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Minimum sum multicoloring

• Given: a graph G(V, E), and demand function x: V → N

• Find: an assignment of x(v) colors (integers) to every vertex v, such that neigh-
bors receive disjoint sets

Finish time: f(v) of vertex v is the largest color assigned to it in the coloring.

• Goal: Minimize
∑

v∈V f(v), the sum of the coloring .
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Sum of the coloring:
5 + 1 + 2 + 4 + 3 + 5 = 20
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Known results

Special case: the chromatic sum problem: x(v) = 1, ∀v ∈ V

• Trees:

? polynomial time solvable if every demand is 1 [Kubicka, 1989],
? sum multicoloring is NP-hard for binary trees [Marx, 2002]
? (1 + ε)-approximation for sum multicoloring [Halldórsson et al., 1999]

• Partial k-trees:

? (1 + ε)-approximation for sum multicoloring [Halldórsson and Kortsarz, 1998]

• Bipartite graphs:

? APX-hard, even if every demand is 1 [Bar-Noy and Kortsarz, 1998]
? 1.5-approximation for sum multicoloring [Bar-Noy et al., 1998]
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Edge coloring version

Assign x(e) colors to each edge e, minimize the sum of finish times of the edges.
Each color can appear at most once at a vertex.

Application: scheduling dedicated biprocessor tasks

Each task requires the simultaneous work of two preassigned processors for a
given number of time slots. Goal: minimize the sum of completion times.

vertices ⇐⇒ processors
edges ⇐⇒ jobs

demand ⇐⇒ length of job
colors ⇐⇒ time slots

Preemptive scheduling: jobs can be interrupted and continued later

Bipartite graphs: processors are divided into clients and servers
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Edge coloring results

• Known results:

? Polynomial time solvable on trees with demand 1 [Giaro and Kubale 2000]
? NP-hard on bipartite graphs even if every demand is 1 [Giaro and Kubale 2000]
? 1.796-approximation for bipartite graphs with demand 1 [Halldórsson et al.]
? 2-approximation for general graphs and general demand [Bar-Noy et al., 2000]
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Edge coloring results

• Known results:

? Polynomial time solvable on trees with demand 1 [Giaro and Kubale 2000]
? NP-hard on bipartite graphs even if every demand is 1 [Giaro and Kubale 2000]
? 1.796-approximation for bipartite graphs with demand 1 [Halldórsson et al.]
? 2-approximation for general graphs and general demand [Bar-Noy et al., 2000]

• Our results:

? NP-hard on trees even if every demand is 1 or 2
? (1 + ε)-approximation on trees with arbitrary demand
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Scaling the demand

Theorem: If the graph is a tree, then multiplying the demand of each edge by
integer q multiplies the minimum sum by exactly q.
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Scaling the demand

Theorem: If the graph is a tree, then multiplying the demand of each edge by
integer q multiplies the minimum sum by exactly q.

⇒ The problem can be solved in polynomial time on trees if every edge has the
same demand

⇒ Increasing the demand to the next power of (1 + ε) increases the sum by at
most a factor of (1 + ε) ⇒ we can assume that each demand is of the form
(1 + ε)i
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Bounded degree trees

Theorem: Minimum sum edge coloring admits a linear time PTAS in bounded
degree trees.

Method:

The line graph of a tree with max degree d is a partial (d − 1)-tree, hence the
PTAS of Halldórsson and Kortsarz can be used.

In a partial k-tree we can compute a polynomial number of color sets for each
vertex such that there is a good approximate solution using only these sets ⇒
PTAS with standard dynamic programming
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Bounded degree trees

Theorem: Minimum sum edge coloring admits a linear time PTAS in bounded
degree trees.

Method:

The line graph of a tree with max degree d is a partial (d − 1)-tree, hence the
PTAS of Halldórsson and Kortsarz can be used.

In a partial k-tree we can compute a polynomial number of color sets for each
vertex such that there is a good approximate solution using only these sets ⇒
PTAS with standard dynamic programming

Bounded degree trees: In edge coloring bounded degree trees, a constant
number of color sets is sufficient for each edge ⇒ linear time PTAS

Almost bounded degree trees: trees that have bounded degree after deleting
the degree 1 nodes. Algorithm works for such trees as well.
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General case

Theorem: Linear time PTAS for general trees.

•Partition the tree into almost bounded degree subtrees
•Use the PTAS for subtrees
•Merge the colorings of the subtrees to a coloring of the whole tree
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General case

Theorem: Linear time PTAS for general trees.

•Partition the tree into almost bounded degree subtrees
•Use the PTAS for subtrees
•Merge the colorings of the subtrees to a coloring of the whole tree

? How to partition the tree?
How to resolve the conflicts
when merging the colorings?
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The Small, the Large, and the Frequent

The child edges of a given node are divided into small, large, and frequent edges.

Every demand is of the form (1 + ε)i.

Number of edges for each demand size:

10 . . .2 3

of edges

number

of demand
log1+ε
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Total demand of the small edges is very small, they can be thrown away.
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The Small, the Large, and the Frequent

The child edges of a given node are divided into small, large, and frequent edges.

Every demand is of the form (1 + ε)i.

Number of edges for each demand size:

10 . . .2 3

of edges

number

of demand
log1+ε

1/ε2

1/ε2

Total demand of the small edges is very small, they can be thrown away.

Each node has at most a constant number (≤ 1/ε4) of large child edges.
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Partitioning the tree

The tree is split at the frequent edges:
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Partitioning the tree

The tree is split at the frequent edges:

Claim: Each subtree is an almost bounded degree tree ⇒ PTAS can be used
Proof:
• Deleting the degree 1 nodes deletes every frequent edge
• Only the large edges remain
• Each node has at most a constant number of large child edges
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How to merge the colorings?

Shifting the frequent edges: We modify the coloring such that each frequent
edge e uses only colors above x(e)/ε. This can be done with only a small
increase of the sum.

Resolving the conflicts: remove the conflicting colors from the child edges.

e x(e) colors,

each color is > x(e)/ε
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How to merge the colorings?

Shifting the frequent edges: We modify the coloring such that each frequent
edge e uses only colors above x(e)/ε. This can be done with only a small
increase of the sum.

Resolving the conflicts: remove the conflicting colors from the child edges.

e x(e) colors,

each color is > x(e)/ε

e

We remove at most x(e) colors, each of them is greater than x(e)/ε.

To replace these colors, it is easy to find x(e) unused colors below x(e)/ε.
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Conclusions

• Problem: edge coloring version of minimum sum multicoloring on trees.

• PTAS for vertex coloring partial k-trees implies a PTAS for edge coloring
bounded degree trees. Linear time PTAS with additional techniques.

• Linear time PTAS for general trees uses the algorithm for bounded degree trees
as a subroutine

• Minimum sum edge multicoloring is NP-hard on trees.


