

Fixed Parameter Algorithms

Dániel Marx

Tel Aviv University, Israel

Open lectures for PhD students in computer science

January 8, 2010, Warsaw, Poland

Fixed Parameter Algorithms – p.1/48

Recap of last lecture

- **Parameterized problem:** a parameter k is associated with each input instance.
- 6 A parameterized problem is fixed-parameter tractable (FPT) if it can be solved in time f(k) · n^c for some function f depending only on k and constant c not depending on k.
- We have seen that VERTEX COVER, *k*-PATH, BIPARTITE DELETION, CHORDAL COMPLETION etc. are FPT parameterized by the size *k* of the solution.
- We would like f(k) to be as slowly growing as possible (e.g., $O^*(1.2^k)$ is much better than $O^*(2^k)$).

Recap of last lecture

Techniques:

- 6 Kernelization: construct in polynomial time an equivalent instance of size bounded by some function f(k).
- 6 Bounded depth search trees: branch into a constant number of directions, decreasing the parameter in each step.
- 6 Iterative compression: given a solution of size k + 1, find a solution of size k.
- Graph Minors Theory: if a property is closed under taking minors, then powerful theorems immediately imply FPT algorithms.
- 6 Color coding: assign random colors and solve a "colorful" version of the problem.

- Introduction and definition
- 9 Part I: Algorithms for bounded treewidth graphs.
- 9 Part II: Graph-theoretic properties of treewidth.
- 9 Part III: Applications for general graphs.

PARTY PROBLE	M
Problem:	Invite some colleagues for a party.

- **Maximize:** The total fun factor of the invited people.
- **Constraint:** Everyone should be having fun.

PARTY PROBLE	M
Problem:	Invite some colleagues for a party.
Maximize:	The total fun factor of the invited people.
Constraint:	Everyone should be having fun.
	Do not invite a colleague and his direct boss at the same time!

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!

- Input: A tree with weights on the vertices.
- 5 Task: Find an independent set of maximum weight.

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!

- Input: A tree with weights on the vertices.
- 5 Task: Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

 T_v : the subtree rooted at v.

A[v]: max. weight of an independent set in T_v

B[v]: max. weight of an independent set in T_v that does not contain v

Goal: determine A[r] for the root r.

Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

 T_v : the subtree rooted at v.

A[v]: max. weight of an independent set in T_v

B[v]: max. weight of an independent set in T_v that does not contain v

Goal: determine A[r] for the root r.

Method:

Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations

$$B[v] = \sum_{i=1}^{k} A[v_i]$$

$$A[v] = \max\{B[v], w(v) + \sum_{i=1}^{k} B[v_i]\}$$

The values A[v] and B[v] can be calculated in a bottom-up order (the leaves are trivial).

Treewidth

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 \iff graph is a forest

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 \iff graph is a forest

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- 1. If *u* and *v* are neighbors, then there is a bag containing both of them.
- 2. For every vertex v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 \iff graph is a forest

Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w), but there is a polynomial-time algorithm for every fixed w.

Fact: [Bodlaender's Theorem] For every fixed w, there is a linear-time algorithm that finds a tree decomposition of width w (if exists).

- \Rightarrow Deciding if treewidth is at most *w* is fixed-parameter tractable.
- \Rightarrow If we want an FPT algorithm parameterized by treewidth *w* of the input graph, then we can assume that a tree decomposition of width *w* is available.

Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and an integer w, decide if the treewidth of G is at most w), but there is a polynomial-time algorithm for every fixed w.

Fact: [Bodlaender's Theorem] For every fixed w, there is a linear-time algorithm that finds a tree decomposition of width w (if exists).

 \Rightarrow Deciding if treewidth is at most w is fixed-parameter tractable.

 \Rightarrow If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Running time is $2^{O(w^3)} \cdot n$. Sometimes it is better to use the following results instead:

Fact: There is a $O(3^{3w} \cdot w \cdot n^2)$ time algorithm that finds a tree decomposition of width 4w + 1, if the treewidth of the graph is at most w.

Fact: There is a polynomial-time algorithm that finds a tree decomposition of width $O(w\sqrt{\log w})$, if the treewidth of the graph is at most *w*.

Part I:

Algoritmhs for bounded-treewidth graphs

WEIGHTED MAX INDEPENDENT SET and tree decompositions

Fact: Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^{w} \cdot n)$.

- B_x : vertices appearing in node x.
- V_x : vertices appearing in the subtree rooted at x.

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each **vertex** of the graph, we compute $2^{|B_x|} \leq 2^{w+1}$ values for each bag B_x .

M[x, S]: the maximum weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$. $\begin{array}{c}
c, d, f \\
b, c, f \\
b, e, f \\
b, e, f \\
g, h \\
\end{array}$ $\begin{array}{c}
\emptyset = ? & bc = ? \\
b = ? & cf = ? \\
c = ? & bf = ? \\
f = ? & bcf = ? \end{array}$

How to determine M[x, S] if all the values are known for the children of x?

Nice tree decompositions

Definition: A rooted tree decomposition is **nice** if every node *x* is one of the following 4 types:

- **Leaf:** no children, $|B_x| = 1$
- 6 **Introduce:** 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*
- **Forget:** 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v
- **5** Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

Fact: A tree decomposition of width *w* and *n* nodes can be turned into a nice tree decomposition of width *w* and O(wn) nodes in time $O(w^2n)$.

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

- **Leaf:** no children, $|B_x| = 1$ Trivial!
- 6 Introduce: 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v

$$m[x, S] = \begin{cases} m[y, S] & \text{if } v \notin S, \\ m[y, S \setminus \{v\}] + w(v) & \text{if } v \in S \text{ but } v \text{ has no neighbor in } S, \\ -\infty & \text{if } S \text{ contains } v \text{ and its neighbor.} \end{cases}$$

Fixed Parameter Algorithms - p.13/48

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

 $m[x, S] = \max\{m[y, S], m[y, S \cup \{v\}]\}$

5 Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

$$m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$$

Fixed Parameter Algorithms – p.13/48

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

5 Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v

 $m[x, S] = \max\{m[y, S], m[y, S \cup \{v\}]\}$

5 Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

$$m[x, S] = m[y_1, S] + m[y_2, S] - w(S)$$

There are at most $2^{w+1} \cdot n$ subproblems m[x, S] and each subproblem can be solved in constant time (assuming the children are already solved).

 \Rightarrow Running time is $O(2^{w} \cdot n)$.

⇒ WEIGHTED MAX INDEPENDENT SET is FPT parameterized by treewidth.

 \Rightarrow WEIGHTED MIN VERTEX COVER is FPT parameterized by treewidth.

3-COLORING and tree decompositions

Fact: Given a tree decomposition of width w, 3-COLORING can be solved in $O(3^{w} \cdot n)$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if *c* can be extended to a proper 3-coloring of V_x .

How to determine E[x, c] if all the values are known for the children of x?

3-COLORING and *nice tree decompositions*

- **Leaf:** no children, $|B_x| = 1$ Trivial!
- 6 Introduce: 1 child y, $B_x = B_y \cup \{v\}$ for some vertex vIf $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- **5** Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex vE[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y .

5 Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

3-COLORING and nice tree decompositions

- **Leaf:** no children, $|B_x| = 1$ Trivial!
- 6 Introduce: 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- **5** Forget: 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex vE[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_y .
- **5** Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

There are at most $3^{w+1} \cdot n$ subproblems E[x, c] and each subproblem can be solved in constant time (assuming the children are already solved).

- \Rightarrow Running time is $O(3^{w} \cdot n)$.
- \Rightarrow 3-COLORING is FPT parameterized by treewidth.

Fixed Parameter Algorithms – p.15/48

Vertex coloring

More generally:

Fact: Given a tree decomposition of width w, c-COLORING can be solved in $O^*(c^w)$.

Exercise: Every graph of treewidth at most w can be colored with w + 1 colors.

Fact: Given a tree decomposition of width w, VERTEX COLORING can be solved in time $O^*(w^w)$.

 \Rightarrow VERTEX COLORING is FPT parameterized by treewidth.

Fact: Given a tree decomposition of width w, HAMILTONIAN CYCLE can be solved in time $w^{O(w)} \cdot n$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

If *H* is a Hamiltonian cycle, then the subgraph $H[V_x]$ is a set of paths with endpoints in B_x .

What are the important properties of $H[V_x]$ "seen from the outside world"?

6 The subsets B_x^0 , B_x^1 , B_x^2 of B_x having degree 0, 1, and 2.

5 The matching M of B_x^1 .

Number of subproblems (B_x^0, B_x^1, B_x^2, M) for each node x: at most $3^w \cdot w^w$.

For each subproblem (B_x^0, B_x^1, B_x^2, M) , we have to determine if there is a set of paths with this pattern.

How to do this for the different types of nodes?

(Assuming that all the subproblems are solved for the children.)

Leaf: no children, $|B_x| = 1$

Trivial!

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Forget: 1 child *y*, $B_x = B_y \setminus \{v\}$ for some vertex *v*

In a solution *H* of (B_x^0, B_x^1, B_x^2, M) , vertex *v* has degree 2. Thus subproblem (B_x^0, B_x^1, B_x^2, M) of *x* is equivalent to subproblem $(B_x^0, B_x^1, B_x^2 \cup \{v\}, M)$ of *y*.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Forget: 1 child *y*, $B_x = B_y \setminus \{v\}$ for some vertex *v*

In a solution *H* of (B_x^0, B_x^1, B_x^2, M) , vertex *v* has degree 2. Thus subproblem (B_x^0, B_x^1, B_x^2, M) of *x* is equivalent to subproblem $(B_x^0, B_x^1, B_x^2 \cup \{v\}, M)$ of *y*.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Forget: 1 child *y*, $B_x = B_y \setminus \{v\}$ for some vertex *v*

In a solution *H* of (B_x^0, B_x^1, B_x^2, M) , vertex *v* has degree 2. Thus subproblem (B_x^0, B_x^1, B_x^2, M) of *x* is equivalent to subproblem $(B_x^0, B_x^1, B_x^2 \cup \{v\}, M)$ of *y*.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 1: $v \in B_x^0$. Subproblem is equivalent with $(B_x^0 \setminus \{v\}, B_x^1, B_x^2, M)$ for node y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 1: $v \in B_x^0$. Subproblem is equivalent with $(B_x^0 \setminus \{v\}, B_x^1, B_x^2, M)$ for node y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 1: $v \in B_x^0$. Subproblem is equivalent with $(B_x^0 \setminus \{v\}, B_x^1, B_x^2, M)$ for node y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 1: $v \in B_x^0$. Subproblem is equivalent with $(B_x^0 \setminus \{v\}, B_x^1, B_x^2, M)$ for node y.

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 2: $v \in B_x^1$. Every neighbor of v in V_x is in B_x . Thus v has to be adjacent with one other vertex of B_x .

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 2: $v \in B_x^1$. Every neighbor of v in V_x is in B_x . Thus v has to be adjacent with one other vertex of B_x .

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 2: $v \in B_x^1$. Every neighbor of v in V_x is in B_x . Thus v has to be adjacent with one other vertex of B_x .

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 2: $v \in B_x^1$. Every neighbor of v in V_x is in B_x . Thus v has to be adjacent with one other vertex of B_x .

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Case 2: $v \in B_x^1$. Every neighbor of v in V_x is in B_x . Thus v has to be adjacent with one other vertex of B_x .

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Introduce: 1 child *y*, $B_x = B_y \cup \{v\}$ for some vertex *v*

Solving subproblem (B_x^0, B_x^1, B_x^2, M) of node x.

Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

A solution *H* is the union of a subgraph $H_1 \subseteq G[V_{y_1}]$ and a subgraph $H_2 \subseteq G[V_{y_2}]$.

If H_1 is a solution for $(B_{y_1}^0, B_{y_1}^1, B_{y_1}^2, M_1)$ of node y_1 and H_2 is a solution for $(B_{y_2}^0, B_{y_2}^1, B_{y_2}^2, M_2)$ of node y_2 , then we can check if $H_1 \cup H_2$ is a solution for (B_x^0, B_x^1, B_x^2, M) of node x.

For any two subproblems of y_1 and y_2 , we check if they have solutions and if their union is a solution for (B_x^0, B_x^1, B_x^2, M) of node *x*.

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- 6 Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- 6 quantifiers \forall , \exists over vertex/edge variables
- 6 predicate adj(u, v): vertices u and v are adjacent
- 9 predicate inc(e, v): edge e is incident to vertex v
- \bigcirc quantifiers \forall , \exists over vertex/edge set variables
- \in \in , \subseteq for vertex/edge sets

Example: The formula $\exists C \subseteq V \forall v \in C \exists u_1, u_2 \in C(u_1 \neq u_2 \land \operatorname{adj}(u_1, v) \land \operatorname{adj}(u_2, v))$ is true ...

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- 6 Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- 6 quantifiers \forall , \exists over vertex/edge variables
- 6 predicate adj(u, v): vertices u and v are adjacent
- 9 predicate inc(e, v): edge e is incident to vertex v
- \bigcirc quantifiers \forall , \exists over vertex/edge set variables
- \in \in , \subseteq for vertex/edge sets

Example: The formula $\exists C \subseteq V \forall v \in C \exists u_1, u_2 \in C(u_1 \neq u_2 \land \operatorname{adj}(u_1, v) \land \operatorname{adj}(u_2, v))$ is true if graph G(V, E) has a cycle.

Courcelle's Theorem

Courcelle's Theorem: If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on *w* can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

Courcelle's Theorem

Courcelle's Theorem: If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Note: The constant depending on *w* can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

Can we express 3-COLORING and HAMILTONIAN CYCLE in EMSO?

3-COLORING

 $\exists C_1, C_2, C_3 \subseteq V (\forall v \in V (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \operatorname{adj}(u, v) \rightarrow (\neg (u \in C_1 \land v \in C_1) \land \neg (u \in C_2 \land v \in C_2) \land \neg (u \in C_3 \land v \in C_3)))$

3-COLORING

 $\exists C_1, C_2, C_3 \subseteq V (\forall v \in V (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \operatorname{adj}(u, v) \rightarrow (\neg (u \in C_1 \land v \in C_1) \land \neg (u \in C_2 \land v \in C_2) \land \neg (u \in C_3 \land v \in C_3)))$

HAMILTONIAN CYCLE

 $\exists H \subseteq E(\operatorname{spanning}(H) \land (\forall v \in V \operatorname{degree2}(H, v)))$

$$\begin{aligned} &\text{degree0}(H, v) := \neg \exists e \in H \text{ inc}(e, v) \\ &\text{degree1}(H, v) := \neg \text{degree0}(H, v) \land \left(\neg \exists e_1, e_2 \in H \left(e_1 \neq e_2 \land \text{inc}(e_1, v) \land \text{inc}(e_2, v)\right)\right) \\ &\text{degree2}(H, v) := \neg \text{degree0}(H, v) \land \neg \text{degree1}(H, v) \land \left(\neg \exists e_1, e_2, e_3 \in H \left(e_1 \neq e_2 \land e_2 \neq e_3 \land e_1 \neq e_3 \land \text{inc}(e_1, v) \land \text{inc}(e_2, v) \land \text{inc}(e_3, v)\right)\right) \\ &\text{spanning}(H) := \forall u, v \in V \exists P \subseteq H \forall x \in V \left(\left((x = u \lor x = v) \land \text{degree1}(P, x)\right) \lor (x \neq u \land x \neq v \land (\text{degree0}(P, x) \lor \text{degree2}(P, x)))\right) \end{aligned}$$

Two ways of using Courcelle's Theorem:

- 1. The problem can be described by a single formula (e.g, 3-COLORING, HAMILTONIAN CYCLE).
- \Rightarrow Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w.
- \Rightarrow Problem is FPT parameterized by the treewidth *w* of the input graph.

Two ways of using Courcelle's Theorem:

- 1. The problem can be described by a single formula (e.g, 3-COLORING, HAMILTONIAN CYCLE).
- \Rightarrow Problem can be solved in time $f(w) \cdot n$ for graphs of treewidth at most w.
- \Rightarrow Problem is FPT parameterized by the treewidth *w* of the input graph.
- 2. The problem can be described by a formula for each value of the parameter k.

Example: For each *k*, having a cycle of length exactly *k* can be expressed as

 $\exists v_1, \ldots, v_k \in V (\operatorname{adj}(v_1, v_2) \land \operatorname{adj}(v_2, v_3) \land \cdots \land \operatorname{adj}(v_{k-1}, v_k) \land \operatorname{adj}(v_k, v_1)).$

- \Rightarrow Problem can be solved in time $f(k, w) \cdot n$ for graphs of treewidth w.
- \Rightarrow Problem is FPT parameterized with combined parameter k and treewidth w.

SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)| (size of the small graph).

For each *H*, we can construct a formula ϕ_H that expresses "*G* has a subgraph isomorphic to *H*" (similarly to the *k*-cycle on the previous slide).

SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)| (size of the small graph).

For each *H*, we can construct a formula ϕ_H that expresses "*G* has a subgraph isomorphic to *H*" (similarly to the *k*-cycle on the previous slide).

⇒ By Courcelle's Theorem, SUBGRAPH ISOMORPHISM can be solved in time $f(H, w) \cdot n$ if *G* has treewidth at most *w*.

SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM: given graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)| (size of the small graph).

For each *H*, we can construct a formula ϕ_H that expresses "*G* has a subgraph isomorphic to *H*" (similarly to the *k*-cycle on the previous slide).

⇒ By Courcelle's Theorem, SUBGRAPH ISOMORPHISM can be solved in time $f(H, w) \cdot n$ if *G* has treewidth at most *w*.

⇒ Since there is only a finite number of simple graphs on k vertices, SUBGRAPH ISOMORPHISM can be solved in time $f(k, w) \cdot n$ if H has k vertices and G has treewidth at most w.

⇒ SUBGRAPH ISOMORPHISM is FPT parameterized by combined parameter k := |V(H)| and the treewidth *w* of *G*.

Part II:

Graph-theoretical properties of treewidth

Fact: treewidth $\leq 2 \iff$ graph is subgraph of a series-parallel graph

Fact: For every $k \ge 2$, the treewidth of the $k \times k$ grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If F is a **minor** of G, then the treewidth of F is at most the treewidth of G.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If F is a **minor** of G, then the treewidth of F is at most the treewidth of G.

The treewidth of the *k*-clique is k - 1. Follows from:

Fact: For every clique *K*, there is a bag *B* with $K \subseteq B$.

Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of *G* is at least $k^{4k^2(k+2)}$, then *G* has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large.

Fact: Every **planar graph** with treewidth at least 4k has $k \times k$ grid minor.

Excluded Grid Theorem

Fact: [Excluded Grid Theorem] If the treewidth of *G* is at least $k^{4k^2(k+2)}$, then *G* has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large.

Fact: Every **planar graph** with treewidth at least 4k has $k \times k$ grid minor.

Fact: Every **planar graph** with treewidth at least 4k can be contracted to a **partially triangulated** $k \times k$ grid.

The Robber and Cops game

Game: *k* cops try to capture a robber in the graph.

- 6 In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast on the edges, and sees where the cops will land.Fact:
- k + 1 cops can win the game \iff the treewidth of the graph is at most k.

The Robber and Cops game

Game: *k* cops try to capture a robber in the graph.

- 6 In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast on the edges, and sees where the cops will land.Fact:
- k + 1 cops can win the game \iff the treewidth of the graph is at most k.

The winner of the game can be determined in time $n^{O(k)}$ using standard techniques (there are at most n^k positions for the cops)

\Downarrow

For every fixed k, it can be checked in polynomial-time if treewidth is at most k.

The Robber and Cops game

Game: *k* cops try to capture a robber in the graph.

- 6 In each step, the cops can move from vertex to vertex arbitrarily with helicopters.
- The robber moves infinitely fast on the edges, and sees where the cops will land.Fact:
- k + 1 cops can win the game \iff the treewidth of the graph is at most k.

The winner of the game can be determined in time $n^{O(k)}$ using standard techniques (there are at most n^k positions for the cops)

\Downarrow

For every fixed k, it can be checked in polynomial-time if treewidth is at most k.

Exercise 1: Show that the treewidth of the $k \times k$ grid is at least k - 1.

Exercise 2: Show that the treewidth of the $k \times k$ grid is at least k.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.

Outerplanar graphs

Definition: A planar graph is **outerplanar** if it has a planar embedding where every vertex is on the infinite face.

Fact: Every outerplanar graph has treewidth at most 2.

 \Rightarrow Every outerplanar graph is series-parallel.

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition: A planar graph is *k***-outerplanar** if it has a planar embedding having at most *k* layers.

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition: A planar graph is *k***-outerplanar** if it has a planar embedding having at most *k* layers.

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition: A planar graph is *k***-outerplanar** if it has a planar embedding having at most *k* layers.

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition: A planar graph is *k***-outerplanar** if it has a planar embedding having at most *k* layers.

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition: A planar graph is *k***-outerplanar** if it has a planar embedding having at most *k* layers.

Part III: Applications

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

Layers of the planar graph: (as in the definition of *k*-outerplanar):

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)|.

Layers of the planar graph: (as in the definition of *k*-outerplanar):

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

Layers of the planar graph: (as in the definition of *k*-outerplanar):

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs H and G, find a copy of H in G as subgraph. Parameter k := |V(H)|.

Layers of the planar graph: (as in the definition of *k*-outerplanar):

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)|.

- 6 For a fixed $0 \le s < k + 1$, delete every layer L_i with $i = s \pmod{k + 1}$
- ⁶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ⁶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)|.

- 6 For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ⁶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ⁶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- We do this for every $0 \le s < k + 1$: for at least one value of *s*, we do not delete any of the *k* vertices of the solution \Rightarrow we find a copy of *H* in *G* if there is one.
- SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|. Fixed Parameter Algorithms – p.35/48

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)|.

- 6 For a fixed $0 \le s < k + 1$, delete every layer L_i with $i = s \pmod{k + 1}$
- ⁶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ⁶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- We do this for every $0 \le s < k + 1$: for at least one value of *s*, we do not delete any of the *k* vertices of the solution \Rightarrow we find a copy of *H* in *G* if there is one.
- SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|. Fixed Parameter Algorithms – p.35/48

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)|.

- 6 For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ⁶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ⁶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- We do this for every $0 \le s < k + 1$: for at least one value of *s*, we do not delete any of the *k* vertices of the solution \Rightarrow we find a copy of *H* in *G* if there is one.
- SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|. Fixed Parameter Algorithms – p.35/48

SUBGRAPH ISOMORPHISM for planar graphs: given planar graphs *H* and *G*, find a copy of *H* in *G* as subgraph. Parameter k := |V(H)|.

- 6 For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- ⁶ The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- ⁶ Using the $f(k, w) \cdot n$ time algorithm for SUBGRAPH ISOMORPHISM, the problem can be solved in time $f(k, 3k + 1) \cdot n$.
- We do this for every $0 \le s < k + 1$: for at least one value of *s*, we do not delete any of the *k* vertices of the solution \Rightarrow we find a copy of *H* in *G* if there is one.
- SUBGRAPH ISOMORPHISM for planar graphs is FPT parameterized by k := |V(H)|. Fixed Parameter Algorithms – p.35/48

Detour to approximation...

Detour to approximation algorithms

Definition: A *c***-approximation** algorithm for a maximization problem is a polynomial-time algorithm that finds a solution of cost at least OPT/c.

Definition: A *c***-approximation** algorithm for a minimization problem is a polynomial-time algorithm that finds a solution of cost at most OPT $\cdot c$.

There are well-known approximation algorithms for NP-hard problems: $\frac{3}{2}$ -approximation for METRIC TSP, 2-approximation for VERTEX COVER, $\frac{8}{7}$ -approximation for MAX 3SAT, etc.

Detour to approximation algorithms

Definition: A *c***-approximation** algorithm for a maximization problem is a polynomial-time algorithm that finds a solution of cost at least OPT/c.

Definition: A *c***-approximation** algorithm for a minimization problem is a polynomial-time algorithm that finds a solution of cost at most OPT $\cdot c$.

There are well-known approximation algorithms for NP-hard problems: $\frac{3}{2}$ -approximation for METRIC TSP, 2-approximation for VERTEX COVER, $\frac{8}{7}$ -approximation for MAX 3SAT, etc.

- ⁶ For some problems, we have lower bounds: there is no (2ϵ) -approximation for VERTEX COVER or $(\frac{8}{7} \epsilon)$ -approximation for MAX 3SAT (under suitable complexity assumptions).
- For some other problems, arbitrarily good approximation is possible in polynomial time: for any c > 1 (say, c = 1.000001), there is a polynomial-time c-approximation algorithm!

Approximation schemes

Definition: A polynomial-time approximation scheme (PTAS) for a problem *P* is an algorithm that takes an instance of *P* and a rational number $\epsilon > 0$,

- 6 always finds a $(1 + \epsilon)$ -approximate solution,
- 6 the running time is polynomial in *n* for every fixed $\epsilon > 0$.

Typical running times: $2^{1/\epsilon} \cdot n$, $n^{1/\epsilon}$, $(n/\epsilon)^2$, n^{1/ϵ^2} .

Some classical problems that have a PTAS:

- INDEPENDENT SET for planar graphs
- 5 TSP in the Euclidean plane
- STEINER TREE in planar graphs
- 6 KNAPSACK

Baker's shifting strategy for EPTAS

Fact: There is a $2^{O(1/\epsilon)} \cdot n$ time PTAS for INDEPENDENT SET for planar graphs.

- 6 Let $D := 1/\epsilon$. For a fixed $0 \le s < D$, delete every layer L_i with $i = s \pmod{D}$
- ⁶ The resulting graph is *D*-outerplanar, hence it has treewidth at most $3D + 1 = O(1/\epsilon)$.
- ⁶ Using the $O(2^{w} \cdot n)$ time algorithm for INDEPENDENT SET, the problem can be solved in time $2^{O(1/\epsilon)} \cdot n$.
- We do this for every $0 \le s < D$: for at least one value of s, we delete at most $1/D = \epsilon$ fraction of the solution \Rightarrow we get a $(1 + \epsilon)$ -approximate solution.

Back to FPT...

Depth-first search (DFS)

Fact: Finding a cycle of length **at least** *k* in a graph is FPT parameterized by *k*.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

- 6 If there is a back edge whose endpoints differ by at least k 1 levels \Rightarrow there is a cycle of length at least k.
- ⁶ Otherwise, the graph has treewidth at most k 2 and we can solve the problem by applying Courcelle's Theorem.

Depth-first search (DFS)

Fact: Finding a cycle of length **at least** *k* in a graph is FPT parameterized by *k*.

Let us start a depth-first search from an arbitrary vertex v. There are two types of edges: tree edges and back edges.

- 6 If there is a back edge whose endpoints differ by at least k 1 levels \Rightarrow there is a cycle of length at least k.
- Otherwise, the graph has treewidth at most k 2 and we can solve the problem by applying Courcelle's Theorem.

In the second case, a tree decomposition can be easily found: the decomposition has the same structure as the DFS spanning tree and each bag contains the vertex and its k - 2 ancestors.

Bidimensionality

A powerful framework to obtain efficient algorithms on planar graphs.

Let x(G) be some graph invariant (i.e., an integer associated with each graph). Some typical examples:

- 6 Maximum independent set size.
- 6 Minimum vertex cover size.
- 6 Length of the longest path.
- 6 Minimum dominating set size
- 6 Minimum feedback vertex set size.

Given G and k, we want to decide if $x(G) \le k$ (or $x(G) \ge k$).

For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Bidimensionality for VERTEX COVER

Observation: If the treewidth of a planar graph G is at least $4\sqrt{2k}$

- \Rightarrow It contains a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Excluded Grid Theorem for planar graphs)
- \Rightarrow The vertex cover size of the grid is at least k in the grid
- \Rightarrow Vertex cover size is at least k in G.

Bidimensionality for VERTEX COVER

Observation: If the treewidth of a planar graph *G* is at least $4\sqrt{2k}$

- \Rightarrow It contains a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Excluded Grid Theorem for planar graphs)
- \Rightarrow The vertex cover size of the grid is at least k in the grid
- \Rightarrow Vertex cover size is at least k in G.

We use this observation to solve VERTEX COVER on planar graphs as follows:

6 Set
$$w := 4\sqrt{2k}$$
.

- ⁶ Use the 4-approximation tree decomposition algorithm $(2^{O(w)} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$ time).
 - △ If treewidth is at least *w*: we answer 'vertex cover is $\geq k$ '.
 - △ If we get a tree decomposition of width 4w, then we can solve the problem in time $2^{w} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Bidimensionality (cont.)

Definition: A graph invariant x(G) is **minor-bidimensional** if

- $x(G') \le x(G)$ for every minor G' of G, and
- 6 If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Bidimensionality (cont.)

Definition: A graph invariant x(G) is **minor-bidimensional** if

- $x(G') \le x(G)$ for every minor G' of G, and
- 6 If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

Definition: A graph invariant x(G) is **minor-bidimensional** if

- $x(G') \le x(G)$ for every minor G' of G, and
- 6 If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

We can answer " $x(G) \ge k$?" for a minor-bidimensional parameter the following way:

- Set $w := c\sqrt{k}$ for an appropriate constant *c*.
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least w: x(G) is at least k.
 - If we get a tree decomposition of width 4w, then we can solve the problem using dynamic programming on the tree decomposition.

Running time:

- If we can solve the problem using a width *w* tree decomposition in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.
- If we can solve the problem using a width *w* tree decomposition in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Contraction bidimensionality

Problem: DOMINATING SET is **not** minor-bidimensional (why?).

Contraction bidimensionality

Problem: DOMINATING SET is **not** minor-bidimensional (why?).

We fix the problem by allowing only contractions but not edge/vertex deletions.

Definition: A graph invariant x(G) is **contraction-bidimensional** if

- *x*(*G*') ≤ *x*(*G*) for every contraction *G*' of *G*, and
- 6 If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Example: minimum dominating set, maximum independent set are contractionbidimensional.

Contraction bidimensionality

Problem: DOMINATING SET is **not** minor-bidimensional (why?).

We fix the problem by allowing only contractions but not edge/vertex deletions.

Definition: A graph invariant x(G) is **contraction-bidimensional** if

- *x*(*G*') ≤ *x*(*G*) for every contraction *G*' of *G*, and
- 6 If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Example: minimum dominating set, maximum independent set are contractionbidimensional.

Bidimensionality for DOMINATING SET

The size of a minimum dominating set is a **contraction bidimensional** invariant: we need at least $(k - 2)^2/9$ vertices to dominate all the internal vertices of a partially triangulated $k \times k$ grid (since a vertex can dominate at most 9 internal vertices).

We use this observation to solve DOMINATING SET on planar graphs as follows:

- 6 Set $w := 3\sqrt{k} + 2$.
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least w: we answer 'dominating set is $\geq k$ '.
 - If we get a tree decomposition of width 4w, then we can solve the problem in time $3^{w} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Fact: Given a tree decomposition of width w, DOMINATING SET can be solved in time $O^*(3^w)$.

Exercise: Given a tree decomposition of width w, DOMINATING SET can be solved in time $O^*(4^w)$.

- Solution of treewidth allows us to generalize dynamic programming on trees to more general graphs.
- Standard techniques for designing algorithms on bounded treewidth graphs: dynamic programming and Courcelle's Theorem.
- Surprising uses of treewidth in other contexts (planar graphs).

Tomorrow: Bad news. Complexity results. Which problems are not FPT?