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Abstract. It is known to be NP-hard to decide whether a graph can be
made chordal by the deletion of k vertices. Here we present a uniformly
polynomial-time algorithm for the problem: the running time is f(k) ·nα

for some constant α not depending on k and some f depending only on
k. For large values of n, such an algorithm is much better than trying
all the O(nk) possibilities. Therefore, the chordal deletion problem pa-
rameterized by the number k of vertices to be deleted is fixed-parameter
tractable. This answers an open question of Cai [2].

1 Introduction

A graph is chordal if it does not contain an induced cycle of length greater than
3. It can be decided in linear time whether a graph is chordal [9]. However, it is
NP-complete to decide whether a graph can be made chordal by the deletion of
k vertices [6], by the deletion of k edges [7], or by the addition of k edges [10] (if
k is part of the input).

In this paper we investigate these problems from the parameterized com-
plexity point of view. Parameterized complexity deals with problems where the
input has a distinguished part k (usually an integer) called the parameter. A pa-
rameterized problem is called fixed-parameter tractable if there is an algorithm
with running time f(k) · nα, where f(k) is an arbitrary function and α is a
positive constant independent of k. It turns out that several NP-hard problems,
such as Minimum Vertex Cover and Longest Path, are fixed-parameter
tractable. The function f(k) is usually exponential, thus if the parameter k can
be arbitrary, then the algorithms are not polynomial (as expected). However,
for small fixed values of k, fixed-parameter tractable problems have low-degree
polynomial algorithms, which are sometimes even practically feasible. For more
background, the reader is referred to the monograph of Downey and Fellows [3].

If k is a fixed constant, then the three chordal deletion/completion problems
can be solved in polynomial time by complete enumeration. For example, in the
vertex deletion problem we can try all the O(nk) possible sets of size k and check
whether their removal makes the graph chordal. Moreover, in [1, 5] it is shown
that it can be decided in O(4k/(k + 1)3/2 · (n + m)) or O(k2nm + k624k) time
whether a graph with n vertices and m edges can be made chordal by adding



k edges. Therefore, chordal edge completion (which is also called the minimum
fill-in problem) is fixed-parameter tractable. The main result of the paper is that
chordal vertex deletion is also fixed-parameter tractable. This answers an open
question of Cai [2].

Theorem 1. Chordal vertex deletion is fixed-parameter tractable with parameter
k, the number of vertices to be deleted.

The iterative compression method introduced in [8] allows us to concentrate on
the following easier problem: given a set X of k + 1 vertices such that G \ X is
chordal, find k vertices whose deletion makes G chordal. To solve this “solution
compression” problem, we first determine the size of the maximum clique in the
chordal graph G\X . If the clique size G\X is small, then G\X (and hence the
slightly larger G) has small treewidth. Using standard techniques, the problem
can be solved in linear time for graphs with bounded treewidth. On the other
hand, we show that if there is a large clique in G \ X , then the clique contains
“irrelevant” vertices that can be removed from the graph without changing the
solvability of the problem.

The paper is organized as follows. Section 2 reviews some basic facts on
chordal graphs. In Section 3 we show how the iterative compression method of
[8] can be applied to our problem. Section 4 discusses how we can reduce the
size of the cliques to make our graph a bounded treewidth graph.

2 Chordal graphs

A graph is chordal if it does not contain a cycle of length greater than 3 as an
induced subgraph. This is equivalent to saying that every cycle of length greater
than 3 contains at least one chord, i.e., an edge connecting two vertices not
adjacent in the cycle. A chordless cycle of length greater than 3 will be called
a hole. Chordal graphs can be also characterized as the intersection graphs of
subtrees of a tree (see e.g., [4]):

Theorem 2. The following two statements are equivalent:

1. G(V, E) is chordal.
2. There exists a tree T (U, F ) and a subtree Tv ⊆ T for each v ∈ V such that

u, v ∈ V are neighbors in G(V, E) if and only if Tu ∩Tv 6= ∅ (i.e., Tu and Tv

have a common node).

For clarity, we will use the word “vertex” when we refer to the graph G(V, E),
and “node” when referring to T (U, F ). The tree T together with the subtrees Tv

is called the tree decomposition of G. A tree decomposition of G can be found
in polynomial time (see [4, 9]). We say that a vertex v contains node x if Tv

contains node x. Similarly, node x can be reached from vertex v is shorthand
for saying that there is a vertex v′ that contains x and there is a path between
v and v′. For an arbitrary node x of T , the vertices whose tree contain x induce
a clique. Moreover, for every clique K, there is a node of T such that every
v ∈ K contains this node (cf. [4]). The following easy observation will be used
repeatedly:
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Proposition 3. Let x, y, z be vertices in G(V, E) such that xy, xz ∈ E but
yz 6∈ E. If there is a walk T in G \ x from y to z such that in T only y and z
are neighbors of x, then T ∪ x contains a hole of length at least 4. ut

The problem studied in this paper is formally defined as follows:

Chordal Vertex Deletion

Input: A graph G(V, E) and an integer k

Parameter: k

Task: Is there a set X ⊆ V of size at most k such that G \ X

is chordal?

If the deletion of X ⊆ V makes the graph chordal, then we say that X is a
hole cover. It turns out that the deletion problem is very different from the edge
completion problem. The algorithms in [1, 5] for chordal edge completion use the
standard method of bounded search trees (with some non-trivial optimizations).
The techniques rely on the fact that the graph cannot contain a large hole,
otherwise the graph could not be made chordal by adding k edges. In the deletion
problem we cannot make this assumption: it is possible that the graph can be
made chordal by deleting few vertices, even if there are large holes.

3 Iterative compression

Reed, Smith and Vetta [8] have shown that the Bipartite Vertex Deletion

problem (make the graph bipartite by deleting k vertices) is fixed-parameter
tractable. They introduced the method of iterative compression that can be used
in the case of the chordal deletion problem as well. The idea is that it is sufficient
to show that the following easier problem is fixed-parameter tractable:

Hole Cover Compression

Input: A graph G, an integer k, and a size k + 1 hole cover W .

Parameter: k

Task: Is there a size k hole cover X of G?

This problem is easier: the extra input W gives us useful information on G.
In particular, we know that G \W is chordal, our algorithm builds on this fact.

Assume that we have an algorithm with running time f(k)nα for Hole

Cover Compression, then Chordal Vertex Deletion can be solved as
follows. Let v1, v2, . . . , vn be an ordering of the vertices, and let Gi be the graph
induced by v1, . . . , vi. We try to find a size k hole cover for each Gi. Graph Gk

trivially has a size k hole cover. Now assume that Gi has a size k hole cover W .
Clearly, W ∪ vi+1 is a size k + 1 hole cover of Gi+1. Therefore, the compression
algorithm can be used to find a size k hole cover for Gi+1. If there is such a
hole cover, then we can proceed to Gi+2. Otherwise the answer is no, we can
conclude that supergraph G of Gi+1 cannot have a size k hole cover either. The
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algorithm calls the compression method at most n times, thus the total running
time is f(k)nα+1, which shows that the problem is fixed-parameter tractable.

The compression algorithm will be described later in this section. Our algo-
rithm is somewhat weaker than the one defined in the above scheme. First, it
looks for only a W -avoiding hole cover, i.e., a hole cover that is disjoint from W .
Furthermore, the compression algorithm either finds a W -avoiding hole cover
W ′, or returns a set N , whose size can be bounded by a function of k, such that
every W -avoiding size k hole cover contains at least one vertex of N . (Such a set
N will be called a necessary set.) If the compression algorithm finds that N = ∅
is necessary, then this means that there is no W -avoiding hole cover.

If the compression algorithm returns a necessary set N , then we can conclude
that every size k hole cover contains at least one vertex of N ∪W . Therefore, we
branch into |N ∪ W | directions: for each vertex v of N ∪ W , we check whether
there is a size k − 1 hole cover of G \ v. Thus the problem can be reduced to at
most bk subproblems with smaller parameter values, where bk depends only on
k. The overall algorithm is the following:

Chordal Vertex Deletion(G, k)

1. Set i := k and let W be the vertices of Gk.
2. Invariant condition: W is a size k hole cover of Gi. If i = n, then return

“W is a size k hole cover of G.”
3. Set W := W ∪ vi+1, now W is a size k + 1 hole cover of Gi+1.
4. Call Hole Cover Compression(Gi+1, k, W ).

– If the answer is a size k hole cover W ′ of Gi+1, then let W := W ′,
i := i + 1, and go to Step 2.

– If the answer is a set N , then let T := N ∪ W .
5. For each vertex v ∈ T , call Chordal Vertex Deletion(G \ v, k − 1).

– If the answer is yes for some v ∈ T , and W is a size k − 1 hole cover
of G \ v, then answer “W ∪ v is a size k hole cover of G.”

– If the answer is no for every v ∈ T , then answer “No.”

Chordal Vertex Deletion calls the compression algorithm at most n
times, and may make at most bk recursive calls to Chordal Vertex Dele-

tion with parameter k − 1 (where bk is the maximum size of T ). Therefore,
if the compression algorithm runs in f(k)nα time (which will be shown in the
next section), and Chordal Vertex Deletion runs in g(k − 1)nα+1 time for
parameter k − 1, then for parameter k the algorithm runs in g(k)nα+1 time, for
some appropriate constant g(k). Thus by induction, we have a g(k)nα+1 time
algorithm for every k, proving Theorem 1.

Now let us turn our attention to the Hole Cover Compression algorithm
itself. Assume that a size k + 1 hole cover W of G is given. Let V0 = V \W and
denote by G0 the chordal graph G\W . If the size of the maximum clique in V0 is
c, then the treewidth of the chordal graph G0 is c− 1, and the treewidth of G is
at most c− 1 + k + 1. With standard techniques (applying Courcelle’s Theorem
or dynamic programming) we can show that Chordal Vertex Deletion is
linear-time solvable for graphs with bounded treewidth (details omitted).
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Lemma 4. For every k and w, Chordal Vertex Deletion can be solved in
linear time for graphs with treewidth at most w. ut

In Section 4, we present a method of reducing the clique size of G0 to a
constant depending only on k. A vertex v ∈ V is irrelevant if every W -avoiding
size k hole cover of G \ v is also a hole cover of G. If we identify an irrelevant
vertex v, then the problem can be reduced to finding a size k hole cover in
G \ v. We show that if there is a clique K in G0 whose size is greater than some
constant ck, then the problem can be reduced to a simpler form. More precisely,
for a large clique K the clique reduction algorithm does one of the following:

– Identifies an irrelevant vertex v ∈ K. In this case v can be deleted. If the
maximum clique size is still larger than ck, then the algorithm can be applied
again. Otherwise we can use the algorithm of Lemma 4.

– Identifies a set N of constant size such that every W -avoiding size k hole
cover contains at least one vertex of N . As mentioned above, it is possible
that the compression algorithm returns a necessary set.

In the following, it is assumed that in the graph G every hole of size 4 or
5 is completely contained in W . If there is a hole H of size at most 5 that has
vertices outside W , then every W -avoiding hole cover has to contain at least one
vertex of H \W , thus the compression algorithm can return H \W as a necessary
set of constant size. Testing whether such a hole H exists can be easily done in
polynomial time (e.g., by complete enumeration).

In summary, the compression algorithm makes the following steps:

Hole Cover Compression(G, k, W )

1. By complete enumeration, determine if there is a hole H of length at most
5 that is not completely contained in W .
– If there is such a hole H , then return “H \ W is a necessary set.”

2. If the clique size of G\W is at most ck, then use the algorithm of Lemma 4.
3. If G\W has a clique K of size more than ck, then call the clique reduction

algorithm for K.
– If the result is an irrelevant vertex v, then delete v from G, and go to

Step 2.
– If the result is a necessary set N , then return “N is a necessary set.”

The clique reduction method is described in the following section.

4 Clique reduction

Henceforth it is assumed that W = {w1, w2, . . . , wk+1} is a hole cover of G. As
in the previous section, let V0 = V \ W and denote by G0 the chordal graph
G \ W . In this section we show that if there is a large clique K in G0, then K
contains a irrelevant vertex.
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In the rest of the paper, we prove several lemmas that state certain proper-
ties of the instance. However, these properties do not always hold, but in this
case the compression algorithm can identify and return a necessary set. We use
the expression “We can make sure” to mean that there is a polynomial-time
algorithm that finds a necessary set if the statement does not hold.

4.1 Labeling

If a vertex v ∈ V0 is the neighbor of some vertex ` ∈ W , then we say that v has
label `. A vertex can have more than one label, the labels of a given vertex form
a subset of W . The following property will be used repeatedly:

Proposition 5. If P is a path connecting u and v, vertices u and v are not
neighbors, they have label `, and the internal vertices of P do not have label `,
then every W -avoiding hole cover has to contain at least one vertex of P .

Proof. If X is a W -avoiding hole cover disjoint from P , then `uPv` contains a
hole in G \ X (Prop. 3), a contradiction. ut

In Lemma 7 we give a bound on the number of independent labeled vertices.
To prove Lemma 7, we need the following technical result:

Lemma 6. Let B be a connected set of vertices in G0 without label t, and let
A be a set of vertices with label t in the neighborhood of B. We can make sure
that for every vertex z ∈ B, if z and its neighbors are deleted from G0, then at
most (k + 1)2 components of the remaining graph can contain vertices from A.

Proof. Consider the tree decomposition of G0, let Tv be the subtree of T that
corresponds to v. Assume that after deleting z and its neighbors, components
C1, . . . , C(k+1)2+1 contain vertices of A, let ai ∈ A be in Ci. The vertices in Ci

are not neighbors of z, hence their subtrees do not intersect Tz. Let pi be the
node closest to Tz that is contained in some vertex of Ci.

Let Z contain those neighbors of z that do not have label t. We show that
if a vertex v ∈ Z contains pi for at least k + 2 different values of i, then v is
a necessary vertex. Assume without loss of generality that v contains p1, . . . ,
pk+2. If X is a W -avoiding size k hole cover, then without loss of generality it
can be assumed that X does not contain p1, p2 or any of the vertices in C1 and
C2. Since p1 can be reached from a1 using only the vertices in C1, and v contains
p1, thus there is a path P1 that connects a1 and v. The internal vertices of P1

may have label t, let a′

1 be the t-labeled vertex of P1 closest to v, and let P ′

1 be
the subpath of P1 connecting a′

1 and v. We can define P ′

2 and a′

2 in a similar
way. Now a′

1 ∈ C1 and a′

2 ∈ C2 are not neighbors, they both have label t, and
the internal vertices of the path a′

1P
′

1vP ′

2a
′

2 do not have label t. Hole cover X
does not intersect this path, which is a contradiction by Prop. 5.

For each component Ci, there is at least one vertex of Z that contains node
pi. This follows from the fact that vertex ai is in the neighborhood of B, thus
there is a path between ai and z whose internal vertices do not have label t.
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For each component Ci, select a zi ∈ Z that contains pi. We have seen in the
previous paragraph that the same vertex of Z can be zi for at most k+1 different
values of i. Therefore, if we have more than (k + 1)2 components, then without
loss of generality it can be assumed that z1, . . . , zk+2 are distinct vertices. We
claim that z is a necessary vertex. Assume that X is a W -avoiding size k hole
cover that does not contain z. Without loss of generality, it can be assumed
that X does not contain z1, z2, or any of the vertices in C1 and C2. As in the
previous paragraph, there is a path P ′

1 that connects a t-labeled vertex a′

1 ∈ C1

and vertex z1 such that only a′

1 has label t in this path. The path P ′

2 is similarly
defined in C2. Now X contains none of the vertices in the path a′

1P
′

1z1zz2P
′

2a
′

2,
thus X is not a hole cover by Prop. 5. ut

Lemma 7. Let B be a connected subset of V0 such that no vertex in B has label
t. We can make sure that there can be at most k4 independent vertices with label
t in the neighborhood of B.

Proof. Let I = {v1, v2, . . . , vk4+1} be an independent set of vertices with label t
in the neighborhood of B. We show that there is no W -avoiding size k hole cover
in G. Assume that X is such a hole cover. It has to contain at least one vertex of
B, otherwise v′, v′′ ∈ I \X can be connected by a path P whose internal vertices
are in B, which is not possible by Prop. 5. For each vertex vi we can select an
xi ∈ X∩B such that vi and xi are connected by a path Pi whose internal vertices
are in B \ X . Since |X | = k, there has to be more than k3 vertices vi such that
the corresponding vertices xi are the same. Assume without loss of generality
that x1 = x2 = · · · = xk3+1 = x. We claim that if x and its neighbors are
deleted, then vertices v1, . . . , vk3+1 are separated. By Lemma 6, is not possible
(for k ≥ 3).

Assume that v1 and v2 are connected by a path P that does not go through
the neighborhood of x. Let y1 (resp., y2) be the neighbor of x on P1 (resp., P2).
If y1 and y2 are the same or neighbors,then the t-labeled vertices v1 and v2 are
connected by the walk v1P1y1y2P2v2 in G \X , which is not possible by Prop. 5.
If y1 and y2 are not neighbors, then y1P1v1Pv2P2y2 is a walk connecting y1 and
y2 such that its internal vertices are not neighbors of x. Therefore, by Prop. 3,
there is a hole in G0, contradicting the fact that W is a hole cover. ut

4.2 Dangerous vertices

Let us fix a clique K of G0. A vertex v ∈ V0 \ K is called a t-dangerous vertex
(for K) if v has label t and there is a path P from v to a vertex u ∈ K such
that only v has label t on the path. Vertex v is a t∗-dangerous vertex if v has
label t and there is a path P from v to a vertex u ∈ K such that v and u are
not neighbors, u also has label t, and the internal vertices of the path do not
have label t. Vertex u is the t-witness (t∗-witness) of v, the path P is a t-witness
(t∗-witness) path of v. A vertex v can be t-dangerous for more than one t ∈ W ,
or it can be t- and t∗-dangerous at the same time.

The name dangerous comes from the observation that if there is a hole in G
that goes through the clique K, then the hole has to go through a dangerous
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vertex as well. For example, if a hole starts in t ∈ W , goes to the t-labeled
neighbor v ∈ V0 of t, goes to a t-labeled vertex u ∈ K via a path P ⊆ V0,
and returns to t, then v is a t∗-dangerous vertex, u is its witness, and P is
the witness path. Thus when we delete vertices to make the graph chordal, our
aim is to destroy as many witness paths as possible and to make many vertices
non-dangerous. It will turn out that if a clique is large, then it contains many
vertices whose deletion does not affect the dangerous vertices, thus there is no
use of deleting them.

First we bound by k4 (resp., k6) the number of independent t-dangerous
(resp., t∗-dangerous) vertices. Since G0 is chordal (hence perfect), it follows that
these vertices can be covered by k4 (resp., k6) cliques.

Lemma 8. We can make sure that there are at most k4 independent t-dangerous
vertices.

Proof. Consider the subgraph G′

0 of G0 induced by those vertices that do not
have label t. The clique K contains vertices only from one connected component
of G′

0, let B be this component. Clearly, every t-dangerous vertex is a neighbor
of B in G0. Therefore, by Lemma 7, the size of an independent set of t-dangerous
vertices can be at most k4. ut

Lemma 9. We can make sure that there are at most k6 independent t∗-dangerous
vertices.

Proof. Consider the subgraph G′

0 of G0 induced by the vertices without label t.
Let C1, . . . , Cc be the connected components of G′

0. The internal vertices of a
witness path for a t∗-dangerous vertex are completely contained in one of these
components. Let A be a set of independent t∗-dangerous vertices, and let Ai ⊆ A
contain a t∗-dangerous vertex v if and only if v has a witness path with internal
vertices only in Ci.

If |Ai| > k4, then we are ready by using Lemma 7 for connected subgraph
Ci. For each t∗-dangerous vertex vj ∈ A, fix a witness uj and a witness path
Pj . Select an arbitrary path Pj and throw away all the other paths that use the
same component as Pj . Repeat this until every path is either selected or thrown
away. In each step we select one path and throw away less than k4 paths, thus
|A| > k6 implies that we can select more than k2 paths. Thus assume without
loss of generality that the paths P1, . . . , Pk2+1 do not intersect each other outside
the clique K. If a vertex u ∈ K is contained in more than k + 1 of these paths,
then u is a necessary vertex. To see this, notice that for each i = 1, . . . , k + 1
a W -avoiding size k hole cover has to contain at least one vertex of each Pi

(Prop. 5). Since P1, . . . , Pk+1 intersect each other only in u, this is only possible
if X contains u. Therefore, it can be assumed that every u ∈ K is contained in at
most k of the paths P1, . . . , Pk2+1. Now a simple counting argument shows that
there are k + 1 pairwise disjoint paths. This means that there is no W -avoiding
size k hole cover, as it would have to intersect all these k + 1 disjoint paths. ut
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4.3 Marking the clique

In the next two lemmas, we show that for a clique Q of dangerous vertices, there
is only a constant (i.e., depending only on k) number of vertices in K whose
deletion can make a vertex of Q non-dangerous. For every other vertex u ∈ K, if
v is t-dangerous, then v ∈ Q remains t-dangerous in G \ u. Even more is true: if
X is a size k set and v ∈ Q is t-dangerous in G \X , then v remains t-dangerous
in G \ (X ∪ u) as well.

Lemma 10. Let Q be a clique of t-dangerous vertices. For every k, there is a
constant dk, such that we can mark dk vertices in K such that if X is a set of
size k and v ∈ Q has an unmarked t-witness u in G0 \ X, then v has a marked
t-witness u′ in G0 \ (X ∪ u).

Proof. Consider the tree decomposition of the chordal graph G0, let Tz be the
subtree corresponding to a vertex z. Since Q and K are cliques, thus there are
two nodes x and y such that every vertex of Q contains x, and every vertex of
K contains y. Consider the unique path connecting x and y in the tree, and
identify the nodes of the path with the integers 1, 2, . . . , n, where x = 1 and
y = n. Let u1, u2, . . . be an ordering of the vertices not having label t in K such
that if ai denotes the smallest node of Tui

on this path, then the sequence ai is
non-decreasing.

We mark the vertices u1, . . . , uk+1 (or up to uj, if there are only j such
vertices). Assume that the witness u of v is the vertex ui in this ordering. If
i ≤ k + 1, then ui is marked, and we are ready. Otherwise there is a marked
vertex ui′ for some i′ ≤ k + 1 < i that is not contained in X . By the way the
vertices are ordered, the witness path that goes from v to ui has to go through
the neighborhood of ui′ . Thus there is a path from v to ui′ , showing that ui′ is
a t-witness of v in G \ (X ∪ u). ut

The next lemma proves a similar statement for t∗-dangerous vertices. How-
ever, now the marking procedure is more complicated. The reason for this com-
plication is that a t∗-witness for v has to satisfy two requirements: the witness
has to be reachable from v (thus it has to be close to the clique Q), but it should
not be a neighbor of v (thus it should not be too close to Q). The proof will
appear in the full version of the paper.

Lemma 11. Let Q be a clique of t∗-dangerous vertices. For every k, there is a
constant d∗k such that we can mark d∗k vertices in K such that if X is a set of
size k and v ∈ Q has an unmarked t∗-witness in G0 \ X, then v has a marked
t∗-witness as well in G0 \ X. ut

In the next three lemmas, we extend Lemma 10 and Lemma 11 to apply not
only for a clique Q of dangerous vertices, but for all dangerous vertices. Moreover,
we extend it by requiring witnesses that satisfy certain other properties as well.

Let F ⊆ W be a set of labels. An F -free vertex is a vertex that does not
have any of the labels in F . Assume that a t-dangerous vertex v has a witness
u with a corresponding witness path P . If the vertices in P \ v are F -free, then
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we say that u is an F -free witness. Moreover, let ` ∈ F , and assume that the
vertices in P \ (u∪ v) do not have labels from F , vertex u has label ` but it does
not have any other label from F . In this case u is said to be an `-labeled F -free
witness. Notice that an `-labeled F -free witness is not an F -free witness, since
it has label `, which is not allowed for F -free witnesses.

By Lemma 8 and 9, there are no large independent sets of dangerous vertices.
Since G0 is chordal, it follows that the number of cliques required to cover
the dangerous vertices is a constant dependening only on k. The proofs of the
following lemmas are based on this observation, and on the fact that number of
different sets F that we have to consider depends also only on k. Details omitted.

Lemma 12. For every k, there is a constant c
(1)
k such that we can mark c

(1)
k

vertices in K such that for every size k vertex set X, set of labels F , and label
t ∈ F , if in G0 \ X there is a t-dangerous vertex v with an unmarked F -free
witness u, then v has an F -free marked witness u′ in G0 \ (X ∪ u).

Lemma 13. For every k, there is a constant c
(2)
k such that we can mark c

(2)
k

vertices in K such that for every size k vertex set X, set of labels F , and labels
`, t ∈ F , if in G0 \X there is a t-dangerous vertex v with an unmarked `-labeled
F -free witness u, then v has such a marked witness in G0 \ (X ∪ u) as well.

Lemma 14. For every k, there is a constant c
(3)
k such that we can mark c

(3)
k

vertices in K such that for every size k vertex set X and label t ∈ W , if in G\X
a t∗-dangerous vertex v has an unmarked witness u, then v has a marked witness
in G0 \ (X ∪ u) as well.

4.4 Fragments of a hole

Let H be a hole in G. Since G \ W is chordal, H has to contain at least one
vertex of W . Hence H \W is a set of paths P1, P2, . . . , Ps, the set F = H ∩W
together with this collection of paths will be called the fragments of the hole
H . The internal vertices of every path Pi are F -free. Moreover, each end point
has exactly one label from F . The only exception is that if a path consists of
only a single vertex, then it contains exactly two labels from F . A label in F
can appear only on at most two vertices in the fragments: if a vertex of W is in
the hole, then at most two of its neighbors can belong to the hole. However, the
neighbors of a vertex in W can also be in W , thus it is possible that a label in
F appears on only one or on none of the paths.

The following two easy lemmas show that if we have the fragments of a hole,
and a path is replaced with some new path satisfying certain requirements, then
the new collection of paths also induces a hole. Proofs are omitted.

Lemma 15. Let F , P1, . . . , Ps be the fragments of the hole H. Let P ′

1 be a
path that has the same end points as P1, and whose internal vertices are F -free.
There is a hole in the graph induced by the vertices of F , P ′

1, P2, . . . , Ps.
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Lemma 16. Let F , P1, . . . , Ps be the fragments of the hole H. Assume that the
length of P1 is at least 1. Let x and y be the end points of P1, and let `x and `y

be their labels in F , respectively. Let P ′

1 be a path with the following properties:

– the end points of P ′

1 are x and y′ where y′ is a vertex that has label `y, but
does not have any other label from F ,

– the internal vertices of P ′

1 are F -free,
– if `x = `y, then x and y′ are not neighbors.

There is a hole in the graph induced by the vertices of F , P ′

1, P2, . . . , Ps.

To show that a vertex u ∈ K is irrelevant, we have to show that every hole
cover of G\(X ∪u) is a hole cover in G\X . That is, if X is a size k set and there
is a hole H in G \ X going through u, then there is a hole H ′ in G \ (X ∪ u).
The idea is to look at the fragments of H : if path P1 is going through u, then
we find a path P ′

1 avoiding u, and use Lemma 15 or 16 to obtain the hole H ′.

Lemma 17. For every k, there is a constant ck such that we can make sure that
every clique of size greater than ck contains an irrelevant vertex.

Proof. Given a clique K, mark the vertices according to Lemma 12, 13, and 14.
Moreover, for each F ⊆ W and ` ∈ F , we consider those vertices that have label
`, but do not have any other label from F , and we mark k + 1 of these vertices
(if there are less than k+1 such vertices for a given F and `, then all of them are
marked). We argue that any unmarked vertex is irrelevant. Since the number of
marked vertices depends only on k, the lemma follows.

Let u be an unmarked vertex. To show that u is irrelevant, assume that
X ⊆ V0 has size at most k, and H is a hole in G \ X containing u. We have to
show that G \ X contains a hole avoiding u.

Let F , P1, . . . , Ps be the fragments of H . Since the paths of the fragments are
independent (i.e., the vertices on two different paths are not neighbors), without
loss of generality it can be assumed that u is in P1 and only P1 intersects the
clique K. Let x and y be the two end vertices of P1, let their labels be `x and `y,
respectively. Path P1 can contain at most one other vertex of K besides u. We
consider several cases depending on which combination of x = y, u = x, u = y,
`x = `y, |K ∩ P1| = 1 holds:

Case 1: P1 consists of only a single vertex (x = y = u). Details omitted.
In the remaining cases we assume that x 6= y and w.l.o.g u 6= x.
Case 2: P1 consists of two vertices x, y = u, and P1 is completely contained

in K. Since u is not marked, there are k + 1 marked vertices in K that have
label `y but do not have any other label from F . At least one of these vertices
are not in X , let u′ be such a vertex. If we replace P1 = {x, u} with the path
P ′

1 = {x, u′}, then by Lemma 16 there is a hole not containing u.
In the remaining cases we assume without loss of generality that end point

x is not in K. The following 4 cases handle the situation when y is in K.
Case 3: |K ∩ P1| = 1, u = y, `x 6= `y. Vertex x is an `x-dangerous vertex

for K, and u is an `y-labeled F -free witness for x in G0 \ X . By the way the
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vertices are marked (see Lemma 13) there is another `y-labeled F -free witness
u′ in G0 \ (X ∪ u). Let P ′

1 be the witness path corresponding to u′. Now F , P ′

1,
P2, . . . , Ps satisfy Lemma 16, thus there is a hole not containing u.

Case 4: |K ∩ P1| = 2, u = y, x 6∈ K, `x 6= `y. Since u is not marked, thus
there are k+1 marked vertices in K that have label `y but do not have any other
label from F . At least one of these vertices are not in X , let u′ be such a vertex.
Let P ′

1 the same as P1, but replace the last vertex u with u′. Now Lemma 16 is
satisfied, hence there is a hole not containing u.

Case 5: |K ∩ P1| = 2, y 6= u. Vertex x is `x-dangerous in G0 \ X and u is
an F -free witness for x. By Lemma 12, there is a marked F -free witness u′ in
G0 \ (X ∪ u); let P ′ be the corresponding witness path. The internal vertices of
P ′

1 := xP ′u′y are F -free, thus by Lemma 15 there is a hole in G0 \ (X ∪ u).
Case 6: u = y, `x = `y. In this case s = 1: the hole consists of only `x ∈ W

and the path P1. Vertex x is an `∗x-dangerous vertex in G0 \X for K, and u is a
witness for x. By the way the vertices are marked (see Lemma 14) in G0\(X∪u)
there is another witness u′ ∈ K of x. Let P ′

1 be the witness path corresponding
to u′. It is clear that F , P ′

1 satisfies Lemma 16.
Case 7: x, y 6∈ K. Vertex x (resp., y) is an `x-dangerous (resp., `y-dangerous)

vertex in G0 \ X for K, and u is an F -free witness for both x and y. By the
way the vertices are marked (see Lemma 12) in G \ X there is another F -free
witness u′

x (resp., u′

y) for x (resp., y). Let Px (resp., Py) be the witness path of
u′

x (resp., u′

y). Let P ′

1 be the path xPxu′

xu′

yPyy going from x to y. The internal
vertices of P ′

1 are F -free, thus by Lemma 15, G \ X has a hole avoiding u. ut
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