Fixed Parameter Algorithms

Dániel Marx
Tel Aviv University, Israel

Open lectures for PhD students in computer science January 8, 2010, Warsaw, Poland

Recap of last lecture

6 Parameterized problem: a parameter k is associated with each input instance.
6. A parameterized problem is fixed-parameter tractable (FPT) if it can be solved in time $f(k) \cdot n^{c}$ for some function f depending only on k and constant c not depending on k.

6 We have seen that Vertex Cover, k-Path, Bipartite Deletion, Chordal COMPLETION etc. are FPT parameterized by the size k of the solution.

6 We would like $f(k)$ to be as slowly growing as possible (e.g., $O^{*}\left(1.2^{k}\right)$ is much better than $O^{*}\left(2^{k}\right)$).

Recap of last lecture

Techniques:

© Kernelization: construct in polynomial time an equivalent instance of size bounded by some function $f(k)$.

6 Bounded depth search trees: branch into a constant number of directions, decreasing the parameter in each step.
(6) Iterative compression: given a solution of size $k+1$, find a solution of size k.

6 Graph Minors Theory: if a property is closed under taking minors, then powerful theorems immediately imply FPT algorithms.

6 Color coding: assign random colors and solve a "colorful" version of the problem.

Treewidth

(6) Introduction and definition

6 Part I: Algorithms for bounded treewidth graphs.
(6) Part II: Graph-theoretic properties of treewidth.

6 Part III: Applications for general graphs.

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
Do not invite a colleague and his direct boss at the same time!

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
Do not invite a colleague and his direct boss at the same time!

6 Input: A tree with weights on the vertices.
© Task: Find an independent set of maximum weight.

The Party Problem

Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.
Do not invite a colleague and his direct boss at the same time!

6 Input: A tree with weights on the vertices.
© Task: Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that depend on each other. The answer is a single subproblem.
T_{v} : the subtree rooted at v.
$A[v]$: max. weight of an independent set in T_{v}
$B[v]$: max. weight of an independent set in T_{v} that does not contain v
Goal: determine $A[r]$ for the root r.

Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that depend on each other. The answer is a single subproblem.
T_{v} : the subtree rooted at v.
$A[v]$: max. weight of an independent set in T_{v}
$B[v]$: max. weight of an independent set in T_{v} that does not contain v
Goal: determine $A[r]$ for the root r.

Method:
Assume v_{1}, \ldots, v_{k} are the children of v. Use the recurrence relations

$$
\begin{aligned}
& B[v]=\sum_{i=1}^{k} A\left[v_{i}\right] \\
& A[v]=\max \left\{B[v], w(v)+\sum_{i=1}^{k} B\left[v_{i}\right]\right\}
\end{aligned}
$$

The values $A[v]$ and $B[v]$ can be calculated in a bottom-up order (the leaves are trivial).

Treewidth

Treewidth

Treewidth: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.

Treewidth

Treewidth: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.

Treewidth

Treewidth: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.

Treewidth

Treewidth: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1 .
treewidth: width of the best decomposition.
Fact: treewidth $=1 \Longleftrightarrow$ graph is a forest

Treewidth

Treewidth: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1 .
treewidth: width of the best decomposition.
Fact: treewidth $=1 \Longleftrightarrow$ graph is a forest

Treewidth

Treewidth: A measure of how "tree-like" the graph is. (Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag containing both of them.
2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1 .
treewidth: width of the best decomposition.
Fact: treewidth $=1 \Longleftrightarrow$ graph is a forest

Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w), but there is a polynomial-time algorithm for every fixed w.

Fact: [Bodlaender's Theorem] For every fixed w, there is a linear-time algorithm that finds a tree decomposition of width w (if exists).
\Rightarrow Deciding if treewidth is at most w is fixed-parameter tractable.
\Rightarrow If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w), but there is a polynomial-time algorithm for every fixed w.

Fact: [Bodlaender's Theorem] For every fixed w, there is a linear-time algorithm that finds a tree decomposition of width w (if exists).
\Rightarrow Deciding if treewidth is at most w is fixed-parameter tractable.
\Rightarrow If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Running time is $2^{O\left(w^{3}\right)} \cdot n$. Sometimes it is better to use the following results instead:
Fact: There is a $O\left(3^{3 w} \cdot w \cdot n^{2}\right)$ time algorithm that finds a tree decomposition of width $4 w+1$, if the treewidth of the graph is at most w.

Fact: There is a polynomial-time algorithm that finds a tree decomposition of width $O(w \sqrt{\log w})$, if the treewidth of the graph is at most w.

Part I:

Algoritmhs for bounded-treewidth graphs

Weighted Max Independent Set and tree decompositions

Fact: Given a tree decomposition of width w, Weighted Max Independent Set can be solved in time $O\left(2^{w} \cdot n\right)$.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:
Instead of computing 2 values $A[v], B[v]$ for each vertex of the graph, we compute $2^{\left|B_{x}\right|} \leq 2^{w+1}$ values for each bag B_{x}.
$M[x, S]$: the maximum weight of an independent
 set $I \subseteq V_{x}$ with $I \cap B_{x}=S$.
How to determine $M[x, S]$ if all the values are known for the children of x ?

Nice tree decompositions

Definition: A rooted tree decomposition is nice if every node x is one of the following 4 types:
(6) Leaf: no children, $\left|B_{x}\right|=1$
(6 Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
(6) Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v
(6) Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

Fact: A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and $O(w n)$ nodes in time $O\left(w^{2} n\right)$.

Weighted Max Independent Set and nice tree decompositions

(6) Leaf: no children, $\left|B_{x}\right|=1$

Trivial!
(6) Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v

$$
m[x, S]= \begin{cases}m[y, S] & \text { if } v \notin S \\ m[y, S \backslash\{v\}]+w(v) & \text { if } v \in S \text { but } v \text { has no neighbor in } S \\ -\infty & \text { if } S \text { contains } v \text { and its neighbor }\end{cases}
$$

Weighted Max Independent Set and nice tree decompositions

6 Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v

$$
m[x, S]=\max \{m[y, S], m[y, S \cup\{v\}]\}
$$

6 Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

$$
m[x, S]=m\left[y_{1}, S\right]+m\left[y_{2}, S\right]-w(S)
$$

Weighted Max Independent Set and nice tree decompositions

6 Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v

$$
m[x, S]=\max \{m[y, S], m[y, S \cup\{v\}]\}
$$

6 Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$

$$
m[x, S]=m\left[y_{1}, S\right]+m\left[y_{2}, S\right]-w(S)
$$

There are at most $2^{w+1} \cdot n$ subproblems $m[x, S]$ and each subproblem can be solved in constant time (assuming the children are already solved).
\Rightarrow Running time is $O\left(2^{w} \cdot n\right)$.
\Rightarrow Weighted Max Independent Set is FPT parameterized by treewidth.
\Rightarrow Weighted Min Vertex Cover is FPT parameterized by treewidth.

3-Coloring and tree decompositions

Fact: Given a tree decomposition of width w, 3-Coloring can be solved in $O\left(3^{w} \cdot n\right)$.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.

For every node x and coloring $c: B_{x} \rightarrow\{1,2,3\}$, we compute the Boolean value $E[x, c]$, which is true if and only if c can be extended to a proper 3-coloring of V_{x}.

How to determine $E[x, c]$ if all the values are known for the children of x ?

3-COLORING and nice tree decompositions

6 Leaf: no children, $\left|B_{x}\right|=1$
Trivial!
(6 Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c]=E\left[y, c^{\prime}\right]$, where c^{\prime} is c restricted to B_{y}.

6 Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v $E[x, c]$ is true if $E\left[y, c^{\prime}\right]$ is true for one of the 3 extensions of c to B_{y}.
(6) Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$ $E[x, c]=E\left[y_{1}, c\right] \wedge E\left[y_{2}, c\right]$

3-Coloring and nice tree decompositions

6 Leaf: no children, $\left|B_{x}\right|=1$
Trivial!
(6 Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then $E[x, c]=E\left[y, c^{\prime}\right]$, where c^{\prime} is c restricted to B_{y}.
(6) Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v $E[x, c]$ is true if $E\left[y, c^{\prime}\right]$ is true for one of the 3 extensions of c to B_{y}.
(6) Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$ $E[x, c]=E\left[y_{1}, c\right] \wedge E\left[y_{2}, c\right]$

There are at most $3^{w+1} \cdot n$ subproblems $E[x, c]$ and each subproblem can be solved in constant time (assuming the children are already solved).
\Rightarrow Running time is $O\left(3^{w} \cdot n\right)$.
$\Rightarrow 3$-CoLORING is FPT parameterized by treewidth.

Vertex coloring

More generally:
Fact: Given a tree decomposition of width w, c-CoLORING can be solved in $O^{*}\left(c^{w}\right)$.
Exercise: Every graph of treewidth at most w can be colored with $w+1$ colors.
Fact: Given a tree decomposition of width w, Vertex Coloring can be solved in time $O^{*}\left(w^{w}\right)$.
\Rightarrow Vertex Coloring is FPT parameterized by treewidth.

Hamiltonian cycle and tree decompositions

Fact: Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)}$. n.
B_{x} : vertices appearing in node x.
V_{x} : vertices appearing in the subtree rooted at x.
If H is a Hamiltonian cycle, then the subgraph $H\left[V_{x}\right]$ is a set of paths with endpoints in B_{x}.

What are the important properties of $H\left[V_{x}\right]$ "seen from the outside world"?

6 The subsets $B_{x}^{0}, B_{x}^{1}, B_{x}^{2}$ of B_{x} having degree
 0,1 , and 2.
(6) The matching M of B_{x}^{1}.

Number of subproblems $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ for each node x : at most $3^{w} \cdot w^{w}$.

Hamiltonian cycle and nice tree decompositions

For each subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$, we have to determine if there is a set of paths with this pattern.

How to do this for the different types of nodes?
(Assuming that all the subproblems are solved for the children.)
Leaf: no children, $\left|B_{x}\right|=1$
Trivial!

Hamiltonian cycle and nice tree decompositions

Solving subproblem ($\left.B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v
In a solution H of $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$, vertex v has degree 2 . Thus subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of x is equivalent to subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2} \cup\{v\}, M\right)$ of y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem ($\left.B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v
In a solution H of $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$, vertex v has degree 2 . Thus subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of x is equivalent to subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2} \cup\{v\}, M\right)$ of y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Forget: 1 child $y, B_{x}=B_{y} \backslash\{v\}$ for some vertex v
In a solution H of $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$, vertex v has degree 2. Thus subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of x is equivalent to subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2} \cup\{v\}, M\right)$ of y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 1: $v \in B_{x}^{0}$. Subproblem is equivalent with $\left(B_{x}^{0} \backslash\{v\}, B_{x}^{1}, B_{x}^{2}, M\right)$ for node y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 1: $v \in B_{x}^{0}$. Subproblem is equivalent with $\left(B_{x}^{0} \backslash\{v\}, B_{x}^{1}, B_{x}^{2}, M\right)$ for node y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 1: $v \in B_{x}^{0}$. Subproblem is equivalent with $\left(B_{x}^{0} \backslash\{v\}, B_{x}^{1}, B_{x}^{2}, M\right)$ for node y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 1: $v \in B_{x}^{0}$. Subproblem is equivalent with $\left(B_{x}^{0} \backslash\{v\}, B_{x}^{1}, B_{x}^{2}, M\right)$ for node y.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 2: $v \in B_{x}^{1}$. Every neighbor of v in V_{x} is in B_{x}. Thus v has to be adjacent with one other vertex of B_{x}.

Is there a subproblem $\left(B_{y}^{0}, B_{y}^{1}, B_{y}^{2}, M^{\prime}\right)$ of node y such that making a vertex of B_{y} adjacent to v makes it a solution for subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x ?

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 2: $v \in B_{x}^{1}$. Every neighbor of v in V_{x} is in B_{x}. Thus v has to be adjacent with one other vertex of B_{x}.

Is there a subproblem $\left(B_{y}^{0}, B_{y}^{1}, B_{y}^{2}, M^{\prime}\right)$ of node y such that making a vertex of B_{y} adjacent to v makes it a solution for subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x ?

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 2: $v \in B_{x}^{1}$. Every neighbor of v in V_{x} is in B_{x}. Thus v has to be adjacent with one other vertex of B_{x}.

Is there a subproblem $\left(B_{y}^{0}, B_{y}^{1}, B_{y}^{2}, M^{\prime}\right)$ of node y such that making a vertex of B_{y} adjacent to v makes it a solution for subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x ?

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 2: $v \in B_{x}^{1}$. Every neighbor of v in V_{x} is in B_{x}. Thus v has to be adjacent with one other vertex of B_{x}.

Is there a subproblem $\left(B_{y}^{0}, B_{y}^{1}, B_{y}^{2}, M^{\prime}\right)$ of node y such that making a vertex of B_{y} adjacent to v makes it a solution for subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x ?

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 2: $v \in B_{x}^{1}$. Every neighbor of v in V_{x} is in B_{x}. Thus v has to be adjacent with one other vertex of B_{x}.

Is there a subproblem $\left(B_{y}^{0}, B_{y}^{1}, B_{y}^{2}, M^{\prime}\right)$ of node y such that making a vertex of B_{y} adjacent to v makes it a solution for subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x ?

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 3: $v \in B_{x}^{1}$. Similar to Case 2, but 2 vertices of B_{y} are adjacent with v.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 3: $v \in B_{x}^{1}$. Similar to Case 2, but 2 vertices of B_{y} are adjacent with v.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 3: $v \in B_{x}^{1}$. Similar to Case 2, but 2 vertices of B_{y} are adjacent with v.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 3: $v \in B_{x}^{1}$. Similar to Case 2, but 2 vertices of B_{y} are adjacent with v.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Introduce: 1 child $y, B_{x}=B_{y} \cup\{v\}$ for some vertex v
Case 3: $v \in B_{x}^{1}$. Similar to Case 2, but 2 vertices of B_{y} are adjacent with v.

Hamiltonian cycle and nice tree decompositions

Solving subproblem $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.
Join: 2 children y_{1}, y_{2} with $B_{x}=B_{y_{1}}=B_{y_{2}}$
A solution H is the union of a subgraph $H_{1} \subseteq G\left[V_{y_{1}}\right]$ and a subgraph $H_{2} \subseteq G\left[V_{y_{2}}\right]$.
If H_{1} is a solution for $\left(B_{y_{1}}^{0}, B_{y_{1}}^{1}, B_{y_{1}}^{2}, M_{1}\right)$ of node y_{1} and H_{2} is a solution for ($B_{y_{2}}^{0}, B_{y_{2}}^{1}, B_{y_{2}}^{2}, M_{2}$) of node y_{2}, then we can check if $H_{1} \cup H_{2}$ is a solution for $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.

For any two subproblems of y_{1} and y_{2}, we check if they have solutions and if their union is a solution for $\left(B_{x}^{0}, B_{x}^{1}, B_{x}^{2}, M\right)$ of node x.

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
© Logical connectives $\wedge, \vee, \rightarrow, \neg,=, \neq$
6 quantifiers \forall, \exists over vertex/edge variables
6 predicate $\operatorname{adj}(u, v)$: vertices u and v are adjacent
6 predicate inc (e, v) : edge e is incident to vertex v
(6) quantifiers \forall, \exists over vertex/edge set variables
© \in, \subseteq for vertex/edge sets
Example: The formula $\exists C \subseteq V \forall v \in C \exists u_{1}, u_{2} \in C\left(u_{1} \neq u_{2} \wedge \operatorname{adj}\left(u_{1}, v\right) \wedge \operatorname{adj}\left(u_{2}, v\right)\right)$ is true ...

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
© Logical connectives $\wedge, \vee, \rightarrow, \neg,=, \neq$
6 quantifiers \forall, \exists over vertex/edge variables
6 predicate $\operatorname{adj}(u, v)$: vertices u and v are adjacent
6 predicate inc (e, v) : edge e is incident to vertex v
© quantifiers \forall, \exists over vertex/edge set variables
(6) $\in \subseteq$ for vertex/edge sets

Example: The formula $\exists C \subseteq V \forall v \in C \exists u_{1}, u_{2} \in C\left(u_{1} \neq u_{2} \wedge \operatorname{adj}\left(u_{1}, v\right) \wedge \operatorname{adj}\left(u_{2}, v\right)\right)$ is true if graph $G(V, E)$ has a cycle.

Courcelle's Theorem

Courcelle's Theorem: If a graph property can be expressed in EMSO, then for every fixed $w \geq 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

Courcelle's Theorem

Courcelle's Theorem: If a graph property can be expressed in EMSO, then for every fixed $w \geq 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in EMSO?

Using Courcelle's Theorem

3-Coloring

$$
\begin{aligned}
& \exists C_{1}, C_{2}, C_{3} \subseteq V\left(\forall v \in V\left(v \in C_{1} \vee v \in C_{2} \vee v \in C_{3}\right)\right) \wedge(\forall u, v \in V \operatorname{adj}(u, v) \rightarrow \\
& \left.\left(\neg\left(u \in C_{1} \wedge v \in C_{1}\right) \wedge \neg\left(u \in C_{2} \wedge v \in C_{2}\right) \wedge \neg\left(u \in C_{3} \wedge v \in C_{3}\right)\right)\right)
\end{aligned}
$$

Using Courcelle's Theorem

3-Coloring

$$
\begin{aligned}
& \exists C_{1}, C_{2}, C_{3} \subseteq V\left(\forall v \in V\left(v \in C_{1} \vee v \in C_{2} \vee v \in C_{3}\right)\right) \wedge(\forall u, v \in V \operatorname{adj}(u, v) \rightarrow \\
& \left.\left(\neg\left(u \in C_{1} \wedge v \in C_{1}\right) \wedge \neg\left(u \in C_{2} \wedge v \in C_{2}\right) \wedge \neg\left(u \in C_{3} \wedge v \in C_{3}\right)\right)\right)
\end{aligned}
$$

Hamiltonian Cycle
$\exists H \subseteq E($ spanning $(H) \wedge(\forall v \in V$ degree2 $(H, v)))$
degree $0(H, v):=\neg \exists e \in H \operatorname{inc}(e, v)$
degree $1(H, v):=\neg \operatorname{degree} 0(H, v) \wedge\left(\neg \exists e_{1}, e_{2} \in H\left(e_{1} \neq e_{2} \wedge \operatorname{inc}\left(e_{1}, v\right) \wedge \operatorname{inc}\left(e_{2}, v\right)\right)\right)$
degree2 $(H, v):=\neg$ degree $0(H, v) \wedge \neg$ degree1 $(H, v) \wedge\left(\neg \exists e_{1}, e_{2}, e_{3} \in H\left(e_{1} \neq\right.\right.$ $\left.\left.\left.e_{2} \wedge e_{2} \neq e_{3} \wedge e_{1} \neq e_{3} \wedge \operatorname{inc}\left(e_{1}, v\right) \wedge \operatorname{inc}\left(e_{2}, v\right) \wedge \operatorname{inc}\left(e_{3}, v\right)\right)\right)\right)$
spanning $(H):=\forall u, v \in V \exists P \subseteq H \forall x \in V(((x=u \vee x=v) \wedge \operatorname{degree} 1(P, x)) \vee(x \neq$ $u \wedge x \neq v \wedge(\operatorname{degree} 0(P, x) \vee \operatorname{degree} 2(P, x))))$

Using Courcelle's Theorem

Two ways of using Courcelle's Theorem:

1. The problem can be described by a single formula (e.g, 3-Coloring, HAmiltonian Cycle).
\Rightarrow Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w.
\Rightarrow Problem is FPT parameterized by the treewidth w of the input graph.

Using Courcelle's Theorem

Two ways of using Courcelle's Theorem:

1. The problem can be described by a single formula (e.g, 3-CoLORING, HAMILTONIAN Cycle).
\Rightarrow Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w.
\Rightarrow Problem is FPT parameterized by the treewidth w of the input graph.
2. The problem can be described by a formula for each value of the parameter k.

Example: For each k, having a cycle of length exactly k can be expressed as

$$
\exists v_{1}, \ldots, v_{k} \in V\left(\operatorname{adj}\left(v_{1}, v_{2}\right) \wedge \operatorname{adj}\left(v_{2}, v_{3}\right) \wedge \cdots \wedge \operatorname{adj}\left(v_{k-1}, v_{k}\right) \wedge \operatorname{adj}\left(v_{k}, v_{1}\right)\right)
$$

\Rightarrow Problem can be solved in time $f(k, w) \cdot n$ for graphs of treewidth w.
\Rightarrow Problem is FPT parameterized with combined parameter k and treewidth w.

Subgraph Isomorphism

Subgraph Isomorphism: given graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$ (size of the small graph).

For each H, we can construct a formula ϕ_{H} that expresses " G has a subgraph isomorphic to $H^{\prime \prime}$ (similarly to the k-cycle on the previous slide).

Subgraph Isomorphism

Subgraph Isomorphism: given graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$ (size of the small graph).

For each H, we can construct a formula ϕ_{H} that expresses " G has a subgraph isomorphic to $H^{\prime \prime}$ (similarly to the k-cycle on the previous slide).
\Rightarrow By Courcelle's Theorem, Subgraph Isomorphism can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.

Subgraph Isomorphism

Subgraph Isomorphism: given graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$ (size of the small graph).

For each H, we can construct a formula ϕ_{H} that expresses " G has a subgraph isomorphic to $H^{\prime \prime}$ (similarly to the k-cycle on the previous slide).
\Rightarrow By Courcelle's Theorem, Subgraph Isomorphism can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.
\Rightarrow Since there is only a finite number of simple graphs on k vertices, SUBGRAPH IsOMORPHISM can be solved in time $f(k, w) \cdot n$ if H has k vertices and G has treewidth at most w.
\Rightarrow SUBGRAPH ISOMORPHISM is FPT parameterized by combined parameter $k:=|V(H)|$ and the treewidth w of G.

Part II:

Graph-theoretical properties of treewidth

Properties of treewidth

Fact: treewidth $\leq 2 \Longleftrightarrow$ graph is subgraph of a series-parallel graph

Properties of treewidth

Fact: treewidth $\leq 2 \Longleftrightarrow$ graph is subgraph of a series-parallel graph

Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.

Properties of treewidth

Fact: treewidth $\leq 2 \Longleftrightarrow$ graph is subgraph of a series-parallel graph

Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.
\Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Properties of treewidth

Fact: treewidth $\leq 2 \Longleftrightarrow$ graph is subgraph of a series-parallel graph

Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.
\Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.
The treewidth of the k-clique is $k-1$. Follows from:
Fact: For every clique K, there is a bag B with $K \subseteq B$.

Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of G is at least $k^{4 k^{2}(k+2)}$, then G has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large.
Fact: Every planar graph with treewidth at least $4 k$ has $k \times k$ grid minor.

Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of G is at least $k^{4 k^{2}(k+2)}$, then G has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large.
Fact: Every planar graph with treewidth at least $4 k$ has $k \times k$ grid minor.
Fact: Every planar graph with treewidth at least $4 k$ can be contracted to a partially triangulated $k \times k$ grid.

The Robber and Cops game

Game: k cops try to capture a robber in the graph.
6 In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
6 The robber moves infinitely fast on the edges, and sees where the cops will land.
Fact:
$k+1$ cops can win the game \Longleftrightarrow the treewidth of the graph is at most k.

The Robber and Cops game

Game: k cops try to capture a robber in the graph.
6 In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
6 The robber moves infinitely fast on the edges, and sees where the cops will land.
Fact:
$k+1$ cops can win the game \Longleftrightarrow the treewidth of the graph is at most k.
The winner of the game can be determined in time $n^{O(k)}$ using standard techniques (there are at most n^{k} positions for the cops)

For every fixed k, it can be checked in polynomial-time if treewidth is at most k.

The Robber and Cops game

Game: k cops try to capture a robber in the graph.
6 In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
6 The robber moves infinitely fast on the edges, and sees where the cops will land.

Fact:

$k+1$ cops can win the game \Longleftrightarrow the treewidth of the graph is at most k.
The winner of the game can be determined in time $n^{O(k)}$ using standard techniques (there are at most n^{k} positions for the cops)

For every fixed k, it can be checked in polynomial-time if treewidth is at most k.
Exercise 1: Show that the treewidth of the $k \times k$ grid is at least $k-1$.
Exercise 2: Show that the treewidth of the $k \times k$ grid is at least k.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

Outerplanar graphs

Definition: A planar graph is outerplanar if it has a planar embedding where every vertex is on the infinite face.

Fact: Every outerplanar graph has treewidth at most 2.
\Rightarrow Every outerplanar graph is series-parallel.

k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

Fact: Every k-outerplanar graph has treewidth at most $3 k+1$.

k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

Fact: Every k-outerplanar graph has treewidth at most $3 k+1$.

k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

Fact: Every k-outerplanar graph has treewidth at most $3 k+1$.

k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

Fact: Every k-outerplanar graph has treewidth at most $3 k+1$.

k-outerplanar graphs

Given a planar embedding, we can define layers by iteratively removing the vertices on the infinite face.

Definition: A planar graph is k-outerplanar if it has a planar embedding having at most k layers.
(3)

Fact: Every k-outerplanar graph has treewidth at most $3 k+1$.

Part III:

Applications

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph:
(as in the definition of k-outerplanar):

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

(6) For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

(6) For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

(6) For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

(6) For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

6. For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$
(6) The resulting graph is k-outerplanar, hence it has treewidth at most $3 k+1$.

6 Using the $f(k, w) \cdot n$ time algorithm for Subgraph ISOMORPHISM, the problem can be solved in time $f(k, 3 k+1) \cdot n$.

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph:
(as in the definition of k-outerplanar):

6. For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$
(6) The resulting graph is k-outerplanar, hence it has treewidth at most $3 k+1$.

6 Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3 k+1) \cdot n$.
(6) We do this for every $0 \leq s<k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.

6 SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by $k:=|V(H)|$.

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

6. For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$
(6) The resulting graph is k-outerplanar, hence it has treewidth at most $3 k+1$.

6 Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3 k+1) \cdot n$.
(6) We do this for every $0 \leq s<k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.

6 SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by $k:=|V(H)|$.

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph: (as in the definition of k-outerplanar):

6. For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$
(6) The resulting graph is k-outerplanar, hence it has treewidth at most $3 k+1$.

6 Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3 k+1) \cdot n$.
(6) We do this for every $0 \leq s<k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.

6 SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by $k:=|V(H)|$.

Baker's shifting strategy

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter $k:=|V(H)|$.

Layers of the planar graph:
(as in the definition of k-outerplanar):

6. For a fixed $0 \leq s<k+1$, delete every layer L_{i} with $i=s(\bmod k+1)$
(6) The resulting graph is k-outerplanar, hence it has treewidth at most $3 k+1$.

6 Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3 k+1) \cdot n$.
(6) We do this for every $0 \leq s<k+1$: for at least one value of s, we do not delete any of the k vertices of the solution \Rightarrow we find a copy of H in G if there is one.

6 SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by $k:=|V(H)|$.

Detour to approximation...

Detour to approximation algorithms

Definition: A c-approximation algorithm for a maximization problem is a polynomial-time algorithm that finds a solution of cost at least OPT/c.

Definition: A c-approximation algorithm for a minimization problem is a polynomial-time algorithm that finds a solution of cost at most OPT • c.

There are well-known approximation algorithms for NP-hard problems:
$\frac{3}{2}$-approximation for METRIC TSP, 2-approximation for VERTEX Cover,
$\frac{8}{7}$-approximation for MAX 3SAT, etc.

Detour to approximation algorithms

Definition: A c-approximation algorithm for a maximization problem is a polynomial-time algorithm that finds a solution of cost at least OPT/c.

Definition: A c-approximation algorithm for a minimization problem is a polynomial-time algorithm that finds a solution of cost at most OPT • c.

There are well-known approximation algorithms for NP-hard problems:
$\frac{3}{2}$-approximation for METRIC TSP, 2-approximation for VERTEX Cover,
$\frac{8}{7}$-approximation for MAX 3SAT, etc.
6. For some problems, we have lower bounds: there is no ($2-\epsilon$)-approximation for Vertex Cover or ($\frac{8}{7}-\epsilon$)-approximation for MAX 3SAT (under suitable complexity assumptions).

6 For some other problems, arbitrarily good approximation is possible in polynomial time: for any $c>1$ (say, $c=1.000001$), there is a polynomial-time c-approximation algorithm!

Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS) for a problem P is an algorithm that takes an instance of P and a rational number $\epsilon>0$,

6 always finds a $(1+\epsilon)$-approximate solution,
6 the running time is polynomial in n for every fixed $\epsilon>0$.

Typical running times: $2^{1 / \epsilon} \cdot n, n^{1 / \epsilon},(n / \epsilon)^{2}, n^{1 / \epsilon^{2}}$.
Some classical problems that have a PTAS:
6 Independent Set for planar graphs
6 TSP in the Euclidean plane
6 Steiner Tree in planar graphs
6 Knapsack

Baker's shifting strategy for EPTAS

Fact: There is a $2^{O(1 / \epsilon)} \cdot n$ time PTAS for INDEPENDENT SET for planar graphs.

(6) Let $D:=1 / \epsilon$. For a fixed $0 \leq s<D$, delete every layer L_{i} with $i=s(\bmod D)$

6 The resulting graph is D-outerplanar, hence it has treewidth at most $3 D+1=O(1 / \epsilon)$.

6 Using the $O\left(2^{w} \cdot n\right)$ time algorithm for INDEPENDENT SET, the problem can be solved in time $2^{O(1 / \epsilon)} \cdot n$.

6 We do this for every $0 \leq s<D$: for at least one value of s, we delete at most $1 / D=\epsilon$ fraction of the solution \Rightarrow we get a $(1+\epsilon)$-approximate solution.

Back to FPT...

Depth-first search (DFS)

Fact: Finding a cycle of length at least k in a graph is FPT parameterized by k.
Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

6 If there is a back edge whose endpoints differ by at least $k-1$ levels \Rightarrow there is a cycle of length at least k.

6 Otherwise, the graph has treewidth at most $k-2$ and we can solve the problem by applying Courcelle's Theorem.

Depth-first search (DFS)

Fact: Finding a cycle of length at least k in a graph is FPT parameterized by k.
Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

6 If there is a back edge whose endpoints differ by at least $k-1$ levels \Rightarrow there is a cycle of length at least k.

6 Otherwise, the graph has treewidth at most $k-2$ and we can solve the problem by applying Courcelle's Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has the same structure as the
 DFS spanning tree and each bag contains the vertex and its $k-2$ ancestors.

Bidimensionality

A powerful framework to obtain efficient algorithms on planar graphs.
Let $x(G)$ be some graph invariant (i.e., an integer associated with each graph).
Some typical examples:

6 Maximum independent set size.
6 Minimum vertex cover size.
6 Length of the longest path.
(6) Minimum dominating set size

6 Minimum feedback vertex set size.
Given G and k, we want to decide if $x(G) \leq k($ or $x(G) \geq k)$.
For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Bidimensionality for Vertex Cover

Observation: If the treewidth of a planar graph G is at least $4 \sqrt{2 k}$
\Rightarrow It contains a $\sqrt{2 k} \times \sqrt{2 k}$ grid minor (Excluded Grid Theorem for planar graphs)
\Rightarrow The vertex cover size of the grid is at least k in the grid
\Rightarrow Vertex cover size is at least k in G.

Fixed Parameter Algorithms - p.43/48

Bidimensionality for Vertex Cover

Observation: If the treewidth of a planar graph G is at least $4 \sqrt{2 k}$
\Rightarrow It contains a $\sqrt{2 k} \times \sqrt{2 k}$ grid minor (Excluded Grid Theorem for planar graphs)
\Rightarrow The vertex cover size of the grid is at least k in the grid
\Rightarrow Vertex cover size is at least k in G.
We use this observation to solve VERTEX Cover on planar graphs as follows:
6 Set $w:=4 \sqrt{2 k}$.
6 Use the 4-approximation tree decomposition algorithm ($2^{O(w)} \cdot n^{O(1)}=2^{O(\sqrt{k})} \cdot n^{O(1)}$ time).
Δ If treewidth is at least w : we answer 'vertex cover is $\geq k^{\prime}$.
Δ If we get a tree decomposition of width $4 w$, then we can solve the problem in time $2^{w} \cdot n^{O(1)}=2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Bidimensionality (cont.)

Definition: A graph invariant $x(G)$ is minor-bidimensional if
(6 $x\left(G^{\prime}\right) \leq x(G)$ for every minor G^{\prime} of G, and
(6) If G_{k} is the $k \times k$ grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

Definition: A graph invariant $x(G)$ is minor-bidimensional if
(6) $x\left(G^{\prime}\right) \leq x(G)$ for every minor G^{\prime} of G, and
(6) If G_{k} is the $k \times k$ grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

Definition: A graph invariant $x(G)$ is minor-bidimensional if
(6 $x\left(G^{\prime}\right) \leq x(G)$ for every minor G^{\prime} of G, and
(6) If G_{k} is the $k \times k$ grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

We can answer " $x(G) \geq k$?" for a minor-bidimensional parameter the following way:
(6) Set $w:=c \sqrt{k}$ for an appropriate constant c.

6 Use the 4-approximation tree decomposition algorithm.
Δ If treewidth is at least $w: x(G)$ is at least k.
Δ If we get a tree decomposition of width $4 w$, then we can solve the problem using dynamic programming on the tree decomposition.

Running time:
6 If we can solve the problem using a width w tree decomposition in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

6 If we can solve the problem using a width w tree decomposition in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Contraction bidimensionality

Problem: Dominating SET is not minor-bidimensional (why?).

Contraction bidimensionality

Problem: Dominating SET is not minor-bidimensional (why?).
We fix the problem by allowing only contractions but not edge/vertex deletions.
Definition: A graph invariant $x(G)$ is contraction-bidimensional if
© $x\left(G^{\prime}\right) \leq x(G)$ for every contraction G^{\prime} of G, and
(6) If G_{k} is a $k \times k$ partially triangulated grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0)$.
Example: minimum dominating set, maximum independent set are contractionbidimensional.

Contraction bidimensionality

Problem: Dominating SET is not minor-bidimensional (why?).
We fix the problem by allowing only contractions but not edge/vertex deletions.
Definition: A graph invariant $x(G)$ is contraction-bidimensional if
© $x\left(G^{\prime}\right) \leq x(G)$ for every contraction G^{\prime} of G, and
6. If G_{k} is a $k \times k$ partially triangulated grid, then $x\left(G_{k}\right) \geq c k^{2}$ (for some constant $c>0$).

Example: minimum dominating set, maximum independent set are contractionbidimensional.

Bidimensionality for Dominating Set

The size of a minimum dominating set is a contraction bidimensional invariant:
we need at least $(k-2)^{2} / 9$ vertices to dominate all the internal vertices of a partially triangulated $k \times k$ grid (since a vertex can dominate at most 9 internal vertices).

We use this observation to solve Dominating Set on planar graphs as follows:
(6) Set $w:=3 \sqrt{k}+2$.

6 Use the 4-approximation tree decomposition algorithm.
Δ If treewidth is at least w : we answer 'dominating set is $\geq k$.
Δ If we get a tree decomposition of width $4 w$, then we can solve the problem in time $3^{w} \cdot n^{O(1)}=2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Fact: Given a tree decomposition of width w, Dominating Set can be solved in time $O^{*}\left(3^{w}\right)$.

Exercise: Given a tree decomposition of width w, Dominating Set can be solved in time $O^{*}\left(4^{w}\right)$.

Summary

(6) Notion of treewidth allows us to generalize dynamic programming on trees to more general graphs.
6. Standard techniques for designing algorithms on bounded treewidth graphs: dynamic programming and Courcelle's Theorem.
© Surprising uses of treewidth in other contexts (planar graphs).
Tomorrow: Bad news. Complexity results. Which problems are not FPT?

