Minimum sum multicoloring on the edges of trees

Dániel Marx Budapest University of Technology and Economics dmarx@cs.bme.hu

Workshop on Approximation and Online Algorithms Budapest, 2003

- Given: a graph G(V, E), and demand function $x: V \to \mathbb{N}$
- Find: an assignment of x(v) colors (integers) to every vertex v, such that neighbors receive disjoint sets

Finish time: f(v) of vertex v is the largest color assigned to it in the coloring.

• Goal: Minimize $\sum_{v \in V} f(v)$, the sum of the coloring.

- Given: a graph G(V, E), and demand function $x: V \to \mathbb{N}$
- Find: an assignment of x(v) colors (integers) to every vertex v, such that neighbors receive disjoint sets

Finish time: f(v) of vertex v is the largest color assigned to it in the coloring.

• Goal: Minimize $\sum_{v \in V} f(v)$, the sum of the coloring.

- Given: a graph G(V, E), and demand function $x: V \to \mathbb{N}$
- Find: an assignment of x(v) colors (integers) to every vertex v, such that neighbors receive disjoint sets

Finish time: f(v) of vertex v is the largest color assigned to it in the coloring.

• Goal: Minimize $\sum_{v \in V} f(v)$, the sum of the coloring.

- Given: a graph G(V, E), and demand function $x: V \to \mathbb{N}$
- Find: an assignment of x(v) colors (integers) to every vertex v, such that neighbors receive disjoint sets

Finish time: f(v) of vertex v is the largest color assigned to it in the coloring.

• Goal: Minimize $\sum_{v \in V} f(v)$, the sum of the coloring.

Sum of the coloring: 5 + 1 + 2 + 4 + 3 + 5 = 20

Known results

Special case: the chromatic sum problem: $x(v) = 1, \ \forall v \in V$

• Trees:

- * polynomial time solvable if every demand is 1 [Kubicka, 1989],
- ★ sum multicoloring is **NP**-hard for binary trees [Marx, 2002]
- * $(1 + \varepsilon)$ -approximation for sum multicoloring [Halldórsson et al., 1999]

• Partial *k*-trees:

* $(1 + \varepsilon)$ -approximation for sum multicoloring [Halldórsson and Kortsarz, 1998]

• Bipartite graphs:

- **APX**-hard, even if every demand is 1 [Bar-Noy and Kortsarz, 1998]
- * 1.5-approximation for sum multicoloring [Bar-Noy et al., 1998]

Edge coloring version

Assign x(e) colors to each edge e, minimize the sum of finish times of the edges. Each color can appear at most once at a vertex.

Application: scheduling dedicated biprocessor tasks

Each task requires the simultaneous work of two preassigned processors for a given number of time slots. Goal: minimize the sum of completion times.

vertices	\iff	processors
edges	\iff	jobs
demand	\iff	length of job
colors	\iff	time slots

Preemptive scheduling: jobs can be interrupted and continued later

Bipartite graphs: processors are divided into clients and servers

Edge coloring results

• Known results:

- ★ Polynomial time solvable on trees with demand 1 [Giaro and Kubale 2000]
- * NP-hard on bipartite graphs even if every demand is 1 [Giaro and Kubale 2000]
- ★ 1.796-approximation for bipartite graphs with demand 1 [Halldórsson et al.]
- ★ 2-approximation for general graphs and general demand [Bar-Noy et al., 2000]

Edge coloring results

• Known results:

- ★ Polynomial time solvable on trees with demand 1 [Giaro and Kubale 2000]
- * NP-hard on bipartite graphs even if every demand is 1 [Giaro and Kubale 2000]
- ★ 1.796-approximation for bipartite graphs with demand 1 [Halldórsson et al.]
- ★ 2-approximation for general graphs and general demand [Bar-Noy et al., 2000]

• Our results:

- \star **NP**-hard on trees even if every demand is 1 or 2
- \star (1 + ε)-approximation on trees with arbitrary demand

Scaling the demand

Theorem: If the graph is a tree, then multiplying the demand of each edge by integer q multiplies the minimum sum by *exactly* q.

Scaling the demand

Theorem: If the graph is a tree, then multiplying the demand of each edge by integer q multiplies the minimum sum by *exactly* q.

 \Rightarrow The problem can be solved in polynomial time on trees if every edge has the same demand

Scaling the demand

Theorem: If the graph is a tree, then multiplying the demand of each edge by integer q multiplies the minimum sum by *exactly* q.

 \Rightarrow The problem can be solved in polynomial time on trees if every edge has the same demand

⇒ Increasing the demand to the next power of $(1 + \varepsilon)$ increases the sum by at most a factor of $(1 + \varepsilon)$ ⇒ we can assume that each demand is of the form $(1 + \varepsilon)^i$

Bounded degree trees

Theorem: Minimum sum edge coloring admits a linear time PTAS in bounded degree trees.

Method:

The line graph of a tree with max degree d is a partial (d - 1)-tree, hence the PTAS of Halldórsson and Kortsarz can be used.

In a partial *k*-tree we can compute a polynomial number of color sets for each vertex such that there is a good approximate solution using only these sets \Rightarrow PTAS with standard dynamic programming

Bounded degree trees

Theorem: Minimum sum edge coloring admits a linear time PTAS in bounded degree trees.

Method:

The line graph of a tree with max degree d is a partial (d - 1)-tree, hence the PTAS of Halldórsson and Kortsarz can be used.

In a partial *k*-tree we can compute a polynomial number of color sets for each vertex such that there is a good approximate solution using only these sets \Rightarrow PTAS with standard dynamic programming

Bounded degree trees: In edge coloring bounded degree trees, a *constant* number of color sets is sufficient for each edge \Rightarrow linear time PTAS

Bounded degree trees

Theorem: Minimum sum edge coloring admits a linear time PTAS in bounded degree trees.

Method:

The line graph of a tree with max degree d is a partial (d - 1)-tree, hence the PTAS of Halldórsson and Kortsarz can be used.

In a partial *k*-tree we can compute a polynomial number of color sets for each vertex such that there is a good approximate solution using only these sets \Rightarrow PTAS with standard dynamic programming

Bounded degree trees: In edge coloring bounded degree trees, a *constant* number of color sets is sufficient for each edge \Rightarrow linear time PTAS

Almost bounded degree trees: trees that have bounded degree after deleting the degree 1 nodes. Algorithm works for such trees as well.

Theorem: Linear time PTAS for general trees.

• Partition the tree into almost bounded degree subtrees

- Use the PTAS for subtrees
- •Merge the colorings of the subtrees to a coloring of the whole tree

Theorem: Linear time PTAS for general trees.

• Partition the tree into almost bounded degree subtrees

- •Use the PTAS for subtrees
- •Merge the colorings of the subtrees to a coloring of the whole tree

Theorem: Linear time PTAS for general trees.

• Partition the tree into almost bounded degree subtrees

- Use the PTAS for subtrees
- •Merge the colorings of the subtrees to a coloring of the whole tree

Theorem: Linear time PTAS for general trees.

Partition the tree into almost bounded degree subtrees

Use the PTAS for subtrees

•Merge the colorings of the subtrees to a coloring of the whole tree

How to partition the tree? How to resolve the conflicts when merging the colorings?

The child edges of a given node are divided into small, large, and frequent edges. Every demand is of the form $(1 + \varepsilon)^i$.

The child edges of a given node are divided into small, large, and frequent edges. Every demand is of the form $(1 + \epsilon)^i$.

The child edges of a given node are divided into small, large, and frequent edges. Every demand is of the form $(1 + \epsilon)^i$.

The child edges of a given node are divided into small, large, and frequent edges. Every demand is of the form $(1 + \epsilon)^i$.

The child edges of a given node are divided into small, large, and frequent edges. Every demand is of the form $(1 + \epsilon)^i$.

Number of edges for each demand size:

Total demand of the small edges is very small, they can be thrown away.

The child edges of a given node are divided into small, large, and frequent edges. Every demand is of the form $(1 + \epsilon)^i$.

Number of edges for each demand size:

Total demand of the small edges is very small, they can be thrown away. Each node has at most a constant number ($\leq 1/\varepsilon^4$) of large child edges.

The tree is split at the frequent edges:

Claim: Each subtree is an almost bounded degree tree \Rightarrow PTAS can be used **Proof:**

- Deleting the degree 1 nodes deletes every frequent edge
- Only the large edges remain
- Each node has at most a constant number of large child edges

How to merge the colorings?

Shifting the frequent edges: We modify the coloring such that each frequent edge e uses only colors above $x(e)/\varepsilon$. This can be done with only a small increase of the sum.

Resolving the conflicts: remove the conflicting colors from the child edges.

How to merge the colorings?

Shifting the frequent edges: We modify the coloring such that each frequent edge e uses only colors above $x(e)/\varepsilon$. This can be done with only a small increase of the sum.

Resolving the conflicts: remove the conflicting colors from the child edges.

We remove at most x(e) colors, each of them is greater than $x(e)/\varepsilon$.

To replace these colors, it is easy to find x(e) unused colors below $x(e)/\varepsilon$.

Conclusions

- Problem: edge coloring version of minimum sum multicoloring on trees.
- PTAS for vertex coloring partial *k*-trees implies a PTAS for edge coloring bounded degree trees. Linear time PTAS with additional techniques.
- Linear time PTAS for general trees uses the algorithm for bounded degree trees as a subroutine
- Minimum sum edge multicoloring is **NP**-hard on trees.