J also contains a strong immersion of Sy ;. Given that S ;
contains K; as a strong immersion, we conclude that G contains a strong immersion
of K; as well, a contradiction.

CLAIM 7.7. For distinct i and j, there are at most 2t* distinct edges with one
end in V(J;) and one end in V(J;).

Proof. Assume otherwise and that for 7, j, i # j, we have 2t* distinct edges with
one end in V(J;) and one end in V(J;). Given that | X;| and |X;| are both at most
t — 1, it follows that one of the following holds, up to swapping the indices ¢ and j:

i. there exists x; € X; and z; € X; with 2t2 parallel edges connecting them, or
ii. there exists z; € X; with at least 2¢? distinct edges to the set V(J;) \ X, or
iii. there exist at least 2¢? distinct edges, each with one end in V(J;) \ X; and
one end in V(J;) \ Xj.

It is easy to see that i cannot occur, as this would imply z; and z; are adjacent
in R and no component of R has vertices in distinct clumps. If iii occurs, then
J = G[V(J;) UV(J;)] would form the clump (J, X; U X;), contrary to our choice to

minimize the number of clumps covering V(G).

Thus, we may assume that ii holds. Note that V'(.J;)\ X, cannot be a single vertex,
lest there exist an edge of R with ends in distinct clumps. Thus, [V(J;) \ X;| > 2
and |V (J;)| > 4. Property f implies that |X;| > compr(J;) + 1. We conclude that
(J;i U Jj, (X; U X;) — ;) is a clump. Note that f holds because |(X; U X;) — z;| =
| Xi| +|X;] =1 > compr(J;) + compr(J;) +1 = compr(J; U J;) + 1. We conclude
that if ii. holds, we have a contradiction to our set of clumps to minimize k. This
completes the proof of the claim. a

CrLAamM 7.8. k=1 and we have exactly one clump.

Proof. Assume k > 2. Let G; be the graph obtained by contracting each of
the vertex sets J; to a single vertex for all 1 < ¢ < k. By property a and Lemma
7.4, we see that G; does not have a strong immersion of K;. Assume, to reach a
contradiction, that G; has more than one vertex. By Claim 7.7, there are at most
2t* parallel edges connecting any pair of vertices of G;. Let Gy be the simple graph
obtained from G by deleting parallel edges. In other words, G2 is the simple graph
with V(G2) = V(G;) and two vertices of Gy are adjacent if and only if they are
adjacent in G1. By the edge connectivity of G, we see that G has minimum degree
200t. But by Theorem 7.1, G2 has a K; strong immersion and, consequently, G does
as well, a contradiction. O

It follows that R has at most t components. Note as well that R does not con-
tain a K;; minor. Otherwise, there would exist a 2t*-edge connected subgraph J
of G and t distinct vertices of V(G) \ V(J) each with 2¢? edges to V(J). Thus, by
Lemma 7.4, we conclude that G would contain a strong immersion of S; ;, a contra-
diction.

By applying Lemma 7.3 to each component of R, we see that there exists a subset
A C V(R) = V(G) with |A| < 4¢? such that R — A has at most 2t> components,
each of which is a path. Moreover, for every component P of R — A, we have that
Nr(A)NV(P) is a subset of the ends of P.
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We fix the set A for the remainder of the proof, and we let k be a positive integer
with the components of R — A labeled Py, ..., P;. For each P;, we let n(i) = |V (P;)|
and let the vertices of P; be labeled vi,vi, ..., v;(i). Note k < 2t2.

CLAIM 7.9. For all 1 <i < j < k, there are at most 2t° edges of G with one end
in V(P;) and one end in V(F;).

Proof. Assume, to reach a contradiction, that there are indices 7 and j such that
there exist at least 2t% edges, each with one end in P; and one end in P;. Since no
pair of vertices z,y with v € V(F;) and y € V(FP;) are adjacent in R, we know that
there are at most 2t parallel edges from x to y in G. Thus, without loss of generality,
we may assume that there are at least t? distinct vertices of P; which have a neighbor
in V(P;). By contracting V(P;) to a single vertex and applying Lemmas 7.4 and 7.2,
we conclude that G contains a strong immersion of K3, a contradiction. a

We let Z; be the set of edges e € E(G) such that e has ends in distinct paths P;
and P;. By Claim 7.9 and the bound on k, we have that |Z;| < 4¢1°.

CramM 7.10. Let 1 < i < k. Let x,y be the endpoints of P;. Then there are at
most 8t5 edges of G with one end in V(P)\ {x,y} and one in A.

Proof. Assume, to reach a contradiction, that there exists an index ¢ such that if
we let = and y be the endpoints of P;, there are at least 8% edges of G with one end
in A and the other end in V(P;)\ {z,y}. By the way A was defined using Lemma 7.3,
there does not exist an edge of R with one end in A and one end in V(P;) \ {z,y}.
Thus, for every pair of vertices u € A and v € V(P;) \ {z,y}, there are at most 2¢?
parallel edges of G from u to v. By assumption, there exist at least 4t* > t?| A| distinct
internal vertices of P; which have a neighbor in A. Thus, there exists a vertex v € A
and t? distinct internal vertices of P; which are each adjacent to v. By Lemma 7.2,
we conclude that G contains a strong immersion of K3, a contradiction. a

Let Zo C E(G) be given by

Zs ={e € E(G) : Ji such that e NV (P;) \ {v{,vfl(i)} #Pand en A #0Q}.

In other words, Z5 is the set of edges with one end in A and one end contained as an
internal vertex of some P;. By the previous claim, |Z| < 8tk < 16t5.

We let Z = Z1UZs, and observe that |Z| < 6t10 by the assumption that ¢ > 3. By
construction, the components of (G — Z) — A are exactly the subgraphs of G induced
by V(F;) for 1 <i < k. Thus, we see that A and Z satisfy 1 and 2 in the statement
of the theorem. Moreover, by the fact that Z contains every edge with one end in A
and one end in an internal vertex of P;, we see that A and Z along with the linear
order v, ... ,v;(i) of V(P;) satisfy 3. Thus, to complete the proof of the theorem, it
suffices to show the following claim.

CLAIM 7.11. For every 1 <i < k, the linear order vi,... ,Ufl(i) of GIV(P;)] has
hop width at most 2t5.

Proof. Assume the claim is false, and that there exists an index a such that
there are at least 2t° edges of G with one end in {vi,...,v! _;} and one end in
{vi ... ,v;(i)}. Given that vf,... ,v;(i) form an induced path in R, for all pairs
of vertices u,v with v € {vi,...,v{_;} and v € {vle,...,ij(i)}, there are at
most 2t? parallel edges of G with ends u and v. Thus, without loss of generality,
there exist at least t? distinct vertices of {vf,...,v?_;} that are adjacent to a ver-
tex of {vfy,..., v}, }. By contracting {viyy,..., v}, } (Lemma 7.4) and invoking
Lemma 7.2, we conclude that G contains a strong immersion of K;, a contradic-
tion. a
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This final claim shows that conclusion 4 in the statement of the theorem holds,

completing the proof. d

We conclude with the observation that if a graph G has subsets A and Z satisfying

1-4 in the statement of Theorem 7.6 for some value ¢, then the graph G does not have
a strong immersion of Kyg;10, indicating that Theorem 7.6 is a good characterization
of graphs excluding a strong immersion of a clique.
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