Fixed Parameter Algorithms

Daniel Marx

Tel Aviv University, Israel

Open lectures for PhD students in computer science
December 12, 2009, Warsaw, Poland

Fixed Parameter Algorithms — p.1/98

Classical complexity

A brief review:

We usually aim for polynomial-time algorithms: the running time is O(n°®),
where n is the input size.

Classical polynomial-time algorithms: shortest path, mathching, minimum
spanning tree, 2SAT, convext hull, planar drawing, linear programming, etc.

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian cycle,
3-coloring, 3SAT, etc.

We expect that these problems can be solved only in exponential time (i.e., c").

Can we say anything nontrivial about NP-hard problems?

Fixed Parameter Algorithms — p.2/98

Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be ef cient on all inputs of si ze n, only for those
where K is small.

Fixed Parameter Algorithms — p.3/98

Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some parameter k of the

input.
In other words: we do not want to be ef cient on all inputs of si ze n, only for those
where K is small.
What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The diameter of the input graph.

The length of clauses in the input Boolean formula.

Fixed Parameter Algorithms — p.3/98

Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover Is it possible to nd

the edges with K vertices? K independent vertices?

< <

Complexity: NP-complete NP-complete

Fixed Parameter Algorithms — p.4/98

Problem:
Input:

Question:

Complexity:
Complete

enumeration:

Parameterized complexity

MINIMUM VERTEX COVER
Graph G, integer k

Is it possible to cover
the edges with k vertices?

<

NP-complete

O(nk) possibilities

MAXIMUM INDEPENDENT SET
Graph G, integer k

Is it possible to nd
K independent vertices?

<

NP-complete

O(nk) possibilities

Fixed Parameter Algorithms — p.4/98

Problem:
Input:

Question:

Complexity:
Complete

enumeration:

Parameterized complexity

MINIMUM VERTEX COVER
Graph G, integer k

Is it possible to cover
the edges with k vertices?

<

NP-complete
O(nk) possibilities

O(2¥n?) algorithm exists

©

MAXIMUM INDEPENDENT SET
Graph G, integer k

Is it possible to nd
K independent vertices?

<

NP-complete
O(nk) possibilities

No n°&) algorithm known

&

Fixed Parameter Algorithms — p.4/98

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

€ = Xay1

Fixed Parameter Algorithms — p.5/98

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1

X1 Y1

Fixed Parameter Algorithms — p.5/98

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1
X1 Y1

€ = XoY»

Fixed Parameter Algorithms — p.5/98

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1

X1 Y1

X2 Yo

Fixed Parameter Algorithms — p.5/98

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1

X1 Y1

X2 Y2 height: kK

Height of the search tree is k) number of leavesis 2%) complete search
requires 2¢ poly steps.

Fixed Parameter Algorithms — p.5/98

Fixed-parameter tractability

De nition: A parameterization of a decision problem is a function that assigns an
integer parameter k to each input instance Xx.

The parameter can be

explicit in the input (for example, if the parameter is the integer k appearing in
the input (G, k) of VERTEX COVER), or

implicit in the input (for example, if the parameter is the diameter d of the input
graph G).

Main de nition:

A parameterized problem is xed-parameter tractable (FPT) if there is an
f (k)n°® time algorithm for some constant c.

Fixed Parameter Algorithms — p.6/98

Fixed-parameter tractability

De nition: A parameterization of a decision problem is a function that assigns an
integer parameter k to each input instance Xx.

Main de nition:

A parameterized problem is xed-parameter tractable (FPT) if there is an

f (k)n°® time algorithm for some constant c.

Example: MiNIMUM VERTEX COVER parameterized by the required size k is FPT:
we have seen that it can be solved in time O (2% + n?).

Better algorithms are known: e.g, O(1.2832k + kjVj).

Main goal of parameterized complexity: to nd FPT problems.

Fixed Parameter Algorithms — p.6/98

FPT problems

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size K.
Finding a path of length k.
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.

Finding disjoint paths that connect k pairs of points.

Fixed Parameter Algorithms — p.7/98

FPT algorithmic techniques

Signi cant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree Q

Kernelization hs.\

Color coding \ ‘
=,
B ~:-\..:“

Treewuﬁtk' A30 ey Itefative compression

Fixed Parameter Algorithms — p.8/98

Downey-Fellows: Parameterized Complexity,
i Springer, 1999

Parameterized
Complexity Theory

Flum-Grohe: Parameterized Complexity Theory,
Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algo-
rithms, Oxford University Press, 2006.

Fixed Parameter Algorithms — p.9/98

Goals of the course

Demonstrate techniques that were successfully used in the analysis of
parameterized problems.

Determine quickly if a problem is FPT.

Design fast algorithms (improve the function f (k)).

Introduce the basics of parameterized hardness theory (W[1]-hardness).

Fixed Parameter Algorithms — p.10/98

Notes

Warning: The results presented for particular problems are not necessarily the
best known results or the most useful approaches for these problems.

Conventions:
Unless noted otherwise, K is the parameter.
O notation: O (f (k)) means O(f (k) n°) for some constant c.
Citations are mostly omitted (only for classical results).
We gloss over the difference between decision and search problems.

Fixed Parameter Algorithms — p.11/98

Kernelization

Fixed Parameter Algorithms — p.12/98

Kernelization

De nition: Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (1% k© such that

(1, k) is a yes-instance if and only if (1% k°) is a yes-instance,
k® k,and
jl9 f (k) for some function f (k).

Fixed Parameter Algorithms — p.13/98

Kernelization

De nition: Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (1% k© such that

(1, k) is a yes-instance if and only if (1% k°) is a yes-instance,
k® k,and
jl9 f (k) for some function f (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (1% k9 by brute force.

Fixed Parameter Algorithms — p.13/98

Kernelization

De nition: Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (1% k© such that

(1, k) is a yes-instance if and only if (1% k°) is a yes-instance,
k® k,and
il f(k) for some function f (k).
Simple fact: If a problem has a kernelization algorithm, then it is FPT.

Proof: Solve the instance (1% k9 by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f (k)n® algorithm for the problem.

If f (k) n, then solve the instance in time f (k)n® n°*%, and output a trivial
yes- or no-instance.

If n < f(k), then we are done: a kernel of size f (k) is obtained.

Fixed Parameter Algorithms — p.13/98

Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the
rules can be applied and the size of the instance is still larger than f (k), then the
answer is trivial.

Reduction rules for VERTEX COVER instance (G, k):

Rule 1. If v is an isolated vertex) (G nv,Kk)
Rule 2: Ifd(v) > k) (Gnv,k- 1)

Fixed Parameter Algorithms — p.14/98

Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the
rules can be applied and the size of the instance is still larger than f (k), then the
answer is trivial.

Reduction rules for VERTEX COVER instance (G, k):

Rule 1. If v is an isolated vertex) (G nv,Kk)
Rule 2: Ifd(v) > k) (Gnv,k- 1)

If neither Rule 1 nor Rule 2 can be applied:

If IV (G)] > k(k + 1)) There is no solution (every vertex should be the
neighbor of at least one vertex of the cover).

Otherwise, |V (G)] k(k + 1) and we have a k(k + 1) vertex kernel.

Fixed Parameter Algorithms — p.14/98

Kernelization for VERTEX COVER

Let us add a third rule:

Rule 1. If v is an isolated vertex) (G nv,Kk)

Rule 2: Ifd(v) > k) (Gnv,k- 1)

Rule 3: Ifd(v) = 1, then we can assume that its neighbor u is in the
solution) (Gn(u[v),k- 1).

If none of the rules can be applied, then every vertex has degree at least 2.
) IV(G)] JE(G))

If JE(G)j > k?) There is no solution (each vertex of the solution can cover at
most k edges).

Otherwise, jV (G)j JE(G)j k? and we have a k? vertex kernel.

Fixed Parameter Algorithms — p.15/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u; and u, are adjacent, then we
can assume that uq, U, are in the solution) (G nfuy, u,,vgk - 2).

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Correctness: G GO
Let S®be a vertex cover of size k - 1 for G°.

fu2S) (S°nu)[fuy, u.gis a vertex cover of size k for G.
Ifu62S) SO v is a vertex cover of size k for G.

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Correctness: G GO
Let S®be a vertex cover of size k - 1 for G°.

fu2S) (S°nu)[fuy, u.gis a vertex cover of size k for G.
Ifu62S) S°[v is a vertex cover of size k for G.

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Correctness: G GO
Let S®be a vertex cover of size k - 1 for G°.

fu2S) (S°nu)[fuy, u.gis a vertex cover of size k for G.
Ifu62S) S°[vis a vertex cover of size k for G.

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Correctness: G GO
Let S be a vertex cover of size k for G.

Ifu;,u,2S) (Snfug,uy,vg [uis a vertex cover of size k - 1 for G°
If exactly one of u; and us isin S,thenv 2 S) (Snfuy,u,,vg [uis avertex
cover of size k - 1 for G°

If u;,u, 625, thenv 2 S) (Snv)is a vertex cover of size k - 1 for G°

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Correctness: G GO
Let S be a vertex cover of size k for G.

Ifu;,u,2S) (Snfug,uy,vg [uis a vertex cover of size k - 1 for G°.
If exactly one of u; and us isin S,thenv 2 S) (Snfuy,u,,vg [uis avertex
cover of size k - 1 for G°.

If u;,u, 625, thenv 2 S) (Snv)is a vertex cover of size k - 1 for G°

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Correctness: G GO
Let S be a vertex cover of size k for G.

Ifu;,u,2S) (Snfug,uy,vg [uis a vertex cover of size k - 1 for G°.
If exactly one of u; and us isin S,thenv 2 S) (Snfuy,u,,vg [uis avertex
cover of size k - 1 for G°

If up, U, 62S,thenv 2 S) (Snv)is a vertex cover of size k - 1 for G°

Fixed Parameter Algorithms — p.16/98

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv) (G%k - 1).

Kernel size: G GO

If JE(G)j > k?) There is no solution (each vertex of the solution can cover at

most k edges).
Otherwise, jV (G)] 2JE(G)j=3 £k? and we have a £k? vertex kernel.

Fixed Parameter Algorithms — p.16/98

COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, nd k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus
there are at most n? candidate lines.

Fixed Parameter Algorithms — p.17/98

COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, nd k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus
there are at most n? candidate lines.

Fixed Parameter Algorithms — p.17/98

COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, nd k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus
there are at most n? candidate lines.

Reduction Rule:
If a candidate line covers a set S of more than k points) (P nS,k- 1).

If this rule cannot be applied and there are still more than k? points, then there is no

solution) Kernel with at most k? points.

Fixed Parameter Algorithms — p.17/98

Kernelization

Kernelization can be thought of as a polynomial-time preprocessing before
attacking the problem with whatever method we have. “It does no harm” to try
kernelization.

Some kernelizations use lots of simple reduction rules and require a
complicated analysis to bound the kernel size...

. while other kernelizations are based on surprising nice tricks (Next: Crown
Reduction and the Sun ower Lemma).

Possibility to prove lower bounds.

Fixed Parameter Algorithms — p.18/98

Crown Reduction

So <o
pro <o g

- ".llh'\-l‘i!r-i'l .-ll'..'“LH

Fixed Parameter Algorithms — p.19/98

Crown Reduction

De nition: A crown decomposition is a partition C[H [B of the vertices such
that

SENEVY P

C is an independent set, [\ \aéi ; V/\K}
H

there is no edge between C and B, \

there is a matching between C and H that //\/ \
B

covers H.

Fixed Parameter Algorithms — p.20/98

Crown Reduction

De nition: A crown decomposition is a partition C[H [B of the vertices such

that
SCIEVY FIp
C is an independent set, \. W%
E WX I
there is no edge between C and B, A
there is a matching between C and H that //\/ \
covers H. B

Crown rule for V. ERTEX COVER:
The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C)
) (Gn(H[C),k- JHJ).

Fixed Parameter Algorithms — p.20/98

Crown Reduction

De nition: A crown decomposition is a partition C[H [B of the vertices such
that

SENEVY P

C is an independent set, [\ A }

H
there is no edge between C and B, i A
there is a matching between C and H that / \
covers H. B

Crown rule for V. ERTEX COVER:
The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C)
) (Gn(H[C),k- JHJ).

Fixed Parameter Algorithms — p.20/98

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,
nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

Fixed Parameter Algorithms — p.21/98

Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,) No solution!
nd a crown decomposition,) Reduce!

or conclude that the graph has at most 3k vertices.
) 3k vertex kernel!

This gives a 3k vertex kernel for VERTEX COVER.

Fixed Parameter Algorithms — p.21/98

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,
nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Konig's Theorem.

(G) : size of the minimum vertex cover
(G) : size of the maximum matching (independent set of edges)

Theorem: [Konig, 1931] If G is bipartite, then

Fixed Parameter Algorithms — p.22/98

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial

time we can either

nd a matching of size k + 1,
nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest X |
of the graph is an independent set |. ¢ e’ o
o———O o (J (]

Fixed Parameter Algorithms — p.23/98

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial

time we can either

nd a matching of size k + 1,

nd a crown decomposition,

or conclude that the graph has at most 3k vertices.
Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest | [c v @ @ }
of the graph is an independent set |.

Find a maximum matching/minimum vertex cover in X[® o ¢ ¢ }
the bipartite graph between X and I.

Fixed Parameter Algorithms — p.23/98

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial

time we can either

nd a matching of size k + 1,

nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at least | [C ' 7]® @ }
one vertex of X

) There is a crown decomposition.

X(Hl® ® I)

Fixed Parameter Algorithms — p.23/98

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,
nd a crown decomposition,
or conclude that the graph has at most 3k vertices.
Proof:
Case 1: The minimum vertex cover contains at least | [YY) }

one vertex of X
) There is a crown decomposition.

X[o & & & |

Case 2: The minimum vertex cover contains only
vertices of |) It contains every vertex of |
) There are at most 2k + k vertices.

Fixed Parameter Algorithms — p.23/98

DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Fixed Parameter Algorithms — p.24/98

DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a distinct [
color.

"t 1AL C
W%

\
Because of the matching, it is possible to color [\ }‘ %\ : \] H

H using only these |Cj colors. /\/ \
These colors cannot be used for B. B

(Gn(H[C), k- JH))

Fixed Parameter Algorithms — p.24/98

DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a distinct [
color.

"L {AALL)C
| WA,%

\
Because of the matching, it is possible to color [\ }‘ %\ : \] H

H using only these |Cj colors. /\/ \
These colors cannot be used for B. B

(Gn(H[C), k- JH))

Fixed Parameter Algorithms — p.24/98

DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a distinct [
color.

"L {AALL) C
W%

\
Because of the matching, it is possible to color [\ /; %\ : \} H

H using only these |Cj colors. /\/ \
These colors cannot be used for B. B

(Gn(H[C), k- JH))

Fixed Parameter Algorithms — p.24/98

Crown Reduction for DUAL OF VERTEX
COLORING

Use the key lemma for the complement G of G:

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,) YES: we can save k colors!
nd a crown decomposition,) Reduce!

or conclude that the graph has at most 3k vertices.
) 3k vertex kernel!

This gives a 3k vertex kernel for DUAL OF VERTEX COLORING.

Fixed Parameter Algorithms — p.25/98

Sun ower Lemma

Fixed Parameter Algorithms — p.26/98

Sun ower lemma

De nition: Sets S, S,, ..., S¢ form a sun ower if the sets
Sn(sS\ S\ V) are disjoint.

Lemma: [Erdos and Rado, 1960] If the size of a set system is greater than

(p- 1)¢ d! and it contains only sets of size at most d, then the system contains a
sun ower with p petals. Furthermore, in this case such a sun ower can be foun d in
polynomial time.

Fixed Parameter Algorithms — p.27/98

Sun owers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer K,
nd a set S of k elements that intersects every set of S.

center

Reduction Rule: If k + 1 sets form a sun ower, then remove these sets from S
and add the center C to S (S does not hit one of the petals, thus it has to hit the
center).

Note: if the center is empty (the sets are disjoint), then there is no solution.

If the rule cannot be applied, then there are at most O (k) sets.

Fixed Parameter Algorithms — p.28/98

Sun owers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer K,
nd a set S of k elements that intersects every set of S.

>
A petals
center

Reduction Rule (variant): Suppose more than k + 1 sets form a sun ower.

If the sets are disjoint) No solution.

Otherwise, keep only k + 1 of the sets.

If the rule cannot be applied, then there are at most O (k) sets.

Fixed Parameter Algorithms — p.28/98

Branching and bounded search trees

Fixed Parameter Algorithms — p.29/98

Bounded search tree method

Recall how we solved MINIMUM VERTEX COVER:

€ = Xay1

X1 Y1

X2 Y2 height: kK

Fixed Parameter Algorithms — p.30/98

Bounded search tree method

We solve the problem by one or more branching rules.

Each rule makes a “guess” in such a way that at least one guess will lead to a
correct solution.

If we have branching rules such that
each rule branches into at most b(k) directions, and

applying a rule decreases the parameter,

then the problem can be solved in time O (b(k)*).

In many cases, this crude upper bound can be improved by better analysis.

Fixed Parameter Algorithms — p.31/98

VERTEX COVER

Improved algorithm for VERTEX COVER.

If every vertex has degree 2, then the problem can be solved in polynomial
time.

Branching rule: If there is a vertex v with at least 3 neighbors, then
either v is in the solution,

or every neighbor of v is in the solution.

Crude upper bound: O (2¥), since the branching rule decreases the parameter.

Fixed Parameter Algorithms — p.32/98

VERTEX COVER

Improved algorithm for VERTEX COVER.

If every vertex has degree 2, then the problem can be solved in polynomial
time.

Branching rule: If there is a vertex v with at least 3 neighbors, then
either v is in the solution,) k decreases by 1

or every neighbor of v is in the solution.) Kk decreases by at least 3

Crude upper bound: O (2¥), since the branching rule decreases the parameter.

But it is somewhat better than that, since in the second branch, the parameter de-

creases by at least 3.

Fixed Parameter Algorithms — p.32/98

Better analysis

Let t (k) be the maximum number of leaves of the search tree if the parameter is at
most Kk (lett(k) = 1fork 0).

t(k) t(k- 1)+ t(k- 3)

There is a standard technique for bounding such functions asymptotically.

Fixed Parameter Algorithms — p.33/98

Better analysis

Let t (k) be the maximum number of leaves of the search tree if the parameter is at
most Kk (lett(k) = 1fork 0).

t(k) t(k- 1D+ t(k- 3)
There is a standard technique for bounding such functions asymptotically.

We prove by induction thatt (k) c* for some ¢ > 1 as small as possible.

What values of ¢ are good? We need:

ck ¢

c’-c*-1 0

k-l+Ck-3

We need to nd the roots of the characteristic equation ¢3- ¢?- 1= 0.

Note: it is always true that such an equation has a unique positive root.

Fixed Parameter Algorithms — p.33/98

-3

Better analysis

-1

c = 1.4656is a good value) t(k)

) We have a O (1.4656) algorithm for VERTEX COVER.

08 0 0.5 15
1.4656

Fixed Parameter Algorithms — p.34/98

Better analysis

We showed thatif t(k) t(k- 1)+ t(k- 3),thent(k) 1.4656 holds.
Is this bound tight? There are two questions:

Can the function t (k) be that large?
Yes (ignoring rounding problems).

Can the search tree of the VERTEX COVER algorithm be that large?
Dif cult question, hard to answer in general.

Fixed Parameter Algorithms — p.35/98

Branching vectors

The branching vector of our O (1.4656%) VERTEX COVER algoritm was (1, 3).

Example: Let us bound the search tree for the branching vector (2,5, 6,6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

Fixed Parameter Algorithms — p.36/98

Branching vectors

The branching vector of our O (1.4656%) VERTEX COVER algoritm was (1, 3).

Example: Let us bound the search tree for the branching vector (2,5, 6,6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value ¢ > 1 has to satisfy:

c’- c®-c*-2c-2 0
Unique positive root of the characteristic equation: 1.4483) t(k) 1.448%.

It is hard to compare branching vectors intuitively.

Fixed Parameter Algorithms — p.36/98

Branching vectors

Example: The roots for branching vector (i,j) (1 1,] 6).

t(k) t(k- i)+ t(k-j)) ck ck T+ k!
c-c'-1 0

We compute the unique positive root.

1 2 3 4 5 6
1 | 20000 1.6181 14656 1.3803 1.3248 1.2852
2 | 1.6181 14143 1.3248 1.27/21 1.2366 1.2107
3 | 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740
4 | 13803 1.27/21 1.2208 1.1893 1.1674 1.1510
5| 13248 1.2366 1.1939 1.1674 1.1487 1.1348
6 | 1.2852 1.210/7/ 1.1740 1.1510 1.1348 1.1225

Fixed Parameter Algorithms — p.37/98

Forbidden subgraphs

Fixed Parameter Algorithms — p.38/98

Forbidden subgraphs

General problem class: Given a graph G and an integer k, transform G with at
most k modi cations (add/remove vertices/edges) into a graph hav ing property P.

Example:
TRIANGLE DELETION: make the graph triangle-free by deleting at most k vertices.

Branching algorithm:
If the graph is triangle-free, then we are done.

Branching rule: If there is a triangle v,V,V3, then at least one of vy, Vo, V3 has
to be deleted) We branch into 3 directions.

Fixed Parameter Algorithms — p.39/98

TRIANGLE DELETION

Search tree:

height k+ 1

The search tree has at most 3% leaves and the work to be done is polynomial at
eachstep) O (3%) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3% leaves.

Fixed Parameter Algorithms — p.40/98

Hereditary properties

De nition: A graph property P is hereditary if for every G 2 P and induced
subgraph G%of G, we have G°2 P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a (nite or
in nite) set F of forbidden induced subgraphs:

G2P() 8H2F,HG6i,3G

Fixed Parameter Algorithms — p.41/98

Hereditary properties

De nition: A graph property P is hereditary if for every G 2 P and induced
subgraph G%of G, we have G°2 P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a (nite or
in nite) set F of forbidden induced subgraphs:

G2P() 8H2F,HG6i,3G

Theorem: If P is hereditary and can be characterized by a nite set F of forbidden
induced subgraphs, then the graph modi cation problems cor responding to P are
FPT.

Fixed Parameter Algorithms — p.41/98

Hereditary properties

Theorem: If P is hereditary and can be characterized by a nite set F of forbidden

induced subgraphs, then the graph modi cation problems cor responding to P are
FPT.

Proof:

Suppose that every graph in F has at most r vertices. Using brute force, we
can ndintime O(n") a forbidden subgraph (if exists).

If a forbidden subgraph exists, then we have to delete one of the at most r
vertices or add/delete one of the at most ; edges

) Branching factor is a constant ¢ depending on F.

The search tree has at most ck leaves and the work to be done at each node is
o(n").

Fixed Parameter Algorithms — p.42/98

CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

L NP>

Fixed Parameter Algorithms — p.43/98

CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

oo

Fixed Parameter Algorithms — p.43/98

CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

> >

*—Oo ®

Fixed Parameter Algorithms — p.43/98

CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

> >

*—Oo ®

Property P: every component is a clique.

Fixed Parameter Algorithms — p.43/98

CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

> >

*—Oo ®

Property P: every component is a clique.

Forbidden induced subgraph:

O (3%) time algorithm.

Fixed Parameter Algorithms — p.43/98

CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

Fixed Parameter Algorithms — p.44/98

CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
) Not a nite set!

Fixed Parameter Algorithms — p.44/98

CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
) Not a nite set!

Lemma: Atleastk - 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Fixed Parameter Algorithms — p.44/98

CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
) Not a nite set!

Lemma: Atleastk - 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Cy: x- 3edges
Ck- x+2: K- X - 1edges
Ci Ce: (X- 3)+(k- x- 1)+ 1= k- 3

edges

Fixed Parameter Algorithms — p.44/98

CHORDAL COMPLETION

Algorithm:

Find an induced cycle C of length at least 4 (can be done in polynomial time).

If no such cycle exists) Done!
If C has more than k + 3 vertices) No solution!
Otherwise, one of the
IC]
2
missing edges has to be added) Branch!

Size of the search tree is k°(K)

G (k+ 3)(k+ 2)=2- k = O(K?)

Fixed Parameter Algorithms — p.45/98

CHORDAL COMPLETION — more ef ciently

De nition: Triangulation of a cycle.

Lemma: Every chordal supergraph of a cycle C contains a triangulation of the
cycle C.

Lemma: The number of ways a cycle of length k can be triangulated is exactly the
(k - 2)-nd Catalan number
1 2(k- 2

Ck-2= ——

k- 3
k-1 k-2 e

Fixed Parameter Algorithms — p.46/98

CHORDAL COMPLETION — more ef ciently

Algorithm:
Find an induced cycle C of length at least 4 (can be done in polynomial time).
If no such cycle exists) Done!

If C has more than k + 3 vertices) No solution!

Otherwise, one of the 4~ 3 triangulations has to be in the solution)
Branch!

Claim: Search tree has at most T = 4X leaves.
Proof: By induction. Number of leaves is at most

iCj- 3 . ICj- 3 pk-(|Cj- 3) = gk
T 49°% T iy 43 4 4.

Fixed Parameter Algorithms — p.47/98

Iterative compression

Fixed Parameter Algorithms — p.48/98

Iterative compression

A surprising small, but very powerful trick.
Most useful for deletion problems: delete k things to achieve some property.

Demonstration: Obb CYCLE TRANSVERSAL aka BIPARTITE DELETION aka

GRAPH BIPARTIZATION: Given a graph G and an integer k, delete k vertices to
make the graph bipartite.

Forbidden induced subgraphs: odd cycles. There is no bound on the size of
odd cycles.

Fixed Parameter Algorithms — p.49/98

BIPARTITE DELETION

Solution based on iterative compression:

Step 1.
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W V (G), and an integer k, nd
a set S of at most k vertices such that G n S has a 2-coloring where
B nSis black and W n S is white.

Fixed Parameter Algorithms — p.50/98

BIPARTITE DELETION

Solution based on iterative compression:

Step 1.
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W V (G), and an integer k, nd
a set S of at most k vertices such that G n S has a 2-coloring where
B nSis black and W n S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S°of k + 1 vertices such that
G nSYis bipartite, nd a set S of k vertices such that G n S is bipartite.

Fixed Parameter Algorithms — p.50/98

BIPARTITE DELETION

Solution based on iterative compression:

Step 1.
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W V (G), and an integer k, nd
a set S of at most k vertices such that G n S has a 2-coloring where
B nSis black and W n S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S°of k + 1 vertices such that
G nSYis bipartite, nd a set S of k vertices such that G n S is bipartite.

Step 3:
Apply the magic of iterative compression...

Fixed Parameter Algorithms — p.50/98

Step 1. The annotated problem

Given a bipartite graph G, two sets B,W V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis blackand W nS
IS white.

Fixed Parameter Algorithms — p.51/98

Step 1. The annotated problem

Given a bipartite graph G, two sets B,W V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis blackand W nS

IS white.
Bo Wo
-
B
wW
I\

Find an arbitrary 2-coloring (Bg, Wy) of G.

Fixed Parameter Algorithms — p.51/98

Step 1. The annotated problem

Given a bipartite graph G, two sets B,W V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis blackand W nS
IS white.

Bo Wy
4)
B
W
- J

Find an arbitrary 2-coloring (Bg, Wy) of G.
C:=(Bo\ W)[(Wg\ B) should change color, while R := (Bg\ B)[(Wo\ W)
should remain the same color.

Fixed Parameter Algorithms — p.51/98

Step 1. The annotated problem

Given a bipartite graph G, two sets B,W V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis black and W nS
IS white.

Bo Wy
4)

B

W
- J

Find an arbitrary 2-coloring (Bg, Wy) of G.
C:=(Bo\ W)[(Wg\ B) should change color, while R := (Bg\ B)[(Wo\ W)
should remain the same color.

Lemma: G nS has the required 2-coloring if and only if S separates C and R, i.e.,
no component of G N S contains vertices from bothCnSand RnS.

Fixed Parameter Algorithms — p.51/98

Step 1. The annotated problem

Lemma: G n S has the required 2-coloring if and only if S separates C and R, i.e.,
no component of G NS contains vertices from bothCnSand RnS.

Proof:

) Ina2-coloring of G nS, each vertex either remained the same color or changed
color. Adjacent vertices do the same, thus every component either changed or
remained.

(Flip the coloring of those components of G n S that contain vertices from C n S.
No vertex of R is ipped.

Algorithm: Using max- ow min-cut techniques, we can check if thereisaset S
that separates C and R. It can be done in time O(kJE(G)]) using Kk iterations of the
Ford-Fulkerson algorithm.

Fixed Parameter Algorithms — p.52/98

Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

4)

Fixed Parameter Algorithms — p.53/98

Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis

bipartite, nd a set S of k vertices such that G n S is bipartite.

/

-

AN

~

I

A 1N

/

Vi3

dée

o‘—o) SO

black white deleted

Branch into 3¥* 1 cases: each vertex of S%is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.

Fixed Parameter Algorithms — p.53/98

Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

4 W)

S

AN |
VI s

black white deleted

Branch into 3¥* ! cases: each vertex of S%is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S®should be white and the neighbors of the

white vertices in S°should be black.

Fixed Parameter Algorithms — p.53/98

Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

4 W B)

- /V J
AN |
VI s

black white deleted

Branch into 3¥* ! cases: each vertex of S%is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S®should be white and the neighbors of the

white vertices in S°should be black.

Fixed Parameter Algorithms — p.53/98

Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

D

~

The vertices of S°can be disregarded. Thus we need to solve the annotated
problem on the bipartite graph G n S°.

Running time: O(3% kjE(G)j) time.

Fixed Parameter Algorithms — p.53/98

Step 3: lterative compression

How do we get a solution of size k + 1?

Fixed Parameter Algorithms — p.54/98

Step 3: lterative compression

How do we get a solution of size k + 1?

We get it for free!

Fixed Parameter Algorithms — p.54/98

Step 3: lterative compression

How do we get a solution of size k + 1?
We get it for free!
Let V(G) = fvy, ..., vhagand let G; be the graph induced by fvq, ..., vig

For every i, we nd a set § of size k such that G n§ is bipartite.

For G, the set S = fvq, ..., W Qis a trivial solution.

If Si. 1 is known, then §_ 1 [fv;gis a set of size k + 1 whose deletion makes G
bipartite) We can use the compression algorithm to nd a suitable § in time
O(3“ KIE(G))).

Fixed Parameter Algorithms — p.54/98

Step 3: Iterative Compression

Bipartite-Deletion(G, k)
1. S = fvq, ..., w(g
fori:=k+ 1ton

. Invariant: G;. 1 n§. 1 is bipartite.

2
3
4. Call Compression(G,S. 1 [fvig
5 If the answer is “NO”) return “NO”
6 If the answerisasetX) § =X
7. Return the set S,

Running time: the compression algorithm is called n times and everything else
can be done in linear time

) O(3% KkjV(G)j JE(G)j) time algorithm.

Fixed Parameter Algorithms — p.55/98

Graph Minors

Neil Robertson Paul Seymour

Fixed Parameter Algorithms — p.56/98

Graph Minors

Some consequences of the Graph Minors Theorem give a quick way of
showing that certain problems are FPT.

However, the function f (k) in the resulting FPT algorithms can be HUGE,
completely impractical.

History: motivation for FPT.
Parts and ingredients of the theory are useful for algorithm design.

New algorithmic results are still being developed.

Fixed Parameter Algorithms — p.57/98

Graph Minors

De nition: GraphHisaminor G (H G)if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

N

u Y
deleting LV \::ntracting uv
u Y W

Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., itis

not a forest).

Fixed Parameter Algorithms — p.58/98

Graph minors

Equivalent de nition: Graph H is a minor of G if there is a mapping that maps
each vertex of H to a connected subset of G such that

(u) and (v) are disjointifu & v, and

if uv 2 E(G), then there is an edge between (u) and (V).

@A
4

o)

)
&

N o = = = o e e o o

4
1

Fixed Parameter Algorithms — p.59/98

Minor closed properties

De nition: A set Gof graphs is minor closed if whenever G 2 Gand H G, then
H 2 Gas well.

Examples of minor closed properties:
planar graphs
acyclic graphs (forests)
graphs having no cycle longer than k
empty graphs

Examples of not minor closed properties:
complete graphs
regular graphs
bipartite graphs

Fixed Parameter Algorithms — p.60/98

Forbidden minors

Let Gbe a minor closed set and let F be the set of “minimal bad graphs™ H 2 F if
H 62G, but every proper minor of H is in G

Characterization by forbidden minors:

G2G() 8H2F,H6 G

The set F is the obstruction set of property G

Fixed Parameter Algorithms — p.61/98

Forbidden minors

Let Gbe a minor closed set and let F be the set of “minimal bad graphs™ H 2 F if
H 62G, but every proper minor of H is in G

Characterization by forbidden minors:

G2G() 8H2F,H6 G

The set F is the obstruction set of property G

Theorem: [Wagner] A graph is planar if and only if it does not have a Ks or K3 3
minor.

In other words: the obstruction set of planarity is F = fKs, K330

Does every minor closed property have such a nite character ization?

Fixed Parameter Algorithms — p.61/98

Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property Ghas a nite
obstruction set.

Note: The proof is contained in the paper series “Graph Minors I-XX”.

Note: The size of the obstruction set can be astronomical even for simple
properties.

Fixed Parameter Algorithms — p.62/98

Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property Ghas a nite
obstruction set.

Note: The proof is contained in the paper series “Graph Minors I-XX”.
Note: The size of the obstruction set can be astronomical even for simple
properties.

Theorem: [Robertson and Seymour] For every xed graph H, there is an O(n®)
time algorithm for testing whether H is a minor of the given graph G.

Corollary: For every minor closed property G, there is an O(n?) time
algorithm for testing whether a given graph G is in G

Fixed Parameter Algorithms — p.62/98

Applications

PLANAR FACE CoVER: Given a graph G and an integer k, nd an embedding of
planar graph G such that there are k faces that cover all the vertices.

One line argument:

For every xed K, the class G, of graphs of yes-instances is minor closed.
+

For every xed Kk, there is a O(n®) time algorithm for PLANAR FACE COVER.

Note: non-uniform FPT.

Fixed Parameter Algorithms — p.63/98

Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, nd a spanning tree
with at least k leaves.

Technical modi cation: Is there such a spanning tree for at | east one component of
G?

One line argument:

For every xed K, the class G of no-instances is minor closed.
+

For every xed k, k-LEAF SPANNING TREE can be solved in time O(n3).

Fixed Parameter Algorithms — p.64/98

G+ k vertices

Let Gbe a graph property, and let G+ kv contain graph G if there is a set
S V(G) of k verticessuchthat GnS 2 G

Lemma: If Gis minor closed, then G+ kv is minor closed for every xed K.
) Itis (nonuniform) FPT to decide if G can be transformed into a member of G by
deleting k vertices.

Fixed Parameter Algorithms — p.65/98

G+ k vertices

Let Gbe a graph property, and let G+ kv contain graph G if there is a set
S V(G) of k verticessuchthat GnS 2 G

Lemma: If Gis minor closed, then G+ kv is minor closed for every xed K.
) Itis (nonuniform) FPT to decide if G can be transformed into a member of G by
deleting k vertices.

If G= forests) G+ kv = graphs that can be made acyclic by the deletion of k
vertices) FEEDBACK VERTEX SET is FPT.

If G= planar graphs) G+ kv = graphs that can be made planar by the
deletion of k vertices (k-apex graphs)) k-APEX GRAPH is FPT.

If G= empty graphs) G+ kv = graphs with vertex cover number at most k)
VERTEX COVER |S FPT. Fixed Parameter Algorithms — p.65/98

Color coding

Color coding

Works best when we need to ensure that a small number of “things” are
disjoint.
We demonstrate it on the problem of nding an s-t path of length exactly k.

Randomized algorithm, but can be derandomized using a standard technique.

Very robust technigue, we can use it as an “opening step” when investigating a
new problem.

Fixed Parameter Algorithms — p.67/98

K-PATH

Task: Given a graph G, an integer Kk, two vertices s, t, nd a simple s-t path with
exactly k internal vertices.

Note: Finding such a walk can be done easily in polynomial time.

Note: The problem is clearly NP-hard, as it contains the s-t HAMILTONIAN PATH
problem.

The k-PATH algorithm can be used to check if there is a cycle of length exactly Kk in
the graph.

Fixed Parameter Algorithms — p.68/98

K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

S\TI Z

random.

Fixed Parameter Algorithms — p.69/98

K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

S.\Tl .I;

random.

Fixed Parameter Algorithms — p.69/98

K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

random.

S \I l /I t
Check if there is a colorful s-t path: a path where each color appears exactly
once on the internal vertices; output “YES” or “NO”.

Fixed Parameter Algorithms — p.69/98

K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

random.

S \I l /I t
Check if there is a colorful s-t path: a path where each color appears exactly
once on the internal vertices; output “YES” or “NO”.

If there is no s-t k -path: no such colorful path exists) “NO”.

If there is an s-t k -path: the probability that such a path is colorful is
Kk
k! S (g)k - e k
kK kk ’
thus the algorithm outputs “YES” with at least that probability.

Fixed Parameter Algorithms — p.69/98

Error probability

Useful fact: If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1=p repetitions is at most

(1- p)*P < (e WP =1= 0.38

Thus if p > e K, then error probability is at most 1=e after eX repetitions.
P

Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.

For example, by trying 100 e random colorings, the probability of a wrong

answer is at most 1=e1099,

Fixed Parameter Algorithms — p.70/98

Error probability

Useful fact: If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1=p repetitions is at most

(1- p)*P < (e WP =1= 0.38

Thus if p > e K, then error probability is at most 1=e after eX repetitions.
P

Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.

For example, by trying 100 e random colorings, the probability of a wrong

answer is at most 1=e1099,

It remains to see how a colorful s-t path can be found.

Method 1: Trying all permutations.
Method 2: Dynamic programming.

Fixed Parameter Algorithms — p.70/98

Method 1: Trying all permutations

The colors encountered on a colorful s-t path form a permutation of f1,2,...,kg

S t
® ® ® o o

°
(1) (2) (K)

We try all possible k! permutations. For a xed , it is easy to check if there is a
path with this order of colors.

Fixed Parameter Algorithms — p.71/98

Method 1: Trying all permutations

to check if there is a

>

We try all possible k! permutations. Fora xed , itis easy
path with this order of colors.
™~ ™~
s E T~ M
—] //
— — J . J
(1) (2) (k)

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! JE(G))).

Fixed Parameter Algorithms — p.72/98

We try all possible k! permutations. For a xed

Method 1: Trying all permutations

path with this order of colors.

E<

-

Edges connecting nonadjacent color classes are removed.

—

(1)

-
[P s

—

(2)

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! JE(G))).

~~
' N\ S N\
\
\
/

J

(k)

>

, it IS easy to check if there is a

Fixed Parameter Algorithms — p.72/98

We try all possible k! permutations. For a xed

Method 1: Trying all permutations

path with this order of colors.

e

~
J

2 B

Edges connecting nonadjacent color classes are removed.

|

(1)

Y

—

—

(2)

The remaining edges are directed.

, it IS easy to check if there is a

All we need to check if there is a directed s-t path.

Running time is O(k! JE(G))).

> >
B4

Fixed Parameter Algorithms — p.72/98

Method 2: Dynamic Programming

We introduce 2¢ jV (G)j Boolean variables:

X(v,C) = TRUE forsomev 2 V(G) and C [K]
m
There is an s-v path where each color in C appears exactly once

and no other color appears.

Fixed Parameter Algorithms — p.73/98

Method 2: Dynamic Programming

We introduce 2¢ jV (G)j Boolean variables:

X(v,C) = TRUE forsomev 2 V(G) and C [K]
m
There is an s-v path where each color in C appears exactly once

and no other color appears.

Clearly, X(s,;) = TRUE. Recurrence for vertex v with color r:

x(v,C)= x(u,Cnfrg
uv2 E(G)

Fixed Parameter Algorithms — p.73/98

Method 2: Dynamic Programming

We introduce 2¢ jV (G)j Boolean variables:

X(v,C) = TRUE forsomev 2 V(G) and C [K]
m
There is an s-v path where each color in C appears exactly once

and no other color appears.

Clearly, X(s,;) = TRUE. Recurrence for vertex v with color r:

x(v,C)= x(u,Cnfrg
uv2 E(G)

If we know every x(v, C) with JCj = i, then we can determine every x(v, C) with
jCj= i+ 1) Allthe values can be determined in time O(2¢ JjE(G)j).

There is a colorful s-t path () X(Vv, [K]) = TRUE for some neighbor of t.

Fixed Parameter Algorithms — p.73/98

Derandomization

Using Method 2, we obtain a O ((2e)X) time algorithm with constant error
probability. How to make it deterministic?

De nition: A family H of functions [n] ! [K] is a k-perfect family of hash
functions if for every S [n] with jSj = k, thereisa h 2 H such that h(x) 6 h(y)

forany X,y 2 S, x 6 vy.

Fixed Parameter Algorithms — p.74/98

Derandomization

Using Method 2, we obtain a O ((2e)X) time algorithm with constant error
probability. How to make it deterministic?

De nition: A family H of functions [n] ! [K] is a k-perfect family of hash
functions if for every S [n] with jSj = k, thereisa h 2 H such that h(x) 6 h(y)
forany X,y 2 S, x 6 vy.

Instead of trying O(eX) random colorings, we go through a k-perfect family H of
functions V (G) ! [k]. If there is a solution) The internal vertices S are colorful
for at leastone h 2 H) Algorithm outputs “YES”.

Fixed Parameter Algorithms — p.74/98

Derandomization

Using Method 2, we obtain a O ((2e)X) time algorithm with constant error
probability. How to make it deterministic?

De nition: A family H of functions [n] ! [K] is a k-perfect family of hash
functions if for every S [n] with jSj = k, thereisa h 2 H such that h(x) 6 h(y)
forany X,y 2 S, x 6 vy.

Instead of trying O(eX) random colorings, we go through a k-perfect family H of
functions V (G) ! [k]. If there is a solution) The internal vertices S are colorful
for at leastone h 2 H) Algorithm outputs “YES”.

Theorem: There is a k-perfect family of functions [n] ! [k] having size 2°(K) logn
(and can be constructed in time polynomial in the size of the family).

) There is a deterministic 2°(K) n°W time algorithm for the k-PATH problem.

Fixed Parameter Algorithms — p.74/98

Cut problems

t_-_ [l. _-_..-_
»

5

Fixed Parameter Algorithms — p.75/98

MULTIWAY CUT

Task: Given a graph G, aset T of vertices, and an integer k, nd a set S of at
most k edges that separates T (each component of G n S contains at most one
vertex of T).

Polynomial for jT | = 2, but NP-hard for jT | = 3.
Theorem: MULTIWAY cuUT is FPT parameterized by K.

4 \S/)

=0

(R): set of edges leaving R

(X,Y): minimum number of edges in an (X, Y)-separator

Fixed Parameter Algorithms — p.76/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))
0 1 1 0

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))
1 0 1 0

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))
0 1 0 1

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))
1 0 0 1

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))
1 1 1 1

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) +] (B) J (A\ B)] +] (A[B))
1 1 0 0

Proof. Determine separately the contribution of the different types of edges.

Fixed Parameter Algorithms — p.77/98

Submodularity

Consequence: There is a unique maximal Rnax X such that (Rnyay) is an
(X,Y)-separator of size (X,Y).

Proof: LetR;,R, X betwo sets suchthat (R;), (R,) are (X,Y)-separators of

o

size = (X,Y).

S

J (R +] (R)] J (ReVRo)) + | (Ri[R2))

) 1 (R Ra)j

Note: Analogous result holds for a uniqgue minimal Ryn.

Fixed Parameter Algorithms — p.78/98

MULTIWAY CUT

Intuition: Considerat 2 T. A subset of the solution separatest and T nt.

‘f—l-

Fixed Parameter Algorithms — p.79/98

MULTIWAY CUT

Intuition: Considerat 2 T. A subset of the solution separatest and T nt.

ﬁﬁ

.r—l—

There are many such separators.

Fixed Parameter Algorithms — p.79/98

MULTIWAY CUT

Intuition: Considerat 2 T. A subset of the solution separatest and T nt.

.r—l—

There are many such separators.

Fixed Parameter Algorithms — p.79/98

MULTIWAY CUT

Intuition: Considerat 2 T. A subset of the solution separatest and T nt.

e o
°®
{
o \\\
o
e o

There are many such separators.

But a separator farther fromt and closerto T nt seems to be more useful.

Fixed Parameter Algorithms — p.79/98

Important separators

De nition: An (X, Y)-separator (R) is important if there is no (X, Y)-separator
(RYwithR R%andj (R9j j (R)j.

XA 2

|
T2

Fixed Parameter Algorithms — p.80/98

Important separators

De nition: An (X, Y)-separator (R) is important if there is no (X, Y)-separator
(RYwithR R%andj (R9j j (R)j.

) R
0k /
o [Y
X B A e
o (RO x
R __
RO

Fixed Parameter Algorithms — p.80/98

Important separators

De nition: An (X, Y)-separator (R) is important if there is no (X, Y)-separator
(RYwithR R%andj (R9j j (R)j.

(R)

XA 2

|
T2

Fixed Parameter Algorithms — p.80/98

MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Fixed Parameter Algorithms — p.81/98

MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

o o
t \\\ o
° /
o
R ’/
o o

Fixed Parameter Algorithms — p.81/98

MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

/

/

RO
If (R) is not important, then there is an important separator (R% with R R?°
andj (R9j] j (R)j. Replace SwithS°:=(Sn (R))[(RY) jSY |Sj

Fixed Parameter Algorithms — p.81/98

MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

. e o
t \\ °
® | TT---0TTT . u
)
V
R T4 - - O
RO

If (R) is not important, then there is an important separator (R% with R R?°
andj (R9j] j (R)j. Replace SwithS°:=(Sn (R))[(RY) jSY |Sj

S%is a multiway cut: A u-v path in G n S®implies a u-t path, a contradiction.

Fixed Parameter Algorithms — p.81/98

MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

I o (]
<
{ N o
‘~ .-t TTTTTA S~ u
9
R <77 v
H—1i-{-0 @
RO

If (R) is not important, then there is an important separator (R% with R R?°
andj (R9j] j (R)j. Replace SwithS°:=(Sn (R))[(RY) jSY |Sj

S%is a multiway cut: A u-v path in G n S®implies a u-t path, a contradiction.

Fixed Parameter Algorithms — p.81/98

Important separators

Lemma: There are at most 4 important (X, Y)-separators of size at most k.

Example:

There are exactly 22 important (X, Y)-separators of size at most Kk in this graph.
y P

Fixed Parameter Algorithms — p.82/98

Important separators

Lemma: There are at most 4 important (X, Y)-separators of size at most k.

Proof: First we show that R,.x R for every important separator (R).

J (Rmad)]] (R)] J (Rmax\ R)] +] (Rmax [R)J
+
] (Rmax [R)]] (R)]
+

IfR 6 Ry [R,then (R) is notimportant.

Thus the important (X, Y)- and (Ryax, Y)-separators are the same.
) We can assume X = Ryay.

Fixed Parameter Algorithms — p.83/98

Important separators

Lemma: There are at most 4 important (X, Y)-separators of size at most k.

Search tree algorithm for nding all these separators:

An (arbitrary) edge uv leaving X = Ry, IS either in the separator or not.

Branch 1: If uv 2 S, then S nuv is an important
(X,Y)-separator of size at mostk - 1in G nuv.

Branch 2: If uv 625, then S is an important X =

u |v
o

(X [v, Y)-separator of size at most k in G.

Fixed Parameter Algorithms — p.84/98

Important separators

Lemma: There are at most 4 important (X, Y)-separators of size at most k.
Search tree algorithm for nding all these separators:

An (arbitrary) edge uv leaving X = Ry, IS either in the separator or not.

Branch 1: If uv 2 S, then S nuv is an important
(X,Y)-separator of size at mostk - 1in G nuv.

) k decreases by one, decreases by at most 1.

Branch 2: If uv 625, then S is an important
(X [v, Y)-separator of size at most k in G.

X = Ry u%y

) k remains the same, increases by 1.

The measure 2k - decreases in each step.
) Height of the search tree 2k) 2%% = 4K important separators.

Fixed Parameter Algorithms — p.84/98

Algorithm for MuLTIwAY CUT

If every vertex of T is in a different component, then we are done.
Lett 2 T be a vertex with that is not separated from every T nt.
Branch on a choice of an important (t, T nt) separator S of size at most k.

SetG:=GnSandk :=k- |5

a k~ w0 DR

Go to step 1.

We branch into at most 4% directions at most k times.

Fixed Parameter Algorithms — p.85/98

Algorithm for MuLTIwAY CUT

If every vertex of T is in a different component, then we are done.
Lett 2 T be a vertex with that is not separated from every T nt.
Branch on a choice of an important (t, T nt) separator S of size at most k.

SetG:=GnSandk :=k- |5

a k~ w0 DR

Go to step 1.

We branch into at most 4% directions at most k times.
Better estimate of the search tree size:

When choosing the important separator, 2k - decreases at each branching,
until reaches 0.

When choosing the next vertex t, changes from 0 to positive, thus 2Kk -
does not increase.

Size of the search tree is at most 22 = 4K,

Fixed Parameter Algorithms — p.85/98

Other separation problems

Some other variants:
T] as a parameter
MULTITERMINAL CUT: pairs (S, t1), ..., (S, t) have to be separated.
Directed graphs

Planar graphs

Useful for deletion-type problems such as DIRECTED FEEDBACK VERTEX SET
(via iterative compression).

Important separators: is it relevant for a given problem?

Fixed Parameter Algorithms — p.86/98

Integer Linear Programming

Fixed Parameter Algorithms — p.87/98

Integer Linear Programming

Linear Programming (LP): important tool in (continuous) combinatorial
optimization. Sometimes very useful for discrete problems as well.

MaxCi X1 + CoXo + C3X3
S.t.

Xy + 5Xo- X3 8

2X1 - X3 0
3+ 10x3 10
X1, X2, X3 2 R

Fact: It can be decided if there is a solution (feasibility) and an optimum solution

can be found in polynomial time.

Fixed Parameter Algorithms — p.88/98

Integer Linear Programming

Integer Linear Programming (ILP): Same as LP, but we require that every X; is

integer.

Very powerful, able to model many NP-hard problems. (Of course, no
polynomial-time algorithm is known.)

Theorem: ILP with p variables can be solved in time p®(P n°)

Fixed Parameter Algorithms — p.89/98

CLOSEST STRING

Task: Given strings sy, ..., S¢ of length L over alphabet , and an integer d, nd a
string s (of length L) such thatd(s,s) dforeveryl 1 K.

Note: d(s,s) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by K is FPT.
Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.

Theorem: CLOSEST STRING is NP-hard for = 10, 1g

Fixed Parameter Algorithms — p.90/98

CLOSEST STRING

Task: Given strings sy, ..., S¢ of length L over alphabet , and an integer d, nd a
string s (of length L) such thatd(s,s) dforeveryl 1 K.

Note: d(s,s) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by K is FPT.
Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.

Theorem: CLOSEST STRING is NP-hard for = 10, 1g

Fixed Parameter Algorithms — p.90/98

An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L &L 9

CBDCCACBB
ABDBCABDB
CDDBACCBD
DDABACCBD
ACDBDDCBC

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.

Fixed Parameter Algorithms — p.91/98

An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L & 9

CBDCCACBB
ABDBCABDB
CDDBACCBD
DDABACCBD
ACDBDDCBC

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.

Fixed Parameter Algorithms — p.91/98

An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L &L 9

CBDCCACBB
ABDBCABDB
CDDBACCBD

DABACCBD
ACDBDDCBC

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.

Fixed Parameter Algorithms — p.91/98

An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L &L 9

CBDCCACBB
ABDBCABDB
CDDBACCBD
DDABACCBD
ACDBDDCBC

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.

Fixed Parameter Algorithms — p.91/98

An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L &L 9

CBDCCACBB
ABDBCABDB
CDDBACCBD
DDABACCBD
ACDBDDCB

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.

Fixed Parameter Algorithms — p.91/98

An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L &L 9

CBDCCACBB
ABDBCABDB
CDDBACCBD
DDABACCBD
ACDBDDCB

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.

Fixed Parameter Algorithms — p.91/98

CLOSEST STRING

Each column can be described by a partition P of [K].
The instance can be described by an integer cp for each partition P: the number of
columns with this type.

Describing a solution: If C is a class of P, let Xp ¢ be the number of type P
columns where the solution agrees with class C.

There is a solution iff the following ILP has a feasible solution:

X
Xpc Cp 8partition P
C2P
X
Xpc d 81 1 Kk
i6L,C2P
Xpc O 8P, C

Number of variablesis B(k) k, where B(k) is the no. of partitions of [K]
) The ILP algorithm solves the problem in time f (k) n°® .

Fixed Parameter Algorithms — p.92/98

STEINER TREE

Fixed Parameter Algorithms — p.93/98

STEINER TREE

Task: Given a graph G with weighted edges and a set S of k vertices, nd a tree
T of minimum weight that contains S.

Known to be NP-hard. For xed k, we can solve it in polynomial time: we can
guess the Steiner points and the way they are connected.

Theorem: STEINER TREE is FPT parameterized by k = |Sj.

Fixed Parameter Algorithms — p.94/98

STEINER TREE

Solution by dynamic programming. Forv 2 V(G) and X S,
c(v, X) := minimum cost of a Steiner tree of X that contains v
d(u,v) := distance of u and v

Recurrence relation:

c(v,X)= min c(u,X°nu)+ c(u,(X nX%) nu)+ d(u,v)
UZVéG;
X

Fixed Parameter Algorithms — p.95/98

STEINER TREE

Recurrence relation:

c(v,X)= min c(u,X%nu)+ c(u,(X nX9 nu)+ d(u,v)
UZV(gGg(
;X

. A tree T, realizing c(u, X°n u), a tree
T, realizing c(u, (X nX 9 nu), and the path
uv gives a (superset of a) Steiner tree of X
containing v.

> >
P

Fixed Parameter Algorithms — p.96/98

STEINER TREE

Recurrence relation:

c(v,X)= min c(u,X%nu)+ c(u,(X nX9 nu)+ d(u,v)
UZV(gG;(
X

. Suppose T realizes c(v, X), let T ° be
the minimum subtree containing X. Letube T,
a vertex of T Oclosest to v. If jXj > 1, then

there is a component C of T nu that contains
asubset; X9 X ofterminals. Thus T
is the disjoint union of a tree containing X °nu
and u, a tree containing (X N X% nu and u,
and the path uv.

Fixed Parameter Algorithms — p.96/98

STEINER TREE

Recurrence relation:

c(v,X)= min c(u,X°nu)+ c(u,(X nu)nX9%+ d(u,v)
UZV(gG;(
X

Running time:

2KjV (G)j variables c(v, X), determine them in increasing order of jXj. Variable
c(v, X) can be determined by considering 2*! cases. Total number of cases to

consider:

X X
2% = S 20 (1+ 2)k = 3,
X T i=1 !

Running time is O (3X).

Note: Running time can be reduced to O (2¥) with clever techniques.

Fixed Parameter Algorithms — p.97/98

Conclusions

Many nice techniques invented so far — and probably many more to come.
A single technigue might provide the key for several problems.
How to nd new techniques? By attacking the open problems!

Next (January):
Treewidth

Hardness theory

Fixed Parameter Algorithms — p.98/98

	Classical complexity
	Parameterized complexity
	Parameterized complexity
	Bounded search tree method
	Fixed-parameter tractability
	FPT problems
	FPT algorithmic techniques
	Books
	Goals of the course
	Notes
	Kernelization
	Kernelization
	Kernelization for 	extsc {Vertex Cover}
	Kernelization for 	extsc {Vertex Cover}
	Kernelization for 	extsc {Vertex Cover}
		extsc {Covering Points with Lines}
	Kernelization
	Crown Reduction
	Crown Reduction
	Crown Reduction
	Proof
	Proof
		extsc {Dual of Vertex Coloring}
	Crown Reduction for 	extsc {Dual of Vertex Coloring}
	Sunflower Lemma
	Sunflower lemma
	Sunflowers and 	extsc {d-Hitting Set}
	Branching and bounded search trees
	Bounded search tree method
	Bounded search tree method
		extsc {Vertex Cover}
	Better analysis
	Better analysis
	Better analysis
	Branching vectors
	Branching vectors
	Forbidden subgraphs
	Forbidden subgraphs
		extsc {Triangle deletion}
	Hereditary properties
	Hereditary properties
		extsc {Cluster Editing}
		extsc {Chordal Completion}
		extsc {Chordal Completion}
		extsc {Chordal Completion} -- more efficiently
		extsc {Chordal Completion} -- more efficiently
	Iterative compression
	Iterative compression
		extsc {Bipartite Deletion}
	Step 1: The annotated problem
	Step 1: The annotated problem
	Step 2: The compression problem
	Step 3: Iterative compression
	Step 3: Iterative Compression
	Graph Minors
	Graph Minors
	Graph Minors
	Graph minors
	Minor closed properties
	Forbidden minors
	Graph Minors Theorem
	Applications
	Applications
	$mathcal {G}+ k$ vertices
	Color coding
	Color coding
		extsc {k-Path}
		extsc {k-Path}
	Error probability
	Method 1: Trying all permutations
	Method 1: Trying all permutations
	Method 2: Dynamic Programming
	Derandomization
	Cut problems
		extsc {Multiway Cut}
	Submodularity
	Submodularity
		extsc {Multiway Cut}
	Important separators
		extsc {Multiway Cut} and important separators
	Important separators
	Important separators
	Important separators
	Algorithm for 	extsc {Multiway Cut}
	Other separation problems
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
		extsc {Closest String}
		extsc {Closest String}
		extsc {Closest String}

