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Abstract

The edge multicoloring problem is that given a graph G and integer demands x(e)
for every edge e, assign a set of x(e) colors to edge e, such that adjacent edges have
disjoint sets of colors. In the minimum sum edge multicoloring problem the finish
time of an edge is defined to be the highest color assigned to it. The goal is to
minimize the sum of the finish times. The main result of the paper is a polynomial-
time approximation scheme for minimum sum multicoloring the edges of trees. We
also show that the problem is strongly NP-hard for trees, even if every demand is
at most 2.
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1 Introduction

In this paper we study an edge multicoloring problem that is motivated by
applications in scheduling. We are given a graph with an integer demand x(e)
for each edge e. A multicoloring is an assignment of a set of x(e) integer colors
to each edge e such that the sets of colors assigned to adjacent edges are dis-
joint. In multicoloring problems the usual aim is to minimize the total number
of different colors used in the coloring. However, in this paper a different op-
timization goal is studied. Given a multicoloring, the finish time of an edge
is defined to be the highest color assigned to it. In the minimum sum edge
multicoloring problem the goal is to minimize the sum of the finish times.
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An application of edge coloring is to model dedicated scheduling of biproces-
sor tasks. The vertices correspond to the processors and each edge e = uv
corresponds to a job that requires x(e) time units of simultaneous work on
the two preassigned processors u and v. The colors correspond to the available
time slots: by assigning x(e) colors to edge e, we select the x(e) time units
when the job corresponding to e is executed. A processor cannot work on two
jobs at the same time, this corresponds to the requirement that a color can
appear at most once on the edges incident to a vertex. The finish time of edge
e corresponds to the time slot when job e is finished; therefore, minimizing
the sum of the finish times is the same as minimizing the sum of completion
times of the jobs. Using the terminology of scheduling theory, we minimize the
mean flow time, which is a well-studied optimization goal in the scheduling
literature. Such biprocessor tasks arise when we want to schedule file transfers
between processors [2] or in the mutual diagnostic testing of processors [7].
Note that it is allowed that a job is interrupted and continued later: the set of
colors assigned to an edge does not have to be consecutive, hence our problem
models preemptive scheduling (we assume that preemptions can happen only
at integer times).

Of particular interest is the case where the graph to be colored is bipartite. A
possible application of the bipartite problem is the following. One bipartition
class corresponds to a set of clients, the other class corresponds to a set of
servers. An edge e between two vertices means that the given client has to
access the given server for x(e) units of time. A client can access only one
server at a time, and a server cannot accept simultaneous connections from
two or more clients. Clearly, bipartite edge multicoloring models this situation.

Minimum sum edge multicoloring is NP-hard on bipartite graphs even if ev-
ery edge has unit demand [3]. In the unit demand case there is a 1.796-
approximation algorithm for bipartite graphs [6], and the problem can be
solved in polynomial time if the graph is a tree [3,13]. For general demands
and general graphs [1] gives a 2-approximation algorithm.

In this paper we consider the minimum sum edge multicoloring problem re-
stricted to trees. We show that, unlike the unit demand case, minimum sum
edge multicoloring is NP-hard for trees if the demands are allowed to be at
most 2. On the other hand, we also show that the problem is polynomial-time
solvable in trees if every demand is the same. This is a consequence of the
following scaling property of minimum sum edge multicoloring in trees: if the
demand of every edge is multiplied by the same integer q, then the value of
an optimum solution increases by a factor of q. (It is easy to see that the
sum changes by at most a factor of q, the interesting thing is that this fac-
tor is exactly q.) The main contribution of the paper is a polynomial-time
approximation scheme (PTAS) for minimum sum edge multicoloring in trees.
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Recently, the vertex coloring version of minimum sum multicoloring was in-
vestigated by several papers [1,4,5,11], but the edge coloring problem is only
mentioned in [1] and [10]. In [4,5] a PTAS is given for the vertex coloring ver-
sion of the problem in the case when the graph is a tree, a partial k-tree, or a
planar graph. One of the main tools used to derive this PTAS is the decompo-
sition of colors into layers of geometrically increasing sizes. This method will
be used in this paper as well. However, most of the other tools in [4,5] cannot
be applied to our case, since those tools assume that the graph can be colored
with a constant number of colors. In our case this is not necessarily true: if the
maximum degree of the tree is arbitrary, then the line graph of the tree can
contain arbitrarily large cliques. On the one hand, these large cliques make
the tools developed for partial k-trees impossible or very difficult to apply.
On the other hand, a large clique helps us in finding an approximate solution
since in every coloring of a large clique the sum of finish times must be very
large; thus, more errors can be tolerated in an approximate solution, and this
gives us more room for constructing a good approximation.

The paper is organized as follows. In Section 2 we introduce notation and
give some preliminary results. The complexity of the problem is investigated
in Section 3. The scaling property for trees is proved in Section 4. Section 5
gives a PTAS for the special case where the maximum degree of the tree is
bounded by a constant. Section 6 gives a PTAS for the general case, using the
algorithm of the preceding section as a subroutine.

2 Preliminaries

The problem considered in this paper is the edge coloring version of minimum
sum multicoloring, which can be stated formally as follows:

Minimum Sum Edge Multicoloring (SEMC)

Input: A graph G(V, E) and a demand function x: E → N.

Output: A multicoloring Ψ: E → 2N such that |Ψ(e)| = x(e) for every
edge e, and Ψ(ei) ∩ Ψ(ej) = ∅ if ei and ej are adjacent in G.

Goal: The finish time of edge e in coloring Ψ is the highest color as-
signed to it, fΨ(e) = max{c : c ∈ Ψ(e)}. The goal is to minimize the
sum of the finish times of the edges. The value fΨ(G) =

∑
e∈E fΨ(e)

will be called the sum of the coloring Ψ.

For brevity, we will use the word “coloring” instead of “multicoloring.” We
extend the notion of finish time to a set E ′ of edges by defining fΨ(E ′) =∑

e∈E′ fΨ(e). Given a graph G and a demand function x(e) on the edges of G,
the minimum sum that can be achieved is denoted by OPT(G, x), or simply
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by OPT(G), if the demand function is clear from the context.

In the non-preemptive version of the problem we also require that Ψ(e) is a
consecutive interval of colors. This paper addresses only the preemptive ver-
sion, where the sets assigned to the edges can be arbitrary. In general, the
preemptive and the non-preemptive variants of the same multicoloring prob-
lem can be very different (see e.g., [4,5]).

For a minimization problem, algorithm A is an α-approximation algorithm
if it always produces a solution with cost at most α times the optimum. A
polynomial-time approximation scheme (PTAS) is an algorithm that has a
parameter ε such that for every ε > 0 it produces an (1 + ε)-approximate
solution, and the running time is polynomial in n (the size of the input) for
every fixed ε, e.g., O(n1/ε). A linear-time PTAS runs in time O(f(ε)n), where
f is an arbitrary function. When designing a PTAS, it can be assumed that ε
is smaller than some fixed constant ε0. In the following, it is assumed that ε
is sufficiently small and 1/ε is an integer.

Henceforth the graph G is a rooted tree with root r. The root is assumed to
be a node of degree one, the root edge is the edge incident to r. Every edge
has an upper node (closer to r) and a lower node (farther from r). Edge f is
a child edge of edge e if the upper node of f is the same as the lower node of
e. In this case, edge e is the parent edge of edge f . A node is a leaf node if it
has no children, and an edge is a leaf edge if its lower node is a leaf node. The
subtree Te consists of the edge e and the subtree rooted at the lower node of
e.

A top-down traversal of the edges of G is an ordering of the edges such that
every edge appears later than its parent edge. Similarly, in a bottom-up traver-
sal of the edges every edge appears earlier than its parent. It is clear that such
orderings exist and can be found in linear time.

If the tree has maximum degree ∆, then a color from {1, 2, . . . , ∆} can be
assigned to each edge such that adjacent edges have different colors. Fix such
a coloring and let the type of an edge be its color in this coloring. In some of
the algorithms, the leaf edges will be special, and they are handled differently.
Therefore, in these cases we assign a type only to the non-leaf edges. Clearly,
if every edge has at most D non-leaf child edges, then the non-leaf edges can
be given a type from {1, 2, . . . , D + 1} so that adjacent edges have different
types.

The following lemma bounds the number of colors required in a minimum
sum multicoloring. In the following, the maximum demand in the instance is
always denoted by p.

Lemma 2.1 If G is a graph with maximum degree ∆ and maximum demand
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p, then every optimum coloring of the SEMC problem uses at most p(2∆− 1)
colors.

PROOF. Assume that an optimum coloring Ψ uses a color greater than
p(2∆− 1) on the edge e = uv. Remove the colors from e. Since at most ∆− 1
edges (other than e) are incident to u, with a demand of at most p each, at
most p(∆ − 1) colors are used on edges incident to u. Similarly, there are at
most p(∆− 1) colors used on edges incident to v. Therefore, there are at least
p colors not greater than p(2∆−1) that are used neither on u nor on v. These
p colors can be used to color the edge e. This will decrease the finish time of
e, contradicting the optimality of Ψ. 2

If both the maximum degree of the tree and the maximum demand are bounded
by a constant, then the problem can be solved in linear time. The idea is that
there are only a constant number of possible color sets that can appear at each
edge, hence using standard dynamic programming techniques, the optimum
coloring can be found during a bottom-up traversal of the edges.

Theorem 2.2 The SEMC problem for trees can be solved in 2O(p∆) · n time.

PROOF. Denote by Un
k the set of all k element subsets of {1, 2, . . . , n}. Let

Te be the subtree of T whose root edge is e. Set m := p(2∆ − 1). For every
e ∈ E(T ) and X ∈ Um

x(e), let S(e, X) denote the value of the optimum sum in
the subtree Te with the further restriction that e is colored by colors from the
set X. Clearly, OPT(T, x) = minX∈Um

x(r)
S(r, X), since by Lemma 2.1, the root

edge r is colored by a set from Um
x(r) in every optimum coloring.

We determine the values S(e, X) following a bottom-up traversal of the edges.
If Te consists of only the edge e, then S(e, X) is the highest color in X. Now
assume that the child edges of e are e1, e2, . . . , ek, and for each 1 ≤ i ≤ k,
we have already computed a table containing the value of S(ei, Y ) for every
Y ∈ Um

x(ei)
. We would like to determine the value S(e, X) for some set X. One

way to do this is to choose (in every possible way) k sets Xi ∈ Um
x(ei)

(1 ≤ i ≤
k). If the sets X, X1, X2, . . . , Xk are pairwise disjoint, then there is a coloring
Ψ with Ψ(e) = X, Ψ(ei) = Xi and fΨ(Te) =

∑k
i=1 S(ei, Xi) + maxc∈X c. Set

S(e, X) to the minimum of this sum for the best choice of the sets X1, . . . , Xk.
It is easy to see that this is indeed the value given by the definition of S(e, X)
(by Lemma 2.1, every optimum coloring uses only the colors 1, . . . , m).

The method described above solves at most |Um
p | subproblems S(e, X) at

each edge e. In each subproblem, k ≤ ∆ − 1 subsets Xi are chosen in every
possible way, the number of combinations considered is at most |Um

p |∆−1 =
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O(mp(∆−1)) = 2O(p∆log(p∆)). However, using dynamic programming once again,
each subproblem S(e, X) can be solved in 2O(p∆) time. Denote by Te,i the
union of the trees Te1 , Te2 , . . . , Tei

(the first i children of edge e). For every
Y ⊆ {1, 2, . . . , m} and 1 ≤ i ≤ k denote by P (i, Y ) the minimum sum on
Te,i with the restriction that exactly the colors in Y are used on the edges
e1, . . . , ei. Clearly, P (1, Y ) = S(e1, Y ). To calculate P (i, Y ) for some i > 1
notice that P (i, Y ) is the minimum of S(ei, Xi) + P (i− 1, Y \ Xi), where the
minimum is taken over all x(ei) size subsets Xi of Y . Finally, S(e, X) can be
easily determined by considering every set Y ⊆ {1, 2, . . . , m} disjoint from X,
and selecting the one where P (k, Y ) is minimal.

At each edge we solve at most 2m · (∆ − 1) subproblems P (i, Y ). To solve a
subproblem P (i, Y ), we consider |Um

x(ei)
| < 2m different sets Xi. Therefore, the

total number of combinations considered per edge is 2O(m). The work to be
done for each combination is polynomial in m, hence it is dominated by 2O(m).
The number of edges in the tree is O(n), thus the total running time of the
algorithm is 2O(m) · n = 2O(p∆) · n. 2

In Section 3 we show that if only the demand is bounded, then the problem
becomes NP-hard (Theorem 3.1).

In the minimum sum multicoloring problem our goal is to minimize the sum of
finish times, not to minimize the number of different colors used. Nevertheless,
in Theorem 2.3 we show that the minimum number of colors required for col-
oring the edges of a tree can be determined by a simple formula. We also show
that there is always an optimum solution where the color sets are relatively
simple. This result will be used by the approximation algorithm presented in
Section 5.

Theorem 2.3 Let T be a tree and let C = maxv∈V (T )
∑

e3v x(e). Every col-
oring of T uses at least C colors, and one can find in linear time a coloring
Ψ using C colors where each Ψ(e) consists of at most two intervals of colors.
Moreover, if each x(e) is multiple of some integer q, then we can find one Ψ
where the intervals in each Ψ(e) are of the form [qi1 +1, qi2] for some integers
i1 and i2.

PROOF. It is clear that at least C colors are required in every coloring: there
is a vertex v such that the edges incident to v require C different colors. A
coloring Ψ satisfying the requirements can be constructed by a simple greedy
algorithm. Call a set of colors S ⊆ [1, C] a circular interval if it is either
an interval [a, b] or the union of two intervals [1, a] ∪ [b, C]. The algorithm
presented below assigns a circular interval of colors to each edge; therefore,
each Ψ(e) consists of one or two intervals.
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Consider a top-down traversal of the edges. The edges are colored in a greedy
manner following this ordering. After each step of the algorithm, the coloring
defined so far satisfies the following invariant condition: for every node v, the
set of colors used by the edges incident to v forms a circular interval of [1, C].

At the start of the algorithm, we assign the set [1, x(r)] to the root edge r.
When an edge e is visited during the traversal, some of the edges incident to
the upper node v of e are already colored, and none of the edges incident to the
lower node u of e has a color yet. By assumption, the colors used by the edges
incident to v form a circular interval S. Clearly, the size of [1, C]\S is at least
x(e), otherwise

∑
e3v x(e) would be strictly greater than C. We can assign to

edge e a circular interval S ′ of size x(e) such that S and S ′ are disjoint, and
S ∪ S ′ is also a circular interval. Thus the set of colors used at v remains a
circular interval. Because of the top-down traversal, the set of colors used at
u is exactly S ′, a circular interval, hence the invariant condition remains valid
and the algorithm can proceed with the next edge. Moreover, if every demand
is an integer multiple of q, then it can be shown by induction that every edge
receives a circular interval Ψ(e) such that the one or two intervals in Ψ(e) are
of the form [qi1 + 1, qi2]. 2

The fact that for trees a greedy algorithm can minimize the number of colors
used was observed in [10]. However, in our applications it will be important
that the color sets have the special form described in Lemma 2.3.

3 Complexity

In this section we prove that minimum sum edge multicoloring is NP-hard
for trees, even if every demand is 1 or 2. First we give some definitions that
will be useful tools for proving the optimality of certain colorings. Then three
families of special trees are introduced, they will be used as gadgets in the
NP-hardness proof.

Denote by Ev the set of edges incident to v. Let `(v) = minΨ fΨ(Ev) be the
minimum sum taken on the edges incident to v in any proper coloring. If
all the edges incident to v have demand 1, then clearly `(v) = d(v)(d(v)+1)

2
.

Furthermore, it is easy to see that if one edge incident to v has demand 2 and
all the other edges have demand 1, then `(v) = d(v)(d(v)+1)

2
+ 1.

Let G(A, B; E) be a bipartite graph. An obvious lower bound for OPT(G)
is `(A) =

∑
v∈A `(v). We call a coloring Ψ A-good if fΨ(E) = `(A), which is

equivalent to fΨ(Ev) = `(v) for every v ∈ A. Every A-good coloring is clearly
an optimum coloring, and if there is an A-good coloring, then every optimum
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Fig. 1. The tree T6. The bold edges have demand 2.

coloring is A-good.

We define tree Ti as follows (see Figure 1 for T6). The root r has a single child
v, and node v has i−1 children v1, v2, . . . , vi−1. Each node vj has a single child
v′

j , and node v′
j has i−1 children v′

j,1, . . . , v′
j,i−1. The edges vjv

′
j have demand

2, the demands of all the other edges are 1. Let the nodes v, v′
1, . . . , v′

i−1 be
in A (white nodes in the figure), the remaining nodes are in B. Consider the
coloring Ψ(rv) = i, Ψ(vvj) = j, Ψ(vjv

′
j) = {i, i + 1}, Ψ(v′

jv
′
j,k) = k. This is an

A-good coloring, thus it is an optimum coloring and every optimum coloring
is A-good. Therefore, if Φ is an optimum coloring, then Φ(rv) = i because
fΦ(Ev′

j
) = `(Ev′

j
) implies Φ(vjv

′
j) = {i, i + 1}, and fΦ(Ev) = `(v) implies that

one edge in Ev is colored with color i, which can be only rv. Thus the color
of rv is i in every optimum coloring.

A tree Ta,b,c (for a < b < c) has root r having a single child v; node v has
c − 1 children x, y, v1, . . . , vc−3 (see Figure 2). Every node vj is the root of
a Ta, Tb and Tc tree, as defined in the previous paragraph. We show that in
every A-good (optimum) coloring of Ta,b,c the edge rv is colored with color a,
b or c, and there are three A-good colorings assigning a, b, and c to edge rv,
respectively. Color the trees Ta, Tb, Tc at the vj nodes with an A-good colorin;
assign the colors a, b, c to the edges rv, vx, vy in some order, and assign the
colors {1, . . . , c} \ {a, b, c} to the edges vv1, . . . , vvc−3 in some order. It can
be easily verified that this is an A-good (therefore optimum) coloring and the
edge rv can have any of the colors a, b, c. To see that in every A-good coloring
edge rv can receive only these colors, observe that if the colorings of the Ta,
Tb, Tc subtrees rooted at vj are all A-good, then vvj cannot be colored with
colors a, b, c. In an A-good coloring, the edges incident to v can receive only
colors not greater than c, thus rv, vx, vy receive the colors a, b, c. Therefore,
rv is colored with either a, b or c.

Finally, we define tree T̂i to be a star: the root r has a child v, and node v has
i + 1 children x, v1, . . . , vi. The edges rv, vx have demand 2, the other edges
have demand 1. The node v is in A. It is easy to see that if Ψ is an A-good
coloring, then Ψ(rv) is either {i + 1, i + 2} or {i + 3, i + 4}.
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Fig. 2. The tree Ta,b,c with c = 6

Theorem 3.1 The SEMC problem is NP-hard in trees, even if every demand
is 1 or 2.

PROOF. The reduction is from 3-occurrence 3SAT, which is the restriction
of 3SAT where every variable occurs at most three times. This problem is
known to be NP-complete even if we assume that every variable occurs at
most twice positively and at most twice negatively (cf. [12]). Given a formula
with n variables and m clauses, we construct a tree T and a demand function
such that the tree has an A-good coloring (i.e., a coloring with sum at most
`(A)) if and only if the formula is satisfiable.

Consider the variable xk (0 ≤ k < n), which is the h-th literal of the i-th
clause. Let di,h be 4k + 1 if this is the first positive occurrence of xk, 4k + 2
if this is the second positive occurrence, 4k + 3 if this is the first negated
occurence, and 4k + 4 if this is the second negated occurence. Tree T has a
node r which is the root of n + m trees. To each variable xj corresponds a
tree T̂4j , and to each clause i a tree Tdi,1,di,2,di,3

. This defines T and its demand
function.

Assume that a coloring is A-good, then it is an A-good coloring of all the
n + m subtrees (since r 6∈ A). Therefore, the root edge of T̂4j corresponding
to variable xj uses either the set {4j + 1, 4j + 2} or the set {4j + 3, 4j + 4}.
Assign to the variable xj the value “false” in the first case and “true” in the
second case. This will be a satisfying assignment: if the root edge of the tree
corresponding to clause i uses a color from {4j + 1, 4j + 2, 4j + 3, 4j + 4},
then variable xj satisfies clause i. More precisely, if it uses 4j + 1 or 4j + 2
(resp., 4j + 3 or 4j + 4), then xj has the value “true” (resp., ”false”), and by
construction, xj appears in clause i positively (resp., negatively).

9



To prove the other direction, given a satisfying assignment, we construct an
A-good coloring of the tree. Take an A-good coloring of the subtree T̂4j corre-
sponding to variable xj such that its root edge uses the colors {4j +1, 4j +2}
(resp., {4j + 3, 4j + 4}) if xj is “false” (resp., ”true”). Since every clause is
satisfied by some variable, we can choose an A-good coloring for each subtree
corresponding to a clause such that it does not conflict with any of the trees
corresponding to the variables. Clearly, this will be an A-good coloring of the
tree.

We have reduced a known NP-complete problem to the minimum sum edge
multicoloring problem. The reduction can be done in polynomial time, thus
SEMC is NP-hard. 2

We note that in the proof, the optimum solution colors non-preemptively
every edge with demand 2. Thus the reduction works even if we impose the
additional constraint of non-preemptive coloring.

Corollary 3.2 The non-preemptive version of SEMC is NP-hard for trees,
even if every demand is 1 or 2. 2

4 Scaling and rounding

Consider an instance of SEMC: let G be a graph, and let x(e) be an arbitrary
demand function on the edges of G. Multiply the demand of every edge by
an integer q, that is, consider the demand function x′(e) = q · x(e). The first
observation is that this operation increases the minimum sum by at most a
factor q, that is,

OPT(G, x′) ≤ q · OPT(G, x). (1)

To see this, take an optimum coloring Ψ of (G, x), and replace every color by
q consecutive colors: for every c ∈ Ψ(e), add {(c−1)q +1, (c−1)q+2, . . . , cq}
to Φ(e). Clearly, coloring Φ satisfies the demand x′ on every edge, and the
finish time of every edge in Φ is exactly q times larger than in Ψ. Therefore,
the sum of Φ is exactly q times larger than the optimum sum of (G, x), and
(1) follows.

We mention it without proof that one can construct a bipartite graph G, and
choose x, q in such a way that (1) holds with strict inequality. The aim of this
section is to show that if G is a tree, then there is always equality in (1):

Theorem 4.1 For every tree T (V, E), demand function x, and integer q, if
x′(e) = q · x(e) for every e ∈ E, then OPT(T, x′) = q · OPT(T, x).
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Before proving Theorem 4.1, we have to make some preparations. The follow-
ing problem is the weighted version of multicoloring (this problem is studied
in [8,9] under the name Generalized Optimum Cost Chromatic Partition). Ev-
ery vertex has a cost function (thus the same color can have different costs
at different vertices), and the goal is to minimize the total cost of the colors
used in the coloring. As in the case of other coloring problems, we consider
here the edge coloring version:

Generalized Minimum Cost Edge Multicoloring

Input: A graph G(V, E), a demand function x: E → N, a set of
available colors C = {1, 2, . . . , C}, and a list of costs ce,i (for every
e ∈ E, i ∈ C).

Output: A multicoloring Ψ: E → 2C such that Ψ(ei) ∩ Ψ(ej) = ∅ if
ei and ej are adjacent in G and |Ψ(e)| = x(e).

Goal: Minimize the total cost
∑

e∈E

∑
i∈Ψ(e) ce,i.

This problem can be formulated as an integer linear programming problem as
follows. Variable ye,i represents the choice of assigning color i to edge e: the
value of ye,i is 1 if i is assigned to e, and 0 otherwise. It is easy to verify that
the integer solutions of the following linear program correspond to the proper
colorings of the graph:

minimize
∑

e∈E

C∑

i=1

ce,iye,i

s. t.

ye,i ≥0 ∀e ∈ E, 1 ≤ i ≤ C (2)
∑

e3v

ye,i ≤1 ∀v ∈ V, 1 ≤ i ≤ C (3)

C∑

i=1

ye,i ≥x(e) ∀e ∈ E (4)

The inequalities (3) express the requirement that a color i can appear at most
once on the edges incident to v, while inequalities (4) ensure that edge e
receives at least x(e) colors. The cost of an integer solution equals the cost of
the corresponding coloring. In general, this linear program does not necessarily
have an integer optimum solution, but if the graph is a tree, then there is
always an integer optimum:

Lemma 4.2 For every tree T with arbitrary demand function x and costs ce,i

the linear program has an integer optimum solution.

PROOF. We show that the coefficient matrix of the linear program is a
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network matrix, hence it is totally unimodular. The right-hand side of the
linear program is an integer vector, thus the lemma follows from the well-
known properties of totally unimodular matrices (cf. [14]).

Recall the definition of network matrices. Let D be a directed graph and T be
a spanning tree over the same vertex set V . Denote by n and m the number
of edges of T and D, respectively. Direct the edges of T arbitrarily. Consider
an n × m matrix M whose rows correspond to the edges of T and columns
correspond to the edges of D. Every directed edge e in D determines a unique
path in the tree. If edge f of T lies on this path and its orientation agrees
with the directed path, then let the element of M in row f and column e be 1;
if its orientation is opposite, then let the element be −1. If f does not lie on
the path determined by e, then the element is zero. A matrix M that arises
in such a way from some T and D is called a network matrix. It is well known
that every network matrix is totally unimodular (cf. [14]).

The constraints (2) do not really matter: if an n × m matrix is totally uni-
modular, then it remains totally unimodular after appending an m × m unit
matrix to it. To show that the coefficient matrix corresponding to (3) and
(4) is a network matrix, we construct a tree T ′ and a directed graph D such
that the edges of T ′ (resp., D) correspond to the rows (resp., columns) of the
matrix. Denote the inequalities in (3) by dv,i (v ∈ V , 1 ≤ i ≤ C) and those in
(4) by de. Let V1 and V2 be the two bipartition classes of T . Direct the edges
of T from V1 to V2; edge e ∈ E will corresponds to row de. Connect C new
vertices vi (1 ≤ i ≤ C) to every vertex v; the C new edges correspond to the
rows dv,i. Direct these new edges away from v if v ∈ V1, and to v if v ∈ V2.
Call the resulting tree T ′. The directed graph D is defined as follows: if e = uv
(u ∈ V1, v ∈ V2) is an edge in T , then add the edges ye,i = −−→viui (1 ≤ i ≤ C) to
D. Now it can be verified that the network matrix corresponding to T ′ and D
is the coefficient matrix of the linear program: the unique path corresponding
to edge ye,i = −−→viui contains the edges dv,i, de, du,i, and the variable ye,i appears
precisely in these inequalities. 2

Now we are ready to prove the main result of the section:

PROOF (of Theorem 4.1). Given a coloring Ψ with value OPT(T, x′), we
construct a coloring Φ that satisfies the demand function x and has sum at
most OPT(T, x′)/q. Define the following cost function:

ce,i =






0 if i < dfΨ(e)/qe,

1 if i = dfΨ(e)/qe,

2|E| if i > dfΨ(e)/qe.

12



Consider the generalized minimum cost multicoloring problem on the edges of
T , with demand x(e) and color costs ce,i. Let C, the number of colors, be an
integer larger then the total demand of the tree T . It is clear that the linear
program given by inequalities (2)–(4) always has a feasible solution: since C is
large enough, the demands can be satisfied even if every color is used at most
once. By Lemma 4.2, this program has an integer optimum solution with costs
ce,i, let ye,i be such a solution. It is easy to see that every variable is 0 or 1.
Define coloring Φ with i ∈ Φ(e) if and only ye,i = 1. Replace every color in
the coloring Φ with a sequence of q colors to obtain a coloring Φ′, that is, if
i ∈ Φ(e), then add {(i−1)q+1, (i−1)q+2, . . . , iq} to Φ′(e). Clearly, fΦ′(T ) =
q·fΦ(T ). Therefore, if it can be shown that fΦ′(T ) ≤ fΨ(T ) = OPT(T, x′), then
OPT(T, x) ≤ fΦ(T ) = fΦ′(T )/q ≤ OPT(T, x′)/q and Theorem 4.1 follows.

Let ze,i be |Ψ(e) ∩ {(i − 1)q + 1, (i − 1)q + 2, . . . , iq}|/q. It can be easily
verified that this is a feasible solution of the linear program. Furthermore,
the cost of this solution is strictly less than 2|E| since, by definition, ze,i is
0 if i > dfΨ(e)/qe. Therefore, the optimum integral solution ye,i has cost
strictly less than 2|E|, which implies that ye,i = 0 for i > dfΨ(e)/qe, and
fΦ(e) ≤ dfΨ(e)/qe follows.

Let cΦ(e) =
∑C

i=1 ce,iye,i and cΨ(e) =
∑C

i=1 ce,ize,i. We show that for every edge
e,

fΦ(e) ≤ fΨ(e)/q + cΦ(e) − cΨ(e),

or equivalently

fΦ′(e) ≤ fΨ(e) + q(cΦ(e) − cΨ(e)).

If the latter inequality holds, then summing for every e ∈ E gives fΦ′(E) ≤
fΨ(E) + q(

∑
e∈E cΦ(e) −

∑
e∈E cΨ(e)). From the fact that ye,i is an optimum

solution of the linear program with costs ce,i, it follows that
∑

e∈E cΦ(e) ≤∑
e∈E cΨ(e). This implies fΦ′(E) ≤ fΨ(E), proving the theorem.

There are two cases to consider: (a) fΦ(e) = dfΨ(e)/qe and (b) fΦ(e) <
dfΨ(e)/qe (we have seen that fΦ(e) ≤ dfΨ(e)/qe for every edge e). Since Ψ(e)
contains at most fΨ(e)− (dfΨ(e)/qeq − q) colors greater than dfΨ(e)/qeq − q,
we have that

q · cΨ(e) ≤ fΨ(e) − (dfΨ(e)/qeq − q)

and

fΨ(e)/q − cΨ(e) ≥ dfΨ(e)/qe − 1.

If (a) holds, then cΦ(e) = 1, thus fΨ(e)/q+cΦ(e)−cΨ(e) ≥ dfΨ(e)/qe = fΦ(e),
as required. In case (b), cΦ(e) = 0, which implies fΨ(e)/q + cΦ(e) − cΨ(e) ≥
dfΨ(e)/qe − 1 ≥ fΦ(e), what we had to prove. 2

In Section 3, we have shown that the preemptive minimum sum edge coloring
problem is NP-hard in trees even if every demand is 1 or 2. However, it becomes

13



polynomial-time solvable if every demand is 2, or more generally, if every edge
has the same demand. By Theorem 4.1, the case where every edge has the
same demand can be reduced to the case where every edge has unit demand,
which is polynomial-time solvable [3,13].

Corollary 4.3 The SEMC problem can be solved in polynomial time in trees
if every edge has the same demand. 2

The following lemma is another corollary of Theorem 4.1: if the demand of
every edge is increased to at most λ times the original demand, then the
optimum increases by at most a factor of λ. This is trivial to show if λ is
integer (replace every color in the optimum coloring by λ consecutive colors),
but the lemma states that in trees this is true even if λ is not an integer. This
observation will be used in Section 6.

Lemma 4.4 Let (T, x) be an instance of SEMC where T is a tree, and let λ
be a positive rational number. If x′ is a demand function with x′(e) ≤ λ · x(e)
for every edge e, then OPT(T, x′) ≤ λ · OPT(T, x).

PROOF. Assume that λ = a/b for some integers a and b. Let x2(e) = a·x(e);
by Theorem 4.1, OPT(T, x2) = a · OPT(T, x). Round x2 down to the nearest
integer multiple of b, denote by x3 the resulting demand function. Let x4(e) =
x3(e)/b = bax(e)/bc ≥ bx′(e)c = x′(e). By Theorem 4.1, OPT(T, x4) =
OPT(T, x3)/b ≤ OPT(T, x2)/b = (a/b)OPT(T, x) = λ · OPT(T, x). Thus
x4(e) ≥ x′(e) implies OPT(T, x′) ≤ OPT(T, x4) ≤ λ · OPT(T, x). 2

5 Bounded degree

If a tree T has maximum degree ∆, then the line graph of T is a partial (∆−1)-
tree. Halldórsson and Kortsarz [4] gave a PTAS with running time nO(k2/ε5) for
minimum sum multicoloring the vertices of partial k-trees; therefore, there is
a PTAS for SEMC in bounded degree trees as well. However, the method can
be made simpler and more efficient in line graphs of trees. In this section we
present a linear-time PTAS for SEMC in bounded degree trees, which makes
use of the special structure of trees. Furthermore, our algorithm works even
in the more general class of almost bounded degree trees: in trees that become
of bounded degree after deleting the degree one nodes. Equivalently, we can
say that a tree is an almost bounded degree tree if every node has at most a
bounded number of non-leaf child edges.

Most of the ideas presented in this section are taken from [4], with appropriate
modifications. In Section 6 a PTAS is given for general trees, which uses the
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Extra segments

L0 L1 L2 L3 L4

Extra blockMain block

Main zone Z0

Extra zone Z2

Fig. 3. The decomposition of colors into layers (` = 3)

result in this section as a subroutine.

5.1 Layers and zones

An important idea of the approximation schemes given in [4,5] is to divide the
color spectrum into geometrically increasing layers, and to solve the problem
in these layers separately. We use a similar method for the SEMC problem in
bounded degree trees (Theorem 5.4) and general trees (Theorem 6.1).

For some ε > 0 and integer ` ≥ 0, the (ε, `)-decomposition divides the infinite
set of colors into layers L0, L1, . . . and zones Z0, Z1, . . . , Z`. The layers are of
geometrically increasing sizes: layer Li contains the range of colors from qi to
qi+1 − 1, where qi = b(1 + ε)ic. If qi = qi+1, then layer Li is empty. Denote by
Qi = |Li| = qi+1 − qi the size of the i-th layer. The total size of layers L0, L1,
. . . , Li is qi+1 − 1. Later we will use that (1 + 2ε)qi ≥ qi+1 − 1:

(1 + 2ε)qi > (1 + ε)((1 + ε)i − 1) + εqi = (1 + ε)i+1 − 1 − ε + εqi

≥ (1 + ε)i+1 − 1 ≥ qi+1 − 1.
(5)

That is, if we replace a color from layer Li with another color from Li, then
the new color is at most (1 + 2ε) times larger than the original.

Layer Li is divided into two parts: the first 1
1+ε`

Qi colors form the main block of

layer Li and the remaining ε`
1+ε`

Qi colors the extra block (see Figure 3). Taking
the union of the main block of every layer gives the main zone Z0. Divide the
extra block of every layer Li into ` equal parts: these are the ` extra segments
of Li. The union of the j-th extra segment of every layer Li forms the j-th
extra zone Zj. Each extra zone contains ε

1+ε`
Qi colors from layer Li.

Rounding problems will be handled as follows. Layer i is divided such that the
first gi,0 (≈ 1

1+ε`
Qi) colors are assigned to the main zone Z0, and extra zone Zj

receives gi,j (≈ ε
1+ε`

Qi) colors. In Lemma 5.1 we show that the values gi,j can
be determined in such a way that the resulting zones approximate reasonably
well the “ideal” case where the main zone contains exactly a 1

1+ε`
fraction of
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the color spectrum, and each extra zone contains exactly a ε
1+ε`

fraction of
the colors. In particular, we will need the following properties of the defined
zones:

Lemma 5.1 For given ` and ε ≤ 1
2`

, one can calculate values gi,j such that
the resulting (ε, `)-decomposition of the colors has the following properties:

(a) For every c ≥ 1, main zone Z0 contains at least c colors not greater than
b(1 + ε`)cc.

(b) For every c ≥ 1 and 1 ≤ j ≤ `, extra zone Zj contains at least c colors
not greater than 2c

ε
.

Moreover, each value gi,j can be calculated using a constant number of arith-
metic operations.

Intuitively, these statements are clear: if the main zone contains a 1
1+ε`

frac-

tion of the color spectrum, then there are 1
1+ε`

· (1 + ε`)c = c colors below
(1 + ε`)c. Furthermore, each extra zone contains a ε

1+ε`
fraction of the col-

ors, hence there are at least c colors below 1+ε`
ε

c ≤ 2c
ε
. However, the formal

proof of Lemma 5.1 requires a tedious calculation to properly handle rounding
problems (see below).

Given a multicoloring Ψ, the operation (ε, `)-augmentation creates a multicol-
oring Φ the following way. Consider the (ε, `)-decomposition of the colors, and
if Ψ(e) contains color c, then let Φ(e) contain instead the c-th color from the
main zone Z0. By Lemma 5.1a, fΦ(e) ≤ b(1 + ε`)fΨ(e)c, thus this operation
increases the sum by at most a factor of (1+ ε`). After the augmentation, the
colors of the extra zones are not used, only the colors of the main zone.

The rest of this section is devoted to the proof of Lemma 5.1. First set

gi,0 = d
1

1 + ε`
(qi+1 − 1)e − d

1

1 + ε`
(qi − 1)e ≤ d

1

1 + ε`
Qie.

The inequality follows from dae+ dbe ≥ da+ be. This ensures that
∑i

k=0 gk,0 =
d 1

1+ε`
(qi+1 − 1)e. Now there remain gi = Qi − gi,0 colors for the extra zones in

layer Li. The following lemma shows that these colors can be evenly divided
among the ` layers:

Lemma 5.2 If ` and gi (0 ≤ i ≤ n) are nonnegative integers, then there are
nonnegative integers gi,j (0 ≤ i ≤ n, 1 ≤ j ≤ `) such that for every i and j

i∑

k=0

gk,j ≥

⌊
1

`

i∑

k=0

gk

⌋

(6)
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and
∑̀

j=1

gi,j ≤ gi (7)

hold. Moreover, if
∑i

k=0 gk can be calculated with a constant number of arith-
metic operations, then each gi,j can be also calculated with a constant number
of arithmetic operations.

PROOF. We calculate gi,j by determining the values Gi,j =
∑i

k=0 gk,j, then
gi,j can be obtained as gi,j = Gi,j − Gi−1,j. Let

Gi,j =





d1

`

∑i
k=0 gke if j ≤

∑i
k=0 gk − `b1

`

∑i
k=0 gkc,

b1
`

∑i
k=0 gkc otherwise.

Clearly,
∑`

j=1 Gi,j =
∑i

k=0 gk. It is clear that (6) holds, since Gi,j ≥ b1
`

∑i
k=0 gkc.

Furthermore, (7) also holds:

∑̀

j=1

gi,j =
∑̀

j=1

(Gi,j − Gi−1,j) =
i∑

k=0

gk −
i−1∑

k=0

gk = gi.

Each Gi,j can be calculated from
∑i

k=0 gk by a constant number of arithmetic
operations, and this is true also for gi,j = Gi,j −Gi−1,j, hence the claim of the
lemma follows. 2

PROOF (of Lemma 5.1). Consider the values gi,j given by Lemma 5.2.
To verify property (a), notice that for every d ≥ 1, there are at least d 1

1+ε`
de

colors in the main zone not greater than d. Indeed, if d = qi+1−1 (d is the last
color of layer Li), then this follows from the way gi,0 was defined, otherwise it
follows from the fact that the main zone uses the first gi,0 colors of layer Li,
hence if it is true for d = qi − 1 and d = qi+1 − 1, then it is true for every
value in between. Thus there are at least d 1

1+ε`
b(1 + ε`)cce ≥ c colors below

b(1 + ε`)cc.

To verify property (b), assume that qi − 1 < 1+ε`
ε

· c ≤ qi+1 − 1 for some i.
Since 1+ε`

ε
· c is greater than 1/ε, we have

(1 + 2ε) ·
1 + ε`

ε
· c ≥

1 + ε`

ε
· c + 2 ≥ qi + 1 > (1 + ε)i.

Multiplying by 1 + ε we get

(1 + ε) · (1 + 2ε) ·
1 + ε`

ε
· c ≥ (1 + ε)i+1 > qi+1 − 1.
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If ε ≤ 1
2`

is sufficiently small, then qi+1 − 1 ≤ 2
ε
· c follows. We use Lemma 5.2

to calculate the number of colors in the first i layers (i.e., up to color qi+1 −1)
that belong to zone Zj :

i∑

k=0

gk,j ≥

⌊
1

`

i∑

k=0

gk

⌋

=

⌊
1

`

i∑

k=0

(Qk − gk,0)

⌋

=

⌊
1

`

(
i∑

k=0

Qk −

⌈
i∑

k=0

1

1 + ε`
Qk

⌉)⌋

=

⌊
1

`

⌊
i∑

k=0

ε`

1 + ε`
Qk

⌋⌋

≥

⌊
1

`
· `

⌊
i∑

k=0

ε

1 + ε`
Qk

⌋⌋

=

⌊
i∑

k=0

ε

1 + ε`
Qk

⌋

=
⌊

ε

1 + ε`
(qi+1 − 1)

⌋
≥

⌊
ε

1 + ε`
·
1 + ε`

ε
· c

⌋

= c

Therefore, there are at least c colors in zone Zj not greater than qi+1−1 ≤ 2
ε
·c,

proving property (b). 2

5.2 PTAS for bounded degree trees

The polynomial-time algorithm of Theorem 2.2 was based on the observation
that we have to consider only a constant number of different colorings at each
edge if both the demand and the maximum degree are bounded. In general,
however, the number of different color sets that can be assigned to an edge
is exponentional in the demand. The main idea of the PTAS in [4] for vertex
coloring partial k-trees is that one can select a polynomial number of color
sets for each vertex in such a way that there is a good approximate coloring
using only these sets. This gives a PTAS, since the best coloring that uses
only the selected sets can be found in polynomial time with standard dynamic
programming techniques.

Here we also follow this path: Lemma 5.3 shows that one can find a good
approximate coloring by considering only a constant number of different color
sets at each edge. Combining this with a dynamic programming algorithm
similar to that in the proof of Theorem 2.2, results in a linear-time PTAS for
the problem.

Recall that if every node has at most D non-leaf child edges, then the non-leaf
edges can be divided into D + 1 types such that edges of the same type are
not adjacent.

Lemma 5.3 If each vertex of the tree T has at most D non-leaf child edges
and ε ≤ 1

3D
, then it has a (1+3Dε)-approximate coloring Ψ with the following

properties:

(1) In the (ε, D + 1)-decomposition of the colors, if e is a non-leaf edge, then
Ψ(e) contains colors from the main zone only between ε

4
·x(e) and 2

ε
·x(e).
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(2) If e is a non-leaf edge of type k, then Ψ(e) contains the first te colors
from extra zone Zk (for some te), and it does not contain colors from the
other extra zones.

(3) If e is a leaf edge, then Ψ(e) contains colors only from the main zone.
(4) If e is a non-leaf edge, then Ψ(e) contains at most two continuous inter-

vals of colors from the main block of each layer.

PROOF. Let Φ be an optimum solution, and let Ψ be the result of an (ε, D+
1)-augmentation on Φ. By Lemma 5.1a, fΨ(e) ≤ (1+ (D +1)ε)fΦ(e) for every
e (note that we assumed ε ≤ 1

3D
< 1

2(D+1)
).

If fΨ(e) > 2
ε
· x(e) for a non-leaf edge e of type k, then modify Ψ(e) to be the

first x(e) colors of extra zone Zk. By Lemma 5.1b, Zk contains at least x(e)
colors not greater than 2

ε
·x(e). Therefore, the x(e) colors assigned to e are not

greater than 2
ε
· x(e), implying that fΨ(e) ≤ (1 + (D + 1)ε)fΦ(e). In this case

requirements 2 and 4 are automatically satisfied for e, thus there is nothing
else to do with this edge.

If Ψ(e) contains colors in the main zone below ε
4
·x(e), then delete these colors

and let Ψ(e) contain instead the first ε
4
· x(e) colors from zone Zk. There are

at least ε
4
· x(e) colors in Zi below 2

ε
· ε

4
· x(e) = x(e)/2. The finish time of e

is at least x(e), hence this modification does not increase the finish time of e.
Therefore, Ψ satisfies the first three properties of the lemma.

Finally, we make Ψ satisfy the fourth requirement as well. For each non-leaf
edge e, define xi(e) to be the number of colors in Ψ(e) that belong to the main
block of Li, rounded down to the next integer multiple of dε2Qi/8e. If we use xi

as a demand function on the non-leaf edges of the tree, then there is a coloring
satisfying xi that uses only the main block of Li colors: Ψ(e) restricted to the
main block of Li gives such a coloring. Every xi(e) is an integer multiple
of dε2Qi/8e; therefore, by Theorem 2.3, it can be assumed that each Ψi(e)
consists of at most two intervals of the form [1 + j1dε

2Qi/8e, j2dε
2Qi/8e] for

some j1, j2. Modify coloring Ψ: let Ψi determine how the colors are assigned
in the main block of layer i. Now the third requirement is satisfied, but it
is possible that Ψ assigns fewer than x(e) colors to an edge. We can lose at
most dε2Qi/8e − 1 < ε2Qi/8 colors in layer i, hence we lose at most a ε2

8

fraction of each layer. Assume that the highest color of Ψ(e) is in layer Li.
Since Ψ(e) contains colors only up to 2

ε
· x(e), the last color of layer Li is less

than (1 + 2ε) · 2
ε
· x(e) ≤ 4

ε
· x(e) (Inequality (5)). Thus we lose only at most

ε2

8
· 4

ε
· x(e) = ε

2
· x(e) colors. If non-leaf edge e is of type k, then we use extra

zone Zk to replace the lost colors. So far, edge e uses at most ε
2
· x(e) colors

from Zk (previous paragraph), hence there is still place for at least ε
2
· x(e)

colors in Zk below (1 + (D + 1)ε)x(e) ≤ (1 + (D + 1)ε)fΦ(e).
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The modification in the previous paragraph can change the finish times of the
non-leaf edges, but the largest color of each edge remains in the same layer.
By Inequality (5), (1 + 2ε)qi ≥ qi+1 − 1, therefore the finish time of an edge
can increase by at most a factor of (1 + 2ε). Moreover, since we modified only
the non-leaf edges, there can be conflicts between the non-leaf and the leaf
edges. But that problem is easy to solve: since the number of colors used by
the non-leaf edges at vertex v from the main block of layer i was not increased,
there are enough colors in layer i for assigning new colors to the leaf edges.
After recoloring the leaf edges, the largest color of each edge remains in the
same layer, hence the finish time of each leaf edge can increase by at most a
factor of 1 + 2ε, and fΨ(e) ≤ (1 + 2ε)(1 + (D + 1)ε)fΦ(e) ≤ (1 + 3Dε)fΦ(e)
follows for every edge e. 2

Call a coloring satisfying the requirements of Lemma 5.3 a standard coloring.
Notice that on a non-leaf edge e only a constant number of different color
sets can appear in standard colorings: the main zone is not empty only in a
constant number of layers, and in each layer the (at most two) intervals can be
placed in a constant number of different ways. More precisely, in a standard
coloring edge e can use the main zone only from layer blog1+ε(

ε
4
· x(e))c to

layer dlog1+ε(
2
ε
· x(e))e, that is, only in at most

log1+ε

2
ε
· x(e)

ε
4
· x(e)

+ 2 = log1+ε 8/ε2 + 2 = O
(

1

ε
· log

1

ε

)

layers. In layer Li, the intervals are of the form [1 + j1dε
2Qi/8e, j2dε

2Qi/8e]
for some j1, j2. This means that the end points of the intervals can take only
at most 8/ε2 different values, hence there are (8/ε2)2 different possibilities for
each of the two intervals. Therefore, if we denote by Ce the different color
sets that can appear in a standard coloring on non-leaf edge e, then |Ce| =
((8/ε2)4)O((1/ε)·log 1/ε) = 2O((1/ε)·log2 1/ε).

Theorem 5.4 If every edge of T (V, E) has at most D non-leaf child edges,
then for every ε0 > 0, there is a 2O(D2/ε0·log

2(D/ε0)) ·n time algorithm that gives
a (1 + ε0)-approximate solution to the SEMC problem.

PROOF. Set ε := ε0/3D. We use dynamic programming to find the best
standard coloring: for every non-leaf edge e, and every set S ∈ Ce, we determine
OPT(e, S), which is defined to be the sum of the best standard coloring of Te,
with the additional requirement that edge e receives color set S (recall that Te

is the subtree with root edge e). Clearly, if all the values {OPT(r, S) : S ∈ Cr}
are determined for the root edge r of T , then the minimum of these values
is the sum of the best standard coloring, which is by Lemma 5.3 at most
(1 + 3Dε) = (1 + ε0) times the minimum sum.
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The values OPT(e, S) are calculated in a bottom-up traversal of the edges.
Assume that e has k non-leaf child edges e1, e2, . . . , ek and ` leaf child edges
e′1, e

′
2, . . . , e

′
`. When OPT(e, S) is determined, the values OPT(ei, Si) are al-

ready available for every 1 ≤ i ≤ k and Si ∈ Cei
. In a standard coloring of Te,

every edge ei is assigned a color set from Cei
. We enumerate all the

∏k
i=1 |Cei

|
possibilities for these color sets. For each combination S1 ∈ Ce1 , . . . , Sk ∈ Cek

,
we check whether these sets are pairwise disjoint. If so, then we determine the
minimum sum that a standard coloring can have with these assignments. The
minimum sum of subtree Tei

with color set Si on ei is given by OPT(ei, Si).
The finish time of edge e can be calculated from S. Now only the leaf edges
e′1, . . . , e′` remain to be colored. It is easy to see that the best thing to do is
to sort these leaf edges by increasing demand size, and color them one after
the other, using the colors not already assigned to e, e1, . . . , ek. Therefore,
we can calculate the minimum sum corresponding to a choice of color sets
S1 ∈ Ce1 , . . . , Sk ∈ Cek

, and we set OPT(e, S) to the minimum over all the
combinations.

The algorithm solves at most
∑

e∈E |Ce| = n · 2O((1/ε)·log2 1/ε) subproblems. To
solve a subproblem, at most 2O(D·(1/ε)·log2 1/ε) different combinations of the sets
S1, . . . , Sk have to be considered. Each color set can be described by O(1

ε
·log 1

ε
)

intervals, and the time required to handle each combination is polynomial in D
and the number of intervals. Therefore, the total running time of the algorithm
is 2O(D·1/ε·log2(1/ε)) · n = 2O(D2/ε0·log

2(D/ε0)) · n. 2

6 The general case

In this section, we prove that SEMC admits a PTAS for arbitrary trees. The
edges of the tree are partitioned into subtrees in such a way that each subtree
is an almost bounded degree tree (recall that in an almost bounded degree tree
each node has a bounded number of non-leaf child edges). Now the algorithm
presented in Section 5.2 can be used to obtain a good approximate coloring
for each subtree. These colorings can be merged into a coloring of the whole
tree, but this coloring will not be necessarily a proper coloring: there might be
conflicts between edges that were in different subtrees. However, we show that
using a series of transformations, these conflicts can be resolved with only a
small increase in the value of the solution.

Theorem 6.1 For every ε0 > 0, there is a 2O(1/ε110 ·log2(1/ε0)) · n time algorithm
that gives a (1+ ε0)-approximate solution to the SEMC problem for every tree
T and demand function x0.
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PROOF. Let ε := ε0/32. The algorithm consists of a series of phases. The
last phase produces a proper coloring of (T, x0), and has cost at most (1 +
ε0)OPT(T, x0). In the following we describe these phases.

Phase 1: Rounding the demands. Let x(e) be the smallest qi that is
not smaller than x0(e). Since qi+1 ≤ (1 + ε)i+1 ≤ (1 + ε)(qi + 1), thus x(e) ≤
(1+ε)x0(e). Therefore, by Lemma 4.4, this modification increases the minimum
sum by at most a factor of 1 + ε. An edge e with demand qi will be called a
class i edge (if x(e) = qi for more than one i, then take the smallest i). The
class of edge e will be denoted by class(e).

Phase 2: Partitioning the tree. We partition the edges of the tree into
connected components such that in every subtree the number of non-leaf child
edges of a node is bounded by a constant. To obtain this partition, the edges
of the tree are divided into large edges, small edges, and frequent edges. It will
be done in such a way that every node has at most D := 6/ε5 large child edges.
If a node has fewer than D children, then its child edges are large edges. Let
v be a node with at least D children, and denote by n(v, i) the number of
class i child edges of v. Let N(v) be the largest i such that n(v, i) > 0 and set
F := 6/ε3. Let e be a class i child edge of v. If n(v, i) > F , then e is a frequent
edge. If n(v, i) ≤ F and i ≤ N(v) − 1/ε2, then e is a small edge. Otherwise, if
n(v, i) ≤ F and i > N(v) − 1/ε2, then e is a large edge. Clearly, v can have
at most F · 1/ε2 = 6/ε5 = D large child edges: for each class N(v), N(v) − 1,
. . . , N(v) − 1/ε2 + 1, there are at most F such edges.

The tree is split at the lower node of every small and frequent edge, the
connected components of the resulting forest form the classes of the partition.
Another way to describe this partition: delete every small and frequent edge,
make the connected components of the remaining graph the classes of the
partition, and put every deleted edge into the class where its upper node
belongs. Clearly, every small and frequent edge becomes a leaf edge in its
subtree, thus if every node has at most D large child edges in the tree, then
in every subtree each node has at most D non-leaf child edges.

Color each subtree with the algorithm of Theorem 5.4. This step can be done
in 2O(D2/ε·log2(D/ε)) ·n = 2O(36/ε10·1/ε·log2(6/ε6)) ·n = 2O(1/ε11·log2(1/ε)) ·n time. Each
coloring is a (1 + ε)-approximate coloring of the given subtree, thus merging
these colorings yields a (not necessarily proper) coloring Ψ1 of T such that
fΨ1(T ) ≤ (1 + ε)OPT(T, x). In the rest of the proof, we transform Ψ1 into a
proper coloring in such a way that the sum of the coloring does not increase
too much.
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Phase 3: Small edges. Since the tree is a bipartite graph, we can assign
a parity to each node, such that each parity is either 1 or 2, and neighboring
nodes have different parities. Let the parity of an edge be the parity of its
upper node. Observe that if two edges have the same parity and they have a
common node v, then v is the upper node of both edges.

Consider the (ε, `)-augmentation of the coloring Ψ1 with ` := 6. This results
in a coloring Ψ2 such that fΨ2(G) ≤ (1+ ε`)fΨ1(G) (see Section 5.1). First we
modify Ψ2 in such a way that the small edges use only the extra zones Z1 and
Z2. More precisely, if a small edge e has parity r ∈ {1, 2}, then e is recolored
using the colors in Zr. Since the extra zones contain only a very small fraction
of the color spectrum, the recoloring can significantly increase the finish time
of the small edges, but not more than by a factor of 2

ε
(Lemma 5.1b). However,

we show that the total demand of the small edges at v is so small compared to
the largest demand on the child edges of v, that their total finish time will be
negligible, even after this large increase. By definition, the largest child edge
of v has demand qN(v).

Let Sv be the set of those small edges whose upper node is v. Let r be the
parity of v. Color the edges in Sv one after the other, in the order of increasing
demand size, using only the colors in Zr. Call the resulting coloring Ψ3. We
claim that fΨ3(Sv) ≤ εqN(v) for every node v, thus transforming Ψ2 into Ψ3

increases the total sum by at most
∑

v∈T fΨ3(Sv) ≤ ε
∑

v∈T qN(v) ≤ εfΨ2(T )
and fΨ3(T ) ≤ (1 + ε)fΨ2(T ) follows. To give an upper bound on fΨ3(Sv), we
assume the worst case, that is, n(v, i) = F for every i ≤ N(v)− 1/ε2. Imagine
first that the small edges are colored using the full color spectrum, not only
with the colors of zone Zr. Assume that the small edges are colored in the
order of increasing demand size, and consider a class k edge e. In the coloring,
only edges of classes not greater than k are colored before e. Hence the finish
time of e is at most

k∑

i=0

n(v, i)qi ≤ F
k∑

i=0

(1 + ε)i ≤
6(1 + ε)

ε4
· (1 + ε)k

≤
14

ε4
·
1

2
(1 + ε)k ≤

14

ε4
· b(1 + ε)kc =

14

ε4
· qk.

That is, the finish time of an edge is at most 14
ε4

times its demand (in the

second inequality, we used
∑k

i=0(1 + ε)i = ((1 + ε)k+1 − 1)/ε < (1 + ε)k+1/ε).
Therefore, the total finish time of the small edges is at most 14

ε4
times the total

23



demand, which is

14

ε4

N(v)−1/ε2∑

i=0

n(v, i)qi ≤
84

ε7

N(v)−1/ε2∑

i=0

(1 + ε)i

≤
85

ε8
(1 + ε)N(v)−1/ε2 ≤

85

ε8
· 2−1/ε · (1 + ε)N(v)

≤
ε2

2
·
1

2
(1 + ε)N(v) ≤

ε2

2
· b(1 + ε)N(v)c =

ε2

2
· qN(v).

(In the third inequality we use (1 + ε)1/ε ≥ 2, in the fourth inequality it is
assumed that ε is sufficiently small that 21/ε ≥ 4 · 85/ε10 holds.) However, the
small edges do not use the full color spectrum, only the colors in zone Zr.
By Lemma 5.1b, zone Zr contains at least c colors up to 2c

ε
, thus every finish

time in the calculation above should be multiplied by at most 2
ε
. Therefore,

the sum of the small edges is at most

fΨ3(Sv) ≤
2

ε
·
ε2

2
· qN(v) ≤ εqN(v),

as claimed.

Phase 4: Shifting the frequent edges. Now we have a coloring Ψ3 that
is still not a proper coloring, but conflicts appear only between some frequent
edges and their child edges. In Phases 4 and 5 we ensure that every frequent
edge e uses only colors greater than 2

ε
· x(e) from the main zone. In Phase 6,

the conflicts are resolved using a set of so far unused colors, the colors in extra
zones Z5 and Z6.

Let Fv be the set of frequent child edges of v, and let Λv =
⋃

e∈Fv
Ψ3(e) be

the colors used by the frequent child edges of node v. We recolor the edges
in Fv using only the colors in Λv and some colors from zones Z3 and Z4. Let
e1, e2, . . . , e|Fv| be an ordering of the edges in Fv by increasing demand size.
Recall that the algorithm in Theorem 5.4 assigned the colors to the leaf edges
in increasing order of demand size, thus it can be assumed that frequent edge
e1 uses the first x(e1) colors in Λv, edge e2 uses the x(e2) colors after that, etc.
Denote by t(c) = |{e ∈ Fv : fΨ3(e) ≥ c}| the number of edges whose finish
time is at least c, and denote by t(c, i) = |{e ∈ Fv : fΨ3(e) ≥ c, class(e) = i}|
the number of class i edges among them. Clearly, t(c) =

∑∞
i=0 t(c, i) holds.

Moreover, it can be easily verified that the total finish time of the edges in Fv

can be expressed as fΨ3(Fv) =
∑∞

c=1 t(c).

The first step is to produce a coloring Ψ4 where every frequent edge e has only
(1− 2ε

5
)x(e) colors, but these colors are all greater than 2

ε
· x(e). The demand

function is split into two parts: x(e) = x1(e)+x2(e), where x1(e) is (1− 2ε
5
)x(e)
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and x2(e) is 2ε
5
· x(e), but rounding has to be done carefully. What we want to

achieve is that
k∑

j=1

x2(ej) ≤
2ε

5

k∑

j=1

x(ej) (8)

holds for every 1 ≤ k ≤ |Fv|, and the total demand of the class i edges in x1

is at most
∑

e∈Fv, class(e)=i

x1(e) ≤
⌈
n(e, i)

(
1 −

2ε

5

)
qi

⌉
. (9)

It can be easily verified that these two requirements hold if x1 is defined as
x1(e) = d(1 − 2ε

5
)qie for the first m edges of class i, and x1(e) = b(1 − 2ε

5
)qic

for the rest of the class i edges, where

m =
⌈
n(v, i)

(
1 −

2ε

5

)
qi

⌉
− n(v, i)

⌊(
1 −

2ε

5

)
qi

⌋
.

This phase of the algorithm produces a coloring Ψ4 of Fv that assigns only
x1(e) colors to every edge e ∈ Fv, but satisfies the condition that it uses only
the colors in Λv, and every edge e receives only colors greater than 2

ε
· x(e). In

the next phase we will extend this coloring using the colors in zones Z3 and
Z4: every edge e will receive x2(e) additional colors.

Coloring Ψ4 is defined as follows. Consider the edges e1, . . . , e|Fv| in this order,
and assign to ek the first x1(ek) colors in Λv greater than 2

ε
· x(ek) and not

already assigned to an edge ej (j < k). Notice the following property of Ψ4:
if j < k, then every color in Ψ4(ej) is less than every color in Ψ4(ek). This
follows from 2

ε
· x(ej) ≤ 2

ε
· x(ek): every color usable for ek is also usable for

ej if j < k. Define t′(c) = |{e ∈ Fv : fΨ4(e) ≥ c}| and t′(c, i) = |{e ∈ Fv :
fΨ4(e) ≥ c, class(e) = i}| as before, but now using the coloring Ψ4. We claim
that t′(c, i) ≤ (1 + ε)t(c, i) holds for every c ≥ 1, i ≥ 0. If this is true, then
t′(c) ≤ (1 + ε)t(c) holds and fΨ4(Fv) ≤ (1 + ε)fΨ3(Fv) follows from fΨ4(Fv) =∑∞

c=1 t′(c). Summing this for every node v gives fΨ4(T ) ≤ (1 + ε)fΨ3(T ).

First we show that t′(c, i) ≤ t(c, i)+2/ε. If every class i edge has finish time at
least c in Ψ3, then t(c, i) = n(c, i) ≥ t′(c, i) and we are done. Therefore, there
is at least one class i edge that has finish time less than c in Ψ3. This implies
that the frequent edges of class 0, 1, . . . , i − 1 use only colors less than c.
Denote by X the total demand of these edges (in the demand function x(e)),
and denote by Y the number of colors used by the class i edges below c in Ψ3.

Now recall the way Ψ4 was defined, and consider the step when every edge
with class less than i is already colored. At this point at most X colors of Λv

are used below c (possibly fewer, since Ψ4 assigns only x1(e) colors to every
edge e, and only colors greater than 2

ε
· x(e)). Therefore, at least Y colors are

still unused in Λv below c. From these colors at least Y − 2
ε
· qi of them are

above 2
ε
· qi. Thus Ψ4 can color at least (Y − 2

ε
· qi)/qi = Y/qi − 2/ε edges
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of class i using only colors below c. However, Ψ3 uses Y colors below c for
the class i edges, hence it can color at most Y/qi such edges below c, and
t′(c, i) ≤ t(c, i) + 2/ε follows.

We consider two cases. If t(c, i) ≥ 2/ε2, then t′(c, i) ≤ t(c, i) + 2/ε ≤ (1 +
ε)t(c, i), and we are done. Let us assume therefore that t(c, i) ≤ 2/ε2, it will
turn out that in this case t′(c, i) = 0. There are n(v, i) − t(c, i) ≥ n(v, i) −
2/ε2 class i edges that has finish time less than c in Ψ3. Therefore, as in the
previous paragraph, before Ψ4 starts coloring the class i edges, there are at
least (n(v, i)−2/ε2)·qi unused colors less than c in Λv. By (9), the total demand
of the class i edges in demand function x1(e) is at most dn(e, i)(1− 2ε

5
)qie. The

following calculation shows that the unused colors below c in Λv is sufficient
to satisfy all these edges, thus Ψ4 assigns to these edges only colors less than
c. We have to skip the colors not greater than 2

ε
· qi, these colors cannot be

assigned to the edges of class i, which means that the number of usable colors
is at least

(n(v, i) − 2/ε2) · qi − 2qi/ε ≥

(

n(v, i) −
12ε2

5

)

· qi + 1

≥
(
1 −

2ε

5

)
n(v, i)qi + 1 ≥

⌈
n(e, i)

(
1 −

2ε

5

)
qi

⌉
,

since n(v, i) ≥ 6/ε3 by the definition of the frequent edges. Therefore, Ψ4

assigns to the class i edges only colors less than c, and t(c, i) = 0 follows.

Phase 5: Full demand for the frequent edges. The next step is to
modify Ψ4 such that every frequent edge receives x(e) colors, not only x1(e).
Coloring Ψ5 is obtained from Ψ4 by assigning to every frequent edge e an
x2(e) additional colors from zones Z3 or Z4. More precisely, let v be a node
with parity r (as defined in Phase 3), and let e1, . . . , e|Fv| be its frequent child
edges, ordered in increasing demand size, as before. Assign the first x2(e1)
colors from Z2+r to e1, the first x2(e2) colors from Z2+r not used by e1 to e2,
etc. It is clear that no conflict arises with the assignment of these colors.

We claim that these additional colors do not increase the finish time of the
frequent edges. Let x∗

i =
∑i

j=1 x1(ej) be the total demand in x1 of the first i
frequent edges at v. The finish time of ei in Ψ4 is clearly at least x∗

i , since Ψ4

colors every edge ej with j < i before ei. On the other hand, by Lemma 5.1b,
zone Z2+r contains at least b ε

2
· x∗

i c colors not greater than x∗
i . These colors

are sufficient to satisfy the additional demand of the first i edges: by (8) the
first i edges need a total of at most 2ε

5

∑i
j=1 x(e) ≤ ε

2
· x∗

i colors.

Phase 6: Resolving the conflicts. Now we have a coloring Ψ5 such that
there are conflicts only between frequent edges and their child edges. Further-
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more, if e is a frequent edge, then Ψ5(e) contains only colors greater than
2
ε
· x(e) from the main zone. It is clear from the construction of Ψ5 that only

the colors in the main zone can conflict.

Let e be a frequent edge that conflicts with some of its children. Assume that
the child edges of e have parity r (as defined in Phase 3). There are at most
x(e) colors that are used by both e and a child of e. We resolve this conflict
by recoloring the child edges of e in such a way that they use the first at most
x(e) colors in zone Z4+r instead of the colors in Ψ5(e). It is clear that if this
operation is applied for every frequent edge e, then the resulting color Ψ6 is a
proper coloring.

Notice that if a child edge e′ of e is recolored, then it has finish time at
least 2

ε
· x(e), otherwise it does not conflict with e. On the other hand, by

Lemma 5.1b, zone Z4+r contains at least x(e) colors up to 2
ε
· x(e), thus the

recoloring does not add colors greater than that. Therefore, the finish time of
e′ is not increased.

Analysis. The sum of the coloring Ψ6 can be bounded as follows (assuming
that ε is sufficiently small):

fΨ6(T ) = fΨ5(T ) = fΨ4(T ) ≤ (1 + ε)fΨ3(T )

≤ (1 + ε)2fΨ2(T ) ≤ (1 + (` + 1)ε)(1 + ε)2fΨ1(T )

≤ (1 + (` + 1)ε)(1 + ε)3OPT(T, x) ≤ (1 + (` + 1)ε)(1 + ε)4OPT(T, x0)

≤ (1 + 7ε)(1 + 8ε)OPT(T, x0) ≤ (1 + 32ε)OPT(T, x0)

= (1 + ε0)OPT(T, x0)

Therefore, Ψ6 is a (1+ε0)-approximate solution to the SEMC instance (T, x0).

The running time of the algorithm is dominated by the coloring of the low-
degree components with the algorithm of Theorem 5.4. This phase requires
2O(36/ε10·1/ε·log2(6/ε6)) · n = 2O(1/ε110 log2(1/ε0)) · n time. The other parts of the al-
gorithm can be done in time linear in the size of the input. Therefore, the
total running time is 2O(1/ε110 ·log2(1/ε0)) · n, which completes the proof of Theo-
rem 6.1. 2
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