
ar
X

iv
:0

90
2.

37
80

v1
 [

cs
.D

S]
 2

2
Fe

b
20

09

Treewidth reduction for constrained separation

and bipartization problems

Dániel Marx1, Barry O’Sullivan2, and Igor Razgon2

1 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics, dmarx@cs.bme.hu

2 Cork Constraint Computation Centre, University College Cork,
{b.osullivan,i.razgon}@cs.ucc.ie

Abstract. We present a method for reducing the treewidth of a graph
while preserving all the minimal s−t separators. This technique turns out
to be very useful in the design of parameterized algorithms. We prove the
fixed-parameter tractability of the s−t Cut, Multicut, and Bipartization
problems (parameterized by the maximal number k of vertices being
removed) with various additional restrictions (e.g., the vertices being
removed from the graph form an independent set). These results answer
a number of open questions in the area of parameterized complexity.

1 Introduction

The main technical contribution of the present paper is a theorem stating that
given a graph G, two terminal vertices s, t, and a parameter k, we can compute
in a fpt-time a graph G∗ having the treewidth bounded by a function of k while
(roughly speaking) preserving all the minimal s − t separators of size at most
k (recall that an fpt-time algorithm has running time f(k) · nO(1) for some
function f depending only on k). Combining this theorem with the well-known
Courcelle’s Theorem, we prove the fixed-parameter tractability of a wide variety
of constrained separation and bipartization problems, answering a number of
open questions in the area of parameterized complexity.

In particular, we consider ‘meta-problems’ that we call G-mincut and G-
bipartization. The task of the former is, given a graph G and parameter k,
to check whether there is a set C ⊆ V (G) of size at most k that separates
given terminals s, t and induces a graph belonging to class G. The task of the
latter is to find out whether there is set C ⊆ V (G) with |C| ≤ k, G[C] ∈ G
such that the removal of C makes G bipartite. We prove that both problems
are fpt provided that G is hereditary (i.e. whenever a graph belongs to G, all
its induced subgraphs do) and decidable. Setting G to be the class of all graphs
without edges immediately implies that the stable separation problem (are
there at most k independent vertices whose removal separates s and t?) as well as
stable bipartization problem (are there at most k independent vertices whose
removal makes G bipartite?) are both fpt, answering the open questions posed
by Kanj [11] and Fernau [4]. More elaborated arguments show that it is fpt to

http://arXiv.org/abs/0902.3780v1

check whether there are at most k edges such that removal of their endpoints
separates s and t, answering the open question posed by Samer and Szeider in
[17] and by Samer in [4] and that it is fpt to check the existence of exactly
k independent vertices whose removal makes the graph bipartite, answering an
open question posed by Dı́az et al. [5].

Finally, we analyze the constrained bipartization problems in a more general
environment of (H, C,≤K)-coloring [5], where the parameter is the maximum
number of vertices mapped to C in the homomorphism and prove that the prob-
lem is fpt provided that H −C consists of two adjacent vertices without loops.

The proposed results are related to two directions of investigation in the
area of parameterized complexity. The first direction is understanding the fixed-
parameter tractability of graph separation problems, mainly various versions of
the multicut problem, e.g. [12, 9, 7, 2]. The second direction is applying the
ideas from the area of graph separation to design parameterized algorithms for
problems from other areas, e.g. [15, 3, 13]. The technique of reduction from bi-
partization to a graph separation problem proposed in [15] serves in the present
paper as a bridge between the results related to the above two directions.

The paper assumes the knowledge of the definition of treewidth and its al-
gorithmic use, including Courcelle’s Theorem (see the surveys [1, 8]).

2 Treewidth reduction

We present the main combinatorial result of the paper in this section. Two
slightly different notion of separation will be used:

Definition 1. We say that a set S of vertices separates sets A and B if no
component of G \ S contains vertices from both A \ S and B \ S. If s and t are
two distinct vertices of G, then an s − t separator is a set S of vertices disjoint
from {s, t} such that s and t are in different components of G \ S.

In particular, if S separates A and B, then A ∩ B ⊆ S. Furthermore, given
a set W of vertices, we say that a set S of vertices is a balanced separator of W
if |W ∩C| ≤ |W |/2 for every connected component C of G \ S. A k-separator is
a separator S with |S| = k. The treewidth of a graph is closely connected with
the existence of balanced separators:

Lemma 2 ([14], [6, Section 11.2]).

1. If G(V, E) has treewidth greater than 3k, then there is a set W ⊆ V of size
2k + 1 having no balanced k-separator.

2. If G(V, E) has treewidth at most k, then every W ⊆ V has a balanced (k+1)-
separator.

Note that the contrapositive of (1) in Lemma 2 says that if every W has a
balanced k-separator, then the treewidth is at most 3k.

Lemma 3. Let G be a graph, C1, . . . , Cr subsets of vertices, and let C :=
⋃r

i=1 Ci. Suppose that every Wi ⊆ Ci has a balanced separator Si ⊆ Ci of size
at most w. Then every W ⊆ C has a balanced separator S ⊆ C of size wr.

2

Proof. For a given W ⊆ C, let us define Wi := (W ∩ Ci) \ (
⋃i−1

j=1 Ci); it is clear
that the Wi’s form a partition of W . Let Si be the separator corresponding to
Wi. Let S :=

⋃r
i=1 Si. Each component of G\S contains at most |Wi|/2 vertices

of Wi, thus each component contains at most |W |/2 vertices of W . ⊓⊔

When we are reducing a problem to an ‘important’ subset C, we have to
introduce additional edges to account for connections via vertices not in C:

Definition 4. Let G be a graph and C ⊆ V (G). The graph torso(G, C) has
vertex set C and two vertices a, b ∈ C are connected by an edge if {a, b} ∈ E(G)
or there is a path P in G connecting a and b whose internal vertices are not in
C.

Proposition 5. Let C1 ⊆ C2 be two subsets of vertices in G and let a, b ∈ C1

two vertices. A set S ⊆ C1 separates a and b in torso(G, C1) if and only if S
separates these vertices in torso(G, C2). (By setting C2 = V (G), we obtain a
special case where torso(G, C2) is replaced by G.)

Analogously to Lemma 3, we can show that if we have a bound on torso(G, Ci)
for every i, then these bounds add up for the union of the Ci’s.

Lemma 6. Let G be a graph and C1, . . . , Cr be subsets of V (G) such that for
every 1 ≤ i ≤ r, the treewidth of torso(G, Ci) is at most w. Then the treewidth
of torso(G, C) for C :=

⋃r

i=1 Ci is at most 3r(w + 1).

If the minimum size of an s − t separator is ℓ, then the excess of an s − t
separator S is |S| − ℓ (which is always nonnegative). Note that if s and t are
adjacent, then no s−t separator exists, and in this case we say that the minimum
size of an s − t separator is ∞. If X is a set of vertices, we denote by δ(X) the
set of those vertices in V (G) \ X that are adjacent to at least one vertex of X .

Lemma 7. Let s, t be two vertices in graph G such that the minimum size of an
s − t separator is k. Then there is a collection X = {X1, . . . Xq} of sets where
{s} ⊆ Xi ⊆ V (G) \ ({t} ∪ δ({t})) (1 ≤ i ≤ q), such that

1. X1 ⊂ X2 ⊂ · · · ⊂ Xq,
2. |δ(Xi)| = k for every 1 ≤ i ≤ q, and
3. every s − t separator of size k is fully contained in

⋃q

i=1 δ(Xi).

Furthermore, such a collection X can be found in polynomial time.

Proof. Let X = {X1, . . . , Xq} be a collection of sets such that (2) and (3) holds.
Let us choose the collection such that q is minimum possible, and among such
collections,

∑q

i=1 |Xi|2 is maximum possible. We show that for every i, j, either
Xi ⊂ Xj or Xj ⊂ Xi holds, thus the sets can be ordered such that (1) holds.

Suppose that neither Xi ⊂ Xj nor Xj ⊂ Xi holds for some i and j. We show
that after replacing Xi and Xj in X with the two sets Xi ∩ Xj and Xi ∪ Xj ,
properties (2) and (3) still hold, and the resulting collection X ′ contradicts the
optimal choice of X . The function δ is well-known to be submodular, i.e.,

|δ(Xi)| + |δ(Xj)| ≥ |δ(Xi ∩ Xj)| + |δ(Xi ∪ Xj)|.

3

Both δ(Xi∩Xj) and δ(Xi∪Xj) are s−t separators and hence have size at least k.
The left hand side is 2k, hence there is equality and |δ(Xi∩Xj)| = |δ(Xi∪Xj)| =
k follows. This means that property (2) holds after the replacement. Observe
that δ(Xi ∩ Xj) ∪ δ(Xi ∪ Xj) ⊆ δ(Xi) ∪ δ(Xj): any edge that leaves Xi ∩ Xj or
Xi ∪ Xj leaves either Xi or Xj . We show that there is equality here, implying
that property (3) remains true after the replacement. It is easy to see that
δ(Xi ∩ Xj) ∩ δ(Xi ∪ Xj) ⊆ δ(Xi) ∩ δ(Xj), hence we have

|δ(Xi ∩ Xj) ∪ δ(Xi ∪ Xj)| = 2k − |δ(Xi ∩ Xj) ∩ δ(Xi ∪ Xj)|

≥ 2k − |δ(Xi) ∩ δ(Xj)| = |δ(Xi) ∪ δ(Xj)|,

showing the required equality.
If Xi∩Xj or Xi∪Xj was already present in X , then the replacement decreases

the size of the collection, contradicting the choice of X . Otherwise, we have that
|Xi|2 + |Xj|2 < |Xi ∩ Xj |2 + |Xi ∪ Xj |2 (to verify this, simply represent |Xi| as
|Xi ∩ Xj | + |Xi \ Xj |, |Xj | as |Xi ∩ Xj | + |Xj \ Xi|, |Xi ∪ Xj | as |Xi ∩ Xj | +
|Xi \Xj|+ |Xj \Xi| and do direct calculation having in mind that both |Xi \Xj |
and |Xj \ Xi| are greater than 0), again contradicting the choice of X . Thus
an optimal collection X satisfies (1) as well. The polynomial time algorithm for
computing X is described in the Appendix. ⊓⊔

Lemma 8. Let s, t be two vertices of graph G and let ℓ be the minimum size
of an s − t separator. For some e ≥ 0, let C be the union of all minimal s − t
separators having excess at most e (i.e. of size at most ℓ + e). Then there is an
O(f(ℓ, e)·|V (G)|d) time algorithm that returns a set C′ ⊇ C∪{s, t} such that the
treewidth of torso(G, C′) is at most g(ℓ, e), for some constant d and functions f
and g depending only on ℓ and e.

Proof. We prove the lemma by induction on e. Consider the collection X of
Lemma 7 and define Si := δ(Xi) for 1 ≤ i ≤ q. For the sake of uniformity, we
define X0 := ∅, Xq+1 := V (G) \ {t}, S0 := {s}, Sq+1 := {t}. For 1 ≤ i ≤ q + 1,
let Li := Xi \ (Xi−1 ∪ Si−1). Also, for 1 ≤ i ≤ q + 1 and two disjoint non-
empty subsets A, B of Si ∪Si−1, we define Gi,A,B to be the graph obtained from
G[Li ∪A∪B] by contracting the set A to a vertex a and the set B to a vertex b.
Taking into account that if C includes a vertex of some Li then e > 0, we prove
the key observation that makes it possible to use induction.

Claim. If a vertex v ∈ Li is in C, then there are two disjoint non-empty subsets
A, B of Si ∪ Si−1 such that v is part of a minimal a − b separator K2 in Gi,A,B

having size at most k and excess at most e − 1.

Proof. Suppose that there is a minimal s− t separator K of size at most k that
contains v. Let K1 := K \ Li and K2 := K ∩ Li. Partition (Si ∪ Si−1) \ K into
the set A of vertices reachable from s in G \ K and the set B of vertices non-
reachable from s in G \ K. Observe that both A and B are non-empty. Indeed,
due to the minimality of K, G has a path P from s to t such V (P) ∩ K = {v}.
By selection of v, Si−1 separates v from s and Si separates v from t. Therefore,

4

at least one vertex u of Si−1 occurs in P before v and at least one vertex w of
Si occurs in P after v. The prefix of P ending at u and suffix of P starting at w
are both subpaths in G \ K. It follows that u is reachable from s in G \ K, i.e.
belongs to A and that w is reachable from t in G \K, hence non-reachable from
s and thus belongs to B.

To see that K2 is an a − b separator in Gi,A,B, suppose that there is a path
P connecting a and b in Gi,A,B avoiding K2. Then there is a corresponding path
P ′ in G connecting a vertex of A and a vertex of B. Path P ′ is disjoint from
K1 (since it contains vertices of Li and (Si ∪ Si−1) \ K only) and from K2 (by
construction). Thus a vertex of B is reachable from s in G \K, a contradiction.

To see that K2 is a minimal separator, suppose that there is a vertex u ∈ K2

such that K2 \ {u} is also an a − b separator in Gi,A,B. Since K is minimal,
there is an s − t path P in G \ (K \ u), which has to pass through u. Arguing
as when we proved that A and B are non-empty, we observe that P includes
vertices of both A and B, hence we can consider a minimal subpath P ′ of P
between a vertex a′ ∈ A and a vertex b′ ∈ B. We claim that all the internal
vertices of P ′ belong to Li. Indeed, due to the minimality of P ′, an internal
vertex of P ′ can belong either to Li or to V (G) \ (K1 ∪ Li ∪ Si−1 ∪ Si). If all
the internal vertices of P ′ are from the latter set then there is a path from a′

to b′ in G \ (K1 ∪ Li) and hence in G \ (K1 ∪ K2) in contradiction to b′ ∈ B.
If P ′ contains internal vertices of both sets then G has an edge {u, w} where
u ∈ Li while w ∈ V (G) \ (K1 ∪ Li ∪ Si−1 ∪ Si). But this is impossible since
Si−1 ∪ Si separates Li from the rest of the graph. Thus it follows that indeed
all the internal vertices of P ′ belong to Li. Consequently, P ′ corresponds to a
path in Gi,A,B from a to b that avoids K2 \ u, a contradiction that proves the
minimality of K2.

Finally, we have to show that K2 has excess at most e − 1. Let K ′
2 be a

minimum a− b separator in Gi,A,B. Observe that K1 ∪K ′
2 is an s− t separator

in G. Indeed, consider a path P in G\ (K1∪K ′
2). It necessarily contains a vertex

u ∈ K2, hence arguing as in the previous paragraph we notice that P includes
vertices of both A and B. Considering a minimal subpath P ′ of P between a
vertex a′ ∈ A and b′ ∈ B we observe, analogously to the previous paragraph that
all the internal vertices of this path belong to Li. Hence this path correspond to
a path between a and b in Gi,A,B . It follows that P ′, and hence P , includes a
vertex of K ′

2, a contradiction showing that K1 ∪K ′
2 is indeed an s− t separator

in G. Due to the minimality of K2, K ′
2 6= ∅. Thus K1 ∪K ′

2 contains at least one
vertex from Li, implying that K1 ∪ K ′

2 is not a minimum s − t separator in G.
Thus |K2| − |K ′

2| = (|K1| + |K2|) − (|K1| + |K ′
2|) < k − ℓ = e, as required. ⊓⊔

Now we define C′. Let C0 :=
⋃q+1

i=0 Si. For e = 0, C′ = C0. Assume that
e > 0. For 1 ≤ i ≤ q + 1 and disjoint non-empty subsets A, B of Si ∪ Si−1, let
Ci,A,B be the union of all minimal a− b separators of size at most k and excess
at most e − 1 in Gi,A,B. We define C′ as the union of C0 and all sets Ci,A,B

as above. Observe that C′ is defined correctly in the sense that any vertex v
participating in a s − t minimal separator of size at most k indeed belongs to
C′. For e = 0, the correctness of C′ follows from definition of sets Si. For e > 0,

5

the correctness follows from the above Claim if we take into account that since
⋃q+1

i=1 Li ∪ C0 = V (G), v belongs to some Li.
We shall show that the treewidth of torso(G, C′) is at most g(ℓ, e), a function

recursively defined as follows: g(ℓ, 0) := 6ℓ and g(ℓ, e) := 3 · (2ℓ + 32ℓ · (g(ℓ, e −
1) + 1)) for e > 0. We do this by showing that in graph G, every set W ⊆ C′

has a balanced separator of size at most 2ℓ (for e = 0) and at most 2ℓ + 32ℓ ·
(g(ℓ, e− 1) + 1) (for e > 0). By Proposition 5, it will imply that in torso(G, C′),
W has a balanced separator with the same upper bound. By Lemma 2(1), the
desired upper bound on the treewidth will immediately follow.

Let W ⊆ C′ be an arbitrary set. Let 1 ≤ i ≤ q +1 be the smallest value such
that |W ∩Xi| ≥ |W |/2. Consider the separator Si ∪ Si−1 (whose size is at most
2ℓ). In G \ (Si ∪Si−1), the sets Xi−1, Li, and V (G) \ (Si ∪Si−1 ∪Xi−1 ∪Li) are
pairwise separated from each other. By selection of i, the first and the third sets
do not contain more than half of W . If e = 0, then C′ is disjoint with Li, hence
the treewidth upper bound follows for e = 0. We assume that e > 0 and, using
the induction assumption, will show that W ∩ Li has a balanced separator S of
size at most 32ℓ · (g(ℓ, e− 1)+1). This will immediately imply that S ∪Si ∪Si−1

is a balanced separator of W of size at most 2ℓ + 32ℓ · (g(ℓ, e− 1) + 1), which, in
turn, will imply the desired upper bound on the treewidth of torso(G, C′).

By the induction assumption, the treewidth of torso(Gi,A,B , Ci,A,B) is at
most g(ℓ, e−1) for any pair of disjoint subsets A, B of Si∪Si−1 such that Gi,A,B

has an a− b separator of size at most k. By the combination of Lemma 2(2) and
Proposition 5 G, has a balanced separator of size at most (g(ℓ, e − 1) + 1) for
any set Wi,A,B ⊆ Ci,A,B. Let C∗ be the union of Ci,A,B for all such A and B
Taking into account that the number of choices of A and B is at most 32ℓ, for
any W ∗ ⊆ C∗, G has a balanced separator of size at most 32ℓ · (g(ℓ, e − 1) + 1)
according to Lemma 3. By definition of C′, W ∩Li ⊆ C∗, hence the existence of
the desired separator S follows. The running time analysis can be found in the
appendix. ⊓⊔

Theorem 9. Let G be a graph, S ⊆ V (G), and let k be an integer. Let C be the
set of all vertices of G participating in a minimal s − t cut for some s, t ∈ S.
Then there is an fpt algorithm, parameterized by k and |S|, that computes a
graph G∗ having the following properties:

1. C ∪ S ⊆ V (G∗)
2. For every s, t ∈ S, a set K ⊆ V (G∗) with |K| ≤ k is a minimal s−t separator

of G∗ if and only if K ⊆ C ∪ S and K is a minimal s − t separator of G.
3. The treewidth of G∗ is at most h(k, |S|) for some function h.
4. For any K ⊆ C, G∗[K] is isomorphic to G[K].

Proof. For every s, t ∈ S, the algorithm of Lemma 8 computes a set C′
s,t con-

taining all the minimal s − t separators of size at most k. By Lemma 6, if C′ is
the union of these

(

|S|
2

)

sets, then G′ = torso(G, C′) has treewidth bounded by a
function of k and |S|. Note that G′ satisfies all the requirements of the theorem
except the last one: two vertices of C′ non-adjacent in G may become adjacent
in G′ (see Definition 4). To fix this problem we subdivide each edge {u, v} of G′

6

such that {u, v} /∈ E(G) into two edges add a vertex between them, and, to avoid
selection of this vertex into a cut, we split it into k+1 copies. In other words, for
each edge {u, v} ∈ E(G′)\E(G) we introduce k+1 new vertices w1, . . . , wk+1 and
replace {u, v} by the set of edges {{u, w1} . . . {u, wk+1}, {w1, v}, . . . , {wk+1, v}}.
Let G∗ be the resulting graph. It is not hard to check that G∗ satisfies all the
properties of the present theorem. ⊓⊔

3 Constrained separation problems

Let G be a class of graphs. Given a graph G, vertices s, t, and parameter k, the
G-mincut problem asks whether G has a s − t separator of size at most k such
that G[C] ∈ G. The following theorem is the central result of this section.

Theorem 10. Assume that G is decidable and hereditary (i.e. whenever G ∈ G
then for any V ′ ⊆ V , G[V ′] ∈ G). Then the G-mincut problem is fpt.

Proof. Let G∗ be a graph satisfying the requirements of Theorem 9 for S = {s, t}.
According to Theorem 9, G∗ can be computed in a fpt time. We claim that
(G, s, t, k) is a ‘YES’ instance of the G-mincut problem if and only if (G∗, s, t, k)
is a ‘YES’ instance of this problem. Indeed, let K be an s − t separator in G
such that |K| ≤ k and G(K) ∈ G. Since G is hereditary, we may assume that K
is minimal (otherwise we may consider a minimal subset of K separating s from
t). By the second and fourth properties of G∗ (see Theorem 9), K separates s
from t in G∗ and G∗[K] ∈ G. The opposite direction can be proved similarly.

Thus we have established a fpt-time reduction from an instance of the G-
mincut problem to another instance of this problem where the treewidth is
bounded by a function of parameter k. Now, let G1 = (V (G∗), E(G∗), ST) be a
labeled graph where ST = {s, t}. We present an algorithm for construction of a
monadic second-order (mso) formula ϕ whose atomic predicates (besides equal-
ity) are E(x1, x2) (showing that x1 and x2 are adjacent in G∗) and predicates of
the form X(v) (showing that v is contained in X ⊆ V), whose size is bounded by
a function of k, and G1 |= ϕ if and only if (G∗, s, t, k) is a ‘YES’ instance of the
G-mincut problem. According to a restricted version of the well-known Cour-
celle’s Theorem (see the survey article of Grohe [8], Remarks 3.193 and 3.20),
it will follow that the G-mincut problem is fpt. The detailed construction is
postponed to the Appendix. ⊓⊔

Theorem 10 allows to answer two open questions in the area of parameterized
complexity. In particular, let G0 be the class of all graphs without edges. Then G0-
mincut is the Minimum Stable Cut problem whose fixed-parameter tractability
has been posed as an open question by Kanj [11]. Clearly G0 is hereditary and
hence the G0-mincut is FPT.

3 Although the branchwidth of G1 appears in the parameter, it can be replaced by
the treewidth of G1 since the former is bounded by a function of k if and only if the
latter is [16]

7

Samer and Szeider [17] introduced the notion of edge-induced vertex-cut and
the corresponding computational problem: given a graph G and two vertices s
and t, the task is to find out if there are k edges such that deleting the endpoints
of these edges separates s and t. It remained an open question in [17] whether
this problem is fpt. Samer reposted this problem as an open question in [4]. We
answer this question positively.

Corollary 11. The edge-induced vertex-cut problem is fpt.

Proof. (Sketch) Let Gk contain those graphs where the number of vertices minus
the size of the maximum matching is at most k. It is not hard to observe that
Gk is hereditary by noticing that for any H ∈ Gk and v ∈ V (H) the difference
between the number of vertices and the size of maximum matching does not
increase by removal of v. It follows from Theorem 10 that Gk-mincut is fpt.

We may assume w.l.o.g. that G does not have isolated vertices (if there are,
they can be safely removed before the run of our algorithm). Then we show that
the Gk-mincut with parameter 2k is equivalent to the problem of finding out
whether s can be separated from t by removal of a set S that can be extended to
the union of at most k edges. Taking into account that the latter problem is an
equivalent reformulation of the edge-induced vertex-cut problem, this will
complete the present proof. ⊓⊔

multicut is the generalization of mincut where, instead of s and t, the
input contains a set (s1, t1), . . . , (sℓ, tℓ) of terminal pairs. The task is to find
a set S of at most k nonterminal vertices that separate si and ti for every
1 ≤ i ≤ ℓ. multicut is known to be fpt [12, 18] parameterized by k and ℓ. In
the G-multicut problem, we additionally require that S induces a graph from
G. It is not difficult to generalize Theorem 10 for G-multicut.

Theorem 12. Assume that G is decidable and hereditary. Then G-multicut

is fpt parameterized by k and ℓ.

We generalize Theorem 12 one more step further. In the G-multicut-uncut

problem the input contains an additional integer ℓ′, and we change the problem
by requiring for every ℓ′ ≤ i ≤ ℓ that S does not separate si and ti.

Theorem 13. Assume that G is decidable and hereditary. Then G-multicut-

uncut is FPT parameterized by k and ℓ.

We close this section with a very simple hardness result. Theorem 10 can be
used to decide if there is an s − t separator of size at most k having a certain
property, but cannot be used if we are looking for s− t separators of size exactly
k. We argue that some of these problems actually become hard if the size has to
be exactly k. Let graph G′ be obtained from graph G by introducing two isolated
vertices s and t. Now there is a k-clique separating s and t in G′ if and only if
there is a k-clique in G, implying that finding such a separator is W[1]-hard. The
same argument (with minor modifications) can be applied for other properties
as well.

Theorem 14. It is W[1]-hard (parameterized by k) to decide if there is a clique
(or independent set, dominating set) of size exactly k separating s and t in G.

8

4 Constrained Bipartization Problems and
(H, C, K)-coloring

Reed et al. [15] solved a longstanding open question by proving the fixed-
parameter tractability of the bipartization problem: given a graph G and an
integer k, find a set S of at most k vertices such that G \ S is bipartite. In fact,
they showed that the bipartization problem can be solved by at most 3k appli-
cations of a procedure solving mincut. The key result that allows to transform
bipartization to a separation problem is the following lemma.

Lemma 15. Let G be bipartite graph and let (B′, W ′) be a 2-coloring of the
vertices. Let B and W be two subsets of V (G). Then for any S, G \ S has a
2-coloring where B \ S is black and W \ S is white if and only if S separates
X := (B ∩ B′) ∪ (W ∩ W ′) and Y := (B ∩ W ′) ∪ (W ∩ B′).

Proof. In a 2-coloring of G \ S, each vertex either has the same color (call it an
unchanged vertex) or the opposite color as in (B′, W ′) (call it a changed vertex).
Observe that a changed and an unchanged vertex cannot be adjacent: they have
the same color either under (B′, W ′) or under the considered coloring of G \ S.
Consequently, a changed and an unchanged vertex cannot belong to the same
connected component of G \ S, because this would imply existence of an edge
between a changed and an unchanged vertex. If B is black and W is white in a
2-coloring of G \ S, then clearly X \ S is unchanged and Y \ S is changed. Thus
S has to separate X and Y in G.

For the other direction, suppose that X \S is separated from Y \S in G \S.
We modify the coloring (B′, W ′) by changing the color of every vertex that is
in the same connected component of G \ S as some vertex of Y . Since all the
vertices of the same component are either all change their colors or all remain
colored in the same color as in (B′, W ′), the resulting coloring is a proper 2-
coloring of G \S. By construction, all vertices of Y have the desired color. Since
S separates X and Y , the vertices of X \ S are unchanged and hence have the
required colors as well. ⊓⊔

In this section we consider the G-bipartization problem: a generalization
of the bipartization problem where, in addition to G \ S being bipartite, it is
also required that S induces a graph belonging to a class G.

Theorem 16. G-bipartization is fpt if G is hereditary and decidable.

Proof. Using the algorithm of [15], we first try to find a set S0 of size at most
k such that G \ S0 is bipartite. If no such set exists, then clearly there is no set
S satisfying the requirements. Otherwise, we branch into 3|S0| directions: each
vertex of S0 is removed or colored black or white. For a particular branch, let
R = {v1, . . . , vr} be the vertices of S0 to be removed and let B0 (resp., W0) be
the vertices of S0 having color black (resp., white) in a 2-coloring of the resulting
bipartite graph. Let us call a set S such that S∩S0 = R, and G\S is bipartite and
having a 2-coloring where B0 and W0 are colored black and white, respectively,

9

a set compatible with (R, B0, W0). Clearly, (G, k) is a ‘YES’ instance of the G-
bipartization problem if and only if for at least one branch corresponding to
partition (R, B0, W0) of S0, there is a set compatible with (R, B0, W0) having
size at most k and such that G[S] ∈ G. Clearly, we need to check only those
branches where G[B0] and G[W0] are both independent sets.

We transform finding a set compatible with (R, B0, W0) into a separation
problem. Let (B′, W ′) be a 2-coloring of G \ S0. Let B = N(W0) \ S0 and W =
N(B0)\S0. Let us define X and Y as in Lemma 15, i.e., X := (B∩B′)∪(W∩W ′),
and Y := (B ∩ W ′) ∪ (W ∩ B′). We construct a graph G′ that is obtained from
G by deleting the set B0 ∪W0, adding a new vertex s adjacent with X ∪R, and
adding a new vertex t adjacent with Y ∪R. Note that every s− t separator in G′

contains R. By Lemma 15, a set S is compatible with (R, B0, W0) if and only if
S is an s− t separator in G′. Thus what we have to decide is whether there is an
s−t separator S of size at most k such that G′[S] = G[S] is in G. That is, we have
to solve the G-mincut instance (G′, s, t, k). The fixed-parameter tractability of
the G-bipartization problem now immediately follows from Theorem 10. ⊓⊔

In particular, deleting an independent set of size at most k to make the
graph bipartite is fpt, answering a question of Fernau [4]. Next, to answer an
open question appearing in [5], we consider the related problem of deleting an
indpendent set of size exactly k to make the graph bipartite. An obvious approach
would be to find appropriate separators of size exactly k (instead of size at most
k) in the algorithm of Theorem 16. However, by Theorem 14, this approach
is unlikely to work. Instead, we argue that under appropriate conditions, any
solution of size at most k can be extended to a independent set of size exactly
k.

Theorem 17. Given a graph G and an integer k, deciding whether G can be
made bipartite by the deletion of an independent set of size exactly k is fixed-
parameter tractable.

Proof. (Sketch) It is more convenient to consider an annotated version of the
problem where the independent set being deleted is a subset of a set D ⊆ V (G)
given as part of the input. Without the annotation, D is initially set to V (G).
If G is not bipartite, then the algorithm starts by finding an odd cycle C of
minimum length (which is known to be doable in polynomial time). It is not
difficult to see that the minimality of C implies that C is a triangle or C is
chordless or every vertex not in C is adjacent to at most 2 vertices of the cycle.

If |V (C)∩D| = 0, then clearly no subset of D is a solution. If 1 ≤ |V (C)∩D| ≤
3k+1, then we branch on selection of each vertex v ∈ V (C)∩D into the set S of
vertices being removed and apply the algorithm recursively with the parameter k
being decreased by 1 and the set D being updated by removal of v and N(v)∩D.
If |V (C) ∩ D| > 3k + 1, then we apply the approach of Theorem 16 to find an
independent set S of size at most k whose removal makes the graph bipartite.
To ensure that S ⊆ D, we may, for example split all vertices v ∈ V (G) \ D into
k + 1 independent copies with the same neighborhood as v. If |S| = k, we are
done. Otherwise, |S| = k′ < k. In this case we observe that by construction each

10

(d) (e)(c)(a)

≤ k ≤ k

(b)

k

k

k
k

Fig. 1. (H, C, K)- (or (H,C,≤K)-) coloring with these graphs is equivalent to finding
(a) a vertex cover of size at most k, (b) an indepenent set of size k, (c) a bipartization
set of size at most k, (d) an independent bipartization set of size exactly k, (e) a
bipartite independent set of size k + k.

vertex of S (either in C or outside C) forbids the selection of at most 3 vertices
of V (C) ∩ D including itself. Thus the number of vertices of V (C) ∩ D allowed
for selection is at least 3k + 1− 3k′ = 3(k − k′) + 1. Since the cycle is chordless,
we can select k − k′ independent vertices among them and thus complement S
to being of size exactly k.

The above algorithm has a number of stopping conditions, the only non-
trivial of them occurs if G is bipartite but k > 0. In this case we simply check if
G[D] has k independent vertices, which can be done in a polynomial time. ⊓⊔

Constrained bipartization can be also considered in terms of (H, C, K)-coloring.
H-coloring (cf. [10]) is a generalization of ordinary vertex coloring: given graphs
G and H , an H-coloring of G is a homomorphism θ : V (G) → V (H), that is, if
u, v ∈ V (G) are adjacent in G, then θ(u) and θ(v) are adjacent in H (including
the possibility that θ(u) = θ(v) is a vertex with a loop). It is easy to see that a
graph is k-colorable if and only if it has a Kk-coloring.

Dı́az et al. [5] introduced a generalization of H-coloring where, for certain
vertices v ∈ V (H), we have a restriction on how many vertices of G can map
to v. Formally, let C ⊆ V (H) and let K be a mapping from C to Z

+. An
(H, C, K)-coloring of G is an H-coloring with the additional restriction that
|θ−1(v)| = K(v) for every v ∈ C. (H, C,≤K)-coloring is the variant of the
problem where we require |θ−1(v)| ≤ K(v), i.e., vertex v can be used at most
K(v) times. As show in Fig. 1 and discussed in [5], these colorings can express a
wide range of fundamental problems such as k-independent set, k-vertex cover,
bipartization, and bipartite independent set.

Following [5], we consider the parameterized version of (H, C, K)-coloring,
where the parameter is k :=

∑

v∈C K(c), the number of times the cardinality
constrained vertices can be used. Dı́az et al. [5] started the program of character-
izing the easy and hard cases of (H, C, K)- and (H, C,≤K)-coloring. We make
progress in this direction by showing that (H, C,≤K)-coloring is FPT whenever
H −C consists of two adjacent vertices without loops. As this case includes Fig-
ure 1(c), it generalizes the Bipartization problem. We prove fixed-parameter
tractability for an even more general problem: in list (H, C,≤K)-coloring the
input contains a list L(v) ⊆ V (H) for each vertex v ∈ V (G) and θ has to satisfy
the additional requirement that θ(v) ∈ L(v) for every v ∈ V (G).

Theorem 18. For every fixed H, list (H, C,≤K)-coloring is FPT if H − C
consists of two adjacent vertices without loops.

11

To understand the power of Theorem 18, observe that unlike G-bipartization,
(H, C,≤K)-coloring allows to handle the cases of constrained bipartization where
constraints are imposed on the adjacency relation of the removed vertices with
the rest of the graph: these constraints can be specified by an appropriate setting
of edges between C and H \ C.

References

1. H. L. Bodlaender. Treewidth: Characterizations, applications, and computations.
In WG, pages 1–14, 2006.

2. J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum
node multiway cut problem. In WADS, pages 495–506, 2007.

3. J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM, 55(5), 2008.

4. E. Demaine, G. Z. Gutin, D. Marx, and U. Stege. Seminar 07281 open problems.
In Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs,
2007.

5. J. Dı́az, M. Serna, and D. M. Thilikos. (H,C, K)-coloring: fast, easy, and hard
cases. In MFCS 2001, pages 304–315, 2001.

6. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
7. G. Gottlob and S. T. Lee. A logical approach to multicut problems. Inform.

Process. Lett., 103(4):136–141, 2007.
8. M. Grohe. Logic, graphs, and algorithms (available online in

http://www2.informatik.hu-berlin.de/˜grohe/pub/meta-survey.pdf). In J. Flum,
E. Grädel, and T. Wilke, editors, Logic and Automata- History and Perspectives.
Amsterdam University Press, 2007.

9. J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European Journal of Operational Research, 186(2):542–553, 2008.

10. P. Hell. From graph colouring to constraint satisfaction: there and back again. In
Topics in discrete mathematics, volume 26 of Algorithms Combin., pages 407–432.
Springer, Berlin, 2006.

11. I. Kanj. Open problem session of Dagstuhl seminar 08431, 2008.
12. D. Marx. Parameterized graph separation problems. Theoretical Computer Science,

351(3):394–406, 2006.
13. I. Razgon and B. O’Sullivan. Almost 2-sat is fixed-parameter tractable (extended

abstract). In ICALP (1), pages 551–562, 2008.
14. B. Reed. Tree width and tangles: A new connectivity measure and some applica-

tions. In R. Bailey, editor, Surveys in Combinatorics, volume 241 of LMS Lecture
Note Series, pages 87–162. Cambridge University Press, 1997.

15. B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

16. N. Robertson and P. Seymour. Graph minors. X. obstructions to tree-
decomposition. J. Comb. Theory, Ser. B, 52(2):153–190, 1991.

17. M. Samer and S. Szeider. Complexity and applications of edge-induced vertex-cuts.
CoRR, abs/cs/0607109, 2006.

18. M. Xiao. Algorithms for multiterminal cuts. In CSR, pages 314–325, 2008.

12

A Proofs omitted from the main body of the paper

In this section we provide proofs and parts of proofs of all statements except
Theorem 18 omitted from the main body of the paper due to space constraints.
The proof of Theorem 18 is given in the next section of the Appendix.

Proof (Proposition 5). Assume first that C2 = V (G), that is torso(G, C2) = G.
Let P be a path connecting a and b in G and suppose that P is disjoint from a
set S. The path P contains vertices from C1 and from V (G) \ C1. If u, v ∈ C1

are two vertices such that every vertex of P between u and v is from V (G) \C1,
then by definition there is an edge uv in torso(G, C1). Using these edges, we can
modify P to obtain a path P ′ that connects a and b in torso(G, C1) and avoids
S.

Conversely, suppose that P is a path connecting a and b in torso(G, C1) and
it avoids S ⊆ C1. If P uses an edge uv that is not present in G, then this means
that there is a path connecting u and v whose internal vertices are not in C1.
Using these paths, we can modify P to obtain a path P ′ that uses only the edges
of G. Since S ⊆ C1, the new vertices on the path are not in S, i.e., P ′ avoids S
as well.

For the general statement observe that it follows from the previous paragraph
that S ⊆ C1 separates a and b in torso(torso(G, C2), C1) if and only if it sepa-
rates a and b in torso(G, C2). Now the statement of the proposition immediately
follows from an easy observation that torso(torso(G, C2), C1) = torso(G, C1).

⊓⊔

Proof (of Lemma 6). Let C :=
⋃r

i=1 Ci and let W be an arbitrary subset of
C. Since torso(G, Ci) has treewidth at most w, Lemma 2(2) implies that, for
every set Wi ⊆ Ci, torso(G, Ci) has a balanced separator Si ⊆ Ci of size at most
w + 1. By Proposition 5, it follows that Si is balanced separator of Wi in G as
well (otherwise, there are two vertices that are separated by Si in torso(G, Ci)
but not separated in G). Thus the conditions of Lemma 3 hold, and W has a
balanced separator S ⊆ C of size at most r(w+1) in G. Again by Proposition 5,
the set S is a balanced separator of W in torso(G, C) as well. By Lemma 2(1),
it follows that torso(G, C) has treewidth at most 3r(w + 1). ⊓⊔

Proof (of Lemma 7 continued). To construct X in polynomial time, we proceed
as follows. It is easy to check in polynomial time whether a vertex v is in a
minimum s − t separator, and if so to produce such a separator Sv. Let Xv

be the set of vertices reachable from s in G \ Sv. It is clear that Xv satisfies
(2) and if we take the collection X of all such Xv’s, then together they satisfy
(3). If (1) is not satisfied, then we start doing the replacements as above. Each
replacement either decreases the size of the collection or increases

∑t

i=1 |Xi|
2

(without increasing the collection size), thus the procedure terminates after a
polynomial number of steps. ⊓⊔

Proof (of Lemma 8 continued). We conclude the proof by showing that the above
set C′ can be constructed in time O(f(ℓ, e)·|V (G)|d). In particular, we present an

13

algorithm whose running time is O(f(ℓ, e) ·(|V (G)|−2)d) (we assume that G has
more than 2 vertices), where f(ℓ, e) is recursively defined as follows: f(ℓ, 0) = 1
and f(ℓ, e) = f(ℓ, e − 1) · 32ℓ + 1 for e > 0.

The sets Xi can be computed as shown in the proof of Lemma 7. Then
the sets Si can be obtained in the first paragraph of the proof of the present
lemma. Their union results in C0 which is C′ for e = 0. Thus for e = 0, C′ can
be computed in time O(|V (G)| − 2)d) (instead of considering s and t, we may
consider their sets of neighbors). Since the computation involves computing a
minimum cut, we may assume that d > 1. Now assume that e > 0. For each i
such that 1 ≤ i ≤ q + 1 and |Li| > 0, we explore all possible disjoint subsets A
and B of Si ∪Si−1. For the given choice, we check if the size of a minimum a− b
separator of Gi,A,B is at most k (observe that it can be done in O(|Li|d)) and
if yes, compute the set Ci,A,B . By the induction assumption, the computation
takes O(f(ℓ, e − 1) · |Li|d). So, exploring all possible choices of A and B takes
O(f(ℓ, e − 1) · 32ℓ · |Li|d). The overall complexity of computing C′ is

O((|V (G)| − 2)d + f(ℓ, e − 1) · 32ℓ ·

q+1
∑

i=1

|Li|
d).

Since all Li are disjoint and
⋃q+1

i=1 Li ⊆ V (G) \ {s, t},
∑q+1

i=1 |Li| ≤ |V (G)| − 2,

hence
∑q+1

i=1 (|Li|)d ≤ (|V (G)|−2)d. Taking into account the recursive expression
for f(ℓ, e), the desired runtime follows. ⊓⊔

Proof (of Theorem 10 continued). We construct the formula ϕ as

ϕ = ∃C(AtMostk(C) ∧ Separates(C) ∧ InducesG(C)),

where AtMostk(C) is true if and only if |C| ≤ k, Separates(C) is true if and
only if C separates the vertices of ST in G∗, InducesG(C) is true if and only C
induces a graph of G.

In particular, AtMostk(C) states that C does not have k + 1 mutually non-
equal elements: this can be implemented as

∀c1, . . . ,∀ck+1

∨

1≤i,j≤k+1

(ci = cj).

Formula Separates(C) is a slightly modified formula uvmc(X) from [7] that
looks as follows:

∀s∀t
(

(ST (s) ∧ ST (t) ∧ ¬(s = t))
)

→
(

¬C(s) ∧ ¬C(t) ∧ ∀Z(Connects(Z, s, t) → ∃v(C(v) ∧ Z(v)))
)

,

where Connects(Z, s, t) is true if and only if in the modeling graph there is a path
from s and t all vertices of which belong to Z. For definition of the predicate
Connects, see Definition 3.1. in [7]

To construct InducesG(C), we explore all possible graphs having at most k
vertices and for each of these graphs we check whether it belongs to G. Since the

14

number of graphs being explored depends on k and G is a decidable class, in a
fpt time we can compile the set {G′

1, . . . , G
′
r} of all graphs of at most k vertices

that belong to G. Let k1, . . . kr be the respective numbers of vertices of G′
1, . . . G

′
r.

Then InducesG(C) = Induces1(C)∨ · · · ∨ Inducesr(C), where Inducesi(C) states
that C induces G′

i. To define Inducesi, let v1, . . . vki
be the set of vertices of G′

i

and define Adjacency(c1, . . . , cki
) as the conjunction of all E(cx, cy) such that

vx and vy are adjacent in G′
i. Then

Inducesi(C) = AtMostki
(C)∧

∃c1 . . . ∃cki

(

∧

1≤j≤ki

C(cj) ∧
∧

1≤x,y≤ki

cx 6= cy ∧ Adjacency(c1, . . . , cki
)
)

.

Let us now verify that indeed G1 |= ϕ if and only if (G∗, s, t, k) is a ‘YES’
instance of the G-mincut problem. Assume first the latter and let S be an s− t
separator of size at most k such that G∗[S] ∈ G. Let us observe that all the three
main conjuncts of ϕ quantified by C are satisfied when S is substituted instead
C. That AtMostk(S) is true immediately follows from the pigeonhole principle: if
we take k+1 elements out of a set of at most k elements, at least 2 of them must
be equal. To show that Separates(S) is true w.r.t. G1, we draw the following line
of implications. Set S separates s and t in G∗, hence the set of vertices of every
path from s to t intersects with S, hence every set Z including as a subset a
set of vertices of a path from s to t intersects with S. Formally written, the last
statement can be expressed as follows ∀Z(Connects(Z, s, t) → ∃v(S(v)∧Z(v))),
but this (together with the fact that S is disjoint with {s, t}) is the right part of
the main implication of Separates(S), hence Separates(S) is true. To verify that
InducesG(S) is true w.r.t. G1, let G′

i ∈ G be the graph isomorphic to G∗[S] and
observe that Inducesi(S) is true by construction.

For the opposite direction assume that G1 |= ϕ. It follows that there is a set
of vertices C such that AtMostk(C), Separates(C), and InducesG(C) are all true.
Consequently, |C| ≤ k. Indeed otherwise, we can select k + 1 distinct elements
of C that falsify at AtMostk(C). It also follows that C is disjoint with {s, t}
and separates s from t in G∗. Indeed s and t satisfy the left part of the main
implication of Separates(C), hence the right part of it must be satisfied as well. It
immediately implies that C is disjoint with s and t. If we assume that C does not
separate s and t then there is a P path from s to t avoiding C. Let Z = V (P).
Then Connects(V (P), s, t) is true while ∃v(C(v) ∧ Z(v) is false falsifying last
conjunct of the right part of the main implication, a contradiction. Finally, it
follows from InducesG(C) that Inducesi(C) is true for some i. By construction,
this means that G∗[C] is isomorphic to G′

i ∈ G. Thus (G∗, s, t, k) is a ‘YES’
instance of the G-mincut problem. ⊓⊔

Proof (of Corollary 11 continued). Assume that (G, s, t, 2k) is a ‘YES’ instance
of the Gk-multicut problem. Let S be a s− t separator such that G[S] ∈ Gk. Let
M be a maximum matching of G[S]. Then, by definition of Gk, |M |+(|V (G[S])|−
2|M |) ≤ k or, in other words, (|V (G[S])| − 2|M |) ≤ k − |M |. The 2|M | vertices
of G[S] (incident to the matching) are covered by |M | edges. The remaining at

15

most k − |M | vertices can be covered by selecting an edge of G incident to each
of them (that is possible due to our assumption about the absence of isolated
vertices). Thus s and t may be separated by removal a set extendable to the
union of at most k edges. Conversely, assume that s and t can be separated by
removal of set S of vertices that can be extended to the union of at most k edges
of G. Clearly |S| ≤ 2k. It is not hard to observe that the size of the smallest
set of edges covering S equals the size of the maximum matching |M | of G[S]
plus |V (G[S])| − 2|M | edges for the vertices not covered by the matching. By
definition of S, |M | + |V (G[S])| − 2|M | ≤ k. It follows that G[S] ∈ Gk. Thus,
(G, s, t, 2k) is a ‘YES’ instance of the Gk-multicut problem. ⊓⊔

Proof (of Theorem 17). It is more convenient to consider an annotated version
of the problem where the independent set being deleted is a subset of a set
D ⊆ V (G) given as part of the input. Without the annotation, D is initially set
to V (G). The algorithm has the following 4 stopping conditions.

– If k = 0 and G is bipartite then return ’YES’.

– If k = 0, but G is not bipartite then return ’NO’.

– If k > 0, but G is bipartite then decide in a polynomial time whether G[D]
has an independent set of size exactly k.

– If k > 0 and G \ D is not bipartite then return ’NO’.

Assume that no one of the above conditions is satisfied. Then the algorithm
starts by finding an odd cycle C of minimum length (which is known to be
doable in polynomial time, see for example Section 2 of http://www.lancs.ac.
uk/staff/letchfoa/articles/odd circuit.pdf). It is not difficult to see that
the minimality of C implies that C is a triangle or C is chordless or every vertex
not in C is adjacent to at most 2 vertices of the cycle.

Since no one of the stopping conditions holds, |V (C)∩D| > 0. If 1 ≤ |V (C)∩
D| ≤ 3k + 1, then we branch on selection of each vertex v ∈ V (C) ∩ D into the
set S of vertices being removed and apply the algorithm recursively with the
parameter k being decreased by 1 and the set D being updated by removal of v
and N(v) ∩ D. If |V (C) ∩D| > 3k + 1, then we apply the approach of Theorem
16 to find an independent set S of size at most k whose removal makes the
graph bipartite. To ensure that S ⊆ D we may, for example split all vertices
v ∈ V (G) \ D into k + 1 independent copies with the same neighborhood as v.
If |S| = k, we are done. Otherwise, |S| = k′ < k. In this case we observe that by
construction each vertex of S (either in C or outside C) forbids the selection of
at most 3 vertices of V (C) ∩ D including itself. Thus the number of vertices of
V (C)∩D allowed for selection is at least 3k + 1− 3k′ = 3(k − k′) + 1. Since the
cycle is chordless, we can select k−k′ independent vertices among them and thus
complement S to being of size exactly k. Thus if the algorithm succeeds to find
an independent set S of size at most k whose removal makes the graph bipartite,
it may safely return ’YES’. It is clear that otherwise ’NO’ is returned. ⊓⊔

16

B Proof of Theorem 18

We start with the introduction of new terminology. Given G, (H, C, K) as in the
statement of the theorem and L : V (G) → 2V (H) associating each vertex of G
with the set of allowed vertices of H , we say that θ is a (H, C,≤K)-coloring of
(G, L) if θ is a (H, C,≤K)-coloring of G such that for each v ∈ V (G), θ(v) ∈ L(v).
The exceptional set of θ is the set S of all vertices of G that are mapped to C by
θ. Since H \C consists of two vertices without loops, G\S is bipartite. Moreover,
the size of S is bounded by the parameter k :=

∑

v∈C K(v). Thus the considered
problem is in fact a problem of constrained bipartization. However S, is not
necessarily a minimal set whose removal makes the graph bipartite and hence
we cannot straightforwardly use the approach of Theorem 16. Nevertheless, we
do use the treewidth reduction approach based on the following definition.

Definition 19. An (H, C,≤K)-coloring θ of (G, L) is minimal if there is no
(H, C,≤K)-coloring θ′ of (G, L) such that the exceptional set of θ′ is a subset of
the exceptional set of θ.

Observe that if there is (H, C,≤K)-coloring of (G, L), then there is a minimal
(H, C,≤K)-coloring as well. We prove that there is an fpt-computable graph
G∗ that preserves exceptional sets of all minimal (H, C,≤K)-colorings of (G, L)
and whose treewidth is bounded by a function of k (recall that k =

∑

v∈C K(v)).
Similarly to the cases of G-mincut and G-bipartization, we use this result to
transform the given instance of the (H, C,≤K)-coloring problem to an instance
with bounded treewidth and then apply Courcelle’s Theorem.

We need some technical results. First, we restate Lemma 8 in terms of sepa-
rating two sets X and Y (instead of s − t separators).

Lemma 20. Let X, Y be two sets of vertices of graph G. For some k ≥ 0, let C
be the union of all minimal sets S of size at most k separating X and Y . Then
for some constant d there is an O(f(k) · |V (G)|d) time algorithm that returns
a set C′ ⊇ C such that the treewidth of torso(G, C′) is at most g(k), for some
functions f and g depending only on k.

Proof. Let G′ be the graph obtained from G by introducing two new vertices s, t
and connecting s (resp., t) to every vertex of X (resp., Y). It is clear that a set
S ⊆ V (G) is an s−t separator in G′ if and only if S separates X and Y in G. Let
us use the algorithm of Lemma 8 to obtain a set C′ (containing s, t) that fully
contains all the minimal s−t separators. It follows that C′\{s, t} fully contains all
the minimal sets that separate X and Y in G. Furthermore, we observe that the
treewidth of torso(G, C′ \{s, t}) is not larger that the treewidth of torso(G′, C′).
In fact, the former graph is a subgraph of the latter: if two vertices a, b ∈ C′\{s, t}
are adjacent in torso(G, C′ \ {s, t}), then they are adjacent in torso(G′, C′) as
well. ⊓⊔

The following lemma will be used for the inductive proof of the treewidth
reduction result.

17

Lemma 21. Let C′ ⊆ V (G) such that torso(G, C′) has treewidth at most w1.
Let R1, . . . , Rr be components of G \ C′, and for every 1 ≤ i ≤ r, let C′

i ⊆ Ri

be such that torso(G[Ri], C
′
i) has treewidth at most w2. Then torso(G, C′′) has

treewidth at most w1 + w2 + 1 for C′′ := C′ ∪
⋃r

i=1 C′
i.

Proof. Let T be a tree decomposition of torso(G, C′) with width at most w1,
and let Ti be a tree decomposition of torso(G[Ri], C

′
i) with width at most w2.

Let Ni ⊆ C′ be the neighborhood of Ri in G. Since Ni induces a clique in
torso(G, C′), we have |Ni| ≤ w1 + 1 and there is a bag Bi of T containing Ni.
Let us modify Ti by including Ni in every bag and then let us join T and Ti

by connecting an arbitrary bag of Ti with Bi. By performing this step for every
1 ≤ i ≤ r, we get a tree decomposition with width at most w1 +w2 +1. To show
that it is indeed a tree decomposition of torso(G, C′′), it is sufficient to observe
that the set of edges of torso(G, C′) is a superset of the set of edges of the graph
induced by C′ in torso(G, C′′), and that torso(G[Ri], C

′
i) is exactly the same as

the graph induced by C′
i in torso(G, C′′). ⊓⊔

Now we are ready to formulate the treewidth reduction result.

Lemma 22. Assume that G is bipartite. Then there is an fpt algorithm pa-
rameterized by k =

∑

v∈V (C) K(v) that finds a set C′′ such that the treewidth

of torso(G, C′′) is at most f(k, |V (H)|) for some function f and the exceptional
set of every minimal (H, C,≤K)-coloring of (G, L) is a subset of C′′.

Proof. The proof is by induction on k. For k = 0, we can set C′′ = ∅, hence
torso(G, C′′) is the empty graph whose treewidth is 0. Assume now that k > 0.
Denote the vertices of H \C by b and w. Let B be the set of all vertices v ∈ V (G)
such that w /∈ L(v). Analogously, let W be the set of all vertices v ∈ V (G) such
that w /∈ L(v). Let (B′, W ′) be a 2-coloring of G and set X := (B∩B′)∪(W∩W ′)
and Y := (B ∩ W ′) ∪ (W ∩ B′) as in Lemma 15. If X and Y are not connected
then, by Lemma 15, there is a 2-coloring of G where B and W are colored in
black and white respectively. In other words, there is a (H, C,≤K)-coloring of
(G, L) where each vertex of G is mapped to b and w. Consequently, all minimal
(H, C,≤K)-colorings of (G, L) have exceptional sets of size 0 and hence C′′ = ∅
as in the case with k = 0.

If X and Y are connected, then let us use Lemma 20 to compute in fpt time
a set C′ such that every minimal set separating X and Y in G is a subset of C′

and torso(G, C′) is bounded by a function of k.
Let P be a connected component of G\C′ and let N be the subset of C′ that

consists of all vertices adjacent to the vertices of P . Let θ be an (H, C,≤K)-
coloring of (G[N], L[N]) where L[N] is the restriction of L to the vertices of
N . Let Lθ be the function on V (P) obtained from L[V (P)] by the following
operation: for each v ∈ V (P), remove u ∈ L(v) from the list of v whenever there is
a neighbor x of v in G such that x ∈ N and θ(x) is not adjacent to u in H . In other
words, Lθ updates the list of allowed colors of V (P) so that they are compatible
with the mapping of θ on N . Furthermore, let K ′ be a function associating
the vertices of H with integers so that

∑

v∈C K ′(v) ≤ k − 1. By the induction

18

assumption there is an fpt algorithm parameterized by k − 1 that returns a
set CP,θ,K′ ⊆ V (P) such that torso(P, CP,θ,K′) has the treewidth bounded by a
f(k−1, |V (H)|) and the exceptional set of any minimal (H, C ≤ K ′)-coloring of
(P, Lθ) is a subset of CP,θ,K′ . Let CP be the union of all possible sets CP,θ,K′ .
Observe that the number of possible mappings θ is bounded by a function of
k and |V (H)|: the vertices of N create a clique in torso(G, C′) hence |N | is
bounded by a function of k. As well, the number of possible mappings K ′ is
bounded by a function of k−1 and |V (H)|. Therefore by Lemma 6, the treewidth
of torso(P, CP) is bounded by a function of k and |V (H)|. Let C′′ be the union
of C′ and the sets CP for all the connected components P of G \ C′. According
to Lemma 21, the treewidth of torso(G, C′′) is bounded by f(k, |V (H)|) for an
appropriately selected function f . (Such function can be defined similarly to
function g in the proof of Lemma 8). Also, arguing similarly to Lemma 8, we
can observe that C′′ can be computed in an fpt time parameterized by k.

It remains to be shown that the exceptional set S of every minimal (H, C,≤K)-
coloring θ of (G, L) is a subset of C′′. Since in G\S vertices of B\S are colored in
black (i.e., mapped to b by θ) and the vertices of W \S are colored in white (i.e.,
mapped to w by θ), S separates X and Y according to Lemma 15. Therefore, S
contains at least one element of C′. Consequently, for any connected component
P of G\C′, |S∩V (P)| ≤ k−1. Let θP be the restriction of θ to the vertices of P
and for each vertex v of C define K ′(v) as the number of vertices of P mapped
to v by θP . Let θ′ be the restriction of θ to the vertices of C′ adjacent to V (P).
It is not hard to observe that θP is a minimal (H, C,≤ K ′)-coloring of (P, Lθ′).
In other words, S ∩ V (P) ⊆ CP,θ′,K′ ⊆ CP . Since each vertex v belongs either
to C′ or to some V (P), the present lemma follows. ⊓⊔

Lemma 23. For every fixed H, (H, C,≤K)-coloring can be solved in FPT time
parameterized by k, |V (H)|, and w, where w is the treewidth of G.

Proof. The problem can be solved by a straightforward application of Courcelle’s
Theorem; we only sketch the proof. Let (G, L) be an instance of the (H, C,≤K)-
coloring. For each x ∈ V (H), let Lx be the subset of V (G) consisting of all
vertices v such that x ∈ L(v). Denote the vertices of H by x1, . . . , xr and let
G1 = (V (G), E(G), Lx1

, . . . , Lxr
) be a labeled graph. We construct a formula ϕ

such that G1 |= ϕ if and only if there is a (H, C,≤K)-coloring of (G, L).
The formula ϕ is defined as

∃V1∃V2 . . . ∃Vr

(

∧

1≤i≤r
xi∈C

AtMostK(c)(Vc) ∧ partition(V1, . . . , Vr)

∧
∧

xi,xj∈V (H)
xixj 6∈E(H)

∀v, u((Vi(v) ∧ Vi(u)) → ¬E(v, u))
)

,

where

partition(V1, . . . , Vr) :=
(

∧

1≤i<j≤r

disjoint(Vi, Vi)
)

∧
(

∀v
∨

1≤i≤r

Vi(v)
)

19

expresses that (V1, . . . , Vr) is a partition of V (G). It is not hard to see that
G1 |= ϕ if and only if for some choice of V1, . . . , Vr there is an (H, C,≤K)-
coloring θ of (G, L) defined by θ(v) = xi if and only if v ∈ Vi. Note furthermore
that the length of ϕ depends only on k and |V (H)|. ⊓⊔

Proof (of Theorem 18). First we show that it can be assumed that G is bipartite.
Otherwise, we use the fpt algorithm of [15] to find a set S′ of at most k vertices
whose deletion make G bipartite. We branch on the |V (H)||S

′| possible ways of
defining θ on S′. For each of these ways we appropriately update the values of
K(v) for all v ∈ C. Also, if a vertex v ∈ V (G) \ S′ has a neighbor u ∈ S′, then
we modify the list of v such that it contains only vertices adjacent to θ(u) in H .
It is clear that the original instance has a solution if and only if at least one of
the resulting instances has a solution.

We may also assume that for each v ∈ C, K(v) > 0. Otherwise, simply
remove from H the vertices with K(v) = 0.

As G is bipartite, we can use Lemma 22 to obtain the set C′′. We transform
G the following way. Let Pi be a connected component of G \ C′′ having more
than one vertex. Let (Xi, Yi) be the bipartition of Pi (unique due to the con-
nectedness of Pi). We replace Pi by two adjacent vertices xi and yi such that xi

(resp., yi) is adjacent with the neighborhood of Xi (resp., Yi) in C′′. We define
L(xi) = {b, w} ∩

⋂

v∈Xi
L(v), and L(yi) is defined analogously. Let G′ be the

graph obtained after performing this operation for every component P , and let
L′ be the resulting list assignment on G′.

We claim that (G, L) has a (H, C,≤K)-coloring if and only if (G′, L′) has
a (H, C,≤K)-coloring. Suppose first that θ is a minimal (H, C,≤K)-coloring of
(G, L). We know that the exceptional set of θ is contained in C′′, thus vertices
of a component P of G \ C′′ are mapped to b and w. Thus if (Xi, Yi) is the
bipartition of Pi, then due to Pi being a connected graph, every vertex of Xi is
mapped to the same vertex of H \ C and similarly for Yi. Thus by mapping xi

and yi to these vertices in G′, we can obtain a (H, C,≤K)-coloring of (G′, L′).
Suppose now that (G′, L′) has a (H, C,≤K)-coloring θ′. Again, let Pi be a

component of G \ C′′ with bipartition (Xi, Yi). We can obtain a (H, C,≤K)-
coloring θ of (G, L) by mapping every vertex of X to θ′(xi) ∈ {b, w} and every
vertex of Yi to θ′(yi) ∈ {b, w}.

We show that the treewidth of G′ is bounded by a function of k. Indeed,
according to Lemma 22, the treewidth of torso(G, C′′) is bounded by a function
of k and |V (H)|. But since we assumed that for each v ∈ C, K(v) > 0, |V (H)| ≤
k + 2. It follows that the treewidth of torso(G, C′′) is bounded by a function
of k only. Furthermore the treewidth of G′ is greater than the treewidth of
torso(G, C′) by at most 2. Indeed, G′[C′′] is a subgraph torso(G, C′′): they have
the same set of vertices but the set of edges of the former may be a subset of the
set of edges of the latter. Therefore, any tree decomposition of torso(G, C′′) is a
tree decomposition of G′[C′′]. Such a tree decomposition has the property that
that for each component P of G \ C′, there is a bag B including the set N of
neighbors of this component in C′. We create a new bag containing N and the
two vertices corresponding to P in G′ and connect this new bag to B. It is not

20

hard to observe that doing so for each connected component of G \C′ we obtain
a tree decomposition of G′ of width greater than the initial tree decomposition
of torso(G′, C′′) by at most 2. This completes the proof of the bound on the
treewidth of G′.

Thus, the argumentation above implies that under assumption that H \ C
is a graph of two adjacent vertices without loops, the instance (G, L) of the
(H, C,≤K)-coloring problem can be transformed in fpt time parameterized by
k into an instance (G′, L′) of the (H, C,≤K)-coloring problem and the treewidth
of G′ bounded by a function of k. Taking again into account that |V (H)| ≤ k+2,
the present theorem now follows from Lemma 23. ⊓⊔

21

