
Minimum Sum Multicoloring
on the Edges of Trees?

(Extended Abstract)

Dániel Marx

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

Budapest Pf. 91, H-1521, Hungary
dmarx@cs.bme.hu

Abstract. The edge multicoloring problem is that given a graph G and
integer demands x(e) for every edge e, assign a set of x(e) colors to
vertex e, such that adjacent edges have disjoint sets of colors. In the
minimum sum edge multicoloring problem the finish time of an edge is
defined to be the highest color assigned to it. The goal is to minimize
the sum of the finish times. The main result of the paper is a polynomial
time approximation scheme for minimum sum multicoloring the edges of
trees.

1 Introduction

In this paper we study an edge multicoloring problem that is motivated by
applications in scheduling. We are given a graph with an integer demand x(e) for
each edge e. A multicoloring is an assignment of a set of x(e) colors to each edge
e such that the colors assigned to adjacent edges are disjoint. In multicoloring
problems the usual aim is to minimize the total number of different colors used
in the coloring. However, in this paper a different optimization goal is studied.
Given a multicoloring, the finish time of an edge is defined to be the highest
color assigned to it. In the minimum sum multicoloring problem the goal is to
minimize the sum of finish times.

An application of edge coloring is to model dedicated scheduling of bipro-
cessor tasks. The vertices correspond to the processors and each edge e = uv
corresponds to a job that requires x(e) time units of simultaneous work on the
two preassigned processors u and v. The colors correspond to the available time
slots: by assigning x(e) colors to edge e, we select the x(e) time units when the
job corresponding to e is executed. A processor cannot work on two jobs at the
same time, this corresponds to the requirement that a color can appear at most
once on the edges incident to a vertex. The finish time of edge e corresponds to
the time slot when job e is finished, therefore minimizing the sum of the finish

? Research is supported in part by grants OTKA 44733, 42559 and 42706 of the
Hungarian National Science Fund.

times is the same as minimizing the sum of completion times of the jobs. Using
the terminology of scheduling theory, we minimize the mean flow time, which is
a well-studied optimization goal in the scheduling literature. Such biprocessor
tasks arise when we want to schedule file transfers between processors [2] or
the mutual diagnostic testing of processors [6]. Note the we allow that a job is
interrupted and continued later: the set of colors assigned to an edge does not
have to be consecutive, hence our problem models preemptive scheduling.

Of particular interest is the case where the graph G is bipartite. A possible
application of the bipartite problem is the following. One bipartition class corre-
sponds to a set of clients, the other class corresponds to a set of servers. An edge
e between two vertices means that the given client has to access the given server
for x(e) units of time. A client can access only one server at the same time, and
a server cannot accept connections from more than one client simultaneously.
Clearly, bipartite edge multicoloring models this situation.

Minimum sum edge multicoloring is NP-hard on bipartite graphs even if
every edge has unit demand [3]. For general demands, [1] gives a 2-approximation
algorithm. The problem can be solved in polynomial time if every edge has unit
demand and the graph is a tree [3,7].

In this paper, we consider the minimum sum edge coloring problem restricted
to trees. We show that, unlike in the unit demand case, minimum sum edge col-
oring is NP-hard on trees if the demands are allowed to be at most 2. The main
contribution of the paper is a polynomial time approximation scheme (PTAS)
for minimum sum edge multicoloring in trees.

In [4,5] PTAS is given for the vertex coloring version of the problem in the
case when the graph is a tree, partial k-tree, or a planar graph. One of their main
tools is the decomposition of colors into layers of geometrically increasing size.
This method will be used in this paper as well. However, most of the other tools
in [4,5] cannot be applied in our case, since those tools assume that the graph
can be colored with a constant number of colors. If the maximum degree of the
tree can be arbitrary, then the line graph of the tree can contain arbitrarily large
cliques. On one hand, these large cliques make the tools developed for partial
k-trees impossible or very difficult to apply. On the other hand, a large clique
helps us in finding an approximate solution: since the sum of a large clique has to
be very large in every coloring (it grows quadratically in the size of the clique),
more errors can be tolerated in an approximate solution, and this gives us more
elbow space in constructing a good approximation.

The paper is organized as follows. In Section 2 we introduce some notations
and give results on the complexity of the problem. Section 3 gives a PTAS for
trees where the maximum degree of the tree is bounded by a constant, while
Section 4 gives a linear time PTAS for general trees.

2 Preliminaries

The problem considered in this paper is the edge coloring version of minimum
sum multicoloring, which can be stated formally as follows:

Minimum Sum Edge Multicoloring (semc)
Input: A graph G(V,E) and a demand function x: E → IN.
Output: A multicoloring Ψ : E → 2IN such that |Ψ(e)| = x(e) for every
edge e, and Ψ(e1) ∩ Ψ(e2) = ∅ if e1 and e2 are adjacent in G.
Goal: The finish time of edge e in coloring Ψ is the highest color assigned
to it, fΨ (e) = max{c ∈ Ψ(e)}. The goal is to minimize

∑

e∈E fΨ (e), the
sum of the coloring Ψ .

We extend the notion of finish time to a set E of edges by defining fΨ (E) =
∑

e∈E fΨ (e). Given a graph G and a demand function x(e) on the edges of G,
the minimum sum that can be obtained is denoted by OPT(G, x).

Henceforth the graph G is a rooted tree with root r. The root is assumed
to be a node of degree one, the root edge is the edge incident to r. Every edge
has an upper node (closer to r) and a lower node (farther from r). Edge f is a
child edge of edge e if the upper node of f is the same as the lower node of e. In
this case, edge e is the parent edge of edge f . A node is a leaf node if it has no
children, and an edge is a leaf edge if its lower node is a leaf node. The subtree
Te consists of the edge e and the subtree rooted at the lower node of e.

A bottom up traversal of the edges is an ordering of the edges in such a way
that every edge appears before its parent edge. It is clear that such ordering
exists and can be found in linear time.

Since the tree is bipartite, every node has a parity, which is either 1 or 2,
and neighboring nodes have different parity. Let the parity of an edge be the
parity of its upper node. Thus if two edges have the same parity and they have
a common node v, then v is the upper node of both edges.

If the tree has maximum degree ∆, then the edges can be colored with ∆
colors. This color will be called the type of the edge. In some of the algorithms,
the leaf edges are special, they are handled differently, therefore we want to
assign a type only to the non-leaf edges. Clearly, if every edge has at most D
non-leaf child edges, then the non-leaf edges can be colored with D + 1 colors,
and they can be given a type from 1, 2, . . . , D+1 such that adjacent edges have
different type.

The following lemma bounds the number of colors required in a minimum
sum multicoloring (proof is omitted). In the following, the maximum demand in
the instance is denoted by p.

Lemma 1. If T is a tree with maximum degree ∆ and maximum demand p, then
every optimum coloring of the semc problem uses at most p(2∆− 1) colors.

If both the maximum degree of the tree and the maximum demand is bounded
by a constant, then the problem can be solved in linear time. The idea is that
there are only a constant number of possible color sets that can appear at each
edge, hence using standard dynamic programming techniques, the optimum col-
oring can be found during a bottom up traversal of the edges. We omit the
details.

Theorem 2. The semc problem for trees can be solved in 2O(p∆) · n time.

On the other hand, if only the demand is bounded, then the problem becomes
NP-complete:

Theorem 3. Minimum sum edge coloring isNP-complete in trees, even if every
demand is 1 or 2.

Using polyhedral techniques, we can show that trees have the following scal-
ing property (proof is omitted):

Theorem 4. For every tree T , demand function x and integer q, if x′(e) =
q · x(e), then OPT(T, x′) = q ·OPT(T, x) holds.

In general, Theorem 4 does not hold for every graph, not even for every bipartite
graph. We will use Theorem 4 to reduce the number of different demand sizes
that appear in the graph, with only a small increase of the sum:

Lemma 5. Let (T, x) be an instance of semc and let x′(e) be b(1 + ε)ic for the
smallest i such that b(1 + ε)ic ≥ x(e). Then OPT(T, x′) ≤ (1 + ε) ·OPT(T, x).

As explained in the introduction, our goal is to minimize the sum of finish
times, not to minimize the number of different colors used. Nevertheless, in
Theorem 6 we show that the minimum number of colors required for the coloring
the edges of a tree can be determined in polynomial time. The approximation
algorithm presented in Section 3 uses this result to solve certain subproblems.

Theorem 6. Let T be a tree and let C = maxv∈V (T)

∑

e3v x(e). Every coloring
of T uses at least C colors, and one can find in linear time a multicoloring
Ψ using C colors where each Ψ(e) consists of at most two intervals of colors.
Moreover, if each x(e) is an integer multiple of some integer q, then we can find
such a Ψ where the intervals in each Ψ(e) are of the form [qi1 + 1, qi2] for some
integers i1 and i2.

Proof. It is clear that at least C colors are required in every coloring: there is a
vertex v such that the edges incident to v require C different colors. The coloring
Ψ can be constructed by a simple greedy algorithm. Details omitted. ut

3 Bounded degree

If a tree T has maximum degree ∆, then the line graph of T is a partial (∆−1)-

tree. Halldórsson and Kortsarz [4] gave a PTAS with running time nO(k2/ε2) for
minimum sum multicoloring the vertices of partial k-trees, therefore there is a
PTAS for semc in bounded degree trees as well. However, the method can be
made simpler and more efficient in line graphs of trees. In this section we present
a linear time PTAS for semc in bounded degree trees, which makes use of the
special structure of trees. Furthermore, our algorithm works even if the degree of
the tree is not bounded, but we know that every edge has a bounded number of
non-leaf child edges. Most of the ideas presented in this section are taken from
[4], with appropriate modifications. In Section 4 a PTAS is given for general
trees, which uses the result in this section as a subroutine.

PSfrag replacements

Extra segments

L0 L1 L2 L3 L4

L1 L2 L3 L4L0

Main zone Z0

Extra zone Z2

Fig. 1. The decomposition of the colors into layers (` = 3)

3.1 Layers and Zones

An important idea of the approximation schemes given in [4,5] is to divide the
color spectrum into geometrically increasing layers, and to solve the problem
in these layers separately. We use a similar method for the semc problem in
bounded degree trees (Theorem 9) and general trees (Theorem 10).

For some ε > 0 and integer ` ≥ 0, the (ε, `)-decomposition divides the set
of colors into layers L0, L1, . . . and zones Z0, Z1, . . . , Z`. The layers are of ge-
ometrically increasing size: layer Li contains the range of colors from qi to
qi+1 − 1, where qi = b(1 + ε)ic (if qi = qi+1, then layer Li is empty). Denote by
Qε

i = |Li| = qi+1 − qi the size of the ith layer. Notice that qi+1 ≤ (1 + ε)qi. The
total size of layers L0, L1, . . . , Li is qi+1 − 1.

Each layer is divided into a main block and an extra block. The extra block is
further divided into extra segments (see Figure 1). Layer Li is divided into two
parts: the first 1

1+ε`Q
ε
i colors form the main block of layer Li and the remaining

ε`
1+ε`Q

ε
i colors the extra block. The main block of layer Li is denoted by Li. The

union of the main block of every layer Li is the main zone Z0. Divide the extra
block of every layer Li into ` equal parts: these are the ` extra segments of Li.
The union of the jth extra segment of every layer Li forms the jth extra zone
Zj . Each extra zone contains ε

1+ε`Q
ε
i colors from layer Li. Rounding problems

are not discussed in this extended abstract, but they can be handled rigorously.
We will need the following properties of the defined zones:

Lemma 7. For given ε and `, the (ε, `)-decomposition of the colors has the fol-
lowing properties:

(a) For every c ≥ 1, there are at least c colors in Z0 not greater than b(1+ε`)cc.
(b) For every c ≥ 1 and 1 ≤ j ≤ `, there are at least c colors in Zj not greater

than d(1 + ε)(1 + ε`)/ε · ce.

Given a multicoloring Ψ , the operation (ε, `)-augmentation creates a multi-
coloring Φ in the following way. Consider the (ε, `)-decomposition of the colors,
and if Ψ(e) contains color c, then let Φ(e) contain instead the cth color from
the main zone Z0. By Lemma 7a, fΦ(e) ≤ b(1 + ε`)fΨ (e)c, thus this operation
increases the sum by at most a factor of (1 + ε`). After the augmentation, the
colors of the extra zones are not used, only the colors of the main zone.

3.2 PTAS for Bounded Degree Trees

The polynomial time algorithm of Theorem 2 was based on the observation that
we have to consider only a constant number of different colorings at each edge if
both the demand and the maximum degree is bounded. In general, however, the
number of different color sets that can be assigned to an edge is exponentional
in the demand. The following lemma shows that we can find a good approximate
coloring by considering only a restricted type of color sets.

Lemma 8. For ε > 0, define bi,j = qi + jdε2Qε
i/4e. If each vertex of the tree T

has at most D non-leaf child edges, then it has an (1+ε)(1+(D+1)ε)-approximate
coloring Ψ with the following properties:

1. In the (ε,D)-decomposition of the colors, if e is a non-leaf edge, then Ψ(e)
contains colors from the main zone only between εx(e)/4 and 2x(e)/ε.

2. If e is a non-leaf edge of type k, then Ψ(e) contains the first te colors from
extra zone Zk (for some te), and it does not contain colors from the other
extra zones.

3. If e is a leaf edge, then Ψ(e) contains colors only from the main zone.
4. If e is a non-leaf edge, then Ψ(e) contains at most two continuous intervals

of colors from the main block of each layer, and the intervals in layer Li are
of the form [bi,j1 , bi,j2 − 1] for some j1 and j2.

Proof. Let Φ be an optimum solution, and let Ψ be the result of an (ε,D)-
augmentation on Φ. By Lemma 7a, fΨ (e) ≤ (1 + (D + 1))fΦ(e) for every e.

If fΨ (e) > 2x(e)/ε for a non-leaf edge e of type j, then modify Ψ(e) to be the
the first x(e) colors of zone Zj . By Lemma 7b, Zj contains at least x(e) colors
not greater than d(1+ε)(1+(D+1)ε)/ε ·x(e)e ≤ 2(1+(D+1)ε)x(e)/ε. Therefore
the x(e) colors assigned to e are not greater than 2(1 + (D + 1)ε)x(e)/ε, hence
fΨ (e) ≤ (1 + (D + 1))fΦ(e).

If Ψ(e) contains colors in the main zone below εx(e)/4, then delete these
colors and let Ψ(e) contain instead the first εx(e)/4 colors from zone Zj . There
are at least εx(e)/4 colors in Zi below d(1 + ε)(1 + (D + 1)ε)/ε · εx(e)/4e ≤
(1 + (D + 1))x(e) ≤ (1 + (D + 1))fΦ(e). Therefore fΨ (e) ≤ (1 + (D + 1))fΦ(e)
for each edge e, and Ψ is an (1 + (D + 1)ε)-approximate solution satisfying the
first three properties of the lemma.

Finally, we make Ψ satisfy the fourth requirement as well. For each non-leaf
edge e, let xi(e) be |Ψ(e) ∩ Li| rounded down to the next integer multiple of
dε2Qε

i/4e. If we use xi as a demand function on the non-leaf edges of the tree,
then there is multicoloring satisfying xi that uses at most |Li| colors: Ψ(e) ∩ Li

is such a coloring. Therefore by Theorem 6, there is a multicoloring Ψi that
uses at most |Li| colors, satisfies xi, and where each Ψ(e) consists of at most
two intervals of the form [1 + j1dε

2Qε
i/4e, j2dε

2Qε
i/4e] for some j1, j2. Modify

coloring Ψ : let Ψi determine how the colors are assigned in the main zone of layer
i. Now the third requirement is satisfied, but it is possible that Ψ assigns less
than x(e) colors to an edge. We can lose at most dε2Qε

i/4e − 1 ≤ ε2Qε
i/4 colors

in layer i, hence we lose at most the ε2/4 part of each layer. Since Ψ(e) contains

colors only up to 2x(e)/ε, thus we lose only at most ε2/4 · 2x(e)/ε = εx(e)/2
colors. If non-leaf edge e is of type j, then we use extra zone Zj to replace
the lost colors. So far, edge e uses at most εx(e)/4 colors from Zj (previous
paragraph), hence there are still place for more than 3εx(e)/4 colors in Zj below
(1 + (D + 1)ε)x(e) ≤ (1 + (D + 1)ε)fΦ(e).

The modification in the previous paragraph can change the finish times of
the non-leaf edges, but the largest color of each edge remains in the same layer,
hence the finish time can increase by at most a factor of 1 + ε. Moreover, since
we modified only the non-leaf edges, there can be conflicts between the non-leaf
and the leaf edges. But that problem is easy to solve: since the number of colors
used by the non-leaf edges at vertex v from layer i does not increase, there are
enough colors in layer i for the leaf edges. The largest color of each leaf edge will
be in the same layer, hence its finish time increases by at most a factor of 1 + ε,
and fΨ (e) ≤ (1 + ε)(1 + (D + 1)ε)fΦ(e) follows for every edge e. ut

Call a coloring satisfying the requirements of Lemma 8 a standard coloring.
Notice that on a non-leaf edge e only a constant number of different color sets
can appear in standard colorings: the main zone is not empty only in a constant
number of layers, and in each layer the (at most two) intervals can be placed in a
constant number of different ways. More precisely, in a standard coloring edge e
can use the main zone only from layer log1+ε εx(e)/4 to layer log1+ε 2x(e)/ε, that
is, only in log1+ε((2x(e)/ε)/(εx(e)/4)) = log1+ε 8/ε

2 = O(1/ε · log 1/ε) layers. In
each layer, the end points of the intervals can take only at most 4/ε2 different
values, hence there are (4/ε2)2 different possibilities for each of the two intervals.
Therefore if we denote by Ce the different color sets that can appear in a standard
coloring on non-leaf edge e, then |Ce| = ((4/ε2)4)O((1/ε)·log 1/ε) = 2O((1/ε)·log2 1/ε).

Theorem 9. If every edge of T (V,E) has at most D non-leaf child edges, then

for every ε0 > 0, there is a 2O(D2/ε0·log
2(D/ε0)) · n time algorithm that gives an

(1 + ε0)-approximate solution to the semc problem.

Proof. Set ε := ε0/(2D + 3). We use dynamic programming to find the best
standard coloring: for every non-leaf edge e, and every set S ∈ Ce, we determine
OPT(e, S), which is defined to be the sum of the best standard coloring of Te,
with the additional requirement that edge e receives color set S. Clearly, if all
the values {OPT(r, S) |S ∈ Cr} are determined for the root edge r of T , then
the minimum of these values is the sum of the best standard coloring, which is
by Lemma 8 at most (1 + ε)(1 + (D + 1)ε) ≤ (1 + ε0) times the minimum sum.

The values OPT(e, S) are calculated in a bottom up traversal of the edges.
Assume that e has k non-leaf child edges e1, e2, . . . , ek and ` leaf child edges
e′1, e

′
2, . . . , e

′
`. When OPT(e, S) is determined, the values OPT(ei, Si) are already

available for every 1 ≤ i ≤ k and Si ∈ Cei
. In a standard coloring of Te every edge

ei is assigned a color set from Cei
. We enumerate all the

∏k
i=1 |Cei

| possibilities
for these color sets. For each combination S1 ∈ Ce1

, . . . , Sk ∈ Cek
, we check

whether these sets are pairwise disjoint. If so, then we determine the minimum
sum that a standard coloring can have with these assignments. The minimum

sum of subtree Tei
with color set Si on ei is given by OPT(ei, Si). The finish

time of edge e can be calculated from S. Now only the leaf edges e′1, . . . , e
′
`

remain to be colored. It is easy to see that the best thing to do is to order these
leaf edges by increasing demand size, and color them one after the other, using
the colors not already assigned to e, e1, . . . , ek. Therefore we can calculate the
minimum sum corresponding to a choice of color sets S1 ∈ Ce1

, . . . , Sk ∈ Cek
,

and we set OPT(e, S) to the minimum over all the combinations.

The algorithm solves at most
∑

e∈E |Ce| = n · 2O((1/ε)·log2 1/ε) subproblems.

To solve a subproblem, at most 2O(D·(1/ε)·log2 1/ε) different combinations of the
sets S1, . . . , Sk have to be considered. Each color set can be described by O(1/ε ·
log 1/ε) intervals, and the time required to handle each combination is polyno-
mial in D and the number of intervals. Therefore the total running time of the
algorithm is 2O(D·1/ε·log2(1/ε)) · n = 2O(D2/ε0·log

2(D/ε0)) · n. ut

4 The general case

In this section, we prove that semc admits a PTAS for arbitrary trees:

Theorem 10. For every ε0 > 0, there is a 2O(1/ε11
0
·log2(1/ε0)) · n time algorithm

that gives an ε0-approximate solution to the semc problem for every tree T and
demand function x.

Proof. Let ε := ε0/72. The algorithm consists of a series of phases. The last phase
produces a proper coloring of (T, x), and has cost at most (1+ ε0)OPT(T, x). In
the following we describe these phases.

Phase 1: Rounding the Demands. Using Lemma 5, we can assume that
x(e) is qi for some i, modifying x(e) this way increases the minimum sum by at
most a factor of 1+ ε. An edge e with demand qi will be called a class i edge (if
x(e) = qi for more than one i, then take the smallest i).

Phase 2: Partitioning the Tree. The edges of the tree are partitioned into
subtrees in such a way that in a subtree the number of non-leaf child edges of a
node is bounded by a constant. Now Theorem 9 can be used to find an approxi-
mate coloring for each subtree. These colorings can be merged into a coloring of
the whole tree, but this coloring will not be necessarily a proper coloring, since
there might be conflicts between edges that were in different subtrees. However,
using a series of transformations, these conflicts will be resolved with only a
small increase of the sum.

To obtain this partition, the edges of the tree are divided into large edges and
split edges. It will be done in such a way that every node has at most D := 4/ε5

large child edges. If a node has less than D children, then its child edges are large
edges. Let v be a node with at least D children, and denote by n(v, i) the number
of class i child edges of v. Let N(v) be the largest i such that n(v, i) > 0 and set

F := 4/ε3. Let e be a class i child edge of v. If n(v, i) > F , then e is a split edge,
and it will be called a frequent edge. If n(v, i) ≤ F and i ≤ N(v)− b1/ε2c, then
e is a split edge, and it will be a called a small edge. Otherwise, if n(v, i) ≤ F
and i > N(v) − b1/ε2c, then e is a large edge. Clearly, v can have at most
F · b1/ε2c = 4/ε3 · b1/ε2c ≤ 4/ε5 = D large child edges: for each class N(v),
N(v)− 1, . . . , N(v)− b1/ε2c+ 1, there are at most F such edges.

The tree is split at the lower node of every split edge, the connected compo-
nents of the resulting forest form the classes of the partition. Defined in another
way: delete every split edge, make the connected components of the remaining
graph the classes of the partition, and put every split edge into the class where
its upper node belongs. Clearly, every split edge becomes a leaf edge in its sub-
tree, thus if every node has at most D large child edges in the tree, then in every
subtree every node has at most D non-leaf child edges.

Now assume that each subtree is colored with the algorithm of Theorem 9,
this step can be done in 2O(D2/ε·log2(D/ε)) · n = 2O(16/ε10·1/ε·log2(4/ε6)) · n =
2O(1/ε11·log2(1/ε)) · n time. Each coloring is an (1 + ε)-approximate coloring of
the given subtree, thus merging these colorings yields a (not necessarily proper)
coloring Ψ1 of T such that fΨ1

(T) ≤ (1 + ε)OPT (T, x). In the rest of the proof,
we transform Ψ1 into a proper coloring in such a way that the sum of the coloring
does not increase too much.

Phase 3: Small Edges. Consider the (ε, `)-augmentation of the coloring Ψ1

with ` := 6. This results in a coloring Ψ2 such that fΨ2
(G) ≤ fΨ1

(G)(1+ ε`) (see
Section 3). First we modify Ψ2 in such a way that the small edges use only the
extra zones Z1 and Z2. More precisely, if a small edge e has parity r ∈ {1, 2},
then e is recolored using the colors in Zr (recall that the parity of the edge is
the parity of its upper node). Since the extra zones contain only a very small
fraction of the color spectrum, the recoloring can significantly increase the finish
time of the small edges, roughly by a factor of 1/ε. However, we show that the
total demand of the small edges are so small compared to the largest demand
on the child edges of v, that their total finish time will be negligible, even after
this large increase. By definition, the largest child edge of v has demand qN(v).

Consider the small edges whose upper node is v, a node with parity r. Color
these edges one after the other, in the order of increasing demand size, using only
the colors in Zr. Call the resulting coloring Ψ3. Let Rv be the set of small child
edges of v. We claim that fΨ3

(Rv) ≤ εqN(v) for every node v, thus transforming
Ψ2 into Ψ3 increases the total sum by at most

∑

v∈T fΨ3
(Rv) ≤ ε

∑

v∈T qN(v) ≤
εfΨ2

(T) and fΨ3
(T) ≤ (1+ε)fΨ2

(T) follows. To give an upper bound on fΨ3
(Rv),

we assume the worst case, that is, n(v, i) = F for every i ≤ N(v) − b1/ε2c.
Imagine first that the small edges are colored using the full color spectrum, not
only with the colors of zone Zr. Assume that the small edges are colored in the
order of increasing demand size, and consider a class k edge e. In the coloring,
only edges of class not greater than k are colored before e. Hence the finish time
of e is at most

k
∑

i=0

n(v, i)qi ≤ F

k
∑

i=0

(1 + ε)i ≤ 4(1 + ε)/ε4 · (1 + ε)k

≤ 5/ε4 · b(1 + ε)kc = 5/ε4 · qk.

That is, the finish time of an edge is at most 5/ε4 times its demand. Therefore
the total finish time of the small edges is at most 5/ε4 times the total demand,
which is

5

ε4

N(v)−b1/ε2c
∑

i=0

n(v, i)qi ≤
20

ε7

N(v)−b1/ε2c
∑

i=0

(1 + ε)i

≤
21

ε8
(1 + ε)N(v)−b1/ε2c ≤

22

ε8
(1 + ε)N(v)−1/ε2

≤
22

ε8
· 2−1/ε · (1 + ε)N(v) ≤

ε2

2
·
1

2
(1 + ε)N(v)

≤
ε2

2
· qN(v).

(In the fourth inequality we use (1+ε)1/ε ≥ 2, in the fifth inequality it is assumed
that ε is sufficiently small that 21/ε ≥ 44/ε10 holds.) However, the small edges
do not use the full color spectrum, only the colors in zone Zr. By Lemma 7b,
zone Zr contains at least c colors up to d(1 + ε`)(1 + ε)/ε · ce ≤ 2/ε · c, thus
every finish time in the calculation above should be multiplied by at most 2/ε.
Therefore the sum of the small edges is

fΨ2
(Rv) ≤ 2/ε ·

ε2

2
· qN(v) ≤ εqN(v),

as claimed.

Phase 4: Shifting the Frequent Edges. Now we have a coloring Ψ3 that
is still not a proper coloring, but conflicts appear only between some frequent
edges and their child edges. First we ensure that every frequent edge e uses only
colors greater than 2x(e)/ε. After that, the conflicts are resolved using a set of
so far unused colors, the colors in extra zones Z5 and Z6.

Let Mv be the set of frequent child edges of v, and let Λv =
⋃

e∈Mv
Ψ3(v) be

the colors used by the frequent child edges of node v. We recolor the edges in Mv

using only the colors in Λv. Let e1, e2, . . . , e|Mv| be an ordering of the edges in
Mv by increasing demand size. Recall that the algorithm in Theorem 9 assigned
the colors to the split edges (leaf edges) in increasing order of demand size, thus
it can be assumed that frequent edge e1 uses the first x(e1) colors in Λv, edge
e2 uses the x(e2) colors after that, etc. Denote by t(c) = |{e ∈ Mv|fΨ3

(e) ≥ c}|
the number of edges whose finish time is at least c, and denote by t(c, i) = |{e ∈
Mv|fΨ3

(e) ≥ c, x(e) = qi}| the number of class i edges among them. Clearly,

t(c) =
∑∞

i=0 t(c, i) holds. Moreover, it can be easily verified that the total finish
time of the edges in Mv can be expressed as fΨ3

(Mv) =
∑∞

c=1 t(c).

The first step is to produce a coloring Ψ4 where every frequent edge e has only
x(e)/(1 + ε) colors, but these colors are all greater than 2x(e)/ε. The demand
function is split into two parts: x(e) = x1(e) + x2(e), where x1(e) is x(e)/(1 +
ε) and x2(e) is εx(e)/(1 + ε), rounding problems are ignored in this extended
abstract.

This phase of the algorithm produces a coloring Ψ4 of Mv that assigns only
x1(e) colors to every edge e ∈ Mv, but satisfies the condition that it uses only
the colors in Λv, and every edge e receives only colors greater than 2x(e)/ε. In
the next phase we will extend this coloring using the colors in zones Z3 and Z4:
every edge e will receive an additional x2(e) colors.

Coloring Ψ4 is defined as follows. Consider the edges e1, . . . , e|Mv| in this
order, and assign to ek the first x1(ek) colors in Λv greater than 2x(ek)/ε and
not already assigned to an edge ej (j < k). Notice the following property of
Ψ4: if j < k, then every color in Ψ4(ej) is less than every color in Ψ4(ek). This
follows from 2x(ej)/ε ≤ 2x(ek)/ε: every color usable for ek is also usable for ej
if j < k. Define t′(c) = |{e ∈ Mv|fΨ4

(e) ≥ c}| and t′(c, i) = |{e ∈ Mv|fΨ4
(e) ≥

c, x(e) = qi}| as before, but now using the coloring Ψ4. We claim that t′(c, i) ≤
(1 + ε)t(c, i) holds for every c ≥ 1, i ≥ 0. If this is true, then t′(c) ≤ (1 + ε)t(c)
and fΨ4

(Mv) ≤ (1+ε)fΨ3
(Mv) follow from fΨ4

(Mv) =
∑∞

c=1 t
′(c). Summing this

for every node v gives fΨ4
(T) ≤ (1 + ε)fΨ3

(T).

First we show that t′(c, i) ≤ t(c, i) + 3/ε. Denote by λc = |Λv ∩ [1, c− 1]| the
number of colors in Λv available below c. If every class i edge has finish time at
least c in Ψ3, then t(c, i) = n(c, i) ≥ t′(c, i) and we are ready. Therefore there is
at least one class i edge that has finish time less than c. This implies that the
frequent edges of class 0, 1, . . . , i−1 use only colors less than c. Denote by X the
total demand of these edges (in the demand function x(e)), the class i frequent
edges use at most λc −X colors below c.

Now recall the way Ψ4 was defined, and consider the step when every edge
with class less than i is already colored. At this point at most X colors of Λc

are used (possibly less, since Ψ4 assigns only x1(e) colors to every edge e, and
only colors above 2x(e)/ε). Therefore at least λc −X colors are still unused in
Λv below c. From these colors at least λc−X −d2qi/εe of them are above 2qi/ε.
Thus Ψ4 can color at least (λc −X − d2qi/εe)/qi ≥ (λc −X)/qi − 3/ε edges of
class i using only colors below c. However, Ψ3 uses λc−X colors below c for the
class i edges, hence it can color at most (λc − X)/qi such edges below c, and
t′(c, i) ≤ t(c, i) + 3/ε follows.

We consider two cases. If t(c, i) ≥ 3/ε2, then t′(c, i) ≤ t(c, i) + 3/ε ≤ (1 +
ε)t(c, i), and we are ready. Let us assume therefore that t(c, i) ≤ 3/ε2, it will
turn out that in this case t′(c, i) = 0. There are n(v, i) − t(c, i) ≥ n(v, i) − 3/ε2

class i edges that has finish time less than c in Ψ3. Therefore, as in the previous
paragraph, before Ψ4 starts coloring the class i edges, there are at least (n(v, i)−
3/ε2) · qi unused colors less than c in Λv. The total demand of the class i edges
in x1(e) is at most n(e, i)qi/(1 + ε). The following calculation shows that the

unused colors below c in Λv is sufficient to satisfy all these edges, thus Ψ4 assigns
to these edges only colors less than c. We have to skip the colors not greater
than 2qi/ε, these colors cannot be assigned to the edges of class i, which means
that the number of usable colors is at least

(n(v, i)− 3/ε2) · qi − 2qi/ε ≥ (n(v, i)−
1

1 + ε
· 4/ε2) · qi + 1

≥ (1−
ε

1 + ε
)n(v, i)qi + 1 ≥ n(e, i)qi/(1 + ε),

since n(v, i) ≥ 4/ε3 by the definition of the frequent edges. Therefore Ψ4 assigns
to the class i edges only colors less than c, hence t(c, i) = 0, as claimed.

Phase 5: Full Demand for the Frequent Edges. The next step is to modify
Ψ4 such that every frequent edge receives x(e) colors, not only x1(e). Coloring
Ψ5 is obtained from Ψ4 by assigning to every frequent edge e an additional x2(e)
colors from zone Z3 or Z4. More precisely, let v be a node with parity r, and
let e1, . . . , e|Mv| be its frequent child edges, ordered in increasing demand size,
as before. Assign to e1 the first x2(e1) colors from Z2+r, to e2 the first x2(e2)
colors from Z2+r not used by e1, etc. It is clear that no conflict arises with the
assignment of these colors.

We claim that these additional colors increase the total finish time of the
frequent edges at v by at most a factor of (1 + (` + 1)ε). Let x∗i =

∑i
j=1 x(ej)

be the total demand of the first i edges. The finish time of ei in Ψ4 is clearly
at least x∗i , since Ψ4 colors every edge ej with j < i before ei. On the other
hand, by Lemma 7b, zone Z2+r contains at least ε

1+εx
∗
i colors not greater than

d(1 + ε`)x∗i e. These colors are sufficient to satisfy the additional demand of the
first i edges.

Phase 6: Resolving the Conflicts. Now we have a coloring Ψ5 such that there
are conflicts only between frequent edges and their child edges. Furthermore, if
e is a frequent edge, then Ψ5(e) contains only colors greater than 2x(e)/ε from
the main zone. It is clear from the construction of Ψ5 that only the colors in the
main zone can conflict.

Let e be a frequent edge that conflicts with some of its children. Let the child
edges of e have parity r. There are at most x(e) colors that are used by both
e and a child of e. We resolve this conflict by recoloring the child edges of e in
such a way that they use the first at most x(e) colors in zone Z4+r instead of
the colors in Ψ5(e). It is clear that if this operation is applied for every frequent
edge e, then the resulting color Ψ6 is a proper coloring.

Notice that if a child edge e′ of e is recolored, then it has finish time at least
d2x(e)/εe, otherwise it does not conflict with e. On the other hand, by Lemma 7b,
zone Z4+r contains at least x(e) colors up to d(1+ε`) ·(1+ε)x(e)/εe ≤ d2x(e)/εe,
thus the recoloring does not add colors above that. Therefore the finish time of
e′ is not increased, since fΨ5

(e′) ≥ d2x(e)/εe.

Analysis. If we follow how the sum of the coloring changes during the previous
steps, it turns out that Ψ6 is an ε0-approximate solution to the instance (T, x0).

The running time of the algorithm is dominated by the coloring of the
low-degree components with the algorithm of Theorem 9. This phase requires
2O(16/ε10·1/ε·log2(4/ε6)) · n) = 2O(1/ε11

0
log2(1/ε0)) · n time. The other parts of the

algorithm can be done in time linear in the size of the input. Therefore the total
running time is 2O(1/ε11

0
log2(1/ε0)) · n, which completes the proof of Theorem 10.

ut

References

1. A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum
multicoloring of graphs. J. Algorithms, 37(2):422–450, 2000.

2. E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and A. S. LaPaugh. Scheduling
file transfers. SIAM J. Comput., 14(3):744–780, 1985.

3. K. Giaro and M. Kubale. Edge-chromatic sum of trees and bounded cyclicity graphs.
Inform. Process. Lett., 75(1-2):65–69, 2000.

4. M. M. Halldórsson and G. Kortsarz. Tools for multicoloring with applications to
planar graphs and partial k-trees. J. Algorithms, 42(2):334–366, 2002.

5. M. M. Halldórsson, G. Kortsarz, A. Proskurowski, R. Salman, H. Shachnai, and
J. A. Telle. Multicoloring trees. Inform. and Comput., 180(2):113–129, 2003.

6. J. A. Hoogeveen, S. L. van de Velde, and B. Veltman. Complexity of scheduling
multiprocessor tasks with prespecified processor allocations. Discrete Appl. Math.,
55(3):259–272, 1994.

7. M. R. Salavatipour. On sum coloring of graphs. Discrete Appl. Math., 127(3):477–
488, 2003.

