
Fixed Parameter Algorithms

Dániel Marx

Tel Aviv University, Israel

International Workshop on Tractability

July 5, 2010, Microsoft Research, Cambridge, UK

Fixed Parameter Algorithms – p.1/40

Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be efficient on all inputs of size n, only for those

where k is small.

Fixed Parameter Algorithms – p.2/40

Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be efficient on all inputs of size n, only for those

where k is small.

What can be the parameter k?

The size k of the solution we are looking for.

The maximum degree of the input graph.

The diameter of the input graph.

The length of clauses in the input Boolean formula.

...

Fixed Parameter Algorithms – p.2/40

Parameterized complexity

Problem: VERTEX COVER INDEPENDENT SET

Input: Graph G , integer k Graph G , integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Fixed Parameter Algorithms – p.3/40

Parameterized complexity

Problem: VERTEX COVER INDEPENDENT SET

Input: Graph G , integer k Graph G , integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilitiesenumeration:

Fixed Parameter Algorithms – p.3/40

Parameterized complexity

Problem: VERTEX COVER INDEPENDENT SET

Input: Graph G , integer k Graph G , integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilitiesenumeration:
O(2kn2) algorithm exists No no(k) algorithm known

Fixed Parameter Algorithms – p.3/40

Bounded search tree method

Algorithm for VERTEX COVER:

e1 = x1y1

Fixed Parameter Algorithms – p.4/40

Bounded search tree method

Algorithm for VERTEX COVER:

e1 = x1y1

x1 y1

Fixed Parameter Algorithms – p.4/40

Bounded search tree method

Algorithm for VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

Fixed Parameter Algorithms – p.4/40

Bounded search tree method

Algorithm for VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2

Fixed Parameter Algorithms – p.4/40

Bounded search tree method

Algorithm for VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

Height of the search tree is ≤ k ⇒ number of leaves is ≤ 2k ⇒ complete search

requires 2k · poly steps.

Fixed Parameter Algorithms – p.4/40

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an

integer parameter k to each input instance x .

The parameter can be

explicit in the input (for example, if the parameter is the integer k appearing in

the input (G , k) of VERTEX COVER), or

implicit in the input (for example, if the parameter is the diameter d of the input

graph G).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an

f (k)nc time algorithm for some constant c .

Fixed Parameter Algorithms – p.5/40

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an

integer parameter k to each input instance x .

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an

f (k)nc time algorithm for some constant c .

Example: VERTEX COVER parameterized by the required size k is FPT:

we have seen that it can be solved in time O(2k · n2).

Better algorithms are known: e.g, O(1.2832kk + k |V |).

Main goal of parameterized complexity: to find FPT problems.

Fixed Parameter Algorithms – p.5/40

FPT problems

Examples of NP-hard problems that are FPT:

Finding a vertex cover of size k .

Finding a path of length k .

Finding k disjoint triangles.

Drawing the graph in the plane with k edge crossings.

Finding disjoint paths that connect k pairs of points.

...

Fixed Parameter Algorithms – p.6/40

FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization

Fixed Parameter Algorithms – p.7/40

Books

Downey-Fellows: Parameterized Complexity,

Springer, 1999

Flum-Grohe: Parameterized Complexity Theory,

Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algo-

rithms, Oxford University Press, 2006.

Fixed Parameter Algorithms – p.8/40

Bounded search trees

Fixed Parameter Algorithms – p.9/40

Bounded search tree method

Recall how we solved VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: ≤ k

If we branch into a bounded number of directions a bounded number of times, then

we get an FPT algorithm!

Fixed Parameter Algorithms – p.10/40

MIN ONES SAT

VERTEX COVER can be interpreted as a CSP problem:

“Given constraints x ∨ y on Boolean variables, find a satisfying assignment

of weight at most k .”

More generally:

MIN ONES SAT: Given an r -SAT formula and an integer k , find a satisfying

assignment of weight at most k .

Fixed Parameter Algorithms – p.11/40

MIN ONES SAT

VERTEX COVER can be interpreted as a CSP problem:

“Given constraints x ∨ y on Boolean variables, find a satisfying assignment

of weight at most k .”

More generally:

MIN ONES SAT: Given an r -SAT formula and an integer k , find a satisfying

assignment of weight at most k .

The bounded search tree approach gives:

Fact: MIN ONES SAT on r -SAT formulas can be solved in time O(r k · n), i.e.,

problem is FPT parameterized jointly by r and k .

Fact: MIN ONES SAT(Γ) is FPT parameterized by k for every Γ.

Fixed Parameter Algorithms – p.11/40

Color coding

Fixed Parameter Algorithms – p.12/40

k -PATH

Task: Given a graph G , an integer k , two vertices s, t, find a simple s-t path with

exactly k internal vertices.

Note: Finding such a walk can be done easily in polynomial time.

Note: The problem is clearly NP-hard, as it contains the s-t HAMILTONIAN PATH

problem.

The k -PATH algorithm can be used to check if there is a cycle of length exactly k in

the graph.

Fact: [Alon-Yuster-Zwick 1995] k -PATH can be solved in time ck · nO(1) for some c .

Fixed Parameter Algorithms – p.13/40

k -PATH

Assign colors from {1, ... , k} to vertices V (G) \ {s, t} uniformly and

independently at random.

s t

Fixed Parameter Algorithms – p.14/40

k -PATH

Assign colors from {1, ... , k} to vertices V (G) \ {s, t} uniformly and

independently at random.

s t

Fixed Parameter Algorithms – p.14/40

k -PATH

Assign colors from {1, ... , k} to vertices V (G) \ {s, t} uniformly and

independently at random.

ts

Check if there is a colorful s-t path: a path where each color appears exactly

once on the internal vertices; output “YES” or “NO”.

Fixed Parameter Algorithms – p.14/40

k -PATH

Assign colors from {1, ... , k} to vertices V (G) \ {s, t} uniformly and

independently at random.

ts

Check if there is a colorful s-t path: a path where each color appears exactly

once on the internal vertices; output “YES” or “NO”.

If there is no s-t k-path: no such colorful path exists ⇒ “NO”.

If there is an s-t k-path: the probability that such a path is colorful is

k!

kk
>

(k
e
)k

kk
= e−k

,

thus the algorithm outputs “YES” with at least that probability.

Fixed Parameter Algorithms – p.14/40

Error probability

Useful fact: If the probability of success is at least p, then the probability that

the algorithm does not say “YES” after 1/p repetitions is at most

(1 − p)1/p < (e−p)
1/p

= 1/e ≈ 0.38

Thus if p > e−k , then error probability is at most 1/e after ek repetitions.

Repeating the whole algorithm a constant number of times can make the error

probability an arbitrary small constant.

For example, by trying 100 · ek random colorings, the probability of a wrong

answer is at most 1/e100.

Fixed Parameter Algorithms – p.15/40

Error probability

Useful fact: If the probability of success is at least p, then the probability that

the algorithm does not say “YES” after 1/p repetitions is at most

(1 − p)1/p < (e−p)
1/p

= 1/e ≈ 0.38

Thus if p > e−k , then error probability is at most 1/e after ek repetitions.

Repeating the whole algorithm a constant number of times can make the error

probability an arbitrary small constant.

For example, by trying 100 · ek random colorings, the probability of a wrong

answer is at most 1/e100.

It remains to see how a colorful s-t path can be found.

Fixed Parameter Algorithms – p.15/40

Finding a colorful path

The colors encountered on a colorful s-t path form a permutation π of {1, 2, ... , k}:

s t

π(k)...π(2)π(1)

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

Fixed Parameter Algorithms – p.16/40

Finding a colorful path

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

s

π(k)...π(2)π(1)

t

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E (G)|) (can be improved to O(2k · |E (G)|)).
Fixed Parameter Algorithms – p.17/40

Finding a colorful path

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

π(k)π(1) π(2) ...

s t

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E (G)|) (can be improved to O(2k · |E (G)|)).
Fixed Parameter Algorithms – p.17/40

Finding a colorful path

We try all possible k! permutations. For a fixed π, it is easy to check if there is a

path with this order of colors.

s t

π(1) π(2) ... π(k)

Edges connecting nonadjacent color classes are removed.

The remaining edges are directed.

All we need to check if there is a directed s-t path.

Running time is O(k! · |E (G)|) (can be improved to O(2k · |E (G)|)).
Fixed Parameter Algorithms – p.17/40

Color coding

Algorithm has small probability of error, but can be derandomized using

k-perfect hash functions.

More generally: finding graphs of low treewidth.

Color coding is useful to ensure that certain objects are disjoint.

Fixed Parameter Algorithms – p.18/40

Iterative compression

Fixed Parameter Algorithms – p.19/40

B IPARTITE DELETION

BIPARTITE DELETION: Given a graph G and an integer k , delete k vertices to make

G bipartite (2-colorable).

Fixed-parameteter tractability was open until Reed, Smith, and Vetta showed it in

2004 using the technique of iterative compression.

Fixed Parameter Algorithms – p.20/40

B IPARTITE DELETION

Solution based on iterative compression:

Step 1:

Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find

a set S of at most k vertices such that G \ S has a 2-coloring where

B \ S is black and W \ S is white.

Fixed Parameter Algorithms – p.21/40

B IPARTITE DELETION

Solution based on iterative compression:

Step 1:

Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find

a set S of at most k vertices such that G \ S has a 2-coloring where

B \ S is black and W \ S is white.

Step 2:

Solve the compression problem for general graphs:

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that

G \ S ′ is bipartite, find a set S of k vertices such that G \ S is bipartite.

Fixed Parameter Algorithms – p.21/40

B IPARTITE DELETION

Solution based on iterative compression:

Step 1:

Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G), and an integer k , find

a set S of at most k vertices such that G \ S has a 2-coloring where

B \ S is black and W \ S is white.

Step 2:

Solve the compression problem for general graphs:

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that

G \ S ′ is bipartite, find a set S of k vertices such that G \ S is bipartite.

Step 3:

Apply the magic of iterative compression...

Fixed Parameter Algorithms – p.21/40

Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k , find a set S of

at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

B

W

Fixed Parameter Algorithms – p.22/40

Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k , find a set S of

at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

W0

B

W

B0

Find an arbitrary 2-coloring (B0,W0) of G .

Fixed Parameter Algorithms – p.22/40

Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k , find a set S of

at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

W

W0

B

B0

C

C

Find an arbitrary 2-coloring (B0,W0) of G .

C := (B0 ∩ W) ∪ (W0 ∩ B) should change color, while R := (B0 ∩ B) ∪ (W0 ∩ W)

should remain the same color.

Fixed Parameter Algorithms – p.22/40

Step 1: The annotated problem

Given a bipartite graph G, two sets B, W ⊆ V (G), and an integer k , find a set S of

at most k vertices such that G \ S has a 2-coloring where B \ S is black and W \ S

is white.

W

B0 W0

B

C

CR

R

Find an arbitrary 2-coloring (B0,W0) of G .

C := (B0 ∩ W) ∪ (W0 ∩ B) should change color, while R := (B0 ∩ B) ∪ (W0 ∩ W)

should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C and R , i.e.,

no component of G \ S contains vertices from both C \ S and R \ S .

Fixed Parameter Algorithms – p.22/40

Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S separates C and R , i.e.,

no component of G \ S contains vertices from both C \ S and R \ S .

Proof:

⇒ In a 2-coloring of G \ S , each vertex either remained the same color or changed

color. Adjacent vertices do the same, thus every component either changed or

remained.

⇐ Flip the coloring of those components of G \ S that contain vertices from C \ S .

No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a set S

that separates C and R . It can be done in time O(k |E (G)|) using k iterations of the

Ford-Fulkerson algorithm.

Fixed Parameter Algorithms – p.23/40

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is

bipartite, find a set S of k vertices such that G \ S is bipartite.

S ′

Fixed Parameter Algorithms – p.24/40

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is

bipartite, find a set S of k vertices such that G \ S is bipartite.

deleted

S ′

black white

Branch into 3k+1 cases: each vertex of S ′ is either black, white, or deleted.

Trivial check: no edge between two black or two white vertices.

Fixed Parameter Algorithms – p.24/40

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is

bipartite, find a set S of k vertices such that G \ S is bipartite.

W

S ′

black white deleted

Branch into 3k+1 cases: each vertex of S ′ is either black, white, or deleted.

Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S ′ should be white and the neighbors of the

white vertices in S ′ should be black.

Fixed Parameter Algorithms – p.24/40

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is

bipartite, find a set S of k vertices such that G \ S is bipartite.

BW

S ′

black white deleted

Branch into 3k+1 cases: each vertex of S ′ is either black, white, or deleted.

Trivial check: no edge between two black or two white vertices.

Neighbors of the black vertices in S ′ should be white and the neighbors of the

white vertices in S ′ should be black.

Fixed Parameter Algorithms – p.24/40

Step 2: The compression problem

Given a graph G , an integer k , and a set S ′ of k + 1 vertices such that G \ S ′ is

bipartite, find a set S of k vertices such that G \ S is bipartite.

W B

The vertices of S ′ can be disregarded. Thus we need to solve the annotated

problem on the bipartite graph G \ S ′.

Running time: O(3k · k |E (G)|) time.

Fixed Parameter Algorithms – p.24/40

Step 3: Iterative compression

How do we get a solution of size k + 1?

Fixed Parameter Algorithms – p.25/40

Step 3: Iterative compression

How do we get a solution of size k + 1?

Dirty trick : we get it for free!

Fixed Parameter Algorithms – p.25/40

Step 3: Iterative compression

How do we get a solution of size k + 1?

Dirty trick : we get it for free!
Let V (G) = {v1, ... , vn} and let Gi be the graph induced by {v1, ... , vi }.

For every i , we find a set Si of size k such that Gi \ Si is bipartite.

For Gk , the set Sk = {v1, ... , vk } is a trivial solution.

If Si−1 is known, then Si−1 ∪ {vi } is a set of size k + 1 whose deletion makes Gi

bipartite ⇒ We can use the compression algorithm to find a suitable Si in time

O(3k · k |E (Gi)|).

Fixed Parameter Algorithms – p.25/40

Step 3: Iterative Compression

Bipartite-Deletion(G , k)

1. Sk = {v1, ... , vk }

2. for i := k + 1 to n

3. Invariant: Gi−1 \ Si−1 is bipartite.

4. Call Compression(Gi ,Si−1 ∪ {vi })

5. If the answer is “NO” ⇒ return “NO”

6. If the answer is a set X ⇒ Si := X

7. Return the set Sn

Running time: the compression algorithm is called n times and everything else

can be done in linear time

⇒ O(3k · k |V (G)| · |E (G)|) time algorithm.

Fixed Parameter Algorithms – p.26/40

Almost 2-SAT

BIPARTITE EDGE DELETION: Delete k edges to make the graph bipartite.

Fact: BIPARTITE EDGE DELETION can be solved in time O(2k · k |V (G)| · |E (G)|).

BIPARTITE EDGE DELETION can be seen as a CSP problem:

“Given Boolean variables and constraints of the form x 6= y , find an

assignment that satisfies all but at most k constraints.”

Fixed Parameter Algorithms – p.27/40

Almost 2-SAT

BIPARTITE EDGE DELETION: Delete k edges to make the graph bipartite.

Fact: BIPARTITE EDGE DELETION can be solved in time O(2k · k |V (G)| · |E (G)|).

BIPARTITE EDGE DELETION can be seen as a CSP problem:

“Given Boolean variables and constraints of the form x 6= y , find an

assignment that satisfies all but at most k constraints.”

More generally:

ALMOST 2-SAT: Given a 2SAT formula and an integer k , find an assignment that

satisfies all but at most k clauses.

Fact: [O’Sullivan and Razgon 2008] ALMOST 2-SAT is FPT.

Next: A simplified 7k · nO(1) time algorithm.

Fixed Parameter Algorithms – p.27/40

Almost 2-Sat

Solution based on iterative compression:

Step 1:

Solve the annotated problem for 0-valid formulas

Given a 0-valid formula ϕ, two sets V0, V1 of variables, and an integer k ,

find a set S of at most k clauses such that ϕ \ S has a satisfying

assignment where V0 is 0 and V1 is 1.

Step 2:

Solve the compression problem for general formulas:

Given a formula ϕ, an integer k , and a set S ′ of k + 1 clauses such that

G \ S is satisfiable, find a set S of k clauses such that G \ S is satisfiable.

Fixed Parameter Algorithms – p.28/40

Step 1: The annotated problem

Given a 0-valid formula ϕ, two sets V0, V1 of variables, and an integer k , find a set

S of at most k clauses such that ϕ \ S has a satisfying assignment where V0 is 0

and V1 is 1.

If ϕ is 0-valid, then clauses are of form x → y and x ∨ y . Graph of implications:

V1 V0

Fixed Parameter Algorithms – p.29/40

Step 1: The annotated problem

Given a 0-valid formula ϕ, two sets V0, V1 of variables, and an integer k , find a set

S of at most k clauses such that ϕ \ S has a satisfying assignment where V0 is 0

and V1 is 1.

If ϕ is 0-valid, then clauses are of form x → y and x ∨ y . Graph of implications:

V0V1

Observation: Any solution S is a (V1,V0)-cut (necessary, but not sufficient).

Fixed Parameter Algorithms – p.29/40

Step 1: The annotated problem

Let λ be the size of the minimum (V1,V0)-cut.

Fact: There is a unique cut of size λ such that the set of vertices reachable from

V1 has to be reachable in every cut of size λ.

V0V1

Fixed Parameter Algorithms – p.30/40

Step 1: The annotated problem

Let λ be the size of the minimum (V1,V0)-cut.

Fact: There is a unique cut of size λ such that the set of vertices reachable from

V1 has to be reachable in every cut of size λ.

1

0

0

0

0

00

0

0

0

1

1

1

0

1

1

1 1

V0V1

Fixed Parameter Algorithms – p.30/40

Step 1: The annotated problem

Let λ be the size of the minimum (V1,V0)-cut.

Fact: There is a unique cut of size λ such that the set of vertices reachable from

V1 has to be reachable in every cut of size λ.

1

0

0

0

0

00

0

0

0

1

1

1

0

1

1

1 1

V0V1

If this assignment satisfies every x ∨ y clause, then we are done. Otherwise we

branch into 3 directions.

Fixed Parameter Algorithms – p.30/40

Step 1: The annotated problem

Let λ be the size of the minimum (V1,V0)-cut.

Fact: There is a unique cut of size λ such that the set of vertices reachable from

V1 has to be reachable in every cut of size λ.

0 0

0

1 0

1 0

1

1

1

01

1 0

0

0

0

1

V0V1

x

y

If this assignment satisfies every x ∨ y clause, then we are done. Otherwise we

branch into 3 directions.

Fixed Parameter Algorithms – p.30/40

Step 1: The annotated problem

0 0

0

1 0

1 0

1

1

1

01

1 0

0

0

0

1

V0V1

x

y

If this assignment satisfies every x ∨ y clause, then we are done. Otherwise we

branch into 3 directions.

1. Remove the clause x ∨ y and decrease k .

2. Put x into V0 (increases λ).

3. Put y into V0 (increases λ).

We can branch at most k times: λ cannot be larger than k

⇒ O(3k · m) time algorithm for the annotated problem.
Fixed Parameter Algorithms – p.30/40

Step 2: The compression problem

Given a formula ϕ, an integer k , and a set S ′ of k + 1 clauses such that ϕ \ S ′ is

satisfiable, find a set S of k clauses such that ϕ \ S ′ is satisfiable.

Small trick: by negating variables, we can assume that ϕ \ S ′ is 0-valid.

Fixed Parameter Algorithms – p.31/40

Step 2: The compression problem

Given a formula ϕ, an integer k , and a set S ′ of k + 1 clauses such that ϕ \ S ′ is

satisfiable, find a set S of k clauses such that ϕ \ S ′ is satisfiable.

Small trick: by negating variables, we can assume that ϕ \ S ′ is 0-valid.

Let V be the variables involved in S ′. Let us guess the values of these

variables in the solution (≤ 22(k+1) possibilities).

Suppose that V = V0 ∪ V1. Remove S ′ and decrease k by the number of

clauses in S ′ that are unsatisfied by (V0,V1).

Task: find a solution of ϕ \ S ′ that is compatible with V0 and V1

⇒ can be solved in time O(3k · k · m) by the annotated problem.

Running time: O(22(k+1) · 3k · k · m) = O(12k · k · m).

Slightly better analysis gives a O(7k · k · m) bound.

Fixed Parameter Algorithms – p.31/40

Step 3: Iterative compression

We get for free the solution of size k + 1.

Let C1, ... , Cm be the clauses and let ϕi be the formula containing only the first i

clauses.

For every i , we find a set Si of size k such that ϕi \ Si is satisfiable.

For ϕk , the set Sk = {C1, ... ,Ck } is a trivial solution.

If Si−1 is known, then Si−1 ∪ {Ci } is a set of size k + 1 whose deletion makes

ϕi satisfiable ⇒ We can use the compression algorithm to find a suitable Si in

time O(7k · km).

Running time: O(7k · k · m2) for a formula with m clauses.

Fixed Parameter Algorithms – p.32/40

Kernelization

Fixed Parameter Algorithms – p.33/40

Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than s(k), then the

answer is trivial.

⇒ We can assume that the instance is of size at most s(k) and can solved by

brute force ⇒ FPT parameterized by k .

Fixed Parameter Algorithms – p.34/40

Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than s(k), then the

answer is trivial.

⇒ We can assume that the instance is of size at most s(k) and can solved by

brute force ⇒ FPT parameterized by k .

Reduction rules for VERTEX COVER instance (G , k):

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)

Fixed Parameter Algorithms – p.34/40

Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than s(k), then the

answer is trivial.

⇒ We can assume that the instance is of size at most s(k) and can solved by

brute force ⇒ FPT parameterized by k .

Reduction rules for VERTEX COVER instance (G , k):

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)

If neither Rule 1 nor Rule 2 can be applied:

If |V (G)| > k(k + 1) ⇒ There is no solution (every vertex should be the

neighbor of at least one vertex of the cover).

Otherwise, |V (G)| ≤ k(k + 1) and we have a k(k + 1) vertex kernel.

Fixed Parameter Algorithms – p.34/40

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ ≤ k , and

|I ′| ≤ f (k) for some function f (k).

In other words: a polynomial-time preprocessing technique with some provable

guarantee.

We are especially interested in kernelizations where f (k) is polynomial in k : which

problems have polynomial kernels?

Fixed Parameter Algorithms – p.35/40

Kernelization for MIN ONES SAT

We have seen that VERTEX COVER is a special case of MIN ONES SAT and

MIN ONES SAT(Γ) is FPT for every Γ.

Do we have a polynomial kernelization for MIN ONES SAT(Γ) for every Γ?

Fixed Parameter Algorithms – p.36/40

Kernelization for MIN ONES SAT

We have seen that VERTEX COVER is a special case of MIN ONES SAT and

MIN ONES SAT(Γ) is FPT for every Γ.

Do we have a polynomial kernelization for MIN ONES SAT(Γ) for every Γ?

First another special case:

d -HITTING SET: Given a collection S of sets of size at most d and an integer k ,

find a set S of k elements that intersects every set of S.

Fact: d -HITTING SET has a polynomial kernel for every fixed d .

Fixed Parameter Algorithms – p.36/40

Sunflower lemma

Definition: Sets S1, S2, ... , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petals
center

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than

(p − 1)d · d! and it contains only sets of size at most d , then the system contains a

sunflower with p petals. Furthermore, in this case such a sunflower can be found in

polynomial time.

Fixed Parameter Algorithms – p.37/40

Sunflowers and d -HITTING SET

d -HITTING SET: Given a collection S of sets of size at most d and an integer k ,

find a set S of k elements that intersects every set of S.

petals
center

Reduction Rule: If k + 1 sets form a sunflower, then remove these sets from S

and add the center C to S (S does not hit one of the petals, thus it has to hit the

center).

Note: if the center is empty (the sets are disjoint), then there is no solution.

If the rule cannot be applied, then there are at most O(kd) sets.
Fixed Parameter Algorithms – p.38/40

Sunflowers and d -HITTING SET

d -HITTING SET: Given a collection S of sets of size at most d and an integer k ,

find a set S of k elements that intersects every set of S.

petals
center

Reduction Rule (variant): Suppose more than k + 1 sets form a sunflower.

If the sets are disjoint ⇒ No solution.

Otherwise, keep only k + 1 of the sets.

If the rule cannot be applied, then there are at most O(kd) sets.

Fixed Parameter Algorithms – p.38/40

Kernelization for MIN ONES SAT

The story very briefly:

We have seen that MIN ONES SAT(Γ) is FPT for every Γ.

Not every FPT problem admits a polynomial kernel and there is a technology

for proving that (modulo some complexity assumption).

Some cases of MIN ONES SAT(Γ), including d -HITTING SET, have polynomial

kernels.

MIN ONES SAT(Γ) has a polynomial kernel if and only if Γ is mergable [Kratsch

and Wahlström 2010].

Lots of possibilities for Schaefer-style dichotomy theorems in parameterized com-

plexity!

Fixed Parameter Algorithms – p.39/40

Conclusions

Nice techniques for fixed parameter algorithms.

Lots of interesting NP-hard problems are FPT.

Bad news: W[1]-hardness theory.

New kind of questions.

Fixed Parameter Algorithms – p.40/40

	Parameterized complexity
	Parameterized complexity
	Bounded search tree method
	Fixed-parameter tractability
	FPT problems
	FPT algorithmic techniques
	Books
	Bounded search trees
	Bounded search tree method
		extsc {Min Ones Sat}
	Color coding
		extsc {k-Path}
		extsc {k-Path}
	Error probability
	Finding a colorful path
	Finding a colorful path
	Color coding
	Iterative compression
		extsc {Bipartite Deletion}
		extsc {Bipartite Deletion}
	Step 1: The annotated problem
	Step 1: The annotated problem
	Step 2: The compression problem
	Step 3: Iterative compression
	Step 3: Iterative Compression
	Almost 2-SAT
	Almost 2-Sat
	Step 1: The annotated problem
	Step 1: The annotated problem
	Step 2: The compression problem
	Step 3: Iterative compression
	Kernelization
	Kernelization for 	extsc {Vertex Cover}
	Kernelization
	Kernelization for 	extsc {Min Ones Sat}
	Sunflower lemma
	Sunflowers and 	extsc {d-Hitting Set}
	Kernelization for 	extsc {Min Ones Sat}
	Conclusions

