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Classical complexity

A brief review:

We usually aim for polynomial-time algorithms: the running time is O(n°®),
where n is the input size.

Classical polynomial-time algorithms: shortest path, mathching, minimum
spanning tree, 2SAT, convext hull, planar drawing, linear programming, etc.

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian cycle,
3-coloring, 3SAT, etc.

We expect that these problems can be solved only in exponential time (i.e., c").

Can we say anything nontrivial about NP-hard problems?
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Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be ef cient on all inputs of si ze n, only for those
where K is small.
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Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some parameter k of the

input.
In other words: we do not want to be ef cient on all inputs of si ze n, only for those
where K is small.
What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The diameter of the input graph.

The length of clauses in the input Boolean formula.
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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover Is it possible to nd

the edges with K vertices? K independent vertices?

< <

Complexity: NP-complete NP-complete
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Problem:
Input:

Question:

Complexity:
Complete

enumeration:

Parameterized complexity

MINIMUM VERTEX COVER
Graph G, integer k

Is it possible to cover
the edges with k vertices?

<

NP-complete

O(nk) possibilities

MAXIMUM INDEPENDENT SET
Graph G, integer k

Is it possible to nd
K independent vertices?

<

NP-complete

O(nk) possibilities
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Problem:
Input:

Question:

Complexity:
Complete

enumeration:

Parameterized complexity

MINIMUM VERTEX COVER
Graph G, integer k

Is it possible to cover
the edges with k vertices?

<

NP-complete
O(nk) possibilities

O(2¥n?) algorithm exists

©

MAXIMUM INDEPENDENT SET
Graph G, integer k

Is it possible to nd
K independent vertices?

<

NP-complete
O(nk) possibilities

No n°&) algorithm known

&
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

€ = Xay1
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1

X1 Y1
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1
X1 Y1

€ = XoY»
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1

X1 Y1

X2 Yo
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:
€1 = Xiy1

X1 Y1

X2 Y2 height: kK

Height of the search tree is k) number of leavesis 2% ) complete search
requires 2¢ poly steps.
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Fixed-parameter tractability

De nition: A parameterization of a decision problem is a function that assigns an
integer parameter k to each input instance Xx.

The parameter can be

explicit in the input (for example, if the parameter is the integer k appearing in
the input (G, k) of VERTEX COVER), or

implicit in the input (for example, if the parameter is the diameter d of the input
graph G).

Main de nition:

A parameterized problem is xed-parameter tractable (FPT) if there is an
f (k)n°® time algorithm for some constant c.
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Fixed-parameter tractability

De nition: A parameterization of a decision problem is a function that assigns an
integer parameter k to each input instance Xx.

Main de nition:

A parameterized problem is xed-parameter tractable (FPT) if there is an

f (k)n°® time algorithm for some constant c.

Example: MiNIMUM VERTEX COVER parameterized by the required size k is FPT:
we have seen that it can be solved in time O (2% + n?).

Better algorithms are known: e.g, O(1.2832k + kjVj).

Main goal of parameterized complexity: to nd FPT problems.
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FPT problems

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size K.
Finding a path of length k.
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.

Finding disjoint paths that connect k pairs of points.
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FPT algorithmic techniques

Signi cant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Bounded Search Tree Q

Kernelization hs.\

Color coding \ ‘
=,
B ~:-\..:“

Treewuﬁtk' A30 ey Itefative compression
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Downey-Fellows: Parameterized Complexity,
i Springer, 1999

Parameterized
Complexity Theory

Flum-Grohe: Parameterized Complexity Theory,
Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algo-
rithms, Oxford University Press, 2006.
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Goals of the course

Demonstrate techniques that were successfully used in the analysis of
parameterized problems.

Determine quickly if a problem is FPT.

Design fast algorithms (improve the function f (k)).

Introduce the basics of parameterized hardness theory (W[1]-hardness).
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Notes

Warning: The results presented for particular problems are not necessarily the
best known results or the most useful approaches for these problems.

Conventions:
Unless noted otherwise, K is the parameter.
O notation: O (f (k)) means O(f (k) n°) for some constant c.
Citations are mostly omitted (only for classical results).
We gloss over the difference between decision and search problems.
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Kernelization
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Kernelization

De nition:  Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (1% k© such that

(1, k) is a yes-instance if and only if (1% k°) is a yes-instance,
k® k,and
jl9 f (k) for some function f (k).
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Kernelization

De nition:  Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (1% k© such that

(1, k) is a yes-instance if and only if (1% k°) is a yes-instance,
k® k,and
jl9 f (k) for some function f (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (1% k9 by brute force.
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Kernelization

De nition:  Kernelization is a polynomial-time transformation that maps an
instance (I, k) to an instance (1% k© such that

(1, k) is a yes-instance if and only if (1% k°) is a yes-instance,
k® k,and
il f(k) for some function f (k).
Simple fact: If a problem has a kernelization algorithm, then it is FPT.

Proof: Solve the instance (1% k9 by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f (k)n® algorithm for the problem.

If f (k) n, then solve the instance in time f (k)n® n°*%, and output a trivial
yes- or no-instance.

If n < f(k), then we are done: a kernel of size f (k) is obtained.
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the
rules can be applied and the size of the instance is still larger than f (k), then the
answer is trivial.

Reduction rules for VERTEX COVER instance (G, k):

Rule 1. If v is an isolated vertex ) (G nv,Kk)
Rule 2: Ifd(v) > k) (Gnv,k- 1)
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the
rules can be applied and the size of the instance is still larger than f (k), then the
answer is trivial.

Reduction rules for VERTEX COVER instance (G, k):

Rule 1. If v is an isolated vertex ) (G nv,Kk)
Rule 2: Ifd(v) > k) (Gnv,k- 1)

If neither Rule 1 nor Rule 2 can be applied:

If IV (G)] > k(k + 1) ) There is no solution (every vertex should be the
neighbor of at least one vertex of the cover).

Otherwise, |V (G)] k(k + 1) and we have a k(k + 1) vertex kernel.
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Kernelization for VERTEX COVER

Let us add a third rule:

Rule 1. If v is an isolated vertex ) (G nv,Kk)

Rule 2: Ifd(v) > k) (Gnv,k- 1)

Rule 3: Ifd(v) = 1, then we can assume that its neighbor u is in the
solution) (Gn(u[ v),k- 1).

If none of the rules can be applied, then every vertex has degree at least 2.
) IV(G)]  JE(G))

If JE(G)j > k?) There is no solution (each vertex of the solution can cover at
most k edges).

Otherwise, jV (G)j JE(G)j k? and we have a k? vertex kernel.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u; and u, are adjacent, then we
can assume that uq, U, are in the solution ) (G nfuy, u,,vgk - 2).
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Correctness: G GO
Let S®be a vertex cover of size k - 1 for G°.

fu2S) (S°nu)[ fuy, u.gis a vertex cover of size k for G.
Ifu62S) SO v is a vertex cover of size k for G.

Fixed Parameter Algorithms — p.16/98



Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Correctness: G GO
Let S®be a vertex cover of size k - 1 for G°.

fu2S) (S°nu)[ fuy, u.gis a vertex cover of size k for G.
Ifu62S) S°[ v is a vertex cover of size k for G.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Correctness: G GO
Let S®be a vertex cover of size k - 1 for G°.

fu2S) (S°nu)[ fuy, u.gis a vertex cover of size k for G.
Ifu62S) S°[ vis a vertex cover of size k for G.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Correctness: G GO
Let S be a vertex cover of size k for G.

Ifu;,u,2S) (Snfug,uy,vg [ uis a vertex cover of size k - 1 for G°
If exactly one of u; and us isin S,thenv 2 S) (Snfuy,u,,vg [ uis avertex
cover of size k - 1 for G°

If u;,u, 625, thenv 2 S) (Snv)is a vertex cover of size k - 1 for G°

Fixed Parameter Algorithms — p.16/98



Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Correctness: G GO
Let S be a vertex cover of size k for G.

Ifu;,u,2S) (Snfug,uy,vg [ uis a vertex cover of size k - 1 for G°.
If exactly one of u; and us isin S,thenv 2 S) (Snfuy,u,,vg [ uis avertex
cover of size k - 1 for G°.

If u;,u, 625, thenv 2 S) (Snv)is a vertex cover of size k - 1 for G°
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Correctness: G GO
Let S be a vertex cover of size k for G.

Ifu;,u,2S) (Snfug,uy,vg [ uis a vertex cover of size k - 1 for G°.
If exactly one of u; and us isin S,thenv 2 S) (Snfuy,u,,vg [ uis avertex
cover of size k - 1 for G°

If up, U, 62S,thenv 2 S) (Snv)is a vertex cover of size k - 1 for G°
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G°is obtained by identifying
the two neighbors of v and deletingv ) (G%k - 1).

Kernel size: G GO

If JE(G)j > k?) There is no solution (each vertex of the solution can cover at

most k edges).
Otherwise, jV (G)] 2JE(G)j=3 £k? and we have a £k? vertex kernel.

Fixed Parameter Algorithms — p.16/98



COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, nd k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus
there are at most n? candidate lines.
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COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, nd k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus
there are at most n? candidate lines.
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COVERING POINTS WITH LINES

Task: Given a set P of n points in the plane and an integer k, nd k lines that
cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus
there are at most n? candidate lines.

Reduction Rule:
If a candidate line covers a set S of more than k points) (P nS,k- 1).

If this rule cannot be applied and there are still more than k? points, then there is no

solution ) Kernel with at most k? points.
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Kernelization

Kernelization can be thought of as a polynomial-time preprocessing before
attacking the problem with whatever method we have. “It does no harm” to try
kernelization.

Some kernelizations use lots of simple reduction rules and require a
complicated analysis to bound the kernel size...

. while other kernelizations are based on surprising nice tricks (Next: Crown
Reduction and the Sun ower Lemma).

Possibility to prove lower bounds.
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Crown Reduction

So <o
pro <o g

- ".llh'\-l‘i!r-i'l .-ll'..'“LH
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Crown Reduction

De nition: A crown decomposition is a partition C[ H [ B of the vertices such
that

SENEVY P

C is an independent set, [\ \aéi ; V/\K}
H

there is no edge between C and B, \

there is a matching between C and H that //\/ \
B

covers H.
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Crown Reduction

De nition: A crown decomposition is a partition C[ H [ B of the vertices such

that
SCIEVY FIp
C is an independent set, \. W%
E WX I
there is no edge between C and B, A
there is a matching between C and H that //\/ \
covers H. B

Crown rule for V. ERTEX COVER:
The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C)
) (Gn(H[ C),k- JHJ).
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Crown Reduction

De nition: A crown decomposition is a partition C[ H [ B of the vertices such
that

SENEVY P

C is an independent set, [ \ A }

H
there is no edge between C and B, i A
there is a matching between C and H that / \
covers H. B

Crown rule for V. ERTEX COVER:
The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C)
) (Gn(H[ C),k- JHJ).

Fixed Parameter Algorithms — p.20/98



Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,
nd a crown decomposition,

or conclude that the graph has at most 3k vertices.
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Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,) No solution!
nd a crown decomposition, ) Reduce!

or conclude that the graph has at most 3k vertices.
) 3k vertex kernel!

This gives a 3k vertex kernel for VERTEX COVER.
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,
nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Konig's Theorem.

(G) : size of the minimum vertex cover
(G) : size of the maximum matching (independent set of edges)

Theorem: [Konig, 1931] If G is bipartite, then
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial

time we can either

nd a matching of size k + 1,
nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest X |
of the graph is an independent set |. ¢ e’ o
o———O o ( J ( ]

Fixed Parameter Algorithms — p.23/98



Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial

time we can either

nd a matching of size k + 1,

nd a crown decomposition,

or conclude that the graph has at most 3k vertices.
Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest | [ c v @ @ }
of the graph is an independent set |.

Find a maximum matching/minimum vertex cover in X[ ® o ¢ ¢ }
the bipartite graph between X and I.
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial

time we can either

nd a matching of size k + 1,

nd a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at least | [C ' 7]® @ }
one vertex of X

) There is a crown decomposition.

X(Hl® ® I )
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Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,
nd a crown decomposition,
or conclude that the graph has at most 3k vertices.
Proof:
Case 1: The minimum vertex cover contains at least | [ YY) }

one vertex of X
) There is a crown decomposition.

X[ o & & & |

Case 2: The minimum vertex cover contains only
vertices of | ) It contains every vertex of |
) There are at most 2k + k vertices.
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DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:
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DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a distinct [
color.

"t 1AL C
W%

\
Because of the matching, it is possible to color [\ }‘ %\ : \] H

H using only these |Cj colors. /\/ \
These colors cannot be used for B. B

(Gn(H[ C), k- JH))
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DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a distinct [
color.

"L {AALL)C
| WA,%

\
Because of the matching, it is possible to color [\ }‘ %\ : \] H

H using only these |Cj colors. /\/ \
These colors cannot be used for B. B

(Gn(H[ C), k- JH))
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DUAL OF VERTEX COLORING

Parameteric dual of kK-CoLORING. Also known as SAVING K COLORS.

Task: Given a graph G and an integer k, nd a vertex coloring with jV (G)j- k
colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G.

C is a clique in G: each vertex needs a distinct [
color.

"L {AALL) C
W%

\
Because of the matching, it is possible to color [\ /; %\ : \} H

H using only these |Cj colors. /\/ \
These colors cannot be used for B. B

(Gn(H[ C), k- JH))
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Crown Reduction for DUAL OF VERTEX
COLORING

Use the key lemma for the complement G of G:

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial
time we can either

nd a matching of size k + 1,) YES: we can save k colors!
nd a crown decomposition, ) Reduce!

or conclude that the graph has at most 3k vertices.
) 3k vertex kernel!

This gives a 3k vertex kernel for DUAL OF VERTEX COLORING.
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Sun ower Lemma
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Sun ower lemma

De nition: Sets S, S,, ..., S¢ form a sun ower if the sets
Sn(sS\ S\ V) are disjoint.

Lemma: [Erdos and Rado, 1960] If the size of a set system is greater than

(p- 1)¢ d! and it contains only sets of size at most d, then the system contains a
sun ower with p petals. Furthermore, in this case such a sun ower can be foun d in
polynomial time.
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Sun owers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer K,
nd a set S of k elements that intersects every set of S.

center

Reduction Rule: If k + 1 sets form a sun ower, then remove these sets from S
and add the center C to S (S does not hit one of the petals, thus it has to hit the
center).

Note: if the center is empty (the sets are disjoint), then there is no solution.

If the rule cannot be applied, then there are at most O (k) sets.
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Sun owers and d-HITTING SET

d-HITTING SET: Given a collection S of sets of size at most d and an integer K,
nd a set S of k elements that intersects every set of S.

>
A petals
center

Reduction Rule (variant): Suppose more than k + 1 sets form a sun ower.

If the sets are disjoint) No solution.

Otherwise, keep only k + 1 of the sets.

If the rule cannot be applied, then there are at most O (k) sets.
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Branching and bounded search trees

Fixed Parameter Algorithms — p.29/98



Bounded search tree method

Recall how we solved MINIMUM VERTEX COVER:

€ = Xay1

X1 Y1

X2 Y2 height: kK
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Bounded search tree method

We solve the problem by one or more branching rules.

Each rule makes a “guess” in such a way that at least one guess will lead to a
correct solution.

If we have branching rules such that
each rule branches into at most b(k) directions, and

applying a rule decreases the parameter,

then the problem can be solved in time O (b(k)*).

In many cases, this crude upper bound can be improved by better analysis.
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VERTEX COVER

Improved algorithm for VERTEX COVER.

If every vertex has degree 2, then the problem can be solved in polynomial
time.

Branching rule: If there is a vertex v with at least 3 neighbors, then
either v is in the solution,

or every neighbor of v is in the solution.

Crude upper bound: O (2¥), since the branching rule decreases the parameter.
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VERTEX COVER

Improved algorithm for VERTEX COVER.

If every vertex has degree 2, then the problem can be solved in polynomial
time.

Branching rule: If there is a vertex v with at least 3 neighbors, then
either v is in the solution, ) k decreases by 1

or every neighbor of v is in the solution. ) Kk decreases by at least 3

Crude upper bound: O (2¥), since the branching rule decreases the parameter.

But it is somewhat better than that, since in the second branch, the parameter de-

creases by at least 3.

Fixed Parameter Algorithms — p.32/98



Better analysis

Let t (k) be the maximum number of leaves of the search tree if the parameter is at
most Kk (lett(k) = 1fork 0).

t(k) t(k- 1)+ t(k- 3)

There is a standard technique for bounding such functions asymptotically.
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Better analysis

Let t (k) be the maximum number of leaves of the search tree if the parameter is at
most Kk (lett(k) = 1fork 0).

t(k) t(k- 1D+ t(k- 3)
There is a standard technique for bounding such functions asymptotically.

We prove by induction thatt (k)  c* for some ¢ > 1 as small as possible.

What values of ¢ are good? We need:

ck ¢

c’-c*-1 0

k-l+Ck-3

We need to nd the roots of the characteristic equation ¢3- ¢?- 1= 0.

Note: it is always true that such an equation has a unique positive root.

Fixed Parameter Algorithms — p.33/98



-3

Better analysis

-1

c = 1.4656is a good value ) t(k)

) We have a O (1.4656) algorithm for VERTEX COVER.

08 0 0.5 15
1.4656
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Better analysis

We showed thatif t(k) t(k- 1)+ t(k- 3),thent(k) 1.4656 holds.
Is this bound tight? There are two questions:

Can the function t (k) be that large?
Yes (ignoring rounding problems).

Can the search tree of the VERTEX COVER algorithm be that large?
Dif cult question, hard to answer in general.
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Branching vectors

The branching vector of our O (1.4656%) VERTEX COVER algoritm was (1, 3).

Example: Let us bound the search tree for the branching vector (2,5, 6,6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).
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Branching vectors

The branching vector of our O (1.4656%) VERTEX COVER algoritm was (1, 3).

Example: Let us bound the search tree for the branching vector (2,5, 6,6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value ¢ > 1 has to satisfy:

c’- c®-c*-2c-2 0
Unique positive root of the characteristic equation: 1.4483) t(k) 1.448%.

It is hard to compare branching vectors intuitively.
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Branching vectors

Example: The roots for branching vector (i,j) (1 1,] 6).

t(k) t(k- i)+ t(k-j)) ck ck T+ k!
c-c'-1 0

We compute the unique positive root.

1 2 3 4 5 6
1 | 20000 1.6181 14656 1.3803 1.3248 1.2852
2 | 1.6181 14143 1.3248 1.27/21 1.2366 1.2107
3 | 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740
4 | 13803 1.27/21 1.2208 1.1893 1.1674 1.1510
5| 13248 1.2366 1.1939 1.1674 1.1487 1.1348
6 | 1.2852 1.210/7/ 1.1740 1.1510 1.1348 1.1225
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Forbidden subgraphs
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Forbidden subgraphs

General problem class: Given a graph G and an integer k, transform G with at
most k modi cations (add/remove vertices/edges) into a graph hav ing property P.

Example:
TRIANGLE DELETION: make the graph triangle-free by deleting at most k vertices.

Branching algorithm:
If the graph is triangle-free, then we are done.

Branching rule: If there is a triangle v,V,V3, then at least one of vy, Vo, V3 has
to be deleted ) We branch into 3 directions.
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TRIANGLE DELETION

Search tree:

height k+ 1

The search tree has at most 3% leaves and the work to be done is polynomial at
eachstep) O (3%) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3% leaves.
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Hereditary properties

De nition: A graph property P is hereditary if for every G 2 P and induced
subgraph G%of G, we have G°2 P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a ( nite or
in nite) set F of forbidden induced subgraphs:

G2P() 8H2F,HG6i,3G
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Hereditary properties

De nition: A graph property P is hereditary if for every G 2 P and induced
subgraph G%of G, we have G°2 P as well.

Examples: triangle-free, bipartite, interval graph, planar

Observation: Every hereditary property P can be characterized by a ( nite or
in nite) set F of forbidden induced subgraphs:

G2P() 8H2F,HG6i,3G

Theorem: If P is hereditary and can be characterized by a nite set F of forbidden
induced subgraphs, then the graph modi cation problems cor responding to P are
FPT.
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Hereditary properties

Theorem: If P is hereditary and can be characterized by a nite set F of forbidden

induced subgraphs, then the graph modi cation problems cor responding to P are
FPT.

Proof:

Suppose that every graph in F has at most r vertices. Using brute force, we
can ndintime O(n") a forbidden subgraph (if exists).

If a forbidden subgraph exists, then we have to delete one of the at most r
vertices or add/delete one of the at most ; edges

) Branching factor is a constant ¢ depending on F.

The search tree has at most ck leaves and the work to be done at each node is
o(n").
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

L NP>
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

oo
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

> >

*—Oo ®
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

> >

*—Oo ®

Property P: every component is a clique.
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CLUSTER EDITING

Task: Given a graph G and an integer k, add/remove at most k edges such that
every component is a clique in the resulting graph.

> >

*—Oo ®

Property P: every component is a clique.

Forbidden induced subgraph:

O (3%) time algorithm.
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CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.
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CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
) Not a nite set!
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CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length

greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
) Not a nite set!

Lemma: Atleastk - 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.
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CHORDAL COMPLETION

De nition: A graph is chordal if it does not contain an induced cycle of length
greater than 3.

CHORDAL COMPLETION: Given a graph G and an integer k, add at most k edges
to G to make it a chordal graph.

The forbidden induced subgraphs are the cycles of length greater 3
) Not a nite set!

Lemma: Atleastk - 3 edges are needed to make a k-cycle chordal.
Proof: By induction. k = 3 is trivial.

Cy: x- 3edges
Ck- x+2: K- X - 1edges
Ci Ce: (X- 3)+(k- x- 1)+ 1= k- 3

edges
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CHORDAL COMPLETION

Algorithm:

Find an induced cycle C of length at least 4 (can be done in polynomial time).

If no such cycle exists ) Done!
If C has more than k + 3 vertices) No solution!
Otherwise, one of the
IC]
2
missing edges has to be added ) Branch!

Size of the search tree is k°(K)

G (k+ 3)(k+ 2)=2- k = O(K?)
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CHORDAL COMPLETION — more ef ciently

De nition:  Triangulation of a cycle.

Lemma: Every chordal supergraph of a cycle C contains a triangulation of the
cycle C.

Lemma: The number of ways a cycle of length k can be triangulated is exactly the
(k - 2)-nd Catalan number
1 2(k- 2

Ck-2= ——

k- 3
k-1 k-2 e
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CHORDAL COMPLETION — more ef ciently

Algorithm:
Find an induced cycle C of length at least 4 (can be done in polynomial time).
If no such cycle exists ) Done!

If C has more than k + 3 vertices) No solution!

Otherwise, one of the 4~ 3 triangulations has to be in the solution )
Branch!

Claim: Search tree has at most T = 4X leaves.
Proof: By induction. Number of leaves is at most

iCj- 3 . ICj- 3 pk-(|Cj- 3) = gk
T 49°% T iy 43 4 4.
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Iterative compression
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Iterative compression

A surprising small, but very powerful trick.
Most useful for deletion problems: delete k things to achieve some property.

Demonstration: Obb CYCLE TRANSVERSAL aka BIPARTITE DELETION aka

GRAPH BIPARTIZATION: Given a graph G and an integer k, delete k vertices to
make the graph bipartite.

Forbidden induced subgraphs: odd cycles. There is no bound on the size of
odd cycles.

Fixed Parameter Algorithms — p.49/98



BIPARTITE DELETION

Solution based on iterative compression:

Step 1.
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W  V (G), and an integer k, nd
a set S of at most k vertices such that G n S has a 2-coloring where
B nSis black and W n S is white.
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BIPARTITE DELETION

Solution based on iterative compression:

Step 1.
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W  V (G), and an integer k, nd
a set S of at most k vertices such that G n S has a 2-coloring where
B nSis black and W n S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S°of k + 1 vertices such that
G nSYis bipartite, nd a set S of k vertices such that G n S is bipartite.
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BIPARTITE DELETION

Solution based on iterative compression:

Step 1.
Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W  V (G), and an integer k, nd
a set S of at most k vertices such that G n S has a 2-coloring where
B nSis black and W n S is white.

Step 2:
Solve the compression problem for general graphs:

Given a graph G, an integer k, and a set S°of k + 1 vertices such that
G nSYis bipartite, nd a set S of k vertices such that G n S is bipartite.

Step 3:
Apply the magic of iterative compression...
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Step 1. The annotated problem

Given a bipartite graph G, two sets B,W  V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis blackand W nS
IS white.
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Step 1. The annotated problem

Given a bipartite graph G, two sets B,W  V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis blackand W nS

IS white.
Bo Wo
-
B
wW
I\

Find an arbitrary 2-coloring (Bg, Wy) of G.
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Step 1. The annotated problem

Given a bipartite graph G, two sets B,W  V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis blackand W nS
IS white.

Bo Wy
4 )
B
W
- J

Find an arbitrary 2-coloring (Bg, Wy) of G.
C:=(Bo\ W)[ (Wg\ B) should change color, while R := (Bg\ B)[ (Wo\ W)
should remain the same color.
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Step 1. The annotated problem

Given a bipartite graph G, two sets B,W  V(G), and an integer k, nd a set S of
at most k vertices such that G nS has a 2-coloring where B nSis black and W nS
IS white.

Bo Wy
4 )

B

W
- J

Find an arbitrary 2-coloring (Bg, Wy) of G.
C:=(Bo\ W)[ (Wg\ B) should change color, while R := (Bg\ B)[ (Wo\ W)
should remain the same color.

Lemma: G nS has the required 2-coloring if and only if S separates C and R, i.e.,
no component of G N S contains vertices from bothCnSand RnS.
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Step 1. The annotated problem

Lemma: G n S has the required 2-coloring if and only if S separates C and R, i.e.,
no component of G NS contains vertices from bothCnSand RnS.

Proof:

) Ina2-coloring of G nS, each vertex either remained the same color or changed
color. Adjacent vertices do the same, thus every component either changed or
remained.

( Flip the coloring of those components of G n S that contain vertices from C n S.
No vertex of R is ipped.

Algorithm: Using max- ow min-cut techniques, we can check if thereisaset S
that separates C and R. It can be done in time O(kJE(G)]) using Kk iterations of the
Ford-Fulkerson algorithm.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

4 )
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Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis

bipartite, nd a set S of k vertices such that G n S is bipartite.

/

-

AN

~

I

A 1N

/

Vi3

dée

o‘—o) SO

black white deleted

Branch into 3¥* 1 cases: each vertex of S%is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

4 W )

S

AN |
VI s

black white deleted

Branch into 3¥* ! cases: each vertex of S%is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S®should be white and the neighbors of the

white vertices in S°should be black.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

4 W B )

- /V J
AN |
VI s

black white deleted

Branch into 3¥* ! cases: each vertex of S%is either black, white, or deleted.
Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in S®should be white and the neighbors of the

white vertices in S°should be black.
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Step 2: The compression problem

Given a graph G, an integer k, and a set S®of k + 1 vertices such that G n SYis
bipartite, nd a set S of k vertices such that G n S is bipartite.

D

~

The vertices of S°can be disregarded. Thus we need to solve the annotated
problem on the bipartite graph G n S°.

Running time: O(3% kjE(G)j) time.
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Step 3: lterative compression

How do we get a solution of size k + 1?
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Step 3: lterative compression

How do we get a solution of size k + 1?

We get it for free!
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Step 3: lterative compression

How do we get a solution of size k + 1?
We get it for free!
Let V(G) = fvy, ..., vhagand let G; be the graph induced by fvq, ..., vig

For every i, we nd a set § of size k such that G n§ is bipartite.

For G, the set S = fvq, ..., W Qis a trivial solution.

If Si. 1 is known, then §_ 1 [ fv;gis a set of size k + 1 whose deletion makes G
bipartite ) We can use the compression algorithm to nd a suitable § in time
O(3“ KIE(G))).
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Step 3: Iterative Compression

Bipartite-Deletion(G, k)
1. S = fvq, ..., w(g
fori:=k+ 1ton

. Invariant: G;. 1 n§. 1 is bipartite.

2
3
4.  Call Compression(G,S. 1 [ fvig
5 If the answer is “NO” ) return “NO”
6 If the answerisasetX ) § =X
7. Return the set S,

Running time: the compression algorithm is called n times and everything else
can be done in linear time

) O(3% KkjV(G)j JE(G)j) time algorithm.
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Graph Minors

Neil Robertson Paul Seymour
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Graph Minors

Some consequences of the Graph Minors Theorem give a quick way of
showing that certain problems are FPT.

However, the function f (k) in the resulting FPT algorithms can be HUGE,
completely impractical.

History: motivation for FPT.
Parts and ingredients of the theory are useful for algorithm design.

New algorithmic results are still being developed.
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Graph Minors

De nition: GraphHisaminor G (H G)if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

N

u Y
deleting LV \::ntracting uv
u Y W

Example: A triangle is a minor of a graph G if and only if G has a cycle (i.e., itis

not a forest).
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Graph minors

Equivalent de nition:  Graph H is a minor of G if there is a mapping that maps
each vertex of H to a connected subset of G such that

(u) and (v) are disjointifu & v, and

if uv 2 E(G), then there is an edge between (u) and (V).

@A
4

o)

)
&

N o = = = o e e o o

4
1
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Minor closed properties

De nition: A set Gof graphs is minor closed if whenever G 2 Gand H G, then
H 2 Gas well.

Examples of minor closed properties:
planar graphs
acyclic graphs (forests)
graphs having no cycle longer than k
empty graphs

Examples of not minor closed properties:
complete graphs
regular graphs
bipartite graphs
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Forbidden minors

Let Gbe a minor closed set and let F be the set of “minimal bad graphs™ H 2 F if
H 62G, but every proper minor of H is in G

Characterization by forbidden minors:

G2G() 8H2F,H6 G

The set F is the obstruction set of property G
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Forbidden minors

Let Gbe a minor closed set and let F be the set of “minimal bad graphs™ H 2 F if
H 62G, but every proper minor of H is in G

Characterization by forbidden minors:

G2G() 8H2F,H6 G

The set F is the obstruction set of property G

Theorem: [Wagner] A graph is planar if and only if it does not have a Ks or K3 3
minor.

In other words: the obstruction set of planarity is F = fKs, K330

Does every minor closed property have such a nite character ization?
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Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property Ghas a nite
obstruction set.

Note: The proof is contained in the paper series “Graph Minors I-XX”.

Note: The size of the obstruction set can be astronomical even for simple
properties.
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Graph Minors Theorem

Theorem: [Robertson and Seymour] Every minor closed property Ghas a nite
obstruction set.

Note: The proof is contained in the paper series “Graph Minors I-XX”.
Note: The size of the obstruction set can be astronomical even for simple
properties.

Theorem: [Robertson and Seymour] For every xed graph H, there is an O(n®)
time algorithm for testing whether H is a minor of the given graph G.

Corollary: For every minor closed property G, there is an O(n?) time
algorithm for testing whether a given graph G is in G
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Applications

PLANAR FACE CoVER: Given a graph G and an integer k, nd an embedding of
planar graph G such that there are k faces that cover all the vertices.

One line argument:

For every xed K, the class G, of graphs of yes-instances is minor closed.
+

For every xed Kk, there is a O(n®) time algorithm for PLANAR FACE COVER.

Note: non-uniform FPT.
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Applications

k-LEAF SPANNING TREE: Given a graph G and an integer k, nd a spanning tree
with at least k leaves.

Technical modi cation: Is there such a spanning tree for at | east one component of
G?

One line argument:

For every xed K, the class G of no-instances is minor closed.
+

For every xed k, k-LEAF SPANNING TREE can be solved in time O(n3).
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G+ k vertices

Let Gbe a graph property, and let G+ kv contain graph G if there is a set
S V(G) of k verticessuchthat GnS 2 G

Lemma: If Gis minor closed, then G+ kv is minor closed for every xed K.
) Itis (nonuniform) FPT to decide if G can be transformed into a member of G by
deleting k vertices.
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G+ k vertices

Let Gbe a graph property, and let G+ kv contain graph G if there is a set
S V(G) of k verticessuchthat GnS 2 G

Lemma: If Gis minor closed, then G+ kv is minor closed for every xed K.
) Itis (nonuniform) FPT to decide if G can be transformed into a member of G by
deleting k vertices.

If G= forests) G+ kv = graphs that can be made acyclic by the deletion of k
vertices) FEEDBACK VERTEX SET is FPT.

If G= planar graphs ) G+ kv = graphs that can be made planar by the
deletion of k vertices (k-apex graphs) ) k-APEX GRAPH is FPT.

If G= empty graphs ) G+ kv = graphs with vertex cover number at most k )
VERTEX COVER |S FPT. Fixed Parameter Algorithms — p.65/98



Color coding




Color coding

Works best when we need to ensure that a small number of “things” are
disjoint.
We demonstrate it on the problem of nding an s-t path of length exactly k.

Randomized algorithm, but can be derandomized using a standard technique.

Very robust technigue, we can use it as an “opening step” when investigating a
new problem.
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K-PATH

Task: Given a graph G, an integer Kk, two vertices s, t, nd a simple s-t path with
exactly k internal vertices.

Note: Finding such a walk can be done easily in polynomial time.

Note: The problem is clearly NP-hard, as it contains the s-t HAMILTONIAN PATH
problem.

The k-PATH algorithm can be used to check if there is a cycle of length exactly Kk in
the graph.
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K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

S\TI Z

random.
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K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

S.\Tl .I;

random.
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K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

random.

S \I l /I t
Check if there is a colorful s-t path: a path where each color appears exactly
once on the internal vertices; output “YES” or “NO”.
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K-PATH

Assign colors from [k] to vertices V (G) n fs, t guniformly and independently at

random.

S \I l /I t
Check if there is a colorful s-t path: a path where each color appears exactly
once on the internal vertices; output “YES” or “NO”.

If there is no s-t k -path: no such colorful path exists ) “NO”.

If there is an s-t k -path: the probability that such a path is colorful is
Kk
k! S (g)k - e k
kK kk ’
thus the algorithm outputs “YES” with at least that probability.
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Error probability

Useful fact: If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1=p repetitions is at most

(1- p)*P < (e WP =1= 0.38

Thus if p > e K, then error probability is at most 1=e after eX repetitions.
P

Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.

For example, by trying 100 e random colorings, the probability of a wrong

answer is at most 1=e1099,
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Error probability

Useful fact: If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1=p repetitions is at most

(1- p)*P < (e WP =1= 0.38

Thus if p > e K, then error probability is at most 1=e after eX repetitions.
P

Repeating the whole algorithm a constant number of times can make the error
probability an arbitrary small constant.

For example, by trying 100 e random colorings, the probability of a wrong

answer is at most 1=e1099,

It remains to see how a colorful s-t path can be found.

Method 1: Trying all permutations.
Method 2: Dynamic programming.
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Method 1: Trying all permutations

The colors encountered on a colorful s-t path form a permutation of f1,2,...,kg

S t
® ® ® o o

°
(1) (2) (K)

We try all possible k! permutations. For a xed , it is easy to check if there is a
path with this order of colors.
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Method 1: Trying all permutations

to check if there is a

>

We try all possible k! permutations. Fora xed , itis easy
path with this order of colors.
™~ ™~
s E T~ M
—] //
— — J . J
(1) (2) (k)

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! JE(G))).
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We try all possible k! permutations. For a xed

Method 1: Trying all permutations

path with this order of colors.

E<

---------
-

Edges connecting nonadjacent color classes are removed.

—

(1)

------
-
[P s

—

(2)

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! JE(G))).

~~
' N\ S N\
\
\
/

J

(k)

>

, it IS easy to check if there is a
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We try all possible k! permutations. For a xed

Method 1: Trying all permutations

path with this order of colors.

e

~
J

2 B

Edges connecting nonadjacent color classes are removed.

|

(1)

Y

—

—

(2)

The remaining edges are directed.

, it IS easy to check if there is a

All we need to check if there is a directed s-t path.

Running time is O(k! JE(G))).

> >
B4
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Method 2: Dynamic Programming

We introduce 2¢ jV (G)j Boolean variables:

X(v,C) = TRUE forsomev 2 V(G) and C  [K]
m
There is an s-v path where each color in C appears exactly once

and no other color appears.

Fixed Parameter Algorithms — p.73/98



Method 2: Dynamic Programming

We introduce 2¢ jV (G)j Boolean variables:

X(v,C) = TRUE forsomev 2 V(G) and C  [K]
m
There is an s-v path where each color in C appears exactly once

and no other color appears.

Clearly, X(s,;) = TRUE. Recurrence for vertex v with color r:

x(v,C)= x(u,Cnfrg
uv2 E(G)
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Method 2: Dynamic Programming

We introduce 2¢ jV (G)j Boolean variables:

X(v,C) = TRUE forsomev 2 V(G) and C  [K]
m
There is an s-v path where each color in C appears exactly once

and no other color appears.

Clearly, X(s,;) = TRUE. Recurrence for vertex v with color r:

x(v,C)= x(u,Cnfrg
uv2 E(G)

If we know every x(v, C) with JCj = i, then we can determine every x(v, C) with
jCj= i+ 1) Allthe values can be determined in time O(2¢ JjE(G)j).

There is a colorful s-t path () X(Vv, [K]) = TRUE for some neighbor of t.
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Derandomization

Using Method 2, we obtain a O ((2e)X) time algorithm with constant error
probability. How to make it deterministic?

De nition: A family H of functions [n] ! [K] is a k-perfect family of hash
functions if for every S [n] with jSj = k, thereisa h 2 H such that h(x) 6 h(y)

forany X,y 2 S, x 6 vy.

Fixed Parameter Algorithms — p.74/98



Derandomization

Using Method 2, we obtain a O ((2e)X) time algorithm with constant error
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De nition: A family H of functions [n] ! [K] is a k-perfect family of hash
functions if for every S [n] with jSj = k, thereisa h 2 H such that h(x) 6 h(y)
forany X,y 2 S, x 6 vy.

Instead of trying O(eX) random colorings, we go through a k-perfect family H of
functions V (G) ! [k]. If there is a solution ) The internal vertices S are colorful
for at leastone h 2 H ) Algorithm outputs “YES”.
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Derandomization

Using Method 2, we obtain a O ((2e)X) time algorithm with constant error
probability. How to make it deterministic?

De nition: A family H of functions [n] ! [K] is a k-perfect family of hash
functions if for every S [n] with jSj = k, thereisa h 2 H such that h(x) 6 h(y)
forany X,y 2 S, x 6 vy.

Instead of trying O(eX) random colorings, we go through a k-perfect family H of
functions V (G) ! [k]. If there is a solution ) The internal vertices S are colorful
for at leastone h 2 H ) Algorithm outputs “YES”.

Theorem: There is a k-perfect family of functions [n] ! [k] having size 2°(K) logn
(and can be constructed in time polynomial in the size of the family).

) There is a deterministic 2°(K) n°W time algorithm for the k-PATH problem.
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Cut problems

t_-_ [ l. _-_..-_
»

5
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MULTIWAY CUT

Task: Given a graph G, aset T of vertices, and an integer k, nd a set S of at
most k edges that separates T (each component of G n S contains at most one
vertex of T).

Polynomial for jT | = 2, but NP-hard for jT | = 3.
Theorem: MULTIWAY cuUT is FPT parameterized by K.

4 \S/ )

=0

(R): set of edges leaving R

(X,Y): minimum number of edges in an (X, Y )-separator
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Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) + ] (B) J (A\ B)] + ] (A[ B))
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Submodularity

Fact: The function is submodular: for arbitrary sets A, B,

J (A)) + ] (B) J (A\ B)] + ] (A[ B))

Proof. Determine separately the contribution of the different types of edges.
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Submodularity

Consequence: There is a unique maximal Rnax X such that (Rnyay) is an
(X,Y )-separator of size (X,Y).

Proof: LetR;,R, X betwo sets suchthat (R;), (R,) are (X,Y )-separators of

o

size = (X,Y).

S

J (R + ] (R)] J (ReVRo)) + | (Ri[ R2))

) 1 (R Ra)j

Note: Analogous result holds for a uniqgue minimal Ryn.
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MULTIWAY CUT

Intuition: Considerat 2 T. A subset of the solution separatest and T nt.

‘f—l-
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There are many such separators.
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MULTIWAY CUT

Intuition: Considerat 2 T. A subset of the solution separatest and T nt.

e o
°®
{
o \\\
o
e o

There are many such separators.

But a separator farther fromt and closerto T nt seems to be more useful.
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Important separators

De nition:  An (X, Y )-separator (R) is important if there is no (X, Y )-separator
(RYwithR R%andj (R9j j (R)j.

XA 2

|
T2
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Important separators

De nition:  An (X, Y )-separator (R) is important if there is no (X, Y )-separator
(RYwithR R%andj (R9j j (R)j.

) R
0k /
o [ Y
X B A e
o (RO x
R __
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Important separators

De nition:  An (X, Y )-separator (R) is important if there is no (X, Y )-separator
(RYwithR R%andj (R9j j (R)j.

(R)

XA 2

|
T2
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MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.
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MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

o o
t \\\ o
° /
o
R ’/
o o
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MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

/

/

RO
If (R) is not important, then there is an important separator (R% with R R?°
andj (R9j] j (R)j. Replace SwithS°:=(Sn (R))[ (RY) jSY |Sj
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MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

. e o
t \\ °
® | TT---0TTT . u
)
V
R T4 - - O
RO

If (R) is not important, then there is an important separator (R% with R R?°
andj (R9j] j (R)j. Replace SwithS°:=(Sn (R))[ (RY) jSY |Sj

S%is a multiway cut: A u-v path in G n S®implies a u-t path, a contradiction.
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MuLTIWAY CuUT and important separators

Lemma: Lett 2 T. The MULTIWAY CUT problem has a solution S that contains an
important (t, T nt)-separator.

Proof: Let R be the vertices reachable fromt in G n S for a solution S.

I o (]
<
{ N o
‘~ .-t TTTTTA S~ u
9
R <77 v
H—1i-{-0 @
RO

If (R) is not important, then there is an important separator (R% with R R?°
andj (R9j] j (R)j. Replace SwithS°:=(Sn (R))[ (RY) jSY |Sj

S%is a multiway cut: A u-v path in G n S®implies a u-t path, a contradiction.
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Important separators

Lemma: There are at most 4 important (X, Y )-separators of size at most k.

Example:

There are exactly 22 important (X, Y )-separators of size at most Kk in this graph.
y P
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Important separators

Lemma: There are at most 4 important (X, Y )-separators of size at most k.

Proof: First we show that R,.x R for every important separator (R).

J (Rmad)] ] (R)] J (Rmax\ R)] + ] (Rmax [ R)J
+
] (Rmax [ R)] ] (R)]
+

IfR 6 Ry [ R,then (R) is notimportant.

Thus the important (X, Y )- and (Ryax, Y )-separators are the same.
) We can assume X = Ryay.
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Important separators

Lemma: There are at most 4 important (X, Y )-separators of size at most k.

Search tree algorithm for nding all these separators:

An (arbitrary) edge uv leaving X = Ry, IS either in the separator or not.

Branch 1: If uv 2 S, then S nuv is an important
(X,Y )-separator of size at mostk - 1in G nuv.

Branch 2: If uv 625, then S is an important X =

u |v
o

(X [ v, Y )-separator of size at most k in G.
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Important separators

Lemma: There are at most 4 important (X, Y )-separators of size at most k.
Search tree algorithm for nding all these separators:

An (arbitrary) edge uv leaving X = Ry, IS either in the separator or not.

Branch 1: If uv 2 S, then S nuv is an important
(X,Y )-separator of size at mostk - 1in G nuv.

) k decreases by one, decreases by at most 1.

Branch 2: If uv 625, then S is an important
(X [ v, Y )-separator of size at most k in G.

X = Ry u%y

) k remains the same, increases by 1.

The measure 2k -  decreases in each step.
) Height of the search tree 2k ) 2%% = 4K important separators.
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Algorithm for MuLTIwAY CUT

If every vertex of T is in a different component, then we are done.
Lett 2 T be a vertex with that is not separated from every T nt.
Branch on a choice of an important (t, T nt) separator S of size at most k.

SetG:=GnSandk :=k- |5

a k~ w0 DR

Go to step 1.

We branch into at most 4% directions at most k times.
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Algorithm for MuLTIwAY CUT

If every vertex of T is in a different component, then we are done.
Lett 2 T be a vertex with that is not separated from every T nt.
Branch on a choice of an important (t, T nt) separator S of size at most k.

SetG:=GnSandk :=k- |5

a k~ w0 DR

Go to step 1.

We branch into at most 4% directions at most k times.
Better estimate of the search tree size:

When choosing the important separator, 2k -  decreases at each branching,
until reaches 0.

When choosing the next vertex t, changes from 0 to positive, thus 2Kk -
does not increase.

Size of the search tree is at most 22 = 4K,
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Other separation problems

Some other variants:
T ] as a parameter
MULTITERMINAL CUT: pairs (S, t1), ..., (S, t) have to be separated.
Directed graphs

Planar graphs

Useful for deletion-type problems such as DIRECTED FEEDBACK VERTEX SET
(via iterative compression).

Important separators: is it relevant for a given problem?
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Integer Linear Programming
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Integer Linear Programming

Linear Programming (LP): important tool in (continuous) combinatorial
optimization. Sometimes very useful for discrete problems as well.

MaxCi X1 + CoXo + C3X3
S.t.

Xy + 5Xo- X3 8

2X1 - X3 0
3+ 10x3 10
X1, X2, X3 2 R

Fact: It can be decided if there is a solution (feasibility) and an optimum solution

can be found in polynomial time.
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Integer Linear Programming

Integer Linear Programming (ILP): Same as LP, but we require that every X; is

integer.

Very powerful, able to model many NP-hard problems. (Of course, no
polynomial-time algorithm is known.)

Theorem: ILP with p variables can be solved in time p®(P n°)
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CLOSEST STRING

Task: Given strings sy, ..., S¢ of length L over alphabet , and an integer d, nd a
string s (of length L) such thatd(s,s) dforeveryl 1 K.

Note: d(s,s) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by K is FPT.
Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.

Theorem: CLOSEST STRING is NP-hard for = 10, 1g
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Task: Given strings sy, ..., S¢ of length L over alphabet , and an integer d, nd a
string s (of length L) such thatd(s,s) dforeveryl 1 K.

Note: d(s,s) is the Hamming distance.

Theorem: CLOSEST STRING parameterized by K is FPT.
Theorem: CLOSEST STRING parameterized by d is FPT.
Theorem: CLOSEST STRING parameterized by L is FPT.
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An instance with k = 5 and a solution for d = 4:

Each column can be described by a partition P of [K].

$ L &L 9

CBDCCACBB
ABDBCABDB
CDDBACCBD
DDABACCBD
ACDBDDCBC

ADDBCACBD

CLOSEST STRING

The instance can be described by an integer cp for each partition P: the number of

columns with this type.
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CLOSEST STRING

Each column can be described by a partition P of [K].
The instance can be described by an integer cp for each partition P: the number of
columns with this type.

Describing a solution:  If C is a class of P, let Xp ¢ be the number of type P
columns where the solution agrees with class C.

There is a solution iff the following ILP has a feasible solution:

X
Xpc Cp 8partition P
C2P
X
Xpc d 81 1 Kk
i6L,C2P
Xpc O 8P, C

Number of variablesis  B(k) k, where B(k) is the no. of partitions of [K]
) The ILP algorithm solves the problem in time f (k) n°® .
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STEINER TREE
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STEINER TREE

Task: Given a graph G with weighted edges and a set S of k vertices, nd a tree
T of minimum weight that contains S.

Known to be NP-hard. For xed k, we can solve it in polynomial time: we can
guess the Steiner points and the way they are connected.

Theorem: STEINER TREE is FPT parameterized by k = |Sj.

Fixed Parameter Algorithms — p.94/98



STEINER TREE

Solution by dynamic programming. Forv 2 V(G) and X S,
c(v, X) := minimum cost of a Steiner tree of X that contains v
d(u,v) := distance of u and v

Recurrence relation:

c(v,X)= min c(u,X°nu)+ c(u,(X nX%) nu)+ d(u,v)
UZVéG;
X
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STEINER TREE

Recurrence relation:

c(v,X)= min c(u,X%nu)+ c(u,(X nX9 nu)+ d(u,v)
UZV(gGg(
;X

. A tree T, realizing c(u, X°n u), a tree
T, realizing c(u, (X nX 9 nu), and the path
uv gives a (superset of a) Steiner tree of X
containing v.

> >
P
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STEINER TREE

Recurrence relation:

c(v,X)= min c(u,X%nu)+ c(u,(X nX9 nu)+ d(u,v)
UZV(gG;(
X

. Suppose T realizes c(v, X), let T ° be
the minimum subtree containing X. Letube T,
a vertex of T Oclosest to v. If jXj > 1, then

there is a component C of T nu that contains
asubset; X9 X ofterminals. Thus T
is the disjoint union of a tree containing X °nu
and u, a tree containing (X N X% nu and u,
and the path uv.
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STEINER TREE

Recurrence relation:

c(v,X)= min c(u,X°nu)+ c(u,(X nu)nX9%+ d(u,v)
UZV(gG;(
X

Running time:

2KjV (G)j variables c(v, X), determine them in increasing order of jXj. Variable
c(v, X) can be determined by considering 2*! cases. Total number of cases to

consider:

X X
2% = S 20 (1+ 2)k = 3,
X T i=1 !

Running time is O (3X).

Note: Running time can be reduced to O (2¥) with clever techniques.
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Conclusions

Many nice techniques invented so far — and probably many more to come.
A single technigue might provide the key for several problems.
How to nd new techniques? By attacking the open problems!

Next (January):
Treewidth

Hardness theory
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